101
|
Samochocki Z, Bogaczewicz J, Sysa-Jędrzejowska A, McCauliffe DP, Kontny E, Wozniacka A. Expression of vascular endothelial growth factor and other cytokines in atopic dermatitis, and correlation with clinical features. Int J Dermatol 2015; 55:e141-6. [DOI: 10.1111/ijd.13132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/03/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
Affiliation(s)
| | - Jarosław Bogaczewicz
- Department of Dermatology and Venereology; Medical University of Lodz; Lodz Poland
| | | | - Daniel P. McCauliffe
- Department of Dermatology; University of North Carolina; Chapel Hill NC USA
- Private Practice; Rutland VT USA
| | - Ewa Kontny
- Department of Pathophysiology and Immunology; Institute of Rheumatology; Warsaw Poland
| | - Anna Wozniacka
- Department of Dermatology and Venereology; Medical University of Lodz; Lodz Poland
| |
Collapse
|
102
|
Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediators Inflamm 2015; 2015:869242. [PMID: 26543328 PMCID: PMC4620237 DOI: 10.1155/2015/869242] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
The term myeloproliferative neoplasms (MPN) refers to a heterogeneous group of diseases including not only polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), but also chronic myeloid leukemia (CML), and systemic mastocytosis (SM). Despite the clinical and biological differences between these diseases, common pathophysiological mechanisms have been identified in MPN. First, aberrant tyrosine kinase signaling due to somatic mutations in certain driver genes is common to these MPN. Second, alterations of the bone marrow microenvironment are found in all MPN types and have been implicated in the pathogenesis of the diseases. Finally, elevated levels of proinflammatory and microenvironment-regulating cytokines are commonly found in all MPN-variants. In this paper, we review the effects of MPN-related oncogenes on cytokine expression and release and describe common as well as distinct pathogenetic mechanisms underlying microenvironmental changes in various MPN. Furthermore, targeting of the microenvironment in MPN is discussed. Such novel therapies may enhance the efficacy and may overcome resistance to established tyrosine kinase inhibitor treatment in these patients. Nevertheless, additional basic studies on the complex interplay of neoplastic and stromal cells are required in order to optimize targeting strategies and to translate these concepts into clinical application.
Collapse
|
103
|
König J, Weiss G, Rossi D, Wankhammer K, Reinisch A, Kinzer M, Huppertz B, Pfeiffer D, Parolini O, Lang I. Placental mesenchymal stromal cells derived from blood vessels or avascular tissues: what is the better choice to support endothelial cell function? Stem Cells Dev 2015; 24:115-31. [PMID: 25244528 DOI: 10.1089/scd.2014.0115] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising tools for therapeutic revascularization of ischemic tissues and for support of vessel formation in engineered tissue constructs. Recently, we could show that avascular-derived MSCs from placental amnion release soluble factors that exhibit survival-enhancing effects on endothelial cells (ECs). We hypothesize that MSCs derived from placental blood vessels might have even more potent angiogenic effects. Therefore, we isolated and characterized MSCs from placental chorionic blood vessels (bv-MSCs) and tested their angiogenic potential in comparison to amnion-derived avascular MSCs (av-MSCs). bv-MSCs express a very similar surface marker profile compared with av-MSCs and could be differentiated toward the adipogenic and osteogenic lineages. bv-MSCs exert immunosuppressive properties on peripheral blood mononuclear cells, suggesting that they are suitable for cell transplantation settings. Conditioned medium (Cdm) from av-MSCs and bv-MSCs significantly enhanced EC viability, whereas only Cdm from bv-MSCs significantly increased EC migration and network formation (Matrigel assay). Angiogenesis array analysis of av- and bv-MSC-Cdm revealed a similar secretion pattern of angiogenic factors, including angiogenin, interleukins-6 and -8, and tissue inhibitors of matrix metalloproteinase-1 and 2. Enzyme-linked immunosorbent assay analysis showed that, in contrast to av-MSCs, bv-MSCs secreted vascular endothelial growth factor. In direct coculture with bv-MSCs, ECs showed a significantly increased formation of vessel-like structures compared with av-MSCs. With regard to therapeutic treatment, bv-MSCs and particularly their Cdm might be valuable to stimulate angiogenesis especially in ischemic tissues. av-MSCs and their Cdm could be beneficial in conditions when it is required to promote the survival and stabilization of blood vessels without the risk of unmeant angiogenesis.
Collapse
Affiliation(s)
- Julia König
- 1 Institute of Cell Biology, Histology and Embryology, Medical University of Graz , Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Gopinathan G, Milagre C, Pearce OMT, Reynolds LE, Hodivala-Dilke K, Leinster DA, Zhong H, Hollingsworth RE, Thompson R, Whiteford JR, Balkwill F. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res 2015; 75:3098-107. [PMID: 26081809 PMCID: PMC4527186 DOI: 10.1158/0008-5472.can-15-1227] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 12/19/2022]
Abstract
The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.
Collapse
Affiliation(s)
- Ganga Gopinathan
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Carla Milagre
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Oliver M T Pearce
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - David A Leinster
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Haihong Zhong
- MedImmune, One MedImmune Way, Gaithersburg, Maryland
| | | | - Richard Thompson
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - James R Whiteford
- William Harvey Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Frances Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, United Kingdom.
| |
Collapse
|
105
|
|
106
|
Ma D, Kua JEH, Lim WK, Lee ST, Chua AWC. In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy 2015; 17:1036-51. [DOI: 10.1016/j.jcyt.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/09/2023]
|
107
|
Mar AC, Chu CH, Lee HJ, Chien CW, Cheng JJ, Yang SH, Jiang JK, Lee TC. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis. J Biol Chem 2015. [PMID: 26209639 DOI: 10.1074/jbc.m115.644823] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC.
Collapse
Affiliation(s)
- Ai-Chung Mar
- From the Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan, the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Ho Chu
- the Institute of Pharmacology and the Department of Surgery, Koo Foundation, Sun Yat-Sen Cancer Center, Taipei 11221, Taiwan
| | - Hui-Ju Lee
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Wen Chien
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jy Cheng
- the National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan, and
| | - Shung-Haur Yang
- the Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan the School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Jeng-Kai Jiang
- the Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 11221, Taiwan the School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Te-Chang Lee
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan,
| |
Collapse
|
108
|
Vasculogenesis and angiogenesis in nonseminomatous testicular germ cell tumors. Urol Oncol 2015; 33:268.e17-28. [DOI: 10.1016/j.urolonc.2015.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 12/15/2022]
|
109
|
Xing S, Zhang B, Hua R, Tai WCS, Zeng Z, Xie B, Huang C, Xue J, Xiong S, Yang J, Liu S, Li H. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway. BMC Cancer 2015; 15:368. [PMID: 25947641 PMCID: PMC4437676 DOI: 10.1186/s12885-015-1378-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/27/2015] [Indexed: 01/12/2023] Open
Abstract
Background Angiogenesis is essential for tumor growth. Hepatocellular carcinoma (HCC) is characterized by hypervascularity; high levels of angiogenesis are associated with poor prognosis and a highly invasive phenotype in HCC. Up-regulated gene-4 (URG4), also known as upregulator of cell proliferation (URGCP), is overexpressed in multiple tumor types and has been suggested to act as an oncogene. This study aimed to elucidate the effect of URG4/URGCP on the angiogenic capacity of HCC cells in vitro. Methods Expression of URG4/URGCP in HCC cell lines and normal liver epithelial cell lines was examined by Western blotting and quantitative real-time PCR. URG4/URGCP was stably overexpressed or transiently knocked down using a shRNA in two HCC cell lines. The human umbilical vein endothelial cell (HUVEC) tubule formation and Transwell migration assays and chicken chorioallantoic membrane (CAM) assay were used to examine the angiogenic capacity of conditioned media from URG4/URGCP-overexpressing and knockdown cells. A luciferase reporter assay was used to examine the transcriptional activity of nuclear factor kappa – light – chain - enhancer of activated B cells (NF-κB). NF-κB was inhibited by overexpressing degradation-resistant mutant inhibitor of κB (IκB)-α. Expression of vascular endothelial growth factor C (VEGFC), tumor necrosis factor-α (TNFα), interleukin (IL)-6, IL-8 and v-myc avian myelocytomatosis viral oncogene homolog (MYC) were examined by quantitative real-time PCR; VEGFC protein expression was analyzed using an ELISA. Results URG4/URGCP protein and mRNA expression were significantly upregulated in HCC cell lines. Overexpressing URG4/URGCP enhanced - while silencing URG4/URGCP decreased - the capacity of HCC cell conditioned media to induce HUVEC tubule formation and migration and neovascularization in the CAM assay. Furthermore, overexpressing URG4/URGCP increased - whereas knockdown of URG4/URGCP decreased - VEGFC expression, NF-κB transcriptional activity, the levels of phosphorylated (but not total) IκB kinase (IKK) and IκB-α, and expression of TNFα, IL-6, IL-8 and MYC in HCC cells. Additionally, inhibition of NF-κB activity in HCC cells abrogated URG4/URGCP-induced NF-κB activation and angiogenic capacity. Conclusions This study suggests that URG4/URGCP plays an important pro-angiogenic role in HCC via a mechanism linked to activation of the NF-κB pathway; URG4/URGCP may represent a potential target for anti-angiogenic therapy in HCC. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1378-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sizhong Xing
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, P.R. China. .,Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China. .,Department of Internal Medicine, Baoan People's Hospital, Shenzhen, 518101, P.R. China.
