101
|
Duncan O, Millar AH. Day and night isotope labelling reveal metabolic pathway specific regulation of protein synthesis rates in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:745-763. [PMID: 34997626 DOI: 10.1111/tpj.15661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Plants have a diurnal separation of metabolic fluxes and a need for differential maintenance of protein machinery in the day and night. To directly assess the output of the translation process and to estimate the ATP investment involved, the individual rates of protein synthesis and degradation of hundreds of different proteins need to be measured simultaneously. We quantified protein synthesis and degradation through pulse labelling with heavy hydrogen in Arabidopsis thaliana rosettes to allow such an assessment of ATP investment in leaf proteome homeostasis on a gene-by-gene basis. Light-harvesting complex proteins were synthesised and degraded much faster in the day (approximately 10:1), while carbon metabolism and vesicle trafficking components were translated at similar rates day or night. Few leaf proteins changed in abundance between the day and the night despite reduced protein synthesis rates at night, indicating that protein degradation rates are tightly coordinated. The data reveal how the pausing of photosystem synthesis and degradation at night allows the redirection of a decreased energy budget to a selective night-time maintenance schedule.
Collapse
Affiliation(s)
- Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Perth, WA, Australia
- Western Australian Proteomics, The University Western Australia, Perth, WA, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
102
|
Increasing the reliability of compound identification in biological samples using 16O/ 18O-exchange mass spectrometry. Anal Bioanal Chem 2022; 414:2537-2543. [PMID: 35103806 DOI: 10.1007/s00216-022-03924-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/24/2022] [Indexed: 11/01/2022]
Abstract
The task of multipurpose analysis of biological samples and identification of individual compounds in them is actual for many organizations in various fields; the results of such analyses can affect lives. The most frequently used, most accurate, and highly sensitive method used for this kind of analysis is the combination of gas/liquid chromatography and high-resolution mass spectrometry. However, in some areas, it is necessary to increase the reliability of compound identification. In this paper, we present a method that combines the reaction of oxygen isotope exchange with mass spectrometry; the method allows to increase the reliability of identification of individual compounds. Oxygen isotope exchange reaction is a "selective" one, which means that not all oxygen present in the molecule can exchange, but only in certain functional groups. Thus, by the number of isotope exchanges that have occurred in this molecule, the right structural formula might be more accurately chosen. The method was tested both on pure pharmaceutical substances and on real human urine samples. In both cases, the effectiveness of the method was shown: the number of expected exchanges in known substances coincided with the experimental one, and from several possible structures of unknown substances, the correct one was chosen based on the number of isotope exchanges.
Collapse
|
103
|
Hydrogen-Deuterium Exchange Mass Spectrometry Reveals a Novel Binding Region of a Neutralizing Fully Human Monoclonal Antibody to Anthrax Protective Antigen. Toxins (Basel) 2022; 14:toxins14020092. [PMID: 35202120 PMCID: PMC8877668 DOI: 10.3390/toxins14020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 12/04/2022] Open
Abstract
Anthrax vaccine adsorbed (AVA) containing protective antigen (PA) is the only FDA-approved anthrax vaccine in the United States. Characterization of the binding of AVA-induced anti-PA human antibodies against the PA antigen after vaccination is crucial to understanding mechanisms of the AVA-elicited humoral immune response. Hydrogen deuterium exchange mass spectrometry (HDX-MS) is often coupled with a short liquid chromatography gradient (e.g., 5–10 min) for the characterization of protein interactions. We recently developed a long-gradient (e.g., 90 min), sub-zero temperature, ultra-high performance liquid chromatography HDX-MS (UPLC-HDX-MS) platform that has significantly increased separation power and limited back-exchange for the analysis of protein samples with high complexity. In this study, we demonstrated the utility of this platform for mapping antibody–antigen epitopes by examining four fully human monoclonal antibodies to anthrax PA. Antibody p1C03, with limited neutralizing activity in vivo, bound to a region on domain 1A of PA. p6C04 and p1A06, with no neutralizing activities, bound to the same helix on domain 3 to prevent oligomerization of PA. We found p6C01 strongly bound to domain 3 on a different helix region. We also identified a secondary epitope for p6C01, which likely leads to the blocking of furin cleavage of PA after p6C01 binding. This novel binding of p6C01 results in highly neutralizing activity. This is the first report of this distinct binding mechanism for a highly neutralizing fully human antibody to anthrax protective antigen. Studying such epitopes can facilitate the development of novel therapeutics against anthrax.
Collapse
|
104
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint-Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases. Angew Chem Int Ed Engl 2022; 61:e202109967. [PMID: 34668624 DOI: 10.1002/anie.202109967] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Indexed: 01/09/2023]
Abstract
Sphingolipid metabolism is tightly controlled by enzymes to regulate essential processes in human physiology. The central metabolite is ceramide, a pro-apoptotic lipid catabolized by ceramidase enzymes to produce pro-proliferative sphingosine-1-phosphate. Alkaline ceramidases are transmembrane enzymes that recently attracted attention for drug development in fatty liver diseases. However, due to their hydrophobic nature, no specific small molecule inhibitors have been reported. We present the discovery and mechanism of action of the first drug-like inhibitors of alkaline ceramidase 3 (ACER3). In particular, we chemically engineered novel fluorescent ceramide substrates enabling screening of large compound libraries and characterized enzyme:inhibitor interactions using mass spectrometry and MD simulations. In addition to revealing a new paradigm for inhibition of lipid metabolising enzymes with non-lipidic small molecules, our data lay the ground for targeting ACER3 in drug discovery efforts.
Collapse
Affiliation(s)
- Robert D Healey
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Essa M Saied
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Chemistry Department, Faculty of Science, Suez Canal University, 41522, Ismailia, Egypt
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | | | - Julie Saint-Paul
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Elise Del Nero
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Sylvain Jeannot
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Marion Drapeau
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Simon Fontanel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Damien Maurel
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Shibom Basu
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, 38042, Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice, 06108, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 711-873, South Korea
| | | | - Cherine Bechara
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
- Institut Universitaire de France (IUF), Paris, France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, 8091, Switzerland
| | - Christoph Arenz
- Institute for chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Sebastien Granier
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, 34094, France
| |
Collapse
|
105
|
Borotto NB, Osho KE, Richards TK, Graham KA. Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:83-89. [PMID: 34870999 DOI: 10.1021/jasms.1c00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry and collision-induced unfolding (CIU) workflows continue to grow in utilization due to their ability to rapidly characterize protein conformation and stability. To perform these experiments, the instrument must be capable of collisionally activating ions prior to ion mobility spectrometry (IMS) analyses. Trapped ion mobility spectrometry (TIMS) is an ion mobility implementation that has been increasingly adopted due to its inherently high resolution and reduced instrumental footprint. In currently deployed commercial instruments, however, typical modes of collisional activation do not precede IMS analysis, and thus, the instruments are incapable of performing CIU. In this work, we expand on a recently developed method of activating protein ions within the TIMS device and explore its analytical utility toward the unfolding of native-like protein ions. We demonstrate the unfolding of native-like ions of ubiquitin, cytochrome C, β-lactoglobulin, and carbonic anhydrase. These ions undergo extensive unfolding upon collisional activation. Additionally, the improved resolution provided by the TIMS separation uncovers previously obscured unfolding complexity.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
106
|
Using hydrogen-deuterium exchange mass spectrometry to characterize Mtr4 interactions with RNA. Methods Enzymol 2022; 673:475-516. [PMID: 35965017 DOI: 10.1016/bs.mie.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogen deuterium exchange coupled to mass spectrometry (HDX-MS) is a valuable technique to investigate the dynamics of protein systems. The approach compares the deuterium uptake of protein backbone amides under multiple conditions to characterize protein conformation and interaction. HDX-MS is versatile and can be applied to diverse ligands, however, challenges remain when it comes to exploring complexes containing nucleic acids. In this chapter, we present procedures for the optimization and application of HDX-MS to studying RNA-binding proteins and use the RNA helicase Mtr4 as a demonstrative example. We highlight considerations in designing on-exchange, bottom-up, comparative studies on proteins with RNA. Our protocol details preliminary testing and optimization of experimental parameters. Difficulties arising from the inclusion of RNA, such as signal repression and sample carryover, are addressed. We discuss how chromatography parameters can be adjusted depending on the issues presented by the RNA, emphasizing reproducible peptide recovery in the absence and presence of RNA. Methods for visualization of HDX data integrated with statistical analysis are also reviewed with examples. These protocols can be applied to future studies of various RNA-protein complexes.
