101
|
Yang J, Wu LJ, Tashino SI, Onodera S, Ikejima T. Protein tyrosine kinase pathway-derived ROS/NO productions contribute to G2/M cell cycle arrest in evodiamine-treated human cervix carcinoma HeLa cells. Free Radic Res 2010; 44:792-802. [PMID: 20446899 DOI: 10.3109/10715762.2010.481302] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A previous study indicated that reactive oxygen species (ROS) and nitric oxide (NO) played pivotal roles in mediating cytotoxicity of evodiamine in human cervix carcinoma HeLa cells. This study suggested that G2/M cell cycle arrest was triggered by ROS/NO productions with regulations of p53, p21, cell division cycle 25C (Cdc25C), Cdc2 and cyclin B1, which were able to be prevented by protein tyrosine kinase (PTK) activity inhibitor genistein or JNK inhibitor SP600125. The decreased JNK phosphorylation by addition of Ras or Raf inhibitor, as well as the increased cell viability by addition of insulin-like growth factor-1 receptor (IGF-1R), Ras, Raf or c-Jun N-terminal kinase (JNK) inhibitor, further demonstrated that the Ras-Raf-JNK pathway was responsible for this PTK-mediated signalling. These observations provide a distinct look at PTK pathway for its suppressive effect on G2/M transition by inductions of ROS/NO generations.
Collapse
Affiliation(s)
- Jia Yang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, P R China
| | | | | | | | | |
Collapse
|
102
|
Chang CH, Yu FY, Wu TS, Wang LT, Liu BH. Mycotoxin citrinin induced cell cycle G2/M arrest and numerical chromosomal aberration associated with disruption of microtubule formation in human cells. Toxicol Sci 2010; 119:84-92. [PMID: 20929984 DOI: 10.1093/toxsci/kfq309] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
As a nephrotoxic mycotoxin, citrinin (CTN) contaminates various foodstuffs and animal feed commodities. In the present study, the effects of CTN on cell cycle arrest and microtubule formation were investigated by applying human embryonic kidney (HEK293) cells as a model. Exposure of HEK293 cells to CTN resulted in an arrest of cell cycle G2/M in a concentration-dependent increase. Administrating CTN elevated the expression levels of p53 and p21 proteins, yet attenuated the signals of phosphorylated cell division cycle 2 (cdc2). Furthermore, treating HEK293 with CTN increased both the value of mitotic index and the population of cells recognized by antibody mitotic protein monoclonal 2, suggesting that arrest of CTN-induced cell cycle occurred mainly during the mitotic phase. With the assistance of immunocytostaining of α-tubulin, CTN was found to disrupt the stable microtubule skeleton during the interphase of cell cycle and also interfere with the mitotic spindle integrity during mitosis. Additionally, for either in vivo or in vitro assays, CTN effectively inhibited tubulin polymerization in a concentration-dependent manner. When human peripheral blood mononuclear cells were exposed to CTN, the percentage of cells with numerical chromosome changes was increased by 4.3-fold over that of vehicle-treated group. Results of this study suggest that CTN-activated G2/M arrest primarily arises from the inhibition of tubulin polymerization and associated mitotic spindle formation. Additionally, disruption of microtubule organization by CTN also contributes to the induction of numerical chromosome aberration in human cells.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Department of Biomedical Sciences, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
103
|
Shih RSM, Wong SHK, Schoene NW, Zhang JJ, Lei KY. Enhanced Gadd45 expression and delayed G2/M progression are p53-dependent in zinc-supplemented human bronchial epithelial cells. Exp Biol Med (Maywood) 2010; 235:932-40. [PMID: 20660093 DOI: 10.1258/ebm.2010.010076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Zinc is an essential nutrient for humans; however, this study demonstrated for the first time that an elevated zinc status, created by culturing cells at optimal plasma zinc concentration attainable by oral zinc supplementation, is cytotoxic for normal human bronchial epithelial (NHBE) cells. p53 plays a central role in the modulation of cell signal transduction in response to the stress from DNA damage, hypoxia and oncogene activation. The present study was designed to determine whether the previously reported increased Gadd45 expression and delayed G2/M cell cycle progression in zinc-supplemented NHBE cells is p53-dependent, and to decipher the mechanisms responsible for the regulation of Gadd45 expressions by p53, and elucidate the Gadd45 functions in impaired cell growth and cell cycle progression in NHBE cells. Cells were cultured for one passage in different concentrations of zinc: <0.4 micromol/L (ZD) as severe zinc-deficient; 4 micromol/L (ZN) as normal zinc level in culture medium; 16 micromol/L (ZA) as normal human plasma zinc level; and 32 micromol/L (ZS) as the high end of plasma zinc attainable by oral supplementation. Inhibition of cell growth and upregulation of p53 mRNA and protein expression were observed in ZS cells. Most importantly, ZS treatment also enhanced Gadd45 nuclear protein level and promoter activity, decreased CDK1-Cyclin B1 level and delayed G2/M cell cycle progression. These changes were normalized to those observed in ZN by treating ZS cells with Pifitherin, an inhibitor of p53 transactivation activity. Thus, our findings support the p53 dependency of the Gadd45-CDK1/Cyclin B1-G2/M cell cycle progression pathway in ZS NHBE cells.
Collapse
Affiliation(s)
- Rita S M Shih
- Department of Nutrition and Food Science, University of Maryland, College Park, 20742, USA
| | | | | | | | | |
Collapse
|
104
|
Kim JA, Lee J, Margolis RL, Fotedar R. SP600125 suppresses Cdk1 and induces endoreplication directly from G2 phase, independent of JNK inhibition. Oncogene 2010; 29:1702-16. [PMID: 20062077 PMCID: PMC3145494 DOI: 10.1038/onc.2009.464] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 10/14/2009] [Accepted: 10/22/2009] [Indexed: 12/20/2022]
Abstract
Cell cycle controls ensure that DNA replication (S phase) follows mitosis resulting in two precise copies of the genome. A failure of the control mechanisms can result in multiple rounds of DNA replication without cell division. In endoreplication, cells with replicated genomes bypass mitosis, then replicate their DNA again, resulting in polyploidy. Endoreplication from G2 phase lacks all hallmarks of mitosis. Using synchronized cells, we show that the c-Jun N-terminal kinase (JNK) inhibitor, SP600125, prevents the entry of cells into mitosis and leads to endoreplication of DNA from G2 phase. We show that cells proceed from G2 phase to replicate their DNA in the absence of mitosis. This effect of SP600125 is independent of its suppression of JNK activity. Instead, the inhibitory effect of SP600125 on mitotic entry predominantly occurs upstream of Aurora A kinase and Polo-like kinase 1, resulting in a failure to remove the inhibitory phosphorylation of Cdk1. Importantly, our results directly show that the inhibition of Cdk1 activity and the persistence of Cdk2 activity in G2 cells induces endoreplication without mitosis. Furthermore, endoreplication from G2 phase is independent of p53 control.
Collapse
Affiliation(s)
- JA Kim
- Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - J Lee
- Sidney Kimmel Cancer Center, San Diego, CA, USA
| | - RL Margolis
- Sidney Kimmel Cancer Center, San Diego, CA, USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| | - R Fotedar
- Sidney Kimmel Cancer Center, San Diego, CA, USA
- Burnham Institute for Medical Research, La Jolla, CA, USA
| |
Collapse
|
105
|
Qing Y, Yang XQ, Zhong ZY, Lei X, Xie JY, Li MX, Xiang DB, Li ZP, Yang ZZ, Wang G, Wang D. Microarray analysis of DNA damage repair gene expression profiles in cervical cancer cells radioresistant to 252Cf neutron and X-rays. BMC Cancer 2010; 10:71. [PMID: 20184742 PMCID: PMC2838822 DOI: 10.1186/1471-2407-10-71] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 02/25/2010] [Indexed: 12/02/2022] Open
Abstract
Background The aim of the study was to obtain stable radioresistant sub-lines from the human cervical cancer cell line HeLa by prolonged exposure to 252Cf neutron and X-rays. Radioresistance mechanisms were investigated in the resulting cells using microarray analysis of DNA damage repair genes. Methods HeLa cells were treated with fractionated 252Cf neutron and X-rays, with a cumulative dose of 75 Gy each, over 8 months, yielding the sub-lines HeLaNR and HeLaXR. Radioresistant characteristics were detected by clone formation assay, ultrastructural observations, cell doubling time, cell cycle distribution, and apoptosis assay. Gene expression patterns of the radioresistant sub-lines were studied through microarray analysis and verified by Western blotting and real-time PCR. Results The radioresistant sub-lines HeLaNR and HeLaXR were more radioresisitant to 252Cf neutron and X-rays than parental HeLa cells by detecting their radioresistant characteristics, respectively. Compared to HeLa cells, the expression of 24 genes was significantly altered by at least 2-fold in HeLaNR cells. Of these, 19 genes were up-regulated and 5 down-regulated. In HeLaXR cells, 41 genes were significantly altered by at least 2-fold; 38 genes were up-regulated and 3 down-regulated. Conclusions Chronic exposure of cells to ionizing radiation induces adaptive responses that enhance tolerance of ionizing radiation and allow investigations of cellular radioresistance mechanisms. The insights gained into the molecular mechanisms activated by these "radioresistance" genes will lead to new therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Yi Qing
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Levy N, Paruthiyil S, Zhao X, Vivar OI, Saunier EF, Griffin C, Tagliaferri M, Cohen I, Speed TP, Leitman DC. Unliganded estrogen receptor-beta regulation of genes is inhibited by tamoxifen. Mol Cell Endocrinol 2010; 315:201-7. [PMID: 19744542 DOI: 10.1016/j.mce.2009.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/19/2009] [Accepted: 08/31/2009] [Indexed: 12/29/2022]
Abstract
Tamoxifen can stimulate the growth of some breast tumors and others can become resistant to tamoxifen. We previously showed that unliganded ERbeta inhibits ERalpha-mediated proliferation of MCF-7 cells. We investigated if tamoxifen might have a potential negative effect on some breast cancer cells by blocking the effects of unliganded ERbeta on gene regulation. Gene expression profiles demonstrated that unliganded ERbeta upregulated 196 genes in MCF-7 cells. Tamoxifen significantly inhibited 73 of these genes by greater than 30%, including several growth-inhibitory genes. To explore the mechanism whereby unliganded ERbeta activates genes and how tamoxifen blocks this effect, we used doxycycline-inducible U2OS-ERbeta cells to produce unliganded ERbeta. Doxycycline produced a dose-dependent activation of the NKG2E, MSMB and TUB3A genes, which was abolished by tamoxifen. Unliganded ERbeta recruitment of SRC-2 to the NKG2E gene was blocked by tamoxifen. Our findings suggest that tamoxifen might exert a negative effect on ERbeta expressing tumors due to its antagonistic action on unliganded ERbeta.