| | - Bing Zhang
- Department of Medical Imaging, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China.
| | - Ruixi Hua
- Department of Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China.
| | - William Chi-shing Tai
- Center for Cancer and Inflammation Research, Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong, S.A.R., China.
| | - Zhirong Zeng
- Department of Gastroenterology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China.
| | - Binhui Xie
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, P.R. China.
| | - Chenghui Huang
- Department of Internal Medicine, Baoan People's Hospital, Shenzhen, 518101, P.R. China.
| | - Jisu Xue
- Department of Internal Medicine, Baoan People's Hospital, Shenzhen, 518101, P.R. China.
| | - Shiqiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, UK.
| | - Jianyong Yang
- Department of Medical Imaging, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, P.R. China.
| | - Heping Li
- Department of Medical Imaging, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China. .,Department of Oncology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, P.R. China.
| |
Collapse
|
110
|
Li YF, Ren LN, Guo G, Cannella LA, Chernaya V, Samuel S, Liu SX, Wang H, Yang XF. Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. J Hematol Oncol 2015; 8:33. [PMID: 25888494 PMCID: PMC4446087 DOI: 10.1186/s13045-015-0130-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022] Open
Abstract
As the population ages and lifestyles change in concordance, the number of patients suffering from ischemic stroke and its associated disabilities is increasing. Studies on determining the relationship between endothelial progenitor cells (EPCs) and ischemic stroke have become a new hot spot and have reported that EPCs may protect the brain against ischemic injury, promote neurovascular repair, and improve long-term neurobehavioral outcomes. More importantly, they introduce a new perspective for prognosis assessment and therapy of ischemic stroke. However, EPCs’ origin, function, influence factors, injury repair mechanisms, and cell-based therapy strategies remain controversial. Particularly, research conducted to date has less clinical studies than pre-clinical experiments on animals. In this review, we summarized and analyzed the current understanding of basic characteristics, influence factors, functions, therapeutic strategies, and disadvantages of EPCs as well as the regulation of inflammatory factors involved in the function and survival of EPCs after ischemic stroke. Identifying potential therapeutic effects of EPCs in ischemic stroke will be a challenging but an incredibly important breakthrough in neurology, which may bring promise for patients with ischemic stroke.
Collapse
Affiliation(s)
- Ya-Feng Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Department of Nephrology and Hemodialysis Center, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Li-Na Ren
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Geng Guo
- Department of Neurosurgery, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
| | - Lee Anne Cannella
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Valeria Chernaya
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Sonia Samuel
- Department of Biology, College of Science and Technology, Temple University, 1801 N. Broad St., Philadelphia, PA, 19122, USA.
| | - Su-Xuan Liu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
111
|
Iman V, Karimian H, Mohan S, Hobani YH, Noordin MI, Mustafa MR, Noor SM. In vitro and in vivo anti-angiogenic activity of girinimbine isolated from Murraya koenigii. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1281-92. [PMID: 25767375 PMCID: PMC4354401 DOI: 10.2147/dddt.s71557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Girinimbine is a carbazole alkaloid isolated from the stem bark and root of Murraya koenigii. Here we report that girinimbine is an inhibitor of angiogenic activity both in vitro and in vivo. MTT results showed that girinimbine inhibited proliferation of human umbilical vein endothelial cells, while results from endothelial cell invasion, migration, tube formation, and wound healing assays demonstrated significant time- and dose-dependent inhibition by girinimbine. A proteome profiler array done on girinimbine-treated human umbilical vein endothelial cells showed that girinimbine had mediated regulation of pro-angiogenic and anti-angiogenic proteins. The anti-angiogenic potential of girinimbine was also evidenced in vivo in the zebrafish embryo model wherein girinimbine inhibited neo vessel formation in zebrafish embryos following 24 hours of exposure. Together, these results showed that girinimbine could effectively suppress angiogenesis, suggestive of its therapeutic potential as a novel angiogenesis inhibitor.
Collapse
Affiliation(s)
- Venoos Iman
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hamed Karimian
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Syam Mohan
- Medical Research Center, University of Jazan, Jazan, Saudi Arabia
| | | | | | - Mohd Rais Mustafa
- Department of Pharmacology, Centre for Natural Products and Drug Discovery (CENAR), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
112
|
Liu X, Ye F, Xiong H, Hu DN, Limb GA, Xie T, Peng L, Zhang P, Wei Y, Zhang W, Wang J, Wu H, Lee P, Song E, Zhang DY. IL-1β induces IL-6 production in retinal Müller cells predominantly through the activation of p38 MAPK/NF-κB signaling pathway. Exp Cell Res 2015; 331:223-231. [PMID: 25239226 DOI: 10.1016/j.yexcr.2014.08.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
IL-6 plays an important role in various inflammatory ocular diseases, including diabetic retinopathy. Müller cells are the major source of inflammatory mediators, including IL-6, in the retina. However, the mechanism of regulating IL-6 production in these cells remains unclear. Examination of signaling pathways in human retinal Müller cells (MIO-M1 cell line) cultured with IL-1β, TNF-α, IL-6, IL-8, VEGF, IFN-γ, glucose or mannitol showed that IL-1β was the most potent stimulator of IL-6 production. In addition, IL-1 β also increased NF-κB p50 protein level and phosphorylation of p38 MAPK, ERK1/2 and c-Jun. Induction of IL-6 production by IL-1β was significantly reduced by addition of p38 MAPK (SB203580), MEK1/2 (U0126) or NF-κB (BAY11-7082) inhibitors, with the highest effect being observed with SB203580. To explore the specific elements in IL-6 promoter responsible for IL-1β-induction of IL-6 expression, a series of plasmids bearing various IL-6 promoter mutations were transiently expressed in MIO-MI cells cultured in the presence or absence of IL-1β (10ng/ml) and/or SB203580 (10µM). Results showed that IL-6 promoter activity of the parent pIL-6-Luc651 was significantly enhanced by IL-1β, but the level was significantly attenuated by SB203580. Furthermore, the IL-6 promoter activity was also reduced upon deletion of NF-κB, AP-1 or C/EBP binding sites, with NF-κB deletion being the greatest. These results are the first demonstration that IL-1β induces IL-6 production in Müller cells by activation of IL-6 promoter activity predominantly through the p38 MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Xiufen Liu
- Department of Ophthalmology, The First Hospital, Jilin University, Xinmin Street 71, Changchun, Jilin 130021, China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huabao Xiong
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan-Ning Hu
- Tissue Culture Center, New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - G Astrid Limb
- Division of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK
| | - Tian Xie
- Department of neurosurgery, The People׳s Hospital of Jilin Province, Changchun, Jilin 130021
| | - Liang Peng
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pili Zhang
- Department of Medicine, Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yi Wei
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wiley Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Wang
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hongwei Wu
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peng Lee
- Departments of Pathology, Urology, NYU Cancer Institute, New York Harbor Healthcare System, New York University, School of Medicine, New York, NY 10010, USA
| | - E Song
- Department of Ophthalmology, The First Hospital, Jilin University, Xinmin Street 71, Changchun, Jilin 130021, China; The Ophthalmology Hospital Affiliated Suzhou University, Jiangsu, Suzhou 215021, China.
| | - David Y Zhang
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
113
|
Li C, Yang X, Feng J, Lei P, Wang Y. Proinflammatory and prothrombotic status in emphysematous rats exposed to intermittent hypoxia. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:374-383. [PMID: 25755725 PMCID: PMC4348870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVES To develop an "overlap syndrome (OS)" rat model by intermittent hypoxia (IH) exposure on the base of pre-existing emphysema, and to explore whether "OS" exposure results in more severe systemic inflammation, and whether the inflammation changes levels of coagulant/anticoagulant factors and oxidative stress status. METHODS Sixty Wistar rats were put into 4 groups: Control group; IH group, IH exposure; Emphysema group, smoke exposure; Overlap group, smoke exposure and IH exposure. We obtained peripheral blood for apoptosis of CD3(+)CD4(+), CD3(+)CD8(+) T lymphocytes and neutrophils, and for endothelial progenitor cell (EPC) counts. Tumor necrosis factor (TNF)-α, interleukin (IL)-6 and coagulant/anticoagulant factors [antithrombin (AT), fibrinogen (FIB), Factor VIII (FVIII) and von Willebrand factor (vWF)] were evaluated. We also obtained tissue blocks of lung, liver, pancreas, and right carotid artery for pathologic scoring and measurements of liver oxidative stress [superoxide dismutase (SOD) activity, catalase (CAT) activity and malondialdehyde (MDA) concentration]. RESULTS The levels of TNF-α and IL-6, CD3(+)CD4(+) T lymphocyte apoptosis, EPC counts, coagulant factors and MDA are the highest in Overlap group, the lowest in Control group, when the levels of neutrophil apoptosis, CD3(+)CD8(+) T lymphocyte apoptosis, AT, SOD and CAT are the lowest in Overlap group, the highest in Control group (all P values < 0.05). CONCLUSION In model animals, when IH is combined with emphysema, there will be a more severe or an "overlapped" systemic/multiple organic inflammation, oxidative stress and hyper-coagulability. And the pro-inflammatory and pro-thrombotic status resulted from "OS" exposure may elicit a robust EPC mobilization, which needs further investigation.