Collapse
|
107
|
Fiorentino F, Bolla JR. Mass Spectrometry Analysis of Dynamics and Interactions of the LPS Translocon LptDE. Methods Mol Biol 2022; 2548:109-128. [PMID: 36151495 DOI: 10.1007/978-1-0716-2581-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The presence of lipopolysaccharide (LPS) in the outer leaflet of the outer membrane (OM) is essential for Gram-negative bacteria OM barrier function and for maintaining its cell integrity. As such, comprehensive information about its biosynthesis and translocation represents a successful strategy for the development of antibacterial drugs. LPS is a complex glycolipid, and probing its interactions with LPS transport (Lpt) proteins has been extremely challenging. However, mass spectrometry (MS) techniques have recently catalyzed tremendous advancements in the characterization of LPS transport (Lpt) proteins and probed associated conformational dynamics upon substrate binding. Here, we describe the application of MS methods to study the dynamics of LPS translocon LptDE in the presence of natural substrates and inhibitors.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Jani R Bolla
- The Kavli Institute for Nanoscience Discovery, Oxford, UK.
- Department of Plant Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
108
|
Petrotchenko EV, Borchers CH. Protein Chemistry Combined with Mass Spectrometry for Protein Structure Determination. Chem Rev 2021; 122:7488-7499. [PMID: 34968047 DOI: 10.1021/acs.chemrev.1c00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The advent of soft-ionization mass spectrometry for biomolecules has opened up new possibilities for the structural analysis of proteins. Combining protein chemistry methods with modern mass spectrometry has led to the emergence of the distinct field of structural proteomics. Multiple protein chemistry approaches, such as surface modification, limited proteolysis, hydrogen-deuterium exchange, and cross-linking, provide diverse and often orthogonal structural information on the protein systems studied. Combining experimental data from these various structural proteomics techniques provides a more comprehensive examination of the protein structure and increases confidence in the ultimate findings. Here, we review various types of experimental data from structural proteomics approaches with an emphasis on the use of multiple complementary mass spectrometric approaches to provide experimental constraints for the solving of protein structures.
Collapse
Affiliation(s)
- Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
109
|
Raznikov VV, Zelenov VV, Aparina EV, Sulimenkov IV, Raznikova MO. Formation of Deuterium-Substituted Ions from a Solution Introduced into a Radio-Frequency Quadrupole under the Action of a Gas Jet Passed through an Electron Ionization Ion Source. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821130116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
110
|
Ciftci D, Martens C, Ghani VG, Blanchard SC, Politis A, Huysmans GHM, Boudker O. Linking function to global and local dynamics in an elevator-type transporter. Proc Natl Acad Sci U S A 2021; 118:e2025520118. [PMID: 34873050 PMCID: PMC8670510 DOI: 10.1073/pnas.2025520118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 11/24/2022] Open
Abstract
Transporters cycle through large structural changes to translocate molecules across biological membranes. The temporal relationships between these changes and function, and the molecular properties setting their rates, determine transport efficiency-yet remain mostly unknown. Using single-molecule fluorescence microscopy, we compare the timing of conformational transitions and substrate uptake in the elevator-type transporter GltPh We show that the elevator-like movements of the substrate-loaded transport domain across membranes and substrate release are kinetically heterogeneous, with rates varying by orders of magnitude between individual molecules. Mutations increasing the frequency of elevator transitions and reducing substrate affinity diminish transport rate heterogeneities and boost transport efficiency. Hydrogen deuterium exchange coupled to mass spectrometry reveals destabilization of secondary structure around the substrate-binding site, suggesting that increased local dynamics leads to faster rates of global conformational changes and confers gain-of-function properties that set transport rates.
Collapse
Affiliation(s)
- Didar Ciftci
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
| | - Chloe Martens
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Vishnu G Ghani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Argyris Politis
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Gerard H M Huysmans
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065;
- Tri-Institutional Training Program in Chemical Biology, New York, NY 10065
- Howard Hughes Medical Institute, Weill Cornell Medicine, New York, NY 10065
| |
Collapse
|
111
|
Structural dynamics in the evolution of a bilobed protein scaffold. Proc Natl Acad Sci U S A 2021; 118:2026165118. [PMID: 34845009 PMCID: PMC8694067 DOI: 10.1073/pnas.2026165118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins conduct numerous complex biological functions by use of tailored structural dynamics. The molecular details of how these emerged from ancestral peptides remains mysterious. How does nature utilize the same repertoire of folds to diversify function? To shed light on this, we analyzed bilobed proteins with a common structural core, which is spread throughout the tree of life and is involved in diverse biological functions such as transcription, enzymatic catalysis, membrane transport, and signaling. We show here that the structural dynamics of the structural core differentiate predominantly via terminal additions during a long-period evolution. This diversifies substrate specificity and, ultimately, biological function. Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Collapse
|
112
|
Healey RD, Saied EM, Cong X, Karsai G, Gabellier L, Saint‐Paul J, Del Nero E, Jeannot S, Drapeau M, Fontanel S, Maurel D, Basu S, Leyrat C, Golebiowski J, Bossis G, Bechara C, Hornemann T, Arenz C, Granier S. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Robert D. Healey
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Essa M. Saied
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
- Chemistry Department Faculty of Science Suez Canal University 41522 Ismailia Egypt
| | - Xiaojing Cong
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Gergely Karsai
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | | | - Julie Saint‐Paul
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Elise Del Nero
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Sylvain Jeannot
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Marion Drapeau
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Simon Fontanel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Damien Maurel
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Shibom Basu
- EMBL Grenoble 71 Avenue des Martyrs, CS 90181 38042 Grenoble France
| | - Cedric Leyrat
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
| | - Jérôme Golebiowski
- Université Côte d'Azur CNRS Institut de Chimie de Nice UMR7272 Nice 06108 France
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology Daegu 711-873 South Korea
| | | | - Cherine Bechara
- IGF University of Montpellier CNRS INSERM Montpellier 34094 France
- Institut Universitaire de France (IUF) Paris France
| | - Thorsten Hornemann
- Institute of Clinical Chemistry University Hospital Zurich University of Zurich Zurich 8091 Switzerland
| | - Christoph Arenz
- Institute for chemistry Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | | |
Collapse
|
113
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
114
|
Das A, Korn A, Carroll A, Carver JA, Maiti S. Application of the Double-Mutant Cycle Strategy to Protein Aggregation Reveals Transient Interactions in Amyloid-β Oligomers. J Phys Chem B 2021; 125:12426-12435. [PMID: 34748334 DOI: 10.1021/acs.jpcb.1c05829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient oligomeric intermediates in the peptide or protein aggregation pathway are suspected to be the key toxic species in many amyloid diseases, but deciphering their molecular nature has remained a challenge. Here we show that the strategy of "double-mutant cycles", used effectively in probing protein-folding intermediates, can reveal transient interactions during protein aggregation. It does so by comparing the changes in thermodynamic parameters between the wild type, and single and double mutants. We demonstrate the strategy by probing the possible transient salt bridge partner of lysine 28 (K28) in the oligomeric states of amyloid β-40 (Aβ40), the putative toxic species in Alzheimer's disease. In mature fibrils, the binding partner is aspartate 23. This interaction differentiates Aβ40 from the more toxic Aβ42, where K28's binding partner is the C-terminal carboxylate. We selectively acetylated K28 and amidated the C-terminus of Aβ40, creating four distinct variants. Spectroscopic measurements of the kinetics and thermodynamics of aggregation show that K28 and the C-terminus interact transiently in the early phases of the Aβ40 aggregation pathway. Hydrogen-deuterium exchange mass spectrometry (using a simple analysis method that we introduce here that takes into account the isotopic mass distribution) supports this interpretation. It is also supported by cellular toxicity measurements, suggesting possible similarities in the mechanisms of toxicity of Aβ40 oligomers (which are more toxic than Aβ40 fibrils) and Aβ42. Our results show that double-mutant cycles can be a powerful tool for probing transient interactions during protein aggregation.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Adam Carroll