Collapse
Affiliation(s)
- Nitzan Levy
- Department of Obstetrics, Gynecology and Reproductive , University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Yu Z, Wang H, Zhang L, Tang A, Zhai Q, Wen J, Yao L, Li P. Both p53–PUMA/NOXA–Bax-mitochondrion and p53–p21cip1 pathways are involved in the CDglyTK-mediated tumor cell suppression. Biochem Biophys Res Commun 2009; 386:607-11. [DOI: 10.1016/j.bbrc.2009.06.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 11/30/2022]
|
108
|
Matsumoto Y, Iwakawa M, Furusawa Y, Ishikawa K, Aoki M, Imadome K, Matsumoto I, Tsujii H, Ando K, Imai T. Gene expression analysis in human malignant melanoma cell lines exposed to carbon beams. Int J Radiat Biol 2009; 84:299-314. [DOI: 10.1080/09553000801953334] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
109
|
Liu X, Kramer JA, Hu Y, Schmidt JM, Jiang J, Wilson AGE. Development of a High-Throughput Human HepG2 Dual Luciferase Assay for Detection of Metabolically Activated Hepatotoxicants and Genotoxicants. Int J Toxicol 2009; 28:162-76. [DOI: 10.1177/1091581809337166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic toxicity remains a major concern for drug failure; therefore, a thorough examination of chemically induced liver toxicity is essential for a robust safety evaluation. Current hypotheses suggest that the metabolic activation of a drug to a reactive intermediate is an important process. In this article, we describe a new high-throughput GADD45β reporter assay developed for assessing potential liver toxicity. Most importantly, this assay utilizes a human cell line and incorporates metabolic activation and thus provides significant advantage over other comparable assays used to determine hepatotoxicity. Our assay has low compound requirement and relies upon 2 reporter genes cotransfected into the HepG2 cells. The gene encoding Renilla luciferase is fused to the CMV promoter and provides a control for cell numbers. The firefly luciferase gene is fused to the GADD45β promoter and used to report an increase in DNA damage. A dual luciferase assay is performed by measuring the firefly and Renilla luciferase activities in the same sample. Results are expressed as the ratio of the 2 luciferase activities; increases over the control are interpreted as evidence of stress responses. This mammalian dual luciferase reporter has been characterized with, and without, metabolic activation using positive and negative control agents. Our data demonstrate that this assay provides for an assessment of potential toxic metabolites, is adaptable to a high-throughput platform, and yields data that accurately and reproducibly detect hepatotoxicants.
Collapse
Affiliation(s)
- Xuemei Liu
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Jeffrey A. Kramer
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Yi Hu
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - James M. Schmidt
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Jianghong Jiang
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| | - Alan G. E. Wilson
- From the Drug Metabolism, Pharmacokinetics, and Toxicology, Lexicon Pharmaceuticals Inc, The Woodlands, Texas
| |
Collapse
|
110
|
Cheng WY, Lien JC, Hsiang CY, Wu SL, Li CC, Lo HY, Chen JC, Chiang SY, Liang JA, Ho TY. Comprehensive evaluation of a novel nuclear factor-kappaB inhibitor, quinoclamine, by transcriptomic analysis. Br J Pharmacol 2009; 157:746-56. [PMID: 19422389 DOI: 10.1111/j.1476-5381.2009.00223.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor nuclear factor-kappaB (NF-kappaB) has been linked to the cell growth, apoptosis and cell cycle progression. NF-kappaB blockade induces apoptosis of cancer cells. Therefore, NF-kappaB is suggested as a potential therapeutic target for cancer. Here, we have evaluated the anti-cancer potential of a novel NF-kappaB inhibitor, quinoclamine (2-amino-3-chloro-1,4-naphthoquinone). EXPERIMENTAL APPROACH In a large-scale screening test, we found that quinoclamine was a novel NF-kappaB inhibitor. The global transcriptional profiling of quinoclamine in HepG2 cells was therefore analysed by transcriptomic tools in this study. KEY RESULTS Quinoclamine suppressed endogenous NF-kappaB activity in HepG2 cells through the inhibition of IkappaB-alpha phosphorylation and p65 translocation. Quinoclamine also inhibited induced NF-kappaB activities in lung and breast cancer cell lines. Quinoclamine-regulated genes interacted with NF-kappaB or its downstream genes by network analysis. Quinoclamine affected the expression levels of genes involved in cell cycle or apoptosis, suggesting that quinoclamine exhibited anti-cancer potential. Furthermore, quinoclamine down-regulated the expressions of UDP glucuronosyltransferase genes involved in phase II drug metabolism, suggesting that quinoclamine might interfere with drug metabolism by slowing down the excretion of drugs. CONCLUSION AND IMPLICATIONS This study provides a comprehensive evaluation of quinoclamine by transcriptomic analysis. Our findings suggest that quinoclamine is a novel NF-kappaB inhibitor with anti-cancer potential.
Collapse
Affiliation(s)
- W-Y Cheng
- Molecular Biology Laboratory, Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Van Laethem A, Garmyn M, Agostinis P. Starting and propagating apoptotic signals in UVB irradiated keratinocytes. Photochem Photobiol Sci 2009; 8:299-308. [DOI: 10.1039/b813346h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
112
|
Li Y, Qian H, Li X, Wang H, Yu J, Liu Y, Zhang X, Liang X, Fu M, Zhan Q, Lin C. Adenoviral-mediated gene transfer of Gadd45a results in suppression by inducing apoptosis and cell cycle arrest in pancreatic cancer cell. J Gene Med 2009; 11:3-13. [PMID: 19003803 DOI: 10.1002/jgm.1270] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
BACKGROUND The extremely poor prognosis of patients with pancreatic ductal adenocarcinoma indicates the need for novel therapeutic approaches. The growth arrest and DNA damage-inducible (Gadd) gene Gadd45a is a member of a group of genes that are induced by DNA damaging agents and growth arrest signals. METHODS We evaluated the biological activity of Gadd45a in pancreatic ductal adenocarcinoma cancer-derived cell lines and assessed the efficacy of a combined treatment with adenoviral-mediated expression of Gadd45a (Ad-G45a) and anticancer drug (Etoposide, cisplatin, 5-fluorouracil, respectively) for the PANC1 cell line. RESULTS Gadd45a is variously expressed in cell lines derived from pancreatic ductal adenocarcinoma cancer and adenoviral-mediated expression of Gadd45a (Ad-G45a) in these cells results in apoptosis via caspase activation and cell-cycle arrest in the G2/M phase. Gadd45a significantly increased the chemosensitivity of PANC1, which may be due to abundant apoptosis induction and cell cycle arrest. By combinational treatment of Ad-G45a infection and chemotherapeutics, Gadd45a expression was elevated to a higher extent in cancer cells with wild-type p53 than in that with knocked-out p53 status, indicating a higher chemosensitivity to cancer chemotherapy. CONCLUSIONS Gadd45a may be a promising candidate for use in cancer gene therapy in combination with chemotherapeutic agents.
Collapse
Affiliation(s)
- Yunfeng Li
- State Key Laboratory of Molecular Oncology, Cancer Institute/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Gavin EJ, Song B, Wang Y, Xi Y, Ju J. Reduction of Orc6 expression sensitizes human colon cancer cells to 5-fluorouracil and cisplatin. PLoS One 2008; 3:e4054. [PMID: 19112505 PMCID: PMC2603583 DOI: 10.1371/journal.pone.0004054] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/01/2008] [Indexed: 12/22/2022] Open
Abstract
Previous studies from our group have shown that the expression levels of Orc6 were highly elevated in colorectal cancer patient specimens and the induction of Orc6 was associated with 5-fluorouracil (5-FU) treatment. The goal of this study was to investigate the molecular and cellular impact of Orc6 in colon cancer. In this study, we use HCT116 (wt-p53) and HCT116 (null-p53) colon cancer cell lines as a model system to investigate the impact of Orc6 on cell proliferation, chemosensitivity and pathways involved with Orc6. We demonstrated that the down regulation of Orc6 sensitizes colon cancer cells to both 5-FU and cisplatin (cis-pt) treatment. Decreased Orc6 expression in HCT-116 (wt-p53) cells by RNA interference triggered cell cycle arrest at G1 phase. Prolonged inhibition of Orc6 expression resulted in multinucleated cells in HCT-116 (wt-p53) cell line. Western immunoblot analysis showed that down regulation of Orc6 induced p21 expression in HCT-116 (wt-p53) cells. The induction of p21 was mediated by increased level of phosphorylated p53 at ser-15. By contrast, there is no elevated expression of p21 in HCT-116 (null-p53) cells. Orc6 down regulation also increased the expression of DNA damaging repair protein GADD45beta and reduced the expression level of JNK1. Orc6 may be a potential novel target for future anti cancer therapeutic development in colon cancer.
Collapse
Affiliation(s)
- Elaine J. Gavin
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Bo Song
- Translational Research Laboratory, Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, United States of America
| | - Yuan Wang
- Translational Research Laboratory, Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, United States of America
| | - Yaguang Xi
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Jingfang Ju
- Cancer Genomics Laboratory, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
- Translational Research Laboratory, Department of Pathology, Stony Brook University, School of Medicine, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
114
|
Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol Biol Rep 2008; 36:2075-85. [PMID: 19048389 DOI: 10.1007/s11033-008-9419-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
Abstract
The Gadd45 family of proteins, which includes alpha, beta, and gamma isoforms, has recently been shown to play a role in the G2/M cell cycle checkpoint in response to DNA damage; however, the mechanisms by which Gadd45 proteins inhibit cell cycle control are not fully understood. Using immunohistochemical analysis, we found that protein expression of Gadd45gamma, but not Gadd45alpha, was down-regulated in hepatocellular carcinoma. We thus investigated possible mechanisms by which Gadd45alpha and Gadd45gamma might differentially induce G2/M arrest in the human hepatoma Hep-G2 cell line. Flow cytometric analysis revealed significant G2/M arrest in cells transfected with either Gadd45alpha or Gadd45gamma. Importantly, we found that expression of either Gadd45alpha or Gadd45gamma activated the P38 and JNK kinase pathways to induce G2/M arrest. Taken together, these findings suggest that the induction of G2/M arrest by Gadd45alpha or Gadd45gamma involves activation of two distinct signaling pathways in Hep-G2 hepatoma cell lines.