Collapse
Affiliation(s)
- Caili Li
- Department of Respiratory, Tianjin Medical University General HospitalTianjin 300052, China
| | - Xiaokun Yang
- Department of Respiratory, Tianjin Medical University General HospitalTianjin 300052, China
| | - Jing Feng
- Department of Respiratory, Tianjin Medical University General HospitalTianjin 300052, China
- Neuropharmacology Section, Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle ParkNC 27709, USA
| | - Ping Lei
- Departmen of Geriatric, Tianjin Medical University General HospitalTianjin 300052, China
| | - Yubao Wang
- Infective Disease Institute, Second Affiliated Hospital of Tianjin Medical UniversityTianjin, 300211, China
| |
Collapse
|
114
|
Máchal J, Pávková-Goldbergová M, Hlinomaz O, Groch L, Vašků A. Patients with chronic three-vessel disease in a 15-year follow-up study: genetic and non-genetic predictors of survival. Medicine (Baltimore) 2014; 93:e278. [PMID: 25526459 PMCID: PMC4603099 DOI: 10.1097/md.0000000000000278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genetic and non-genetic predictors of 15-year survival in patients with chronic three-vessel disease (3VD) were investigated. Coronary angiography was performed on 810 subjects with symptoms of stable ischemic heart disease in 1998. The patients with 3VD were genotyped for 23 candidate polymorphisms covering the PPAR-RXR pathway, matrix metalloproteinase-2, renin-angiotensin-aldosterone system, endothelin-1, cytokine genes, MTHFR and APO E variants. Fifteen-year survival data were obtained from the national insurance registry. All data were available in the case of 150 patients with 3VD. Statistical analysis used stepwise Cox regression with dominant, recessive, or additive mode of genetic expression. Involved variables included age, sex, BMI, blood pressure, diabetes, ejection fraction, left main stenosis, previously diagnosed coronary stenosis, myocardial infarction in personal history, and coronary bypass along with polymorphisms pre-selected by log-rank tests. Out of the 23 polymorphisms, four were included in the model construction. SNP in the IL-6 gene rs1800795 (-174 G/C) has been found to be a significant predictor of survival. This SNP was in a linkage disequilibrium with rs1800797 (-597 G/A) in the same gene (D'=1.0), which was also found to constitute a significant predictor of survival when rs1800795 was not included in the model construction. Age, increased BMI, diabetes, low EF, and left main stenosis were also significant predictors in all models. Age, increased BMI, diabetes, low ejection fraction, left main stenosis, and genetic variation in the IL-6 promoter were established as significant independent risk factors for the survival of patients with three-vessel disease.
Collapse
Affiliation(s)
- Jan Máchal
- From the Department of Pathophysiology, Faculty of Medicine, Masaryk University Brno, Czech Republic (JM, MPG, AV); International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic (JM, LG, OH); and First Department of Internal Medicine - Cardioangiology, St. Anne's University Hospital, Brno, Czech Republic (OH, LG)
| | | | | | | | | |
Collapse
|
115
|
Kröpfl JM, Stelzer I, Mangge H, Pekovits K, Fuchs R, Allard N, Schinagl L, Hofmann P, Dohr G, Wallner-Liebmann S, Domej W, Müller W. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One 2014; 9:e106120. [PMID: 25180783 PMCID: PMC4152172 DOI: 10.1371/journal.pone.0106120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.
Collapse
Affiliation(s)
- Julia M. Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Karl-Franzens University & Technical University & Medical University of Graz, Graz, Austria
| | - Karin Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Robert Fuchs
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Nathalie Allard
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Lukas Schinagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Institute of Sports Science, Karl-Franzens University of Graz, Graz, Austria
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | | | - Wolfgang Domej
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Wolfram Müller
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
116
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
117
|
Ubiquitination by SAG regulates macrophage survival/death and immune response during infection. Cell Death Differ 2014; 21:1388-98. [PMID: 24786833 PMCID: PMC4131172 DOI: 10.1038/cdd.2014.54] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/19/2022] Open
Abstract
The checkpoint between the life and death of macrophages is crucial for the host's frontline immune defense during acute phase infection. However, the mechanism as to how the immune cell equilibrates between apoptosis and immune response is unclear. Using in vitro and ex vivo approaches, we showed that macrophage survival is synchronized by SAG (sensitive to apoptosis gene), which is a key member of the ubiquitin–proteasome system (UPS). When challenged by pathogen-associated molecular patterns (PAMPs), we observed a reciprocal expression profile of pro- and antiapoptotic factors in macrophages. However, SAG knockdown disrupted this balance. Further analysis revealed that ubiquitination of Bax and SARM (sterile α- and HEAT/armadillo-motif-containing protein) by SAG-UPS confers survival advantage to infected macrophages. SAG knockdown caused the accumulation of proapoptotic Bax and SARM, imbalance of Bcl-2/Bax in the mitochondria, induction of cytosolic cytochrome c and activation of caspase-9 and -3, all of which led to disequilibrium between life and death of macrophages. In contrast, SAG-overexpressing macrophages challenged with PAMPs exhibited upregulation of protumorigenic cytokines (IL-1β, IL-6 and TNF-α), and downregulation of antitumorigenic cytokine (IL-12p40) and anti-inflammatory cytokine (IL-10). This suggests that SAG-dependent UPS is a key switch between immune defense and apoptosis or immune overactivation and tumorigenesis. Altogether, our results indicate that SAG-UPS facilitates a timely and appropriate level of immune response, prompting future development of potential immunomodulators of SAG-UPS.
Collapse
|
118
|
Sepp D, Franz D, Triftshaeuser N, Ott I, Esposito-Bauer L, Feurer R, Seifert CL, Thaler M, Hemmer B, Poppert H. Mobilization of CD133+ progenitor cells in patients with acute cerebral infarction. PLoS One 2014; 9:e70796. [PMID: 24599235 PMCID: PMC3943863 DOI: 10.1371/journal.pone.0070796] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/24/2013] [Indexed: 11/18/2022] Open
Abstract
Progenitor cells (PCs) contribute to the endogenous repair mechanism after ischemic events. Interleukin-8 (IL-8) as part of the acute inflammatory reaction may enhance PC mobilization. Also, statins are supposed to alter number and function of circulating PCs. We aimed to investigate PC mobilization after acute ischemic stroke as well as its association with inflammatory markers and statin therapy. Sixty-five patients with ischemic stroke were enrolled in the study. The number of CD133+ PCs was analyzed by flow cytometry. Blood samples were drawn within 24 hours after symptom onset and after 5 days. The number of CD133+ PCs increased significantly within 5 days (p<0.001). We found no correlation between CD133+ PCs and the serum levels of IL-8, IL-6, or C-reactive protein (CRP). Multivariate analysis revealed that preexisting statin therapy correlated independently with the increase of CD133+ PCs (p = 0.001). This study showed a mobilization of CD133+ PCs in patients with acute cerebral infarction within 5 days after symptom onset. The early systemic inflammatory response did not seem to be a decisive factor in the mobilization of PCs. Preexisting statin therapy was associated with the increase in CD133+ PCs, suggesting a potentially beneficial effect of statin therapy in patients with stroke.