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
115
|
Miyagi M, Tanaka K, Watanabe S, Kondo J, Kishimoto T. Identifying Protein-Drug Interactions in Cell Lysates Using Histidine Hydrogen Deuterium Exchange. Anal Chem 2021; 93:14985-14995. [PMID: 34735131 DOI: 10.1021/acs.analchem.1c02283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Identifying the targets of a drug is critical to understand the mechanism of action and predicts possible side effects. The conventional approach is capturing interacting proteins by affinity purification. However, it requires drugs to be immobilized to a solid support or derivatized with chemical moieties used for pulling down interacting proteins. Such covalent modifications to drugs may mask a critical recognition site for or alter the binding affinity to their targets. To overcome the drawback, several methods that do not require covalent modifications to drugs have been developed. These methods identify targets by detecting proteins whose thermodynamic stability is enhanced in the presence of drugs. Although the utility of these methods has been demonstrated, the difficulty in identifying low abundant targets is the common problem of these methods. We have developed a new target identification method that increases the likelihood of identifying low abundant targets. The method uses histidine-hydrogen deuterium exchange (His-HDX) as a readout technique to probe the changes in protein stability induced by drugs. The workflow involves incubating cell lysates in various concentrations of a protein denaturant in the presence and absence of a drug in D2O followed by digestion of the proteins, enrichment of His-containing peptides, and analysis of the enriched His-peptides by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The developed method was successfully applied to identify the interaction between endogenously expressed MAPK14 and its inhibitor in HEK293 cell lysates. The implementation of selective enrichment of histidine-containing peptides in the workflow was a key that enabled identifying the MAPK14-inhibitor interaction.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kohei Tanaka
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Shinko Watanabe
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Jun Kondo
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| | - Taro Kishimoto
- Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Kanagawa 227-0033, Japan
| |
Collapse
|
116
|
Calugareanu D, Möller IR, Schmidt SG, Loland CJ, Rand KD. Probing the Impact of Temperature and Substrates on the Conformational Dynamics of the Neurotransmitter:Sodium symporter LeuT. J Mol Biol 2021; 434:167356. [PMID: 34780780 DOI: 10.1016/j.jmb.2021.167356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022]
Abstract
The crucial function of neurotransmitter:sodium symporters (NSS) in facilitating the reuptake of neurotransmitters into neuronal cells makes them attractive drug targets for treating multiple mental diseases. Due to the challenges in working with eukaryotic NSS proteins, LeuT, a prokaryotic amino acid transporter, has served as a model protein for studying structure-function relationships of NSS family proteins. With hydrogen-deuterium exchange mass spectrometry (HDX-MS), slow unfolding/refolding kinetics were identified in multiple regions of LeuT, suggesting that substrate translocation involves cooperative fluctuations of helical stretches. Earlier work has solely been performed at non-native temperatures (25 °C) for LeuT, which is evolutionarily adapted to function at high temperatures (85 - 95 °C). To address the effect of temperature on LeuT dynamics, we have performed HDX-MS experiments at elevated temperatures (45 °C and 60 °C). At these elevated temperatures, multiple regions in LeuT exhibited increased dynamics compared to 25 °C. Interestingly, coordinated slow unfolding/refolding of key regions could still be observed, though considerably faster. We have further investigated the conformational impact of binding the efficiently transported substrate alanine (Ala) relative to the much slower transported substrate leucine (Leu). Comparing the HDX of the Ala-bound versus Leu-bound state of LeuT, we observe distinct differences that could explain the faster transport rate (kcat) of Ala relative to Leu. Importantly, slow unfolding/refolding dynamics could still be observed in regions of Ala-bound LeuT . Overall, our work brings new insights into the conformational dynamics of LeuT and provides a better understanding of the transport mechanism of LeuT and possibly other transporters bearing the LeuT fold.
Collapse
Affiliation(s)
- Dionisie Calugareanu
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Ingvar R Möller
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Solveig G Schmidt
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Claus J Loland
- Laboratory for Membrane Protein Dynamics, Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
117
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
118
|
Zhdanova PV, Ishchenko AA, Chernonosov AA, Zharkov DO, Koval VV. Dynamics and Conformational Changes in Human NEIL2 DNA Glycosylase Analyzed by Hydrogen/Deuterium Exchange Mass Spectrometry. J Mol Biol 2021; 434:167334. [PMID: 34757057 DOI: 10.1016/j.jmb.2021.167334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022]
Abstract
Base excision DNA repair (BER) is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. BER is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Human endonuclease VIII-like protein 2 (hNEIL2), belonging to the helix-two-turn-helix structural superfamily of DNA glycosylases, is an enzyme uniquely specific for oxidized pyrimidines in non-canonical DNA substrates such as bubbles and loops. The structure of hNEIL2 has not been solved; its closest homologs with known structures are NEIL2 from opossum and from giant mimivirus. Here we analyze the conformational dynamics of free hNEIL2 using a combination of hydrogen/deuterium exchange mass spectrometry, homology modeling and molecular dynamics simulations. We show that a prominent feature of vertebrate NEIL2 - a large insert in its N-terminal domain absent from other DNA glycosylases - is unstructured in solution. It was suggested that helix-two-turn-helix DNA glycosylases undergo open-close transition upon DNA binding, with the large movement of their N- and C-terminal domains, but the open conformation has been elusive to capture. Our data point to the open conformation as favorable for free hNEIL2 in solution. Overall, our results are consistent with the view of hNEIL2 as a conformationally flexible protein, which may be due to its participation in the repair of non-canonical DNA structures and/or to the involvement in functional and regulatory protein-protein interactions.
Collapse
Affiliation(s)
- Polina V Zhdanova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibisk, Russia; Novosibirsk State University, Novosibisk, Russia
| | - Alexander A Ishchenko
- Groupe "Réparation de lADN", Equipe Labellisée par la Ligue Nationale contre le Cancer, CNRS UMR 8200, Univ. Paris-Sud, Université Paris-Saclay, Villejuif F-94805, France; Gustave Roussy, Université Paris-Saclay, Villejuif F-94805, France
| | | | - Dmitry O Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibisk, Russia; Novosibirsk State University, Novosibisk, Russia
| | - Vladimir V Koval
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibisk, Russia; Novosibirsk State University, Novosibisk, Russia.
| |
Collapse
|
119
|
Cakir M, Obernier K, Forget A, Krogan NJ. Target Discovery for Host-Directed Antiviral Therapies: Application of Proteomics Approaches. mSystems 2021; 6:e0038821. [PMID: 34519533 PMCID: PMC8547474 DOI: 10.1128/msystems.00388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current epidemics, such as AIDS or flu, and the emergence of new threatening pathogens, such as the one causing the current coronavirus disease 2019 (COVID-19) pandemic, represent major global health challenges. While vaccination is an important part of the arsenal to counter the spread of viral diseases, it presents limitations and needs to be complemented by efficient therapeutic solutions. Intricate knowledge of host-pathogen interactions is a powerful tool to identify host-dependent vulnerabilities that can be exploited to dampen viral replication. Such host-directed antiviral therapies are promising and are less prone to the development of drug-resistant viral strains. Here, we first describe proteomics-based strategies that allow the rapid characterization of host-pathogen interactions. We then discuss how such data can be exploited to help prioritize compounds with potential host-directed antiviral activity that can be tested in preclinical models.