Collapse
|
115
|
Montgomery JP, Patterson PH. Endothelin receptor B antagonists decrease glioma cell viability independently of their cognate receptor. BMC Cancer 2008; 8:354. [PMID: 19040731 PMCID: PMC2613414 DOI: 10.1186/1471-2407-8-354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 11/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endothelin receptor antagonists inhibit the progression of many cancers, but research into their influence on glioma has been limited. METHODS We treated glioma cell lines, LN-229 and SW1088, and melanoma cell lines, A375 and WM35, with two endothelin receptor type B (ETRB)-specific antagonists, A-192621 and BQ788, and quantified viable cells by the capacity of their intracellular esterases to convert non-fluorescent calcein AM into green-fluorescent calcein. We assessed cell proliferation by labeling cells with carboxyfluorescein diacetate succinimidyl ester and quantifying the fluorescence by FACS analysis. We also examined the cell cycle status using BrdU/propidium iodide double staining and FACS analysis. We evaluated changes in gene expression by microarray analysis following treatment with A-192621 in glioma cells. We examined the role of ETRB by reducing its expression level using small interfering RNA (siRNA). RESULTS We report that two ETRB-specific antagonists, A-192621 and BQ788, reduce the number of viable cells in two glioma cell lines in a dose- and time-dependent manner. We describe similar results for two melanoma cell lines. The more potent of the two antagonists, A-192621, decreases the mean number of cell divisions at least in part by inducing a G2/M arrest and apoptosis. Microarray analysis of the effects of A-192621 treatment reveals up-regulation of several DNA damage-inducible genes. These results were confirmed by real-time RT-PCR. Importantly, reducing expression of ETRB with siRNAs does not abrogate the effects of either A-192621 or BQ788 in glioma or melanoma cells. Furthermore, BQ123, an endothelin receptor type A (ETRA)-specific antagonist, has no effect on cell viability in any of these cell lines, indicating that the ETRB-independent effects on cell viability exhibited by A-192621 and BQ788 are not a result of ETRA inhibition. CONCLUSION While ETRB antagonists reduce the viability of glioma cells in vitro, it appears unlikely that this effect is mediated by ETRB inhibition or cross-reaction with ETRA. Instead, we present evidence that A-192621 affects glioma and melanoma viability by activating stress/DNA damage response pathways, which leads to cell cycle arrest and apoptosis. This is the first evidence linking ETRB antagonist treatment to enhanced expression of DNA damage-inducible genes.
Collapse
Affiliation(s)
- Jennifer P Montgomery
- California Institute of Technology, 1200 E, California Blvd, MC 216-76, Pasadena, CA 91125, USA.
| | | |
Collapse
|
116
|
Hassan NMM, Tada M, Hamada JI, Kashiwazaki H, Kameyama T, Akhter R, Yamazaki Y, Yano M, Inoue N, Moriuchi T. Presence of dominant negative mutation of TP53 is a risk of early recurrence in oral cancer. Cancer Lett 2008; 270:108-19. [DOI: 10.1016/j.canlet.2008.04.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 02/07/2023]
|
117
|
Agostinelli C, Piccaluga PP, Went P, Rossi M, Gazzola A, Righi S, Sista T, Campidelli C, Zinzani PL, Falini B, Pileri SA. Peripheral T cell lymphoma, not otherwise specified: the stuff of genes, dreams and therapies. J Clin Pathol 2008; 61:1160-7. [PMID: 18755717 PMCID: PMC2582342 DOI: 10.1136/jcp.2008.055335] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peripheral T cell lymphomas (PTCL) account for about 12% of lymphoid tumours worldwide. Almost half show such morphological and molecular variability as to hamper any further classification, and to justify their inclusion in a waste-basket category termed “not otherwise specified (NOS)”. The latter term is used for neoplasms with aggressive presentation, poor response to therapy and dismal prognosis. In contrast to B cell lymphomas, PTCL have been the subject of only a limited number of studies to elucidate their pathobiology and identify novel pharmacological approaches. Herewith, the authors revise the most recent contributions on the subject based on the experience they have gained in the extensive application of microarray technologies. PTCL/NOS are characterised by erratic expression of T cell associated antigens, including CD4 and CD52, which have recently been proposed as targets for ad hoc immunotherapies. PTCL/NOS also show variable Ki-67 marking, with rates >80% heralding a worse prognosis. Gene expression profiling studies have revealed that PTCL/NOS derive from activated T lymphocytes, more often of the CD4+ type, and bear a signature composed of 155 genes and related products that play a pivotal role in cell signalling transduction, proliferation, apoptosis and matrix remodelling. This observation seems to pave the way for the use of innovative drugs such as tyrosine kinase and histone deacetylase inhibitors whose efficacy has been proven in PTCL primary cell cultures. Gene expression profiling also allows better distinction of PTCL/NOS from angioimmunoblastic T cell lymphoma, the latter being characterised by follicular T helper lymphocyte derivation and CXCL13, PD1 and vascular endothelial growth factor expression.
Collapse
Affiliation(s)
- C Agostinelli
- Department of Haematology and Clinical Oncology L and A Seràgnoli, Bologna University School of Medicine, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Abstract
The integrity of genomic DNA is challenged by genotoxic stress originating during normal cellular metabolism or by external insults. Cellular responses to DNA damage involve elegant checkpoint cascades enforcing cell cycle arrest, damage repair, apoptosis or cellular senescence. The loss or alterations of genes involved in the damage response pathways have been reported in many cancer susceptibility syndromes and in sporadic tumors. Furthermore, this surveillance pathway is activated during early tumourigenesis presumably due to uncontrolled replicative cycles and has been recognized as one of the main barriers against the development of cancer. This review discusses the relevance of prostatic epithelial cells in prostate tumourigenesis and highlights common molecular changes associated with prostate cancer. Furthermore, DNA damage responses of primary cultures of human prostatic epithelial cells and fresh human prostate tissues are discussed providing evidence for alterations in crucial DNA damage checkpoint molecules. New insights connecting prostate tumourigenesis to alterations and defects in the pathways maintaining genomic integrity will be discussed.
Collapse
|
119
|
Schrag JD, Jiralerspong S, Banville M, Jaramillo ML, O'Connor-McCourt MD. The crystal structure and dimerization interface of GADD45gamma. Proc Natl Acad Sci U S A 2008; 105:6566-71. [PMID: 18445651 PMCID: PMC2373355 DOI: 10.1073/pnas.0800086105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Indexed: 01/27/2023] Open
Abstract
Gadd45 proteins are recognized as tumor and autoimmune suppressors whose expression can be induced by genotoxic stresses. These proteins are involved in cell cycle control, growth arrest, and apoptosis through interactions with a wide variety of binding partners. We report here the crystal structure of Gadd45gamma, which reveals a fold comprising an alphabetaalpha sandwich with a central five-stranded mixed beta-sheet with alpha-helices packed on either side. Based on crystallographic symmetry we identified the dimer interface of Gadd45gamma dimers by generating point mutants that compromised dimerization while leaving the tertiary structure of the monomer intact. The dimer interface comprises a four-helix bundle involving residues that are the most highly conserved among Gadd45 isoforms. Cell-based assays using these point mutants demonstrate that dimerization is essential for growth inhibition. This structural information provides a new context for evaluation of the plethora of protein-protein interactions that govern the many functions of the Gadd45 family of proteins.
Collapse
Affiliation(s)
- Joseph D Schrag
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada.
| | | | | | | | | |
Collapse
|
120
|
Shih RSM, Wong SHK, Schoene NW, Lei KY. Suppression of Gadd45 alleviates the G2/M blockage and the enhanced phosphorylation of p53 and p38 in zinc supplemented normal human bronchial epithelial cells. Exp Biol Med (Maywood) 2008; 233:317-27. [PMID: 18296737 DOI: 10.3181/0708-rm-220] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An adequate zinc status is essential for optimal cellular functions and growth. Yet, excessive zinc supplementation can be cytotoxic and can impair cell growth. Gadd45 plays a vital role as cellular stress sensor in the modulation of cell signal transduction in response to stress. The present study was designed to determine the influence of zinc status on Gadd45 expression and cell cycle progression in zinc deficient and supplemented normal human bronchial epithelial (NHBE) cells, and to decipher the molecular mechanism(s) exerted by the suppression of Gadd45 expression on cell growth and cell cycle progression in this cell type. Cells were cultured for one passage in different concentration of zinc: <0.4 muM (ZD) as severe zinc deficient; 4 muM as normal zinc level in culture medium; 16 microM (ZA) as normal human plasma zinc level; and 32 muM (ZS) as the high end of plasma zinc attainable by oral supplementation. Inhibition of cell growth, upregulation of Gadd45 mRNA and protein expression, and blockage of G2/M cell cycle progression were observed in ZS cells. In contrast, little or no changes in these parameters were seen in ZD cells. The siRNA-mediated knocking down of Gadd45 was found to relieve G2/M blockage in ZS cells, which indicated that the blockage was Gadd45 dependent. Moreover, the enhanced phosphorylation of p38 and p53 (ser15) in ZS cells was normalized after suppression of Gadd45 by siRNA, implicating that the enhanced phosphorylation of these proteins was Gadd45 dependent. Thus, we demonstrated for the first time that an elevated zinc status modulated signal transduction to produce a delay at G2/M during cell cycle progression in NHBE cells.