Collapse
Affiliation(s)
- Dominik Sepp
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Daniela Franz
- Department of Radiology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Natalie Triftshaeuser
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Ilka Ott
- Department of Cardiovascular Diseases, Deutsches Herzzentrum der Technischen Universitaet Muenchen, Muenchen, Germany
| | - Lorena Esposito-Bauer
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Regina Feurer
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Christian L Seifert
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Markus Thaler
- Institute for Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Holger Poppert
- Department of Neurology, Klinikum Rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| |
Collapse
|
119
|
Wu DJ, Ye BD, Hu ZP, Shen YP, Shen JP, Lin SY, Chen MT, Liu YL, Zhou YH. Bone marrow angiogenesis in patients presenting with differential Chinese medicine syndrome: Correlation with the clinico-pathological features of aplastic anemia. Chin J Integr Med 2013; 19:905-12. [DOI: 10.1007/s11655-013-1652-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Indexed: 10/25/2022]
|
120
|
Mathan TSMM, Figdor CG, Buschow SI. Human plasmacytoid dendritic cells: from molecules to intercellular communication network. Front Immunol 2013; 4:372. [PMID: 24282405 PMCID: PMC3825182 DOI: 10.3389/fimmu.2013.00372] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a specific subset of naturally occurring dendritic cells, that secrete large amounts of Type I interferon and play an important role in the immune response against viral infection. Several studies have highlighted that they are also effective antigen presenting cells, making them an interesting target for immunotherapy against cancer. However, the modes of action of pDCs are not restricted to antigen presentation and IFN secretion alone. In this review we will highlight a selection of cell surface proteins expressed by human pDCs that may facilitate communication with other immune cells, and we will discuss the implications of these molecules for pDC-driven immune responses.
Collapse
Affiliation(s)
- Till S M Manuel Mathan
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | | | | |
Collapse
|
121
|
Middleton K, Jones J, Lwin Z, Coward JIG. Interleukin-6: an angiogenic target in solid tumours. Crit Rev Oncol Hematol 2013; 89:129-39. [PMID: 24029605 DOI: 10.1016/j.critrevonc.2013.08.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 12/18/2022] Open
Abstract
During the past decade, incorporating anti-angiogenic agents into the therapeutic management of a myriad of malignancies has in certain cases made a significant impact on survival. However, the development of resistance to these drugs is inevitable and swift disease progression on their cessation often ensues. Hence, there is a drive to devise strategies that aim to enhance response to anti-angiogenic therapies by combining them with other targeted agents that facilitate evasion from resistance. The pleiotropic cytokine, interleukin-6 (IL-6), exerts pro-angiogenic effects in the tumour microenvironment of several solid malignancies and there is emerging evidence that reveals significant relationships between IL-6 signalling and treatment failure with antibodies directed against vascular endothelial growth factor (VEGF). This review summarises the role of IL-6 in pivotal angiogenic processes and preclinical/clinical research to support the future introduction of anti-IL-6 therapies to be utilised either in combination with other anti-angiogenic drugs or as a salvage therapy for patients with diseases that become refractory to these approaches.
Collapse
Affiliation(s)
- Kathryn Middleton
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Joanna Jones
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Zarnie Lwin
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia
| | - Jermaine I G Coward
- Mater Adult Hospital, Department of Medical Oncology, Raymond Terrace, Brisbane, QLD 4101, Australia; Inflammation & Cancer Therapeutics Group, Mater Research, Level 4, Translational Research Institute, 37 Kent Street, Woolloongabba, Brisbane, QLD 4102, Australia; School of Medicine, University of Queensland, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
122
|
Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang IH, Kwon SM, Lee JS, Kim JH. Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2136-44. [PMID: 23959047 DOI: 10.1016/j.bbadis.2013.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/29/2013] [Accepted: 08/11/2013] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) accelerate regeneration of ischemic or injured tissues by stimulation of angiogenesis through a paracrine mechanism. Tumor necrosis factor-α (TNF-α)-activated MSCs secrete pro-angiogenic cytokines, including IL-6 and IL-8. In the present study, using an ischemic hindlimb animal model, we explored the role of IL-6 and IL-8 in the paracrine stimulation of angiogenesis and tissue regeneration by TNF-α-activated MSCs. Intramuscular injection of conditioned medium derived from TNF-α-treated MSCs (TNF-α CM) into the ischemic hindlimb resulted in attenuated severe limb loss and stimulated blood perfusion and angiogenesis in the ischemic limb. Immunodepletion of IL-6 and IL-8 resulted in attenuated TNF-α CM-stimulated tissue repair, blood perfusion, and angiogenesis. In addition, TNF-α CM induced migration of human cord blood-derived endothelial progenitor cells (EPCs) through IL-6- and IL-8-dependent mechanisms in vitro. Intramuscular injection of TNF-α CM into the ischemic limb led to augmented homing of tail vein-injected EPCs into the ischemic limb in vivo and immunodepletion of IL-6 or IL-8 from TNF-α CM attenuated TNF-α CM-stimulated homing of EPCs. In addition, intramuscular injection of recombinant IL-6 and IL-8 proteins resulted in increased homing of intravenously transplanted EPCs into the ischemic limb and improved blood perfusion in vivo. These results suggest that TNF-α CM stimulates angiogenesis and tissue repair through an increase in homing of EPCs through paracrine mechanisms involving IL-6 and IL-8.
Collapse
Affiliation(s)
- Yang Woo Kwon
- Medical Research Center for Ischemic Tissue Regeneration, School of Medicine, Pusan National University, Yangsan, Republic of Korea; Department of Physiology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Won HS, Kim YA, Lee JS, Jeon EK, An HJ, Sun DS, Ko YH, Kim JS. Soluble interleukin-6 receptor is a prognostic marker for relapse-free survival in estrogen receptor-positive breast cancer. Cancer Invest 2013; 31:516-21. [PMID: 23902164 DOI: 10.3109/07357907.2013.826239] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Considering the protumorigenic roles of interleukin-6 (IL-6) transsignaling, we assessed the serum levels of IL-6, soluble interleukin-6 receptor (sIL-6R), and soluble glycoprotein 130 (sgp130) in 143 patients with breast cancer. Serum levels of IL-6 were elevated with advanced T and N stage. Serum levels of sIL-6R were lower in patients with estrogen receptor-positive cancer. The median values of IL-6 and sgp130 did not differ between patients with recurrence and those without recurrence. However, higher serum levels of sIL-6R at diagnosis were associated with significantly shorter relapse-free survival in patients with estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Hye Sung Won
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea , Uijeongbu-si, Gyeonggi-do , Korea,1
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Mobilization of endothelial progenitor cells from bone marrow is impaired in a piglet model of acute respiratory distress syndrome. Pediatr Crit Care Med 2013; 14:e233-42. [PMID: 23867444 DOI: 10.1097/pcc.0b013e31828a7242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To characterize the endothelial progenitor cell mobilization in the models of moderate and severe lung injury, we hypothesized that there were differences in endothelial progenitor cell levels and mobilizing cytokines between moderate and severe lung injury. DESIGN Prospective, randomized, and controlled experimental study. SETTING University research laboratory center. SUBJECTS Fifteen healthy piglets. INTERVENTIONS Piglets were randomly allocated to control, moderate lung injury (acute lung injury), and severe lung injury (acute respiratory distress syndrome) groups. Lung injury was established by intravenous infusion of oleic acid. Animals were mechanically ventilated for 24-48 hours, and then animals were weaned from ventilation and cared for until day 7. MEASUREMENTS AND MAIN RESULTS Endothelial progenitor cells were quantified by flow cytometry. After 24 hours, the number of endothelial progenitor cells in peripheral blood increased in the acute lung injury group but was not altered in the acute respiratory distress syndrome group compared to the control group. The number of CD34KDR, KDRCD133, and CD34KDRCD133 cells was higher in the acute lung injury group than in the acute respiratory distress syndrome group. In bone marrow, the number of CD34KDR and KDRCD133 cells was greater in acute respiratory distress syndrome animals but not altered in acute lung injury animals at 24 hours. Furthermore, plasma stromal cell-derived factor-1 and vascular endothelial growth factor concentrations were higher in acute lung injury than in acute respiratory distress syndrome at 24 hours. Matrix metalloproteinase-9 and soluble kit ligand levels in bone marrow were reduced in acute respiratory distress syndrome compared with acute lung injury. Lung CD34, KDR, and lung stromal cell-derived factor-1 messenger RNA expression were higher in the acute lung injury group than in the acute respiratory distress syndrome group. Furthermore, the expression of CD34, KDR, and CD133 messenger RNA in lung tissue was correlated with stromal cell-derived factor-1 in the lung. CONCLUSIONS There was a rapid release of endothelial progenitor cells from bone marrow into circulation in moderate acute lung injury, and endothelial progenitor cell mobilization was impaired in acute respiratory distress syndrome.