Collapse
Affiliation(s)
- Merve Cakir
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Kirsten Obernier
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Nevan J. Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, California, USA
- Quantitative Biosciences Institute (QBI) COVID-19 Research Group (QCRG), San Francisco, California, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| |
Collapse
|
120
|
Structural and thermodynamical insights into the binding and inhibition of FIH-1 by the N-terminal disordered region of Mint3. J Biol Chem 2021; 297:101304. [PMID: 34655613 PMCID: PMC8571082 DOI: 10.1016/j.jbc.2021.101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.
Collapse
|
121
|
Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, Connolley L, Giacomelli G, Feddersen H, Corrales-Guerrero L, Giammarinaro PI, Hanßmann J, Bramkamp M, Viollier PH, Murray S, Schäfer LV, Bange G, Thanbichler M. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell 2021; 81:3992-4007.e10. [PMID: 34562373 DOI: 10.1016/j.molcel.2021.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023]
Abstract
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Connolley
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Helge Feddersen
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Seán Murray
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
122
|
Tsai WC, Gilbert NC, Ohler A, Armstrong M, Perry S, Kalyanaraman C, Yasgar A, Rai G, Simeonov A, Jadhav A, Standley M, Lee HW, Crews P, Iavarone AT, Jacobson MP, Neau DB, Offenbacher AR, Newcomer M, Holman TR. Kinetic and structural investigations of novel inhibitors of human epithelial 15-lipoxygenase-2. Bioorg Med Chem 2021; 46:116349. [PMID: 34500187 DOI: 10.1016/j.bmc.2021.116349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022]
Abstract
Human epithelial 15-lipoxygenase-2 (h15-LOX-2, ALOX15B) is expressed in many tissues and has been implicated in atherosclerosis, cystic fibrosis and ferroptosis. However, there are few reported potent/selective inhibitors that are active ex vivo. In the current work, we report newly discovered molecules that are more potent and structurally distinct from our previous inhibitors, MLS000545091 and MLS000536924 (Jameson et al, PLoS One, 2014, 9, e104094), in that they contain a central imidazole ring, which is substituted at the 1-position with a phenyl moiety and with a benzylthio moiety at the 2-position. The initial three molecules were mixed-type, non-reductive inhibitors, with IC50 values of 0.34 ± 0.05 μM for MLS000327069, 0.53 ± 0.04 μM for MLS000327186 and 0.87 ± 0.06 μM for MLS000327206 and greater than 50-fold selectivity versus h5-LOX, h12-LOX, h15-LOX-1, COX-1 and COX-2. A small set of focused analogs was synthesized to demonstrate the validity of the hits. In addition, a binding model was developed for the three imidazole inhibitors based on computational docking and a co-structure of h15-LOX-2 with MLS000536924. Hydrogen/deuterium exchange (HDX) results indicate a similar binding mode between MLS000536924 and MLS000327069, however, the latter restricts protein motion of helix-α2 more, consistent with its greater potency. Given these results, we designed, docked, and synthesized novel inhibitors of the imidazole scaffold and confirmed our binding mode hypothesis. Importantly, four of the five inhibitors mentioned above are active in an h15-LOX-2/HEK293 cell assay and thus they could be important tool compounds in gaining a better understanding of h15-LOX-2's role in human biology. As such, a suite of similar pharmacophores that target h15-LOX-2 both in vitro and ex vivo are presented in the hope of developing them as therapeutic agents.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Nathan C Gilbert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Amanda Ohler
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Michelle Armstrong
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Steven Perry
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, United States
| | - Adam Yasgar
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Melissa Standley
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Anthony T Iavarone
- Department of Chemistry and California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA 94720, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA 94158, United States
| | - David B Neau
- Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, IL, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, United States
| | - Marcia Newcomer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, United States.
| |
Collapse
|
123
|
Fenton-Chemistry-Based Oxidative Modification of Proteins Reflects Their Conformation. Int J Mol Sci 2021; 22:ijms22189927. [PMID: 34576105 PMCID: PMC8469487 DOI: 10.3390/ijms22189927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022] Open
Abstract
In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the ‘four-dimensional’ protein structure). Instead, a combination of complementary techniques is required. Mass spectrometry methods have shown promise in addressing protein dynamics, but often rely on the use of high-end commercial or custom instruments. Here, we apply well-established chemistry to conformation-sensitive oxidative protein labelling on a timescale of a few seconds, followed by analysis through a routine protein analysis workflow. For a set of model proteins, we show that site selectivity of labelling can indeed be rationalised in terms of known structural information, and that conformational changes induced by ligand binding are reflected in the modification pattern. In addition to conventional bottom-up analysis, further insights are obtained from intact mass measurement and native mass spectrometry. We believe that this method will provide a valuable and robust addition to the ‘toolbox’ of mass spectrometry researchers studying higher-order protein structure.
Collapse
|
124
|
Serpa JJ, Popov KI, Petrotchenko EV, Dokholyan NV, Borchers CH. Structure of prion β-oligomers as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations. Proteomics 2021; 21:e2000298. [PMID: 34482645 PMCID: PMC9285417 DOI: 10.1002/pmic.202000298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/08/2022]
Abstract
The conversion of the native monomeric cellular prion protein (PrPC ) into an aggregated pathological β-oligomeric form (PrPβ ) and an infectious form (PrPSc ) is the central element in the development of prion diseases. The structure of the aggregates and the molecular mechanisms of the conformational changes involved in the conversion are still unknown. We applied mass spectrometry combined with chemical crosslinking, hydrogen/deuterium exchange, limited proteolysis, and surface modification for the differential characterization of the native and the urea+acid-converted prion β-oligomer structures to obtain insights into the mechanisms of conversion and aggregation. For the determination of the structure of the monomer and the dimer unit of the β-oligomer, we applied a recently-developed approach for de novo protein structure determination which is based on the incorporation of zero-length and short-distance crosslinking data as intra- and inter-protein constraints in discrete molecular dynamics simulations (CL-DMD). Based on all of the structural-proteomics experimental data and the computationally predicted structures of the monomer units, we propose the potential mode of assembly of the β-oligomer. The proposed β-oligomer assembly provides a clue on the β-sheet nucleation site, and how template-based conversion of the native prion molecule occurs, growth of the prion aggregates, and maturation into fibrils may occur.
Collapse
Affiliation(s)
- Jason J Serpa
- University of Victoria -Genome British Columbia Proteomics Centre, Victoria, British Columbia, Canada
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Evgeniy V Petrotchenko
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nikolay V Dokholyan
- Department of Pharmacology, Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.,Center for Computational and Data-Intensive Science and Engineering, Skolkovo Institute of Science and Technology, Moscow, Russia.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
125
|
Rumfeldt J, Kurttila M, Takala H, Ihalainen JA. The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study. Photochem Photobiol Sci 2021; 20:1173-1181. [PMID: 34460093 DOI: 10.1007/s43630-021-00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.
Collapse
Affiliation(s)
- Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
126
|
Calvaresi V, Redsted A, Norais N, Rand KD. Hydrogen-Deuterium Exchange Mass Spectrometry with Integrated Size-Exclusion Chromatography for Analysis of Complex Protein Samples. Anal Chem 2021; 93:11406-11414. [PMID: 34387074 DOI: 10.1021/acs.analchem.1c01171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The growing use of hydrogen-deuterium exchange mass spectrometry (HDX-MS) for studying membrane proteins, large protein assemblies, and highly disulfide-bonded species is often challenged by the presence in the sample of large amounts of lipids, protein ligands, and/or highly ionizable reducing agents. Here, we describe how a short size-exclusion chromatography (SEC) column can be integrated with a conventional temperature-controlled HDX-MS setup to achieve fast and online removal of unwanted species from the HDX sample prior to chromatographic separation and MS analysis. Dual-mode valves permit labeled proteins eluting after SEC to be directed to the proteolytic and chromatographic columns, while unwanted sample components are led to waste. The SEC-coupled HDX-MS method allows analyses to be completed with lower or similar back-exchange compared to conventional experiments. We demonstrate the suitability of the method for the analysis of challenging protein samples, achieving efficient online removal of lipid components from protein-lipid systems, depletion of an antibody from an antigen during epitope mapping, and elimination of MS interfering compounds such as tris(2-carboxyethyl)phosphine (TCEP) during HDX-MS analysis of a disulfide-bonded protein. The implementation of the short SEC column to the conventional HDX-MS setup is straightforward and could be of significant general utility during the HDX-MS analysis of complex protein states.