Collapse
Affiliation(s)
- Rita S M Shih
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
121
|
Galvin KE, Ye H, Erstad DJ, Feddersen R, Wetmore C. Gli1 induces G2/M arrest and apoptosis in hippocampal but not tumor-derived neural stem cells. Stem Cells 2008; 26:1027-36. [PMID: 18276799 DOI: 10.1634/stemcells.2007-0879] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sonic hedgehog (Shh) is necessary for sustaining the proliferation of neural stem cells (NSCs), yet little is known about its mechanisms. Whereas Gli1, Gli2, and Gli3, the primary mediators of Shh signaling, were all expressed in hippocampal neural progenitors, Shh treatment of NSCs induced only Gli1 expression. Acute depletion of Gli1 in postnatal NSCs by short-hairpin RNA decreased proliferation, whereas germline deletion of Gli1 did not affect NSC proliferation, suggesting a difference in mechanisms of Gli1 compensation that may be developmentally dependent. To determine whether Gli1 was sufficient to enhance NSC proliferation, we overexpressed this mitogen and were surprised to find that Gli1 resulted in decreased proliferation, accumulation of NSCs in the G2/M phase of cell cycle, and apoptosis. In contrast, Gli1-expressing lineage-restricted neural precursors demonstrated a 4.5-fold proliferation enhancement. Expression analyses of Gli1-expressing NSCs identified significant induction of Gadd45a and decreased cyclin A2 and Stag1 mRNA, genes involved in the G2-M transition and apoptosis. Furthermore, Gadd45a overexpression was sufficient to partially recapitulate the Gli1-induced G2/M accumulation and cell death of NSCs. In contrast to normal stem cells, tumor-derived stem cells had markedly higher basal Gli1 expression and did not undergo apoptosis with further elevation of Gli1. Our data suggest that Gli1-induced apoptosis may serve as a protective mechanism against premature mitosis and may give insight into mechanisms by which nonmalignant stem cells restrain hyperproliferation in the context of potentially transforming mitogenic signals. Tumor-derived stem cells apparently lack these mechanisms, which may contribute to their unrestrained proliferation and malignant potential.
Collapse
Affiliation(s)
- Katherine E Galvin
- Program in Molecular Neuroscience, The College of Idaho, Caldwell, Idaho, USA
| | | | | | | | | |
Collapse
|
122
|
Brú A, del Fresno C, Soares-Schanoski A, Albertos S, Brú I, Porres A, Rollán-Landeras E, Dopazo A, Casero D, Gómez-Piña V, García L, Arnalich F, Alvarez R, Rodríguez-Rojas A, Fuentes-Prior P, López-Collazo E. Position-dependent expression of GADD45alpha in rat brain tumours. Med Oncol 2008; 24:436-44. [PMID: 17917095 DOI: 10.1007/s12032-007-0025-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 11/30/1999] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
Although the complex and multifactorial process of tumour growth has been extensively studied for decades, our understanding of the fundamental relationship between tumour growth dynamics and genetic expression profile remains incomplete. Recent studies of tumour dynamics indicate that gene expression in solid tumours would depend on the distance from the centre of the tumour. Since tumour proliferative activity is mainly localised to its external zone, and taking into account that generation and expansion of genetic mutations depend on the number of cell divisions, important differences in gene expression between central and peripheral sections of the same tumour are to be expected. Here, we have studied variations in the genetic expression profile between peripheral and internal samples of the same brain tumour. We have carried out microarray analysis of mRNA expression, and found a differential profile of genetic expression between the two cell subsets. In particular, one major nuclear protein that regulates cell responses to DNA-damaging and stress signals, GADD45alpha, was expressed at much lower levels in the peripheral zone, as compared to tumour core samples. These differences in GADD45alpha mRNA transcription levels have been confirmed by quantitative analysis via real time PCR, and protein levels of GADD45alpha also exhibit the same pattern of differential expression. Our findings suggest that GADD45alpha might play a major role in the regulation of brain tumour invasive potential.
Collapse
Affiliation(s)
- Antonio Brú
- Department of Applied Mathematics, Faculty of Mathematics, Complutense University, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
MDMX promotes proteasomal turnover of p21 at G1 and early S phases independently of, but in cooperation with, MDM2. Mol Cell Biol 2007; 28:1218-29. [PMID: 18086887 DOI: 10.1128/mcb.01198-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We have shown previously that MDM2 promotes the degradation of the cyclin-dependent kinase inhibitor p21 through a ubiquitin-independent proteolytic pathway. Here we report that the MDM2 analog, MDMX, also displays a similar activity. MDMX directly bound to p21 and mediated its proteasomal degradation. Although the MDMX effect was independent of MDM2, they synergistically promoted p21 degradation when coexpressed in cells. This degradation appears to be mediated by the 26S proteasome, as MDMX and p21 bound to S2, one of the subunits of the 19S component of the 26S proteasome, in vivo. Conversely, knockdown of MDMX induced the level of endogenous p21 proteins that no longer cofractionated with 26S proteasome, resulting in G(1) arrest. The level of p21 was low at early S phase but markedly induced by knocking down either MDMX or MDM2 in human cells. Ablation of p21 rescued the G(1) arrest caused by double depletion of MDM2 and MDMX in p53-null cells. These results demonstrate that MDMX and MDM2 independently and cooperatively regulate the proteasome-mediated degradation of p21 at the G(1) and early S phases.
Collapse
|
124
|
Piccaluga PP, Agostinelli C, Califano A, Carbone A, Fantoni L, Ferrari S, Gazzola A, Gloghini A, Righi S, Rossi M, Tagliafico E, Zinzani PL, Zupo S, Baccarani M, Pileri SA. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res 2007; 67:10703-10. [PMID: 18006812 DOI: 10.1158/0008-5472.can-07-1708] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angioimmunoblastic lymphoma (AILT) is the second most common subtype of peripheral T-cell lymphoma (PTCL) and is characterized by dismal prognosis. Thus far, only a few studies have dealt with its molecular pathogenesis. We performed gene expression profile (GEP) analysis of six AILT, six anaplastic large cell lymphomas (ALCL), 28 PTCL-unspecified (PTCL/U), and 20 samples of normal T lymphocytes (including CD4(+), CD8(+), and activated and resting subpopulations), aiming to (a) assess the relationship of AILT with other PTCLs, (b) establish the relationship between AILT and normal T-cell subsets, and (c) recognize the cellular programs deregulated in AILT possibly looking for novel potential therapeutic targets. First, we found that AILT and other PTCLs have rather similar GEP, possibly sharing common oncogenic pathways. Second, we found that AILTs are closer to activated CD4(+), rather than to resting or CD8(+) lymphocytes. Furthermore, we found that the molecular signature of follicular T helper cells was significantly overexpressed in AILT, reinforcing the idea that AILT may arise from such cellular counterpart. Finally, we identified several genes deregulated in AILT, including PDGFRA, REL, and VEGF. The expression of several molecules was then studied by immunohistochemistry on tissue microarrays containing 45 independent AILT cases. Notably, we found that the vascular endothelial growth factor (VEGF) was expressed not only by reactive cells, but also by neoplastic cells, and that nuclear factor-kappaB (NF-kappaB) activation is uncommon in AILT, as suggested by frequent exclusively cytoplasmic c-REL localization. Our study provides new relevant information on AILT biology and new candidates for possible therapeutic targets such as PDGFRA (platelet-derived growth factor alpha) and VEGF.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Institute of Hematology and Medical Oncology L. and A. Seràgnoli, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Peretz G, Bakhrat A, Abdu U. Expression of the Drosophila melanogaster GADD45 homolog (CG11086) affects egg asymmetric development that is mediated by the c-Jun N-terminal kinase pathway. Genetics 2007; 177:1691-702. [PMID: 18039880 PMCID: PMC2147983 DOI: 10.1534/genetics.107.079517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 09/21/2007] [Indexed: 11/18/2022] Open
Abstract
The mammalian GADD45 (growth arrest and DNA-damage inducible) gene family is composed of three highly homologous small, acidic, nuclear proteins: GADD45alpha, GADD45beta, and GADD45gamma. GADD45 proteins are involved in important processes such as regulation of DNA repair, cell cycle control, and apoptosis. Annotation of the Drosophila melanogaster genome revealed that it contains a single GADD45-like protein (CG11086; D-GADD45). We found that, as its mammalian homologs, D-GADD45 is a nuclear protein; however, D-GADD45 expression is not elevated following exposure to genotoxic and nongenotoxic agents in Schneider cells and in adult flies. We showed that the D-GADD45 transcript increased following immune response activation, consistent with previous microarray findings. Since upregulation of GADD45 proteins has been characterized as an important cellular response to genotoxic and nongenotoxic agents, we aimed to characterize the effect of D-GADD45 overexpression on D. melanogaster development. Overexpression of D-GADD45 in various tissues led to different phenotypic responses. Specifically, in the somatic follicle cells overexpression caused apoptosis, while overexpression in the germline affected the dorsal-ventral polarity of the eggshell and disrupted the localization of anterior-posterior polarity determinants. In this article we focused on the role of D-GADD45 overexpression in the germline and found that D-GADD45 caused dorsalization of the eggshell. Since mammalian GADD45 proteins are activators of the c-Jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK) signaling pathways, we tested for a genetic interaction in D. melanogaster. We found that eggshell polarity defects caused by D-GADD45 overexpression were dominantly suppressed by mutations in the JNK pathway, suggesting that the JNK pathway has a novel, D-GADD45-mediated, function in the Drosophila germline.
Collapse
Affiliation(s)
- Gabriella Peretz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva, 84105 Israel
| | | | | |
Collapse
|
126
|
Chen C, Fuhrken PG, Huang LT, Apostolidis P, Wang M, Paredes CJ, Miller WM, Papoutsakis ET. A systems-biology analysis of isogenic megakaryocytic and granulocytic cultures identifies new molecular components of megakaryocytic apoptosis. BMC Genomics 2007; 8:384. [PMID: 17953764 PMCID: PMC2204013 DOI: 10.1186/1471-2164-8-384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Accepted: 10/22/2007] [Indexed: 12/17/2022] Open
Abstract
Background The differentiation of hematopoietic stem cells into platelet-forming megakaryocytes is of fundamental importance to hemostasis. Constitutive apoptosis is an integral, yet poorly understood, facet of megakaryocytic (Mk) differentiation. Understanding Mk apoptosis could lead to advances in the treatment of Mk and platelet disorders. Results We used a Gene-ontology-driven microarray-based transcriptional analysis coupled with protein-level and activity assays to identify genes and pathways involved in Mk apoptosis. Peripheral blood CD34+ hematopoietic progenitor cells were induced to either Mk differentiation or, as a negative control without observable apoptosis, granulocytic differentiation. Temporal gene-expression data were analyzed by a combination of intra- and inter-culture comparisons in order to identify Mk-associated genes. This novel approach was first applied to a curated set of general Mk-related genes in order to assess their dynamic transcriptional regulation. When applied to all apoptosis associated genes, it revealed a decrease in NF-κB signaling, which was explored using phosphorylation assays for IκBα and p65 (RELA). Up-regulation was noted among several pro-apoptotic genes not previously associated with Mk apoptosis such as components of the p53 regulon and TNF signaling. Protein-level analyses probed the involvement of the p53-regulated GADD45A, and the apoptosis signal-regulating kinase 1 (ASK1). Down-regulation of anti-apoptotic genes, including several of the Bcl-2 family, was also detected. Conclusion Our comparative approach to analyzing dynamic large-scale transcriptional data, which was validated using a known set of Mk genes, robustly identified candidate Mk apoptosis genes. This led to novel insights into the molecular mechanisms regulating apoptosis in Mk cells.