Collapse
|
125
|
Genomic approach to identify factors that drive the formation of three-dimensional structures by EA.hy926 endothelial cells. PLoS One 2013; 8:e64402. [PMID: 23675535 PMCID: PMC3651237 DOI: 10.1371/journal.pone.0064402] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/14/2013] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanisms responsible for tube formation by endothelial cells (ECs) is of major interest and importance in medicine and tissue engineering. Endothelial cells of the human cell line EA.hy926 behave ambivalently when cultured on a random positioning machine (RPM) simulating microgravity. Some cells form tube-like three-dimensional (3D) aggregates, while other cells (AD) continue to grow adherently. Between the fifth and seventh day of culturing, the two types of cell growth achieve the greatest balance. We harvested ECs that grew either adherently or as 3D aggregates separately after five and seven days of incubation on the RPM, and applied gene array analysis and PCR techniques to investigate their gene expression profiles in comparison to ECs growing adherently under normal static 1 g laboratory conditions for equal periods of time. Using gene arrays, 1,625 differentially expressed genes were identified. A strong overrepresentation of transient expression differences was found in the five-day, RPM-treated samples, where the number of genes being differentially expressed in comparison to 1 g cells was highest as well as the degree of alteration regarding distinct genes. We found 27 genes whose levels of expression were changed at least 4-fold in RPM-treated cells as compared to 1 g controls. These genes code for signal transduction and angiogenic factors, cell adhesion, membrane transport proteins or enzymes involved in serine biosynthesis. Fifteen of them, with IL8 (interleukin 8) and VWF (von Willebrand factor) the most prominently affected, showed linkages to genes of another 20 proteins that are important in cell structure maintenance and angiogenesis and extended their network of interaction. Thus, the study reveals numerous genes, which mutually influence each other during initiation of 3D growth of endothelial cells.
Collapse
|
126
|
Zou HX, Jia J, Zhang WF, Sun ZJ, Zhao YF. Propranolol inhibits endothelial progenitor cell homing: a possible treatment mechanism of infantile hemangioma. Cardiovasc Pathol 2013; 22:203-10. [DOI: 10.1016/j.carpath.2012.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 12/17/2022] Open
|
127
|
Silica-coated superparamagnetic iron oxide nanoparticles targeting of EPCs in ischemic brain injury. Biomaterials 2013; 34:4982-92. [PMID: 23566799 DOI: 10.1016/j.biomaterials.2013.03.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/11/2013] [Indexed: 12/16/2022]
Abstract
Intravenous transplantation of endothelial progenitor cells (EPCs) reduced ischemic brain injury. However, less cell homing to damaged sites limited its functions. In present study, we labeled EPCs with silica-coated superparamagnetic iron oxide nanoparticles (SiO4@SPIONs) and applied exterior magnetic field to guide SiO4@SPIONs-labeled EPCs (SiO4@SPIONs-EPCs) to the ischemic hemisphere of the brain. We optimized SiO4@SPIONs labeling dose, which did not affect proliferation, migration and tube formation of EPCs in vitro. SiO4@SPIONs-EPCs homing was greatly increased in ischemic hemisphere with magnetic field treatment in mice underwent transient middle cerebral artery occlusion (tMCAO). Injection of SiO4@SPIONs-EPCs and followed by magnetic field treatment showed improved neurobehavioral outcomes, reduced brain atrophic volume, increased microvessel density and VEGF expression in the ischemic perifocal region compared to groups without magnetic field treatment (p < 0.05). Our results demonstrated that exterior magnetic field could guide SiO4@SPIONs-EPCs to ischemic region and enhance therapeutic effect, suggesting that magnetic-guided SiO4@SPIONs-EPCs delivery is a promising approach in cerebral ischemic therapy.
Collapse
|
128
|
High serum levels of HIF-1α in psoriatic patients correlate with an over-expression of IL-6. Cytokine 2013; 62:38-9. [DOI: 10.1016/j.cyto.2013.02.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 02/05/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
|
129
|
HUANG SHUAI, PENG LONGYUN, TANG YUBO, ZHANG LONGJUAN, GUO WEI, ZOU XUENONG, PENG XINSHENG. Hypoxia of PC-3 prostate cancer cells enhances migration and vasculogenesis in vitro of bone marrow-derived endothelial progenitor cells by secretion of cytokines. Oncol Rep 2013; 29:2369-77. [DOI: 10.3892/or.2013.2363] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/22/2013] [Indexed: 11/06/2022] Open
|
130
|
Mao A, Liu C, Guo Y, Su D, Luo T, Fu W, Zhou H, Fang G, Sheng Y. Modulation of the number and functions of endothelial progenitor cells by interleukin 1β in the peripheral blood of pigs: involvement of p38 mitogen-activated protein kinase signaling in vitro. J Trauma Acute Care Surg 2013; 73:1145-51. [PMID: 23064606 DOI: 10.1097/ta.0b013e318265d142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) have therapeutic potential for the treatment of organ ischemia following trauma or sepsis, frequently associated with inflammatory conditions. We aimed to investigate the effects of interleukin 1β (IL-1β) on the properties of EPCs and explore its possible relationship with p38 mitogen-activated protein kinase (MAPK). METHODS EPCs were isolated from peripheral blood of a porcine model and were characterized. Effects of IL-1β on cell number, proliferation, migration, adhesion, and angiogenic function of EPCs were evaluated in a time- and dose-dependent manner. The activity of p38 MAPK in EPCs was measured by Western blot. Moreover, the effects of SB203580, a specific p38 MAPK inhibitor, on levels of p38 MAPK phosphorylation and the number and functions of EPCs under IL-1β conditions were examined. RESULTS Incubation of EPCs with IL-1β (5 ng/mL) for 5 days and with IL-1β (0.05-50 ng/mL) for 48 hours induced a significant reduction in EPC numbers and proliferation, respectively (p < 0.01 vs. control cells). The capacities for migration, adhesion, and angiogenic function of EPCs were also reduced in a time- and dose-dependent manner. IL-1β induced dose- and time-dependent activation of p38 MAPK in EPCs. Moreover, inhibition of p38 MAPK by SB203580 significantly increased the total number of EPCs by twofold as compared with the IL-1β-alone group (p < 0.01) and blocked the ability of IL-1β to impair the functional response of EPCs. CONCLUSION These results demonstrate that there is a negative cause-effect relationship between IL-1β and EPCs. Thus, IL-1β inhibits EPC proliferation, migration, adhesion, and tube formation by a mechanism, which involves p38 MAPK signaling in regulating the number and functions of EPCs in vitro.
Collapse
Affiliation(s)
- Anrong Mao
- Department of General Surgery, The No 85 Hospital of PLA, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
An important role of blood and lymphatic vessels in inflammation and allergy. J Allergy (Cairo) 2013; 2013:672381. [PMID: 23431319 PMCID: PMC3574757 DOI: 10.1155/2013/672381] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/04/2012] [Accepted: 12/19/2012] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis and lymphangiogenesis, the growth of new vessels from preexisting ones, have received increasing interest due to their role in tumor growth and metastatic spread. However, vascular remodeling, associated with vascular hyperpermeability, is also a key feature of many chronic inflammatory diseases including asthma, atopic dermatitis, psoriasis, and rheumatoid arthritis. The major drivers of angiogenesis and lymphangiogenesis are vascular endothelial growth factor- (VEGF-)A and VEGF-C, activating specific VEGF receptors on the lymphatic and blood vascular endothelium. Recent experimental studies found potent anti-inflammatory responses after targeted inhibition of activated blood vessels in models of chronic inflammatory diseases. Importantly, our recent results indicate that specific activation of lymphatic vessels reduces both acute and chronic skin inflammation. Thus, antiangiogenic and prolymphangiogenic therapies might represent a new approach to treat chronic inflammatory disorders, including those due to chronic allergic inflammation.
Collapse
|
132
|
Scott JM, Lakoski S, Mackey JR, Douglas PS, Haykowsky MJ, Jones LW. The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. Oncologist 2013; 18:221-31. [PMID: 23335619 PMCID: PMC3579607 DOI: 10.1634/theoncologist.2012-0226] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 09/05/2012] [Indexed: 01/03/2023] Open
Abstract
Molecularly targeted therapeutics (MTT) are the future of cancer systemic therapy. They have already moved from palliative therapy for advanced solid malignancies into the setting of curative-intent treatment for early-stage disease. Cardiotoxicity is a frequent and potentially serious adverse complication of some targeted therapies, leading to a broad range of potentially life-threatening complications, therapy discontinuation, and poor quality of life. Low-cost pleiotropic interventions are therefore urgently required to effectively prevent and/or treat MTT-induced cardiotoxicity. Aerobic exercise therapy has the unique capacity to modulate, without toxicity, multiple gene expression pathways in several organ systems, including a plethora of cardiac-specific molecular and cell-signaling pathways implicated in MTT-induced cardiac toxicity. In this review, we examine the molecular signaling of antiangiogenic and HER2-directed therapies that may underpin cardiac toxicity and the hypothesized molecular mechanisms underlying the cardioprotective properties of aerobic exercise. It is hoped that this knowledge can be used to maximize the benefits of small molecule inhibitors, while minimizing cardiac damage in patients with solid malignancies.