Collapse
Affiliation(s)
- Valeria Calvaresi
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark.,GSK, Siena 53100, Italy
| | - Andreas Redsted
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark.,GSK, Siena 53100, Italy
| | | | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
127
|
Insights into the Role of Membrane Lipids in the Structure, Function and Regulation of Integral Membrane Proteins. Int J Mol Sci 2021; 22:ijms22169026. [PMID: 34445730 PMCID: PMC8396450 DOI: 10.3390/ijms22169026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Membrane proteins exist within the highly hydrophobic membranes surrounding cells and organelles, playing key roles in cellular function. It is becoming increasingly clear that the membrane does not just act as an appropriate environment for these proteins, but that the lipids that make up these membranes are essential for membrane protein structure and function. Recent technological advances in cryogenic electron microscopy and in advanced mass spectrometry methods, as well as the development of alternative membrane mimetic systems, have allowed experimental study of membrane protein–lipid complexes. These have been complemented by computational approaches, exploiting the ability of Molecular Dynamics simulations to allow exploration of membrane protein conformational changes in membranes with a defined lipid content. These studies have revealed the importance of lipids in stabilising the oligomeric forms of membrane proteins, mediating protein–protein interactions, maintaining a specific conformational state of a membrane protein and activity. Here we review some of the key recent advances in the field of membrane protein–lipid studies, with major emphasis on respiratory complexes, transporters, channels and G-protein coupled receptors.
Collapse
|
128
|
Khananshvili D. The Archaeal Na +/Ca 2+ Exchanger (NCX_Mj) as a Model of Ion Transport for the Superfamily of Ca 2+/CA Antiporters. Front Chem 2021; 9:722336. [PMID: 34409017 PMCID: PMC8366772 DOI: 10.3389/fchem.2021.722336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The superfamily of Calcium/Cation (Ca2+/CA) antiporters extrude Ca2+ from the cytosol or subcellular compartments in exchange with Na+, K+, H+, Li+, or Mg2+ and thereby provide a key mechanism for Ca2+ signaling and ion homeostasis in biological systems ranging from bacteria to humans. The structure-dynamic determinants of ion selectivity and transport rates remain unclear, although this is of primary physiological significance. Despite wide variances in the ion selectivity and transport rates, the Ca2+/CA proteins share structural motifs, although it remains unclear how the ion recognition/binding is coupled to the ion translocation events. Here, the archaeal Na+/Ca2+ exchanger (NCX_Mj) is considered as a structure-based model that can help to resolve the ion transport mechanisms by using X-ray, HDX-MS, ATR-FTIR, and computational approaches in conjunction with functional analyses of mutants. Accumulating data reveal that the local backbone dynamics at ion-coordinating residues is characteristically constrained in apo NCX_Mj, which may predefine the affinity and stability of ion-bound species in the ground and transition states. The 3Na+ or 1Ca2+ binding to respective sites of NCX_Mj rigidify the backbone dynamics at specific segments, where the ion-dependent compression of the ion-permeating four-helix bundle (TM2, TM3, TM7, and TM8) induces the sliding of the two-helix cluster (TM1/TM6) on the protein surface to switch the OF (outward-facing) and IF (inward-facing) conformations. Taking into account the common structural elements shared by Ca2+/CAs, NCX_Mj may serve as a model for studying the structure-dynamic and functional determinants of ion-coupled alternating access, transport catalysis, and ion selectivity in Ca2+/CA proteins.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
129
|
Ziemianowicz DS, Saltzberg D, Pells T, Crowder DA, Schräder C, Hepburn M, Sali A, Schriemer DC. IMProv: A Resource for Cross-link-Driven Structure Modeling that Accommodates Protein Dynamics. Mol Cell Proteomics 2021; 20:100139. [PMID: 34418567 PMCID: PMC8452774 DOI: 10.1016/j.mcpro.2021.100139] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 11/01/2022] Open
Abstract
Proteomics methodology has expanded to include protein structural analysis, primarily through cross-linking mass spectrometry (XL-MS) and hydrogen-deuterium exchange mass spectrometry (HX-MS). However, while the structural proteomics community has effective tools for primary data analysis, there is a need for structure modeling pipelines that are accessible to the proteomics specialist. Integrative structural biology requires the aggregation of multiple distinct types of data to generate models that satisfy all inputs. Here, we describe IMProv, an app in the Mass Spec Studio that combines XL-MS data with other structural data, such as cryo-EM densities and crystallographic structures, for integrative structure modeling on high-performance computing platforms. The resource provides an easily deployed bundle that includes the open-source Integrative Modeling Platform program (IMP) and its dependencies. IMProv also provides functionality to adjust cross-link distance restraints according to the underlying dynamics of cross-linked sites, as characterized by HX-MS. A dynamics-driven conditioning of restraint values can improve structure modeling precision, as illustrated by an integrative structure of the five-membered Polycomb Repressive Complex 2. IMProv is extensible to additional types of data.
Collapse
Affiliation(s)
- Daniel S Ziemianowicz
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Saltzberg
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - Troy Pells
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - D Alex Crowder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christoph Schräder
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Sciences, and California Institute for Quantitative Biomedical Sciences, University of California, San Francisco, California, USA
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada; Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada; Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
130
|
Zheng S, Bi Y, Chen H, Gong B, Jia S, Li H. Molecular basis for bipartite recognition of histone H3 by the PZP domain of PHF14. Nucleic Acids Res 2021; 49:8961-8973. [PMID: 34365506 PMCID: PMC8421203 DOI: 10.1093/nar/gkab670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/14/2022] Open
Abstract
Histone recognition constitutes a key epigenetic mechanism in gene regulation and cell fate decision. PHF14 is a conserved multi-PHD finger protein that has been implicated in organ development, tissue homeostasis, and tumorigenesis. Here we show that PHF14 reads unmodified histone H3(1–34) through an integrated PHD1-ZnK-PHD2 cassette (PHF14PZP). Our binding, structural and HDX-MS analyses revealed a feature of bipartite recognition, in which PHF14PZP utilizes two distinct surfaces for concurrent yet separable engagement of segments H3-Nter (e.g. 1–15) and H3-middle (e.g. 14–34) of H3(1–34). Structural studies revealed a novel histone H3 binding mode by PHD1 of PHF14PZP, in which a PHF14-unique insertion loop but not the core β-strands of a PHD finger dominates H3K4 readout. Binding studies showed that H3-PHF14PZP engagement is sensitive to modifications occurring to H3 R2, T3, K4, R8 and K23 but not K9 and K27, suggesting multiple layers of modification switch. Collectively, our work calls attention to PHF14 as a ‘ground’ state (unmodified) H3(1–34) reader that can be negatively regulated by active marks, thus providing molecular insights into a repressive function of PHF14 and its derepression.