Collapse
Affiliation(s)
- Chi Chen
- Interdepartmental Biological Sciences Program, Northwestern University, Evanston, IL, USA.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Campanero MR, Herrero A, Calvo V. The histone deacetylase inhibitor trichostatin A induces GADD45 gamma expression via Oct and NF-Y binding sites. Oncogene 2007; 27:1263-72. [PMID: 17724474 DOI: 10.1038/sj.onc.1210735] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The GADD45gamma protein is a potential tumor suppressor whose expression is reduced in several tumors. However, very little is known about the regulation of its expression. We have determined that the most relevant region of its promoter lies between nucleotides -112 and -54, relative to the transcription start site. Putative Oct and NF-Y elements were found in this region and factors belonging to these families interacted with these elements in vitro and with the promoter in vivo. Mutation of these elements reduced the basal activity of the promoter, suggesting that both sites are essential for basal expression. These factors interact with chromatin modifying proteins and we found that histone deacetylase 1 or silencing mediator for retinoid and thyroid hormone receptor overexpression reduced the basal activity of the promoter. In contrast, forced expression of the histone acetylase protein PCAF or cell treatment with the HDAC inhibitor trichostatin A increased GADD45gamma mRNA levels and induced GADD45gamma promoter activity through its Oct and NF-Y elements. Moreover, ectopic expression of a dominant-negative version of NF-YA strongly inhibited trichostatin A-induced activation of the promoter. Our data strongly suggest that inhibition of deacetylase activity could potentially be used for treatment of tumors where GADD45gamma expression is reduced.
Collapse
Affiliation(s)
- M R Campanero
- Instituto de Investigaciones Biomédicas, CSIC-UAM, Arturo Duperier, Madrid, Spain
| | | | | |
Collapse
|
128
|
Olsson A, Manzl C, Strasser A, Villunger A. How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ 2007; 14:1561-75. [PMID: 17627286 DOI: 10.1038/sj.cdd.4402196] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A number of elegant studies exploring the consequences of expression of various mutant forms of p53 in mice have been published over the last years. The results and conclusions drawn from these studies often contradict results previously obtained in biochemical assays and cell biology studies, questioning their relevance for p53 function in vivo. Owing to the multitude of post-translational modifications imposed on p53, however, the in vivo validation of their relevance for proper protein function and tumour suppression is constantly lagging behind new biochemical discoveries. Nevertheless, mouse genetics presents again its enormous power. Despite being relatively slow and tedious, it has become indispensable for researchers to sort out the wheat from the chaff in an endless sea of publications on p53.
Collapse
Affiliation(s)
- A Olsson
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | |
Collapse
|
129
|
Fujita A, Sato JR, Garay-Malpartida HM, Morettin PA, Sogayar MC, Ferreira CE. Time-varying modeling of gene expression regulatory networks using the wavelet dynamic vector autoregressive method. ACTA ACUST UNITED AC 2007; 23:1623-30. [PMID: 17463021 DOI: 10.1093/bioinformatics/btm151] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION A variety of biological cellular processes are achieved through a variety of extracellular regulators, signal transduction, protein-protein interactions and differential gene expression. Understanding of the mechanisms underlying these processes requires detailed molecular description of the protein and gene networks involved. To better understand these molecular networks, we propose a statistical method to estimate time-varying gene regulatory networks from time series microarray data. One well known problem when inferring connectivity in gene regulatory networks is the fact that the relationships found constitute correlations that do not allow inferring causation, for which, a priori biological knowledge is required. Moreover, it is also necessary to know the time period at which this causation occurs. Here, we present the Dynamic Vector Autoregressive model as a solution to these problems. RESULTS We have applied the Dynamic Vector Autoregressive model to estimate time-varying gene regulatory networks based on gene expression profiles obtained from microarray experiments. The network is determined entirely based on gene expression profiles data, without any prior biological knowledge. Through construction of three gene regulatory networks (of p53, NF-kappaB and c-myc) for HeLa cells, we were able to predict the connectivity, Granger-causality and dynamics of the information flow in these networks. SUPPLEMENTARY INFORMATION Additional figures may be found at http://mariwork.iq.usp.br/dvar/.
Collapse
Affiliation(s)
- A Fujita
- Institute of Mathematics and Statistics, University of São Paulo, Rua do Matão, 1010-São Paulo, 05508-090, SP, Brazil
| | | | | | | | | | | |
Collapse
|
130
|
Ji J, Liu R, Tong T, Song Y, Jin S, Wu M, Zhan Q. Gadd45a regulates β-catenin distribution and maintains cell–cell adhesion/contact. Oncogene 2007; 26:6396-405. [PMID: 17452974 DOI: 10.1038/sj.onc.1210469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gadd45a, a growth arrest and DNA-damage gene, plays important roles in the control of cell cycle checkpoints, DNA repair and apoptosis. We show here that Gadd45a is involved in the control of cell contact inhibition and cell-cell adhesion. Gadd45a can serve as an adapter to enhance the interaction between beta-catenin and Caveolin-1, and in turn induces beta-catenin translocation to cell membrane for maintaining cell-cell adhesion/contact inhibition. This is coupled with reduction of beta-catenin in cytoplasm and nucleus following Gadd45a induction, which is reflected by the downregulation of cyclin D1, one of the beta-catenin targeted genes. Additionally, Gadd45a facilitates ultraviolet radiation-induced degradation of cytoplasmic and nuclear beta-catenin in a p53-dependent manner via activation of p38 kinase. These findings define a novel link that connects Gadd45a to cell-cell adhesion and cell contact inhibition, which might contribute to the role of Gadd45a in inhibiting tumorigenesis.
Collapse
Affiliation(s)
- J Ji
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
131
|
Piccaluga PP, Agostinelli C, Califano A, Rossi M, Basso K, Zupo S, Went P, Klein U, Zinzani PL, Baccarani M, Dalla Favera R, Pileri SA. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest 2007; 117:823-34. [PMID: 17304354 PMCID: PMC1794115 DOI: 10.1172/jci26833] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 12/14/2006] [Indexed: 12/16/2022] Open
Abstract
Peripheral T cell lymphoma, unspecified (PTCL/U), the most common form of PTCL, displays heterogeneous morphology and phenotype, poor response to treatment, and poor prognosis. We demonstrate that PTCL/U shows a gene expression profile clearly distinct from that of normal T cells. Comparison with the profiles of purified T cell subpopulations (CD4+, CD8+, resting [HLA-DR-], and activated [HLA-DR+]) reveals that PTCLs/U are most closely related to activated peripheral T lymphocytes, either CD4+ or CD8+. Interestingly, the global gene expression profile cannot be surrogated by routine CD4/CD8 immunohistochemistry. When compared with normal T cells, PTCLs/U display deregulation of functional programs often involved in tumorigenesis (e.g., apoptosis, proliferation, cell adhesion, and matrix remodeling). Products of deregulated genes can be detected in PTCLs/U by immunohistochemistry with an ectopic, paraphysiologic, or stromal location. PTCLs/U aberrantly express, among others, PDGFRalpha, a tyrosine-kinase receptor, whose deregulation is often related to a malignant phenotype. Notably, both phosphorylation of PDGFRalpha and sensitivity of cultured PTCL cells to imatinib (as well as to an inhibitor of histone deacetylase) were found. These results, which might be extended to other more rare PTCL categories, provide insight into tumor pathogenesis and clinical management of PTCL/U.
Collapse
Affiliation(s)
- Pier Paolo Piccaluga
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Claudio Agostinelli
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Andrea Califano
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Maura Rossi
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Katia Basso
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Simonetta Zupo
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Philip Went
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Ulf Klein
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Pier Luigi Zinzani
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Michele Baccarani
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Riccardo Dalla Favera
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Stefano A. Pileri
- Institute of Hematology and Medical Oncology “L. and A. Seràgnoli,” Hematology and Hematopathology Units, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
Institute for Cancer Genetics and
Center for Computational Biology and Biochemistry, Columbia University, New York, New York, USA.
S.S.D. Diagnostica Malattie Linfoproliferative, Istituto Nazionale per la Ricerca sul Cancro, Genoa University, Genoa, Italy.
Institute of Pathology, Basel University, Basel, Switzerland.
Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| |
Collapse
|
132
|
Singh S, Upadhyay AK, Ajay AK, Bhat MK. Gadd45α does not modulate the carboplatin or 5-fluorouracil-induced apoptosis in human papillomavirus-positive cells. J Cell Biochem 2007; 100:1191-9. [PMID: 17063488 DOI: 10.1002/jcb.21111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gadd45alpha is shown to be induced by a wide spectrum of DNA-damaging agents and implicated in negative regulation of cell growth by causing G2-M arrest or induction of apoptosis. In the present study, we explored the involvement of p53 in the promoter activation of Gadd45alpha as well as the role of Gadd45alpha in carboplatin (Carb) or 5-fluorouracil (5-FU)-induced apoptosis in human papillomavirus virus (HPV)-positive HEp-2 and HeLa cells. We report that Carb or 5-FU upregulate Gadd45alpha and p53 in both these cells. Transient transfection of chloramphenicol acetyl transferase (CAT)-reporter construct driven by Gadd45alpha promoter clearly indicated that Gadd45alpha upregulation was mediated through activation of its promoter. Inhibition of p53 function by dominant-negative-p53 expression partially suppressed the activation of Gadd45alpha promoter. Further, the induction of apoptosis was assessed by detection of poly (ADP-ribose) polymerase (PARP) cleavage by Western blot analysis. Inhibition of upregulated Gadd45alpha expression by antisense expression vector did not modulate the Carb or 5-FU-induced apoptosis. Overall, we conclude that Gadd45alpha promoter activation partially depends on p53 function in HPV-positive cells. Moreover, Gadd45alpha protein does not modulate Carb or 5-FU-induced apoptosis in these cells.