Collapse
Affiliation(s)
- Jessica M Scott
- Exercise Physiology and Countermeasures, NASA Johnson Space Center, Universities Space Research Association, 2101 NASA Parkway, Houston, TX 77058, USA.
| | | | | | | | | | | |
Collapse
|
133
|
Xu Y, Zhou Y, Lin H, Hu H, Wang Y, Xu G. Toll-like receptor 2 in promoting angiogenesis after acute ischemic injury. Int J Mol Med 2013; 31:555-60. [PMID: 23314218 DOI: 10.3892/ijmm.2013.1240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/06/2012] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is an important mechanism that protects tissue against necrosis following acute ischemic injury. The aim of this study was to investigate whether the Toll-like receptor 2 (TLR2) signaling pathway is involved in angiogenesis following ischemic injury by cell migration and lymphocyte invasion assays in vitro, and a mouse model of hindlimb ischemia by ligation in vivo, respectively. To assess the potential role of TLR2 activation in endothelial cell permeability, HUVECs were pretreated with Pam3CSK4 and analyzed using wound repair and transwell assays. The results showed that the TLR2 agonist induced human umbilical vein endothelial cell (HUVEC) migration and increased the permeability of HUVECs to lymphocyte. The lymphocyte invasion of TLR2 knockout (TLR2-/-) mice was inhibited as compared to that of wild-type (WT) mice. In the mouse model of hindlimb ischemia by ligation, blood perfusion of operated limbs was significantly lower in TLR2-/- compared to WT mice, 7 and 14 days after ligation. TLR2-/- mice showed a decreased CD31 expression in ischemic gastrocnemius at 7 and 14 days after ligation, reduced interleukin-6 (IL-6) level and lowered tumor necrosis factor-α (TNF-α) levels. These findings demonstrated that TLR2 activation promotes cell migration, cell permeability and the lymphocyte invasion of endothelial cells. TLR2 activation promotes angiogenesis in vivo, which may be associated with the serum of TNF-α levels and IL-6 release.
Collapse
Affiliation(s)
- Yifei Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang 310009, PR China
| | | | | | | | | | | |
Collapse
|
134
|
Song Y, Wang Z, Liu L, Wang D, Zhang J. The level of circulating endothelial progenitor cells may be associated with the occurrence and recurrence of chronic subdural hematoma. Clinics (Sao Paulo) 2013; 68:1084-8. [PMID: 24037002 PMCID: PMC3752634 DOI: 10.6061/clinics/2013(08)04] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 04/01/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES The onset of chronic subdural hematoma may be associated with direct or indirect minor injuries to the head or a poorly repaired vascular injury. Endothelial progenitor cells happen to be one of the key factors involved in hemostasis and vascular repair. This study was designed to observe the levels of endothelial progenitor cells, white blood cells, platelets, and other indicators in the peripheral blood of patients diagnosed with chronic subdural hematoma to determine the possible relationship between the endothelial progenitor cells and the occurrence, development, and outcomes of chronic subdural hematoma. METHOD We enrolled 30 patients with diagnosed chronic subdural hematoma by computer tomography scanning and operating procedure at Tianjin Medical University General Hospital from July 2009 to July 2011. Meanwhile, we collected 30 cases of peripheral blood samples from healthy volunteers over the age of 50. Approximately 2 ml of blood was taken from veins of the elbow to test the peripheral blood routine and coagulation function. The content of endothelial progenitor cells in peripheral blood mononuclear cells was determined by flow cytometry. RESULTS The level of endothelial progenitor cells in peripheral blood was significantly lower in preoperational patients with chronic subdural hematomas than in controls. There were no significant differences between the two groups regarding the blood routine and coagulation function. However, the levels of circulating endothelial progenitor cells were significantly different between the recurrent group and the non-recurrent group. CONCLUSIONS The level of circulating endothelial progenitor cells in chronic subdural hematoma patients was significantly lower than the level in healthy controls. Meanwhile, the level of endothelial progenitor cells in recurrent patients was significantly lower than the level in patients without recurrence. Endothelial progenitor cells may be related to the occurrence and recurrence of chronic subdural hematoma.
Collapse
Affiliation(s)
- Yan Song
- Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Department of Health Care Medicine, Tianjin,, China
| | | | | | | | | |
Collapse
|
135
|
Lin ZY, Chuang WL. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells. Biomed Pharmacother 2012; 66:583-6. [DOI: 10.1016/j.biopha.2011.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 09/06/2011] [Indexed: 11/15/2022] Open
|
136
|
Brown JE. Dysregulated adipokines in the pathogenesis of type 2 diabetes and vascular disease. ACTA ACUST UNITED AC 2012. [DOI: 10.1177/1474651412464794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is commonly associated with type 2 diabetes and vascular disease. Changes in body composition in the obese state lead to a dysregulation of secretion of adipocyte-secreted hormones known as adipokines. Adipokines such as leptin and adiponectin are known to be involved in many physiological and pathological processes. Current knowledge suggests that adipokines provide potential therapeutic targets against type 2 diabetes and vascular disease.
Collapse
|
137
|
Kajimoto K, Takayanagi S, Sasaki S, Akita H, Harashima H. RNA interference-based silencing reveals the regulatory role of fatty acid-binding protein 4 in the production of IL-6 and vascular endothelial growth factor in 3T3-L1 adipocytes. Endocrinology 2012; 153:5629-36. [PMID: 23008513 DOI: 10.1210/en.2012-1456] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fatty acid-binding protein 4 (FABP4) is believed to play an important role in maintaining glucose and lipid homeostasis. However, the physiological functions of FABP4 in adipocytes have not been fully elucidated because of difficulties associated with the effective transfection of small interfering RNA (siRNA) to differentiated adipocytes. The aim of this study was to clarify the physiological roles of FABP4 in adipocytes by establishing an efficient, universal technique for endogenous gene silencing in fully differentiated 3T3-L1 cells. Confocal-based three-dimensional observations demonstrated that, in traditionally cultured 3T3-L1 cells, multilayers of undifferentiated cells were formed. As a result, small interfering RNA failed to reach many of the differentiated cells. To solve this problem, we developed a reliable method, denoted as density-based separation followed by replating of enriched adipocytes in a monolayer (DREAM) and, using the developed method, succeeded in a significant knockdown of FABP4. Loss-of-function analyses revealed that FABP4 regulates the expression of IL-6 and vascular endothelial growth factor (VEGF) mediated by the protease-activated receptor 1 (PAR1), a thrombin receptor, in adipocytes. In addition, the basal IL-6 production was partially suppressed by PAR1 knockdown. Moreover, we also demonstrated that IL-6 stimulates the proliferation of primary endothelial cells isolated from murine adipose tissue. These findings indicate that FABP4 may have a crucial role in modulating IL-6 and vascular endothelial growth factor as angiogenesis inducers stimulated by the cellular action of thrombin on adipocytes via PAR1. These findings promise to be helpful for developing an understanding of physiological counterparts with respect to the inflammatory and angiogenic properties of adipose tissue.