Collapse
Affiliation(s)
- Shuangping Zheng
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yucong Bi
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haining Chen
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- Key Laboratory of Biomembrane and Membrane Engineering, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- Key Laboratory of Biomembrane and Membrane Engineering, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haitao Li
- MOE Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
131
|
Bystranowska D, Skorupska A, Sołtys K, Padjasek M, Krężel A, Żak A, Kaus-Drobek M, Taube M, Kozak M, Ożyhar A. Nucleobindin-2 consists of two structural components: The Zn 2+-sensitive N-terminal half, consisting of nesfatin-1 and -2, and the Ca 2+-sensitive C-terminal half, consisting of nesfatin-3. Comput Struct Biotechnol J 2021; 19:4300-4318. [PMID: 34429849 PMCID: PMC8361300 DOI: 10.1016/j.csbj.2021.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022] Open
Abstract
Nucleobindin-2 (Nucb2) is a protein that has been suggested to play roles in a variety of biological processes. Nucb2 contains two Ca2+/Mg2+-binding EF-hand domains separated by an acidic amino acid residue-rich region and a leucine zipper. All of these domains are located within the C-terminal half of the protein. At the N-terminal half, Nucb2 also possesses a putative Zn2+-binding motif. In our recent studies, we observed that Nucb2 underwent Ca2+-dependent compaction and formed a mosaic-like structure consisting of intertwined disordered and ordered regions at its C-terminal half. The aim of this study was to investigate the impact of two other potential ligands: Mg2+, which possesses chemical properties similar to those of Ca2+, and Zn2+, for which a putative binding motif was identified. In this study, we demonstrated that the binding of Mg2+ led to oligomerization state changes with no significant secondary or tertiary structural alterations of Nucb2. In contrast, Zn2+ binding had a more pronounced effect on the structure of Nucb2, leading to the local destabilization of its N-terminal half while also inducing changes within its C-terminal half. These structural rearrangements resulted in the oligomerization and/or aggregation of Nucb2 molecules. Taken together, the results of our previous and current research help to elucidate the structure of the Nucb2, which can be divided into two parts: the Zn2+-sensitive N-terminal half (consisting of nesfatin-1 and -2) and the Ca2+-sensitive C-terminal half (consisting of nesfatin-3). These results may also help to open a new discussion regarding the diverse roles that metal cations play in regulating the structure of Nucb2 and the various physiological functions of this protein.
Collapse
Affiliation(s)
- Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Skorupska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Żak
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
132
|
Lento C, Wilson DJ. Subsecond Time-Resolved Mass Spectrometry in Dynamic Structural Biology. Chem Rev 2021; 122:7624-7646. [PMID: 34324314 DOI: 10.1021/acs.chemrev.1c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Life at the molecular level is a dynamic world, where the key players-proteins, oligonucleotides, lipids, and carbohydrates-are in a perpetual state of structural flux, shifting rapidly between local minima on their conformational free energy landscapes. The techniques of classical structural biology, X-ray crystallography, structural NMR, and cryo-electron microscopy (cryo-EM), while capable of extraordinary structural resolution, are innately ill-suited to characterize biomolecules in their dynamically active states. Subsecond time-resolved mass spectrometry (MS) provides a unique window into the dynamic world of biological macromolecules, offering the capacity to directly monitor biochemical processes and conformational shifts with a structural dimension provided by the electrospray charge-state distribution, ion mobility, covalent labeling, or hydrogen-deuterium exchange. Over the past two decades, this suite of techniques has provided important insights into the inherently dynamic processes that drive function and pathogenesis in biological macromolecules, including (mis)folding, complexation, aggregation, ligand binding, and enzyme catalysis, among others. This Review provides a comprehensive account of subsecond time-resolved MS and the advances it has enabled in dynamic structural biology, with an emphasis on insights into the dynamic drivers of protein function.
Collapse
Affiliation(s)
- Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
133
|
Huang L, So PK, Chen YW, Leung YC, Yao ZP. Interdomain flexibility and interfacial integrity of β-lactamase inhibitory protein (BLIP) modulate its binding to class A β-lactamases. J Biol Chem 2021; 297:100980. [PMID: 34302811 PMCID: PMC8363833 DOI: 10.1016/j.jbc.2021.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/05/2022] Open
Abstract
β-Lactamase inhibitory protein (BLIP) consists of a tandem repeat of αβ domains conjugated by an interdomain loop and can effectively bind and inactivate class A β-lactamases, which are responsible for resistance of bacteria to β-lactam antibiotics. The varied ability of BLIP to bind different β-lactamases and the structural determinants for significant enhancement of BLIP variants with a point mutation are poorly understood. Here, we investigated the conformational dynamics of BLIP upon binding to three clinically prevalent class A β-lactamases (TEM1, SHV1, and PC1) with dissociation constants between subnanomolar and micromolar. Hydrogen deuterium exchange mass spectrometry revealed that the flexibility of the interdomain region was significantly suppressed upon strong binding to TEM1, but was not significantly changed upon weak binding to SHV1 or PC1. E73M and K74G mutations in the interdomain region improved binding affinity toward SHV1 and PC1, respectively, showing significantly increased flexibility of the interdomain region compared to the wild-type and favorable conformational changes upon binding. In contrast, more rigidity of the interfacial loop 135–145 was observed in these BLIP mutants in both free and bound states. Consistently, molecular dynamics simulations of BLIP exhibited drastic changes in the flexibility of the loop 135–145 in all complexes. Our results indicated for the first time that higher flexibility of the interdomain linker, as well as more rigidity of the interfacial loop 135–145, could be desirable determinants for enhancing inhibition of BLIP to class A β-lactamases. Together, these findings provide unique insights into the design of enhanced inhibitors.
Collapse
Affiliation(s)
- Liwen Huang
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yu Wai Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China
| | - Zhong-Ping Yao
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, China.
| |
Collapse
|
134
|
Nrf2, the Major Regulator of the Cellular Oxidative Stress Response, is Partially Disordered. Int J Mol Sci 2021; 22:ijms22147434. [PMID: 34299054 PMCID: PMC8305528 DOI: 10.3390/ijms22147434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/21/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription regulator that plays a pivotal role in coordinating the cellular response to oxidative stress. Through interactions with other proteins, such as Kelch-like ECH-associated protein 1 (Keap1), CREB-binding protein (CBP), and retinoid X receptor alpha (RXRα), Nrf2 mediates the transcription of cytoprotective genes critical for removing toxicants and preventing DNA damage, thereby playing a significant role in chemoprevention. Dysregulation of Nrf2 is linked to tumorigenesis and chemoresistance, making Nrf2 a promising target for anticancer therapeutics. However, despite the physiological importance of Nrf2, the molecular details of this protein and its interactions with most of its targets remain unknown, hindering the rational design of Nrf2-targeted therapeutics. With this in mind, we used a combined bioinformatics and experimental approach to characterize the structure of full-length Nrf2 and its interaction with Keap1. Our results show that Nrf2 is partially disordered, with transiently structured elements in its Neh2, Neh7, and Neh1 domains. Moreover, interaction with the Kelch domain of Keap1 leads to protection of the binding motifs in the Neh2 domain of Nrf2, while the rest of the protein remains highly dynamic. This work represents the first detailed structural characterization of full-length Nrf2 and provides valuable insights into the molecular basis of Nrf2 activity modulation in oxidative stress response.