Collapse
Affiliation(s)
- Sandeep Singh
- National Centre for Cell Science, Ganeshkhind, Pune 411 007, India
| | | | | | | |
Collapse
|
133
|
Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 2006; 209:13-20. [PMID: 16741928 DOI: 10.1002/jcp.20689] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The process of cell division is highly ordered and regulated. Checkpoints exist to delay progression into the next cell cycle phase only when the previous step is fully completed. The ultimate goal is to guarantee that the two daughter cells inherit a complete and faithful copy of the genome. Checkpoints can become activated due to DNA damage, exogenous stress signals, defects during the replication of DNA, or failure of chromosomes to attach to the mitotic spindle. Abrogation of cell cycle checkpoints can result in death for a unicellular organism or uncontrolled proliferation and tumorigenesis in metazoans (Nyberg et al., 2002). The tumor suppressor p53 plays a critical role in each of these cell cycle checkpoints and is reviewed here.
Collapse
Affiliation(s)
- Luciana E Giono
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
134
|
Cai Q, Dmitrieva NI, Ferraris JD, Michea LF, Salvador JM, Hollander MC, Fornace AJ, Fenton RA, Burg MB. Effects of expression of p53 and Gadd45 on osmotic tolerance of renal inner medullary cells. Am J Physiol Renal Physiol 2006; 291:F341-9. [PMID: 16597604 DOI: 10.1152/ajprenal.00518.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The response of renal inner medullary (IM) collecting duct cells (mIMCD3) to high NaCl involves increased expression of Gadd45 and p53, both of which have important effects on growth and survival of the cells. However, mIMCD3 cells, being immortalized by SV40, proliferate rapidly, which is known to sensitize cells to high NaCl, whereas IM cells in situ proliferate very slowly and survive much higher levels of NaCl. In the present studies, we have examined the importance of Gadd45 and p53 for survival of normal IM cells in their usual high-NaCl environment by using more slowly proliferating second-passage mouse inner medullary epithelial (p2mIME) cells and comparing cells from wild-type and gene knockout mice. Acutely elevating NaCl (and/or urea) reduces Gadd45a, but increases Gadd45b and Gadd45g mRNA, depending on the mix of NaCl and urea and the rate of increase of osmolality. Nevertheless, p2mIME cells from Gadd45b−/−, Gadd45g−/−, and Gadd45bg−/− mice survive elevation of NaCl (or urea) essentially the same as do wild-type cells. p53−/− Cells do not tolerate as high a concentration of NaCl (or urea) as p53+/+ cells, but urinary concentrating ability of p53−/− mice is normal, as is the histology of inner medullas from p53−/− and Gadd45abg−/− mice. Thus although Gadd45 and p53 may play roles in osmotically stressed mIMCD3 cells, we do not find that their expression makes an important difference, either for Gadd45 in slower proliferating p2mIME cells or for Gadd45 or p53 in normal inner medullary epithelial cells in situ.
Collapse
Affiliation(s)
- Qi Cai
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1603, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Schneider G, Weber A, Zechner U, Oswald F, Friess HM, Schmid RM, Liptay S. GADD45alpha is highly expressed in pancreatic ductal adenocarcinoma cells and required for tumor cell viability. Int J Cancer 2006; 118:2405-11. [PMID: 16353139 DOI: 10.1002/ijc.21637] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pancreatic ductal adenocarcinoma is one of the most common causes of cancer death in the western civilization. Recently, NF-kappaB has been shown to be activated in pancreatic ductal adenocarcinoma through constitutive activation of IkappaB kinase (IKK). Inhibition of NF-kappaB by a super-inhibitor of NF-kappaB--delta-N-IkappaBalpha--resulted in impaired proliferation and induction of apoptosis, suggesting an important role of NF-kappaB in pancreatic tumorigenesis. Downstream target genes of IkappaBalpha have not been elucidated in pancreatic ductal adenocarcinoma in detail. Using expression profiling by cDNA array analysis of pancreatic ductal adenocarcinoma cell lines stably transfected with super-IkappaBalpha, we identified GADD45alpha as a significant regulated gene. GADD45alpha is overexpressed in pancreatic ductal adenocarcinoma at the mRNA and protein level. Using RNAi we show that downregulation of GADD45alpha reduces proliferation and induces apoptosis in pancreatic cancer cells. These findings provide evidence that GADD45alpha contributes to pancreatic cancer cell proliferation and viability.
Collapse
Affiliation(s)
- Günter Schneider
- Department of Internal Medicine II, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
136
|
Guerzoni C, Bardini M, Mariani SA, Ferrari-Amorotti G, Neviani P, Panno ML, Zhang Y, Martinez R, Perrotti D, Calabretta B. Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL, inhibits proliferation and promotes differentiation of BCR/ABL-expressing cells. Blood 2006; 107:4080-9. [PMID: 16418324 PMCID: PMC1895282 DOI: 10.1182/blood-2005-08-3181] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 01/07/2006] [Indexed: 11/20/2022] Open
Abstract
Translational regulation by oncogenic proteins may be a rapid and efficient mechanism to modulate gene expression. We report here the identification of the CEBPB gene as a target of translational regulation in myeloid precursor cells transformed by the BCR/ABL oncogene. Expression of CEBPB was repressed in 32D-BCR/ABL cells and reinduced by imatinib (STI571) via a mechanism that appears to depend on expression of the CUG-repeat RNA-binding protein CUGBP1 and the integrity of the CUG-rich intercistronic region of c/ebpbeta mRNA. Constitutive expression or conditional activation of wild-type CEBPB induced differentiation and inhibited proliferation of 32D-BCR/ABL cells in vitro and in mice, but a DNA binding-deficient CEBPB mutant had no effect. The proliferation-inhibitory effect of CEBPB was, in part, mediated by the CEBPB-induced GADD45A gene. Because expression of CEBPB (and CEBPA) is low in the blast crisis (BC) stage of chronic myelogenous leukemia (CML) and is inversely correlated with BCR/ABL tyrosine kinase levels, these findings point to the therapeutic potential of restoring C/EBP activity in CML-BC and, perhaps, other types of acute leukemia.
Collapse
Affiliation(s)
- Clara Guerzoni
- Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson Medical College, 233 South and 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Caëtano B, Le Corre L, Chalabi N, Delort L, Bignon YJ, Bernard-Gallon DJ. Soya phytonutrients act on a panel of genes implicated with BRCA1 and BRCA2 oncosuppressors in human breast cell lines. Br J Nutr 2006; 95:406-13. [PMID: 16469160 DOI: 10.1079/bjn20051640] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Breast cancer is the most common cancer in women and a significant cause of death. Mutations of the oncosuppressor genes BRCA1 and BRCA2 are associated with a hereditary risk of breast cancer, and dysregulation of their expression has been observed in sporadic cases. Soya isoflavones have been shown to inhibit breast cancer in studies in vitro, but associations between the consumption of isoflavone-containing foods and breast cancer risk have varied in epidemiological studies. Soya is a unique source of the phytoestrogens daidzein (4',7-dihydroxyisoflavone) and genistein (4',5,7-trihydroxyisoflavone), two molecules that are able to inhibit the proliferation of human breast cancer cells in vitro. The aim of the present study was to determine the effects of genistein (5 microg/ml) and daidzein (20 microg/ml) on transcription in three human breast cell lines (one dystrophic, MCF10a, and two malignant, MCF-7 and MDA-MB-231) after 72 h treatment. The different genes involved in the BRCA1 and BRCA2 pathways (GADD45A, BARD1, JUN, BAX, RB1, ERalpha, ERbeta, BAP1, TNFalpha, p53, p21Waf1/Cip1, p300, RAD51, pS2, Ki-67) were quantified by real-time quantitative RT-PCR, using the TaqMan method and an ABI Prism 7700 Sequence Detector (Applied Biosystems). We observed that, in response to treatment, many of these genes were overexpressed in the breast cancer cell lines (MCF-7 and MDA-MB-231) but not in the dystrophic cell line (MCF10a).
Collapse
MESH Headings
- Anticarcinogenic Agents/pharmacology
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Genes, BRCA1/drug effects
- Genes, BRCA1/physiology
- Genes, BRCA2/drug effects
- Genes, BRCA2/physiology
- Genes, Tumor Suppressor/drug effects
- Genes, Tumor Suppressor/physiology
- Genistein/pharmacology
- Humans
- Isoflavones/pharmacology
- Phytoestrogens/pharmacology
- RNA, Messenger/genetics
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Glycine max/chemistry
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Bertrand Caëtano
- Département d'Oncogénétique du Centre Jean Perrin, INSERM UMR 484-UdA, Centre Biomédical de Recherche et de Valorisation, 28 place Henri Dunant, B.P.38, 63 001 Clermont-Ferrand Cedex 01, France
| | | | | | | | | | | |
Collapse
|
138
|
Docherty NG, O'Sullivan OE, Healy DA, Murphy M, O'neill AJ, Fitzpatrick JM, Watson RWG. TGF-beta1-induced EMT can occur independently of its proapoptotic effects and is aided by EGF receptor activation. Am J Physiol Renal Physiol 2005; 290:F1202-12. [PMID: 16368739 DOI: 10.1152/ajprenal.00406.2005] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis and epithelial-mesenchymal transdifferentiation (EMT) occur in stressed tubular epithelial cells and contribute to renal fibrosis. Transforming growth factor (TGF)-beta(1) promotes these responses and we examined whether the processes were interdependent in vitro. Direct (caspase inhibition) and indirect [epidermal growth factor (EGF) receptor stimulation] strategies were used to block apoptosis during TGF-beta(1) stimulation, and the subsequent effect on EMT was assessed. HK-2 cells were exposed to TGF-beta(1) with or without preincubation with ZVAD-FMK (pan-caspase inhibitor) or concomitant treatment with EGF plus or minus preincubation with LY-294002 (PI3-kinase inhibitor). Cells were then assessed for apoptosis and proliferation by flow cytometry, crystal violet assay, and Western blotting. Markers of EMT were assessed by microscopy, immunofluorescence, real-time RT-PCR, Western blotting, PAI-1 reporter assay, and collagen gel contraction assay. TGF-beta(1) caused apoptosis and priming for staurosporine-induced apoptosis. This was blocked by ZVAD-FMK. However, ZVAD-FMK did not prevent EMT following TGF-beta(1) treatment. EGF inhibited apoptosis and facilitated TGF-beta(1) induction of EMT by increasing proliferation and accentuating E-cadherin loss. Additionally, EGF significantly enhanced TGF-beta(1)-induced collagen I gel contraction. EGF increased Akt phosphorylation during EMT, and the prosurvival effect of this was confirmed using LY-294002, which reduced EGF-induced Akt phosphorylation and reversed its antiapoptotic and proproliferatory effects. TGF-beta(1) induces EMT independently of its proapoptotic effects. TGF-beta(1) and EGF together lead to EMT. EGF increases proliferation and resistance to apoptosis during EMT in a PI3-K Akt-dependent manner. In vivo, EGF receptor activation may assist in the selective survival of a transdifferentiated, profibrotic cell type.