Collapse
Affiliation(s)
- Kazuaki Kajimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
138
|
Lin ZY, Chuang WL. Hepatocellular carcinoma cells cause different responses in expressions of cancer-promoting genes in different cancer-associated fibroblasts. Kaohsiung J Med Sci 2012; 29:312-8. [PMID: 23684136 DOI: 10.1016/j.kjms.2012.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/15/2012] [Indexed: 01/07/2023] Open
Abstract
Cancer-associated fibroblast (CAF) is one of the most crucial components of the tumor microenvironment to promote the invasiveness of cancer cells. The interactions between cancer cells and CAFs are bidirectional. Our recent study showed that up-regulations of chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 26 (CCL26), interleukin 6 (IL6), and lysyl oxidase-like 2 (LOXL2) genes in cancer cells were parts of the common effects of CAFs on hepatocellular carcinoma (HCC) cells to promote proliferation, migration and invasion of cancer cells. However, the subject of how HCC cells to influence the gene expressions of CAFs still needs to be clarified. The purpose of this study was to investigate this issue. Two human HCC (HCC24/KMUH, HCC38/KMUH) and two human CAF cell lines (F26/KMUH, F28/KMUH) were studied. Influence of HCC38/KMUH cancer cells on differential expressions of genes in F28/KMUH CAFs was detected by microarray to select target genes for further analysis. Both HCC cell lines increased proliferation (all p < 0.005) and migration (all p < 0.0001) of two CAF cell lines. HCC24/KMUH cancer cells had stronger ability to promote migration of F26/KMUH CAFs than HCC38/KMUH cancer cells did (p < 0.0001). Eleven up-regulated cancer-promoting genes, including apelin (APLN), CCL2, CCL26, fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), IL6, mucin 1 (MUC1), LOXL2, platelet-derived growth factor alpha polypeptide (PDGFA), phosphoglycerate kinase 1 (PGK1), and vascular endothelial growth factor A (VEGFA) detected by microarray showed good correlation with results of quantitative reverse transcriptase-polymerase chain reaction study. Among these genes, HCC24/KMUH cancer cells had same tendency of effects on differential expressions of genes in F28/KMUH CAFs as HCC38/KMUH cancer cells did. However, the responses of F26/KMUH CAFs to different HCC cell lines were variable. Only PGK1 gene was consistently up-regulated and PDGFA gene was consistently down-regulated caused by both HCC cell lines in F26/KMUH CAFs. Besides PGK1 gene, HCC38/KMUH cancer cells only up-regulated APLN, LOXL2, and VEGFA genes and HCC24/KMUH cancer cells only up-regulated FGF2 gene in F26/KMUH CAFs. In conclusion, HCC cells can promote proliferation and migration of CAFs. However, the impact of HCC cells on differential expressions of cancer-promoting genes in CAFs is influenced by the characteristics of CAFs. This implies that blocking single or several particular cancer-promoting genes in CAFs is unable to become a common stratagem for the treatment of HCC.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | | |
Collapse
|
139
|
Lin ZY, Chuang WL. Genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma cells. Biomed Pharmacother 2012; 66:454-8. [PMID: 22681909 DOI: 10.1016/j.biopha.2012.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/15/2012] [Indexed: 12/21/2022] Open
Abstract
The common genes responsible for the characteristics of primary cultured invasive phenotype hepatocellular carcinoma (HCC) cells were investigated. Primary cultured HCC cells from three patients were separated by Matrigel invasion into parent and invasive cells. Whole human genome oligo microarray was applied to detect the differentially expressed genes in invasive cells. A purchased HCC cell line (HA 22T/VGH) was studied for comparison. Forty genes were consistently up-regulated and 14 genes were consistently down-regulated among primary cultured invasive cells. Among these genes, only three up-regulated genes (CNN1, PLAT, SPARC) and one down-regulated tumor suppressor gene (MDFI) had same expressions in invasive cells originated from purchased cell line. For primary cultured invasive cells, differential expressions of several groups of common genes are known to have capacities to promote proliferation (CAV1, IL6, PLAT, RRAD, SRPX), remodeling of extracellular matrix (COL1A1, COL1A2, NID2, TNC, RELN, SPARC), migration (ACTG2, CAV1, CCL2, CCL26, CDC42EP3, CNN1, PHLDB2, PLAT, RRAD, SRPX), implantation (IL6), immune escape (CD70) and angiogenesis (CCL2, IL6, IL18, PLAT, SLIT3). Two genes related to signal transduction (AXL, RASL10B) and one related to metabolism (PTGS2) also showed consistent expressions. Differential expressions of these genes are capable for tumor invasiveness. In conclusion, the characteristics of invasive phenotype HCC cells are originated from differential expressions of several groups of genes rather than few target genes. This information may give us a new insight to design new stratagems in HCC treatment. Analysis of the results from a purchased cell line may have bias due to long-term repeated in vitro cultures.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | | |
Collapse
|
140
|
Newman AC, Hughes CCW. Macrophages and angiogenesis: a role for Wnt signaling. Vasc Cell 2012; 4:13. [PMID: 22938389 PMCID: PMC3479425 DOI: 10.1186/2045-824x-4-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 07/13/2012] [Indexed: 12/15/2022] Open
Abstract
Macrophages regulate many developmental and pathological processes in both embryonic and adult tissues, and recent studies have shown a significant role in angiogenesis. Similarly, Wnt signaling is fundamental to tissue morphogenesis and also has a role in vascular development. In this review, we summarize recent advances in the field of macrophage-regulated angiogenesis, with a focus on the role of macrophage-derived Wnt ligands. We review data that provide both direct and indirect evidence for macrophage-derived Wnt regulation of physiologic and pathologic angiogenesis. Finally, we propose that Wnt signaling plays a central role in differentiation of tumor associated and wound infiltrating macrophages to a proangiogenic phenotype.
Collapse
Affiliation(s)
- Andrew C Newman
- The Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA.
| | | |
Collapse
|
141
|
Li DW, Liu ZQ, Wei J, Liu Y, Hu LS. Contribution of endothelial progenitor cells to neovascularization (Review). Int J Mol Med 2012; 30:1000-6. [PMID: 22922670 DOI: 10.3892/ijmm.2012.1108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/30/2012] [Indexed: 11/05/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are a cell population mobilized from bone marrow into the peripheral circulation and recruited into sites of vessel injury to participate in blood vessel formation in both physiological and pathological conditions. Due to the lack of unique surface markers and different isolation methods, EPCs represent heterogeneous cell populations including cells of myeloid or endothelial origin. Evidence suggests that EPCs play a critical role in postnatal blood vessel formation and vascular homeostasis and provide a promising therapy for vascular disease. However, the mechanisms by which EPCs participate in new vessel formation are still incompletely understood. We review the process of EPCs in neovascularization including EPC mobilization, migration, adhesion and effect on new vessel formation, in an attempt to better understand the underlying mechanisms and to provide potential effective management for the treatment of patients with vascular disease.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, The First Hospital of Jilin University, Changchun, PR China
| | | | | | | | | |
Collapse
|
142
|
Kim HL, Lee JH, Lee MH, Kwon BJ, Park JC. Evaluation of electrospun (1,3)-(1,6)-β-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing. Tissue Eng Part A 2012; 18:2315-22. [PMID: 22724634 DOI: 10.1089/ten.tea.2011.0686] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
(1,3)-(1,6)-β-D-glucan (BG), a natural product of glucose polymers, has immune stimulatory activity that is especially effective in wound healing. In this study, poly(lactic-co-glycolic acid) (PLGA) membranes containing BGs (BG/PLGA membranes) were investigated for their wound-healing effects. The growth rate of human dermal fibroblasts was enhanced in BG/PLGA membranes. Their growth rates were improved with the increase of BG concentration in the membranes. The PLGA membranes with and without BGs were treated in full-thickness skin wound using male BALB/c nude mice (n=6 for each group). According to the animal study, BG/PLGA membranes enhanced the interaction with the surrounding cells in wound sites. In the wound site treated BG/PLGA, the positive of the Ki-67 (a proliferation cell marker) and the CD 31 (an endothelial cell marker) were 77.2%±5.6% and 34±8.6 capillaries. In the wound site treated PLGA, the Ki-67 positive cells were 51.3%±7.0%, and the positive-stained capillaries of CD 31 were 22.7±8.6. The wound site treated with BG/PLGA membranes was stronger stained of them in the wound site than those of the wound sites treated with PLGA membranes. BG/PLGA membranes accelerated wound healing by improving the interaction, proliferation of cells, and angiogenesis. BG/PLGA membranes can be useful as a skin substitute for enhancing wound healing.
Collapse
Affiliation(s)
- Hye-Lee Kim
- Department of Medical Engineering, Yonsei University College of Medicine, Shinchon-dong, Seodaemun-gu, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
143
|
Yang J, Kantrow S, Sai J, Hawkins OE, Boothby M, Ayers GD, Young ED, Demicco EG, Lazar AJ, Lev D, Richmond A. INK4a/ARF [corrected] inactivation with activation of the NF-κB/IL-6 pathway is sufficient to drive the development and growth of angiosarcoma. Cancer Res 2012; 72:4682-95. [PMID: 22836752 DOI: 10.1158/0008-5472.can-12-0440] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although human angiosarcoma has been associated frequently with mutational inactivation of the tumor suppressor gene Ink4a/Arf, the underlying mechanisms have not been delineated. Here we report that malignant angiosarcoma is associated with high levels of RelA/NF-κB and IL-6 in contrast to normal vessels or benign hemagiomas. Studies of Ink4a/Arf deficient mice not only recapitulate genetic traits observed in human angiosarcoma, but also unveil a possible therapeutic link comprised of the NF-kB/IL-6/Stat3 signaling axis. In Ink4a/Arf(-/-) cells, NF-κB controlled Stat3 signaling by transcriptionally controlling the expression of IL-6, gp130, and Jak2. Further, IL-6 mediated Stat3 signaling through the sIL-6R. Inhibition of Ikkβ solely in myeloid cells was insufficient to block angiosarcoma development; in contrast, systemic inhibition of Ikkβ, IL-6, or Stat3 markedly inhibited angiosarcoma growth. Our findings offer clinical implications for targeting the NF-kB/IL-6/STAT3 pathway as a rational strategy to treat angiosarcoma.