Collapse
|
135
|
Chavez JD, Wippel HH, Tang X, Keller A, Bruce JE. In-Cell Labeling and Mass Spectrometry for Systems-Level Structural Biology. Chem Rev 2021; 122:7647-7689. [PMID: 34232610 PMCID: PMC8966414 DOI: 10.1021/acs.chemrev.1c00223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological systems have evolved to utilize proteins to accomplish nearly all functional roles needed to sustain life. A majority of biological functions occur within the crowded environment inside cells and subcellular compartments where proteins exist in a densely packed complex network of protein-protein interactions. The structural biology field has experienced a renaissance with recent advances in crystallography, NMR, and CryoEM that now produce stunning models of large and complex structures previously unimaginable. Nevertheless, measurements of such structural detail within cellular environments remain elusive. This review will highlight how advances in mass spectrometry, chemical labeling, and informatics capabilities are merging to provide structural insights on proteins, complexes, and networks that exist inside cells. Because of the molecular detection specificity provided by mass spectrometry and proteomics, these approaches provide systems-level information that not only benefits from conventional structural analysis, but also is highly complementary. Although far from comprehensive in their current form, these approaches are currently providing systems structural biology information that can uniquely reveal how conformations and interactions involving many proteins change inside cells with perturbations such as disease, drug treatment, or phenotypic differences. With continued advancements and more widespread adaptation, systems structural biology based on in-cell labeling and mass spectrometry will provide an even greater wealth of structural knowledge.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Helisa H Wippel
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Xiaoting Tang
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - Andrew Keller
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98109, United States
| |
Collapse
|
136
|
Cornwell O, Ault JR, Bond NJ, Radford SE, Ashcroft AE. Investigation of D76N β 2-Microglobulin Using Protein Footprinting and Structural Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1583-1592. [PMID: 33586970 PMCID: PMC9282677 DOI: 10.1021/jasms.0c00438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
NMR studies and X-ray crystallography have shown that the structures of the 99-residue amyloidogenic protein β2-microglobulin (β2m) and its more aggregation-prone variant, D76N, are indistinguishable, and hence, the reason for the striking difference in their aggregation propensities remains elusive. Here, we have employed two protein footprinting methods, hydrogen-deuterium exchange (HDX) and fast photochemical oxidation of proteins (FPOP), in conjunction with ion mobility-mass spectrometry, to probe the differences in conformational dynamics of the two proteins. Using HDX-MS, a clear difference in HDX protection is observed between these two proteins in the E-F loop (residues 70-77) which contains the D76N substitution, with a significantly higher deuterium uptake being observed in the variant protein. Conversely, following FPOP-MS only minimal differences in the level of oxidation between the two proteins are observed in the E-F loop region, suggesting only modest side-chain movements in that area. Together the HDX-MS and FPOP-MS data suggest that a tangible perturbation to the hydrogen-bonding network in the E-F loop has taken place in the D76N variant and furthermore illustrate the benefit of using multiple complementary footprinting methods to address subtle, but possibly biologically important, differences between highly similar proteins.
Collapse
Affiliation(s)
- Owen Cornwell
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - James R. Ault
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicholas J. Bond
- Biopharmaceuticals
R & D, AstraZeneca, Granta Park, Cambridge CB21 6GP, U.K.
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Alison E. Ashcroft
- Astbury
Centre for Structural Molecular Biology & School of Molecular
and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
137
|
Narang D, James DA, Balmer MT, Wilson DJ. Protein Footprinting, Conformational Dynamics, and Core Interface-Adjacent Neutralization "Hotspots" in the SARS-CoV-2 Spike Protein Receptor Binding Domain/Human ACE2 Interaction. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1593-1600. [PMID: 33794092 PMCID: PMC8029444 DOI: 10.1021/jasms.0c00465] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
The novel severe respiratory syndrome-like coronavirus (SARS-CoV-2) causes COVID-19 in humans and is responsible for one of the most destructive pandemics of the last century. At the root of SARS-CoV infection is the interaction between the viral spike protein and the human angiotensin converting enzyme 2 protein, which allows the virus to gain entry into host cells through endocytosis. In this work, we apply hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a detailed view of the functional footprint and conformational dynamics associated with this interaction. Our results broadly agree with the binding interface derived from high resolution X-ray crystal structure data but also provide insights into shifts in structure and dynamics that accompany complexation, including some that occur immediately outside of the core binding interface. We propose that dampening of these "binding-site adjacent" dynamic shifts could represent a mechanism for neutralizing activity in a multitude of spike protein-targeted mAbs that have been found to specifically bind these "peripheral" sites. Our results highlight the unique capacity of HDX-MS to detect potential neutralization "hotspots" outside of the core binding interfaces defined by high resolution structural data.
Collapse
Affiliation(s)
- Dominic Narang
- Department of Chemistry, York
University, Toronto M3J 1P3, Ontario, Canada
| | - D. Andrew James
- Sanofi Pasteur Limited,
1755 Steeles Avenue West, Toronto M2R 3T4, Ontario, Canada
| | - Matthew T. Balmer
- Sanofi Pasteur Limited,
1755 Steeles Avenue West, Toronto M2R 3T4, Ontario, Canada
| | - Derek J. Wilson
- Department of Chemistry, York
University, Toronto M3J 1P3, Ontario, Canada
| |
Collapse
|
138
|
Jodaitis L, van Oene T, Martens C. Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int J Mol Sci 2021; 22:7267. [PMID: 34298884 PMCID: PMC8306737 DOI: 10.3390/ijms22147267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins have evolved to work optimally within the complex environment of the biological membrane. Consequently, interactions with surrounding lipids are part of their molecular mechanism. Yet, the identification of lipid-protein interactions and the assessment of their molecular role is an experimental challenge. Recently, biophysical approaches have emerged that are compatible with the study of membrane proteins in an environment closer to the biological membrane. These novel approaches revealed specific mechanisms of regulation of membrane protein function. Lipids have been shown to play a role in oligomerization, conformational transitions or allosteric coupling. In this review, we summarize the recent biophysical approaches, or combination thereof, that allow to decipher the role of lipid-protein interactions in the mechanism of membrane proteins.
Collapse
Affiliation(s)
| | | | - Chloé Martens
- Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, 1050 Brussels, Belgium; (L.J.); (T.v.O.)
| |
Collapse
|
139
|
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative Structural Biology in the Era of Accurate Structure Prediction. J Mol Biol 2021; 433:167127. [PMID: 34224746 DOI: 10.1016/j.jmb.2021.167127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrei Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838 Haifa, Israel.
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
140
|
Ducharme J, Sevrioukova IF, Thibodeaux CJ, Auclair K. Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry 2021; 60:2259-2271. [PMID: 34196520 DOI: 10.1021/acs.biochem.1c00178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 3A4 (CYP3A4) is the most important drug-metabolizing enzyme in humans and has been associated with harmful drug interactions. The activity of CYP3A4 is known to be modulated by several compounds and by the electron transfer partner, cytochrome P450 reductase (CPR). The underlying mechanism of these effects, however, is poorly understood. We have used hydrogen-deuterium exchange mass spectrometry to investigate the impact of binding of CPR and of three different substrates (7-benzyloxy-4-trifluoromethyl-coumarin, testosterone, and progesterone) on the conformational dynamics of CYP3A4. Here, we report that interaction of CYP3A4 with substrates or with the oxidized or reduced forms of CPR leads to a global rigidification of the CYP3A4 structure. This was evident from the suppression of deuterium exchange in several regions of CYP3A4, including regions known to be involved in protein-protein interactions (helix C) and substrate binding and specificity (helices B' and E, and loop K/β1). Furthermore, the bimodal isotopic distributions observed for some CYP3A4-derived peptides were drastically impacted upon binding to CPR and/or substrates, suggesting the existence of stable CYP3A4 conformational populations that are perturbed by ligand/CPR binding. The results have implications for understanding the mechanisms of ligand binding, allostery, and catalysis in CYP enzymes.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
141
|
Cho Y, Christoff-Tempesta T, Kaser SJ, Ortony JH. Dynamics in supramolecular nanomaterials. SOFT MATTER 2021; 17:5850-5863. [PMID: 34114584 DOI: 10.1039/d1sm00047k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of amphiphilic small molecules in water leads to nanostructures with customizable structure-property relationships arising from their tunable chemistries. Characterization of these assemblies is generally limited to their static structures -e.g. their geometries and dimensions - but the implementation of tools that provide a deeper understanding of molecular motions has recently emerged. Here, we summarize recent reports showcasing dynamics characterization tools and their application to small molecule assemblies, and we go on to highlight supramolecular systems whose properties are substantially affected by their conformational, exchange, and water dynamics. This review illustrates the importance of considering dynamics in rational amphiphile design.