Collapse
Affiliation(s)
- Neil G Docherty
- Conway Institute, Univ. College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
139
|
Aleman MJ, DeYoung MP, Tress M, Keating P, Perry GW, Narayanan R. Inhibition of Single Minded 2 gene expression mediates tumor-selective apoptosis and differentiation in human colon cancer cells. Proc Natl Acad Sci U S A 2005; 102:12765-70. [PMID: 16129820 PMCID: PMC1200285 DOI: 10.1073/pnas.0505484102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 11/18/2022] Open
Abstract
A Down's syndrome associated gene, Single Minded 2 gene short form (SIM2-s), is specifically expressed in colon tumors but not in the normal colon. Antisense inhibition of SIM2-s in a RKO-derived colon carcinoma cell line causes growth inhibition, apoptosis, and inhibition of tumor growth in a nude mouse tumoriginicity model. The mechanism of cell death in tumor cells is unclear. In the present study, we investigated the pathways underlying apoptosis. Apoptosis was seen in a tumor cell-specific manner in RKO cells but not in normal renal epithelial cells, despite inhibition of SIM2-s expression in both of these cells by the antisense. Apoptosis was depended on WT p53 status and was caspase-dependent; it was inhibited by a pharmacological inhibitor of mitogen-activated protein kinase activity. Expression of a key stress response gene, growth arrest and DNA damage gene (GADD)45alpha, was up-regulated in antisense-treated tumor cells but not in normal cells. In an isogenic RKO cell line expressing stable antisense RNA to GADD45alpha, a significant protection of the antisense-induced apoptosis was seen. Whereas antisense-treated RKO cells did not undergo cell cycle arrest, several markers of differentiation were deregulated, including alkaline phosphatase activity, a marker of terminal differentiation. Protection of apoptosis and block of differentiation showed a correlation in the RKO model. Our results support the tumor cell-selective nature of SIM2-s gene function, provide a direct link between SIM2-s and differentiation, and may provide a model to identify SIM2-s targets.
Collapse
Affiliation(s)
- Mireille J Aleman
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | | | | | | | | | | |
Collapse
|
140
|
Ding SZ, Torok AM, Smith MF, Goldberg JB. Toll-like receptor 2-mediated gene expression in epithelial cells during Helicobacter pylori infection. Helicobacter 2005; 10:193-204. [PMID: 15904477 DOI: 10.1111/j.1523-5378.2005.00311.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Helicobacter pylori is the major pathogen causing chronic gastritis and peptic ulcer disease and is closely linked to gastric malignancy. We have previously shown that H. pylori-induced NF-(kappa)B activation and interleukin (IL)-8 secretion are mediated by Toll-like receptor (TLR) 2 in epithelial cells. However, the TLR2-mediated global gene expression profile of the epithelial cell during H. pylori infection is still unknown. The goal of this study was to identify TLR2-regulated genes in epithelial cells induced by H. pylori. MATERIALS AND METHODS The HEK293 and HEK-TLR2 cells were cocultured with H. pylori 26695 for 6 hours. Total RNA was extracted and hybridized to the Affymetrix human U133A microarray chipset, which contains 22,283 total probe sets including 14,285 genes. Data analyses were performed using affymetrix suite 5 software. The expression of selected genes in gastric epithelial cells AGS and MKN45 was monitored by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS Forty-six genes, contained in 57 probe sets, were induced > 2-fold and three genes (five probe sets) decreased > 2-fold by H. pylori infection of HEK293 cells. Fifty-four genes, contained in 69 probe sets, were induced > 2-fold, whereas only 1 gene was repressed > 2-fold in H. pylori-infected HEK-TLR2 cells. Comparisons of genes induced in HEK293 or HEK-TLR2 cells identified 28 genes whose expression was dependent on the presence of TLR2. Seventeen genes were selected and their expression was assessed using the quantitative RT-PCR in gastric epithelial cells during H. pylori infection. Eight of the 17 genes showed distinct expression patterns in AGS and MKN45 cells after H. pylori stimulation. CONCLUSIONS The current study investigated the TLR2-mediated global gene changes after H. pylori stimulation in the epithelial cell system. This approach will be helpful in identifying genes whose expression is mediated by specific TLRs and in determining the cellular responses that are responsible for diverse signal pathways during H. pylori infection.
Collapse
Affiliation(s)
- Song-Ze Ding
- Department of Microbiology, The University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
141
|
Tong T, Ji J, Jin S, Li X, Fan W, Song Y, Wang M, Liu Z, Wu M, Zhan Q. Gadd45a expression induces Bim dissociation from the cytoskeleton and translocation to mitochondria. Mol Cell Biol 2005; 25:4488-500. [PMID: 15899854 PMCID: PMC1140626 DOI: 10.1128/mcb.25.11.4488-4500.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 02/22/2005] [Accepted: 03/17/2005] [Indexed: 01/08/2023] Open
Abstract
Gadd45a, a p53- and BRCA1-regulated stress protein, has been implicated in the maintenance of genomic fidelity, probably through its roles in the control of cell cycle checkpoint and apoptosis. However, the mechanism(s) by which Gadd45a is involved in the induction of apoptosis remains unclear. We show here that inducible expression of Gadd45a protein causes dissociation of Bim, a Bcl2 family member, from microtubule-associated components and translocation to mitochondria. The Bim accumulation in mitochondria enhances interaction of Bim with Bcl-2, relieves Bax from Bcl-2-bound complexes, and subsequently results in release of cytochrome c into the cytoplasm. Suppression of endogenous Bim greatly inhibits Gadd45a induction of apoptosis. Interestingly, Gadd45a interacts with elongation factor 1alpha (EF-1alpha), a microtubule-severing protein that plays an important role in maintaining cytoskeletal stability, and inhibits EF-1alpha-mediated microtubule bundling, indicating that the interaction of Gadd45a with EF-1alpha disrupts cytoskeletal stability. A mutant form of Gadd45a harboring a deletion of EF-1alpha-binding domain fails to inhibit microtubule stability and to induce Bim translocation to mitochondria. Furthermore, coexpression of EF-1alpha antagonizes Gadd45a's property of suppressing cell growth and inducing apoptosis. These findings identify a novel link that connects stress protein Gadd45a to the apoptotic machinery and address the importance of cytoskeletal stability in apoptotic response to DNA damage.
Collapse
Affiliation(s)
- Tong Tong
- State Key Laboratory of Molecular Oncology, Chinese Academy of Medical Sciences, Cancer Institute, Beijing 100021, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, Verdelli D, Intini D, Nobili L, Cro L, Pruneri G, Callea V, Stelitano C, Maiolo AT, Lombardi L, Neri A. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24:2461-73. [PMID: 15735737 DOI: 10.1038/sj.onc.1208447] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.
Collapse
Affiliation(s)
- Michela Mattioli
- Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Hildesheim J, Salvador JM, Hollander MC, Fornace AJ. Casein Kinase 2- and Protein Kinase A-regulated Adenomatous Polyposis Coli and β-Catenin Cellular Localization Is Dependent on p38 MAPK. J Biol Chem 2005; 280:17221-6. [PMID: 15649893 DOI: 10.1074/jbc.m410440200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skin cancer is the most common form of malignancy in the world with epidemic proportions. Identifying the biochemical and molecular mechanisms underlying the events leading to tumors is paramount to designing new and effective treatments that may aid in treating and/or preventing skin cancers. Herein we identify p38 MAPK, along with its positive modulator, Gadd45a, as important regulators of nucleocytoplasmic shuttling of the adenomatous polyposis coli (APC) tumor suppressor. APC normally functions to block beta-catenin from promoting cell proliferation and migration/invasion. Keratinocytes lacking proper p38 MAPK activation, either due to lack of Gadd45a or through the use of p38 MAPK-specific inhibitors, are unable to effectively transport APC into the nucleus. We also show that p38 MAPK is able to directly associate with and modulate both casein kinase 2 (CK2) and protein kinase A (PKA), which promote and block APC nuclear import, respectively. We demonstrate that p38 MAPK is able to not only enhance CK2 kinase activity but also suppress PKA kinase activity. Moreover, lack of normal p38 MAPK activity in either Gadd45a-null keratinocytes or in p38 MAPK inhibitor treated keratinocytes leads to decreased CK2 activity and increased PKA activity. In either case, disruption of APC nuclear import results in elevated levels of free cellular, and potentially oncogenic, beta-catenin. Numerous tumors, including skin cancers, are associated with high levels of beta-catenin, and our data indicate that p38 MAPK signaling, along with Gadd45a, may provide tumor suppressor-like functions in part by promoting APC nuclear localization and effective beta-catenin regulation.
Collapse
Affiliation(s)
- Jeffrey Hildesheim
- Gene Response Section, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4255, USA.
| | | | | | | |
Collapse
|
144
|
Zhan Q. Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat Res 2005; 569:133-43. [PMID: 15603758 DOI: 10.1016/j.mrfmmm.2004.06.055] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/01/2004] [Accepted: 06/10/2004] [Indexed: 01/08/2023]
Abstract
Mammalian cells exhibit complex, but intricate cellular responses to genotoxic stress, including cell cycle checkpoints, DNA repair and apoptosis. Inactivation of these important biological events may result in genomic instability and cell transformation, as well as alterations of therapeutic sensitivity. Gadd45a, a p53- and BRCA1-regulated stress-inducible gene, has been characterized as one of the important players that participate in cellular response to a variety of DNA damage agents. Interestingly, the signaling machinery that regulates Gadd45a induction by genotoxic stress involves both p53-dependent and -independent pathways; the later may employ BRCA1-related or MAP kinase-mediated signals. Gadd45a protein has been reported to interact with multiple important cellular proteins, including Cdc2 protein kinase, proliferating cell nuclear antigen (PCNA), p21Waf1/Cip1 protein, core histone protein and MTK/MEKK4, an up-stream activator of the JNK/SAPK pathway, indicating that Gadd45a may play important roles in the control of cell cycle checkpoint, DNA repair process, and signaling transduction. The importance of Gadd45a in maintaining genomic integrity is well manifested by the demonstration that disruption of endogenous Gadd45a in mice results in genomic instability and increased carcinogenesis. Therefore, Gadd45a appears to be an important component in the cellular defense network that is required for maintenance of genomic stability.