Collapse
Affiliation(s)
- Jinming Yang
- Veterans Affairs Medical Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Inhibition of Lp(a)-induced functional impairment of endothelial cells and endothelial progenitor cells by hepatocyte growth factor. Biochem Biophys Res Commun 2012; 423:79-84. [PMID: 22634007 DOI: 10.1016/j.bbrc.2012.05.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/16/2012] [Indexed: 02/03/2023]
Abstract
BACKGROUND Lipoprotein (a) (Lp(a)) is one of the risk factors for peripheral artery disease (PAD). Our previous report demonstrated that hepatocyte growth factor (HGF) gene therapy attenuated the impairment of collateral formation in Lp(a) transgenic mice. Since risk factors for atherosclerosis accelerate endothelial senescence and impair angiogenesis, we examined the role of Lp(a) in dysfunction and senescence of endothelial progenitor cells (EPC) and endothelial cells. METHODS In vitro and in vivo incorporation assays were performed using ex-vivo expanded DiI-labeled human EPC. Senescence of cultured endothelial cells, production of oxidative stress and angiogenesis function were evaluated by SA-β-galactosidase staining, dihydroethidium (DHE) staining and Matrigel assay, respectively. RESULTS EPC transplantation significantly stimulated recovery of ischemic limb perfusion, while EPC pre-treated with Lp(a) did not increase ischemic limb perfusion. Impairment of angiogenesis by EPC with Lp(a) was associated with a significant decrease in CD31-positive capillaries and DiI-labeled EPC. Importantly, Lp(a) significantly accelerated the onset of senescence and production of reactive oxygen species (ROS) in human aortic endothelial cells, accompanied by a significant increase in the protein expression of p53 and p21. On the other hand, HGF significantly attenuated EPC dysfunction, senescence, ROS production, and p53 and p21 expression induced by Lp(a). CONCLUSION Lp(a) might affect atherosclerosis via acceleration of senescence, ROS production, and functional impairment of the endothelial cell lineage. HGF might have inhibitory effects on these atherogenic actions of Lp(a).
Collapse
|
145
|
Bousquenaud M, Schwartz C, Léonard F, Rolland-Turner M, Wagner D, Devaux Y. Monocyte chemotactic protein 3 is a homing factor for circulating angiogenic cells. Cardiovasc Res 2012; 94:519-25. [DOI: 10.1093/cvr/cvs140] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
146
|
Gertz K, Kronenberg G, Kälin RE, Baldinger T, Werner C, Balkaya M, Eom GD, Hellmann-Regen J, Kröber J, Miller KR, Lindauer U, Laufs U, Dirnagl U, Heppner FL, Endres M. Essential role of interleukin-6 in post-stroke angiogenesis. ACTA ACUST UNITED AC 2012; 135:1964-80. [PMID: 22492561 DOI: 10.1093/brain/aws075] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6(-/-)) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6(-/-) mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6(-/-) mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6(-/-) mice. In addition, systemic neoangiogenesis was impaired in IL-6(-/-) mice. Transplantation of interleukin-6 competent bone marrow into IL-6(-/-) mice (IL-6(chi)) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6(chi) mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen-glucose deprivation did not. However, oxygen-glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection.
Collapse
Affiliation(s)
- Karen Gertz
- Department of Neurology, Charité– Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Wieser F, Wu J, Shen Z, Taylor RN, Sidell N. Retinoic acid suppresses growth of lesions, inhibits peritoneal cytokine secretion, and promotes macrophage differentiation in an immunocompetent mouse model of endometriosis. Fertil Steril 2012; 97:1430-7. [PMID: 22464761 DOI: 10.1016/j.fertnstert.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To determine the effects of all-trans-retinoic acid (RA) on establishment and growth of endometrial lesions, peritoneal interleukin-6 (IL-6) and macrophage chemotactic factor-1 (MCP-1) concentrations, and CD38, CD11b, and F4/80 expression on peritoneal macrophages in an immunocompetent mouse model of endometriosis. DESIGN Experimental transplantation study using mice. SETTING Academic medical center. ANIMAL(S) C57BL/6 recipient mice and syngeneic green fluorescent protein transgenic (GFP+) mice. INTERVENTION(S) Recipient mice were inoculated with GFP+ minced uterine tissue to induce endometriosis and treated with RA (400 nmol/day) or vehicle for 17 days (3 days before to 14 days after tissue injection). MAIN OUTCOME MEASURE(S) Total number of GFP+ implants in recipient mice, number of implants showing visible blood vessels, total volume of established lesions per mouse, concentrations of IL-6 and MCP-1 in peritoneal fluid, and expression of CD11b, F4/80, and CD38 on peritoneal macrophages. RESULT(S) Retinoic acid treatment for 17 days reduced the number of implants versus controls and decreased the frequency of lesions with vessels. Peritoneal washings in RA-treated animals had lower concentrations of IL-6 and MCP-1 than controls 3 days after endometrial inoculation and lower levels of IL-6 on day 14 after inoculation. Concomitant with these effects on day 14, CD38, CD11b, and F4/80 were higher on macrophages from RA-treated mice versus controls. CONCLUSION(S) The development of endometriotic implants is inhibited by RA. This effect may be caused, at least in part, by reduced IL-6 and MCP-1 production and enhanced differentiation of peritoneal macrophages.
Collapse
Affiliation(s)
- Friedrich Wieser
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
148
|
Lin ZY, Chuang YH, Chuang WL. Cancer-associated fibroblasts up-regulate CCL2, CCL26, IL6 and LOXL2 genes related to promotion of cancer progression in hepatocellular carcinoma cells. Biomed Pharmacother 2012; 66:525-9. [PMID: 22739041 DOI: 10.1016/j.biopha.2012.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/29/2012] [Indexed: 12/13/2022] Open
Abstract
Impact of different cancer-associated fibroblast (CAF) cell lines on proliferation, migration, invasion and differential expressions of genes in different hepatocellular carcinoma (HCC) cell lines was investigated. Two human CAF cell lines (F26/KMUH, F28/KMUH) and two human HCC cell lines (HCC24/KMUH, HCC38/KMUH) were studied. Influence of F28/KMUH cells on expressions of genes in HCC38/KMUH cells was detected by microarray to select genes for further analysis. Both CAF cell lines promoted proliferation (all P<0.05), migration (all P<0.05) and Matrigel invasion (all P<0.0001) of both HCC cell lines. F26/KMUH cells showed stronger promoted effects on, firstly, proliferation of HCC24/KMUH cells (P=0.0064) and, secondly, migration of both HCC cell lines than F28/KMUH cells did (all P<0.002). Ten up-regulated genes (APLN, CCL2, CCL26, CXCR4, IL6, MUC1, LOXL2, PDGFA, PGK1, VEGFA) related to proliferation, migration, invasion and angiogenesis of HCC detected by microarray were selected for quantitative reverse transcriptase-polymerase chain reaction analysis. Both CAF cell lines had same tendency of effects on differential expressions of genes in same HCC cell line, but expressions of genes between different HCC cell lines were not consistent. Only CCL2, CCL26, IL6 and LOXL2 genes were consistently up-regulated in both HCC cell lines. In conclusion, the effects of CAFs to promote proliferation, migration and invasion of HCC cells are influenced by the characteristics of both CAFs and HCC cells. Up-regulations of CCL2, CCL26, IL6 and LOXL2 genes in cancer cells are part of the common effects of CAFs on HCC cells.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | |
Collapse
|
149
|
Grisar JC, Haddad F, Gomari FA, Wu JC. Endothelial progenitor cells in cardiovascular disease and chronic inflammation: from biomarker to therapeutic agent. Biomark Med 2012; 5:731-44. [PMID: 22103609 DOI: 10.2217/bmm.11.92] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of endothelial progenitor cells in the 1990s challenged the paradigm of angiogenesis by showing that cells derived from hematopoietic stem cells are capable of forming new blood vessels even in the absence of a pre-existing vessel network, a process termed vasculogenesis. Since then, the majority of studies in the field have found a strong association between circulating endothelial progenitor cells and cardiovascular risk. Several studies have also reported that inflammation influences the mobilization and differentiation of endothelial progenitor cells. In this review, we discuss the emerging role of endothelial progenitor cells as biomarkers of cardiovascular disease as well as the interplay between inflammation and endothelial progenitor cell biology. We will also review the challenges in the field of endothelial progenitor cell-based therapy.
Collapse
Affiliation(s)
- Johannes C Grisar
- Department of Medicine, Division of Immunology & Rheumatology, Stanford School of Medicine, 265 Campus Drive, Stanford, CA 94305-5454, USA
| | | | | | | |
Collapse
|
150
|
Angiogenic activity of classical hematopoietic cytokines. Leuk Res 2012; 36:537-43. [PMID: 22386730 DOI: 10.1016/j.leukres.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/24/2012] [Accepted: 02/07/2012] [Indexed: 12/24/2022]
Abstract
Hematopoiesis is regulated by several cytokines with pleiotropic activity. Several evidences have clearly demonstrated that these molecules, formerly regarded as specific for the hematopoietic system, also affect certain endothelial cell functions and that hematopoietic factors clearly influence angiogenesis. This review article summarizes the most important literature data concerning this inconvertible relationship.
Collapse
|