Collapse
Affiliation(s)
- Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
145
|
Gao H, Jin S, Song Y, Fu M, Wang M, Liu Z, Wu M, Zhan Q. B23 Regulates GADD45a Nuclear Translocation and Contributes to GADD45a-induced Cell Cycle G2-M Arrest. J Biol Chem 2005; 280:10988-96. [PMID: 15644315 DOI: 10.1074/jbc.m412720200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gadd45a is an important player in cell cycle G2-M arrest in response to genotoxic stress. However, the underlying mechanism(s) by which Gadd45a exerts its role in the control of cell cycle progression remains to be further defined. Gadd45a interacts with Cdc2, dissociates the Cdc2-cyclin B1 complex, alters cyclin B1 nuclear localization, and thus inhibits the activity of Cdc2/cyclin B1 kinase. These observations indicate that Gadd45a nuclear translocation is closely associated with its role in cell cycle G2-M arrest. Gadd45a has been characterized as a nuclear protein, but it does not contain a classical nuclear localization signal, suggesting that Gadd45a nuclear translocation might be mediated through different nuclear import machinery. Here we show that Gadd45a associates directly with B23 (nucleophosmin), and the B23-interacting domain is mapped at the central region (61-100 amino acids) of the Gadd45a protein using a series of Myc tag-Gadd45a deletion mutants. Deletion of this central region disrupts Gadd45a association with B23 and abolishes Gadd45a nuclear translocation. Suppression of endogenous B23 through a short interfering RNA approach disrupts Gadd45a nuclear translocation and results in impaired Gadd45a-induced cell cycle G2-M arrest. These findings demonstrate a novel association of B23 and Gadd45a and implicate B23 as an important regulator in Gadd45a nuclear import.
Collapse
Affiliation(s)
- Hua Gao
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Missiaglia E, Donadelli M, Palmieri M, Crnogorac-Jurcevic T, Scarpa A, Lemoine NR. Growth delay of human pancreatic cancer cells by methylase inhibitor 5-aza-2'-deoxycytidine treatment is associated with activation of the interferon signalling pathway. Oncogene 2005; 24:199-211. [PMID: 15637593 DOI: 10.1038/sj.onc.1208018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alteration of methylation status has been recognized as a possible epigenetic mechanism of selection during tumorigenesis in pancreatic cancer. This type of cancer is characterized by poor prognosis partly due to resistance to conventional drug treatments. We have used microarray technology to investigate the changes in global gene expression observed after treatment of different pancreatic cancer cell lines with the methylase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR). We have observed that this agent is able to inhibit to various degrees the growth of three pancreatic cancer cell lines. In particular, this inhibition was associated with induction of interferon (IFN)-related genes, as observed in other tumour types. Thus, expression of STAT1 seems to play a key role in the cellular response to treatment with the cytosine analogue. Moreover, we found increased p21(WAF1) and gadd45A expression to be associated with the efficacy of the treatment; this induction may correlate with activation of the IFN signalling pathway. Expression of the p16(INK) protein was also linked to the ability of cells to respond to 5-aza-CdR. Finally, genome-wide demethylation induced sensitization that significantly increased response to further treatment with various chemotherapy agents.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Cancer Research UK, Molecular Oncology Unit, Imperial College School of Medicine at Hammersmith Campus, London, UK
| | | | | | | | | | | |
Collapse
|
147
|
Schneider-Stock R, Diab-Assef M, Rohrbeck A, Foltzer-Jourdainne C, Boltze C, Hartig R, Schönfeld P, Roessner A, Gali-Muhtasib H. 5-Aza-cytidine is a potent inhibitor of DNA methyltransferase 3a and induces apoptosis in HCT-116 colon cancer cells via Gadd45- and p53-dependent mechanisms. J Pharmacol Exp Ther 2005; 312:525-36. [PMID: 15547111 DOI: 10.1124/jpet.104.074195] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methyltransferase inhibitors commonly used in clinical trials promote tumor cell death, but their detailed cytotoxic action is not yet fully understood. A deeper knowledge about their apotosis-inducing mechanisms and their interaction with DNA methyltransferases (DNMTs) DNMT1, DNMT3a, and DNMT3b might allow the design of more effective drugs with lower cytotoxicity. 5-aza-cytidine (5-aza-CR), a potent inhibitor of DNMT1, is known to induce demethylation and reactivation of silenced genes. In this study, we investigated the p53 dependence of apoptotic, cell cycle, and growth inhibitory effects of 5-aza-CR, as well as the influence on the expression level of DNMT1, DNMT3a, and DNMT3b in the colon cancer cell line HCT-116. Exposure to 5-aza-CR induced the up-regulation of genes promoting cell cycle arrest and DNA repair (p21(WAF1) and GADD45) or apoptosis (p53, RIPK2, Bak1, caspase 5, and caspase 6). In parallel, there was a down-regulation of antiapoptotic Bcl2 protein and the G(2)/M-mediator cyclin B1. Co-incubation with pifithrin-alpha (PFT-alpha), a selective p53 inhibitor, restored GADD45, Bcl2, cyclin B1, and p21(WAF1) expression levels and almost completely reversed the growth inhibitory, cell cycle, and apoptotic effects of 5-aza-CR. 5-aza-CR treatment caused global demethylation and reactivation of p16(INK4) expression. There was a marked decrease in DNMT1 and DNMT3a mRNA expression, with PFT-alpha reversing these effects. However, 5-aza-CR treatment did not modulate DNMT3b expression. Our data demonstrate that 5-aza-CR action in HCT-116 is mediated by p53 and its downstream effectors p21(WAF1) and GADD45. This is the first report to show a link between p53 and regulation of DNMT1 and de novo methyltransferase DNMT3a.
Collapse
Affiliation(s)
- Regine Schneider-Stock
- Department of Pathology, Division Molecular Genetics, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Freie BW, Ciccone SLM, Li X, Plett PA, Orschell CM, Srour EF, Hanenberg H, Schindler D, Lee SH, Clapp DW. A role for the Fanconi anemia C protein in maintaining the DNA damage-induced G2 checkpoint. J Biol Chem 2004; 279:50986-93. [PMID: 15377654 DOI: 10.1074/jbc.m407160200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.
Collapse
Affiliation(s)
- Brian W Freie
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Zerbini LF, Wang Y, Czibere A, Correa RG, Cho JY, Ijiri K, Wei W, Joseph M, Gu X, Grall F, Goldring MB, Zhou JR, Libermann TA, Zhou JR. NF-kappa B-mediated repression of growth arrest- and DNA-damage-inducible proteins 45alpha and gamma is essential for cancer cell survival. Proc Natl Acad Sci U S A 2004; 101:13618-23. [PMID: 15353598 PMCID: PMC518803 DOI: 10.1073/pnas.0402069101] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Indexed: 12/29/2022] Open
Abstract
The NF-kappaB/IkappaB signaling pathway is a critical regulator of cell survival in cancer. Here, we report that combined down-regulation of growth arrest- and DNA-damage-inducible proteins (GADD)45alpha and gamma expression by NF-kappaB is an essential step for various cancer types to escape programmed cell death. We demonstrate that inhibition of NF-kappaB in cancer cells results in GADD45alpha- and gamma-dependent induction of apoptosis and inhibition of tumor growth. Inhibition of GADD45alpha and gamma in cancer cells by small interfering RNA abrogates apoptosis induction by the inhibitor of NF-kappaB and blocks c-Jun N-terminal kinase activation, whereas overexpression of GADD45alpha and gamma activates c-Jun N-terminal kinase and induces apoptosis. These results establish an unambiguous role for the GADD45 family as an essential mediator of cell survival in cancer cells with implications for cancer chemotherapy and novel drug discovery.
Collapse
Affiliation(s)
- Luiz F Zerbini
- Beth Israel Deaconess Medical Center Genomics Center and New England Baptist Bone and Joint Institute, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Mak SK, Kültz D. Gadd45 Proteins Induce G2/M Arrest and Modulate Apoptosis in Kidney Cells Exposed to Hyperosmotic Stress. J Biol Chem 2004; 279:39075-84. [PMID: 15262964 DOI: 10.1074/jbc.m406643200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gadd45 proteins are induced by hyperosmolality in renal inner medullary (IM) cells, but their role for cell adaptation to osmotic stress is not known. We show that a cell line derived from murine renal IM cells responds to moderate hyperosmotic stress (540 mosmol/kg) by activation of G(2)/M arrest without significant apoptosis. If the severity of hyperosmotic stress exceeds the tolerance limit of this cell line (620 mosmol/kg) apoptosis is strongly induced. Using transient overexpression of ectopic Gadd45 proteins and simultaneous analysis of transfected versus non-transfected cells by laser-scanning cytometry, we were able to measure the effects of Gadd45 super-induction during hyperosmolality on G(2)/M arrest and apoptosis. Our results demonstrate that induction of all three Gadd45 isoforms inhibits mitosis and promotes G(2)/M arrest during moderate hyperosmotic stress but not in isosmotic controls. Furthermore, all three Gadd45 proteins are also involved in control of apoptosis during severe hyperosmotic stress. Under these conditions Gadd45gamma induction strongly potentiates apoptosis. In contrast, Gadd45alpha/beta induction transiently increases caspase 3/7 and annexin V binding before 12 h but inhibits later stages of apoptosis during severe hyperosmolality. These results show that Gadd45 isoforms function in common but also in distinct pathways during hyperosmolality and that their increased abundance contributes to the low mitotic index and protection of genomic integrity in cells of the mammalian renal inner medulla.
Collapse
Affiliation(s)
- Sally K Mak
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|