Collapse
Affiliation(s)
- Yukio Cho
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Ty Christoff-Tempesta
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Samuel J Kaser
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia H Ortony
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
142
|
Stariha JTB, Hoffmann RM, Hamelin DJ, Burke JE. Probing Protein-Membrane Interactions and Dynamics Using Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS). Methods Mol Biol 2021; 2263:465-485. [PMID: 33877613 DOI: 10.1007/978-1-0716-1197-5_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular membranes are a central hub for initiation and execution of many signaling processes. Integral to these processes being accomplished appropriately is the highly controlled recruitment and assembly of proteins at membrane surfaces. The study of the molecular mechanisms that mediate protein-membrane interactions can be facilitated by utilizing hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS is a robust analytical technique that allows for the measurement of the exchange rate of backbone amide hydrogens with solvent to make inferences about protein structure and conformation. This chapter discusses the use of HDX-MS as a tool to study the conformational changes that occur within peripheral membrane proteins upon association with membrane. Particular reference will be made to the analysis of the protein kinase Akt and its activation upon binding phosphatidylinositol (3,4,5) tris-phosphate (PIP3)-containing membranes to illustrate specific methodological principles.
Collapse
Affiliation(s)
- Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Reece M Hoffmann
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - David J Hamelin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
143
|
Lou X, Schoenmakers SMC, van Dongen JLJ, Garcia‐Iglesias M, Casellas NM, Fernández‐Castaño Romera M, Sijbesma RP, Meijer EW, Palmans ARA. Elucidating dynamic behavior of synthetic supramolecular polymers in water by hydrogen/deuterium exchange mass spectrometry. JOURNAL OF POLYMER SCIENCE 2021; 59:1151-1161. [PMID: 34223179 PMCID: PMC8247967 DOI: 10.1002/pol.20210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/31/2023]
Abstract
A comprehensive understanding of the structure, self-assembly mechanism, and dynamics of one-dimensional supramolecular polymers in water is essential for their application as biomaterials. Although a plethora of techniques are available to study the first two properties, there is a paucity in possibilities to study dynamic exchange of monomers between supramolecular polymers in solution. We recently introduced hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize the dynamic nature of synthetic supramolecular polymers with only a minimal perturbation of the chemical structure. To further expand the application of this powerful technique some essential experimental aspects have been reaffirmed and the technique has been applied to a diverse library of assemblies. HDX-MS is widely applicable if there are exchangeable hydrogen atoms protected from direct contact with the solvent and if the monomer concentration is sufficiently high to ensure the presence of supramolecular polymers during dilution. In addition, we demonstrate that the kinetic behavior as probed by HDX-MS is influenced by the internal order within the supramolecular polymers and by the self-assembly mechanism.
Collapse
Affiliation(s)
- Xianwen Lou
- Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Sandra M. C. Schoenmakers
- Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Joost L. J. van Dongen
- Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Miguel Garcia‐Iglesias
- Department of Organic ChemistryUniversidad Autónoma de Madrid (UAM)MadridSpain
- Department of Chemistry and Process & Resource EngineeringUniversity of CantabriaSantanderSpain
| | - Nicolás M. Casellas
- Department of Organic ChemistryUniversidad Autónoma de Madrid (UAM)MadridSpain
| | - Marcos Fernández‐Castaño Romera
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
- SupraPolix BVEindhovenThe Netherlands
| | - Rint P. Sijbesma
- Department of Chemical Engineering and ChemistryEindhoven University of TechnologyEindhovenThe Netherlands
| | - E. W. Meijer
- Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
| | - Anja R. A. Palmans
- Department of Chemical Engineering and ChemistryInstitute for Complex Molecular Systems, Eindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
144
|
Darii E, Gimbert Y, Alves S, Damont A, Perret A, Woods AS, Fenaille F, Tabet JC. First Direct Evidence of Interpartner Hydride/Deuteride Exchanges for Stored Sodiated Arginine/Fructose-6-phosphate Complex Anions within Salt-Solvated Structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1424-1440. [PMID: 33929837 DOI: 10.1021/jasms.1c00040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mass spectrometric investigations of noncovalent binding between low molecular weight compounds revealed the existence of gas-phase (GP) noncovalent complex (NCC) ions involving zwitterionic structures. ESI MS is used to prove the formation of stable sodiated NCC anions between fructose (F6P) and arginine (R) moieties. Theoretical calculations indicate a folded solvated salt (i.e., sodiated carboxylate interacting with phosphate) rather than a charge-solvated form. Under standard CID conditions, [(F6P+R-H+Na)-H]- competitively forms two major product ions (PIs) through partner splitting [(R-H+Na) loss] and charge-induced cross-ring cleavage while preserving the noncovalent interactions (noncovalent product ions (NCPIs)). MS/MS experiments combined with in-solution proton/deuteron exchanges (HDXs) demonstrated an unexpected labeling of PIs, i.e., a correlated D-enrichment/D-depletion. An increase in activation time up to 3000 ms favors such processes when limited to two H/D exchanges. These results are rationalized by interpartner hydride/deuteride exchanges (⟨HDX⟩) through stepwise isomerization/dissociation of sodiated NCC-d11 anions. In addition, the D-enrichment/D-depletion discrepancy is further explained by back HDX with residual water in LTQ (selective for the isotopologue NCPIs as shown by PI relaxation experiments). Each isotopologue leads to only one back HDX unlike multiple HDXs generally observed in GP. This behavior shows that NCPIs are zwitterions with charges solvated by a single water molecule, thus generating a back HDX through a relay mechanism, which quenches the charges and prevents further back HDX. By estimating back HDX impact on D-depletion, the interpartner ⟨HDX⟩ complementarity was thus illustrated. This is the first description of interpartner ⟨HDX⟩ and selective back HDX validating salt-solvated structures.
Collapse
Affiliation(s)
- Ekaterina Darii
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yves Gimbert
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Sandra Alves
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
| | - Annelaure Damont
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Alain Perret
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Amina S Woods
- NIDA IRP, NIH Structural Biology Unit Cellular Neurobiology Branch, 333 Cassell Drive, Baltimore, Maryland 21224, United States
- The Johns Hopkins University School of Medicine, Pharmacology and Molecular Sciences, Baltimore, Maryland 21205, United States
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| | - Jean-Claude Tabet
- Sorbonne Université, Faculté des Sciences et de l'Ingénierie, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191 Gif sur Yvette, France
| |
Collapse
|
145
|
Santos IC, Brodbelt JS. Structural Characterization of Carbonic Anhydrase-Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1370-1379. [PMID: 33683877 PMCID: PMC8377746 DOI: 10.1021/jasms.1c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Numerous mass spectrometry-based strategies ranging from hydrogen-deuterium exchange to ion mobility to native mass spectrometry have been developed to advance biophysical and structural characterization of protein conformations and determination of protein-ligand interactions. In this study, we focus on the use of ultraviolet photodissociation (UVPD) to examine the structure of human carbonic anhydrase II (hCAII) and its interactions with arylsulfonamide inhibitors. Carbonic anhydrase, which catalyzes the conversion of carbon dioxide to bicarbonate, has been the target of countless thermodynamic and kinetic studies owing to its well-characterized active site, binding cavity, and mechanism of inhibition by hundreds of ligands. Here, we showcase the application of UVPD for evaluating structural changes of hCAII upon ligand binding on the basis of variations in fragmentation of hCAII versus hCAII-arylsulfonamide complexes, particularly focusing on the hydrophobic pocket. To extend the coverage in the midregion of the protein sequence, a supercharging agent was added to the solutions to increase the charge states of the complexes. The three arylsulfonamides examined in this study largely shift the fragmentation patterns in similar ways, despite their differences in binding affinities.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
146
|
Meng H, Wu G, Zhao X, Wang A, Li D, Tong Y, Jin T, Cao Y, Shan B, Hu S, Li Y, Pan L, Tian X, Wu P, Peng C, Yuan J, Li G, Tan L, Wang Z, Li Y. Discovery of a cooperative mode of inhibiting RIPK1 kinase. Cell Discov 2021; 7:41. [PMID: 34075030 PMCID: PMC8169668 DOI: 10.1038/s41421-021-00278-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
RIPK1, a death domain-containing kinase, has been recognized as an important therapeutic target for inhibiting apoptosis, necroptosis, and inflammation under pathological conditions. RIPK1 kinase inhibitors have been advanced into clinical studies for the treatment of various human diseases. One of the current bottlenecks in developing RIPK1 inhibitors is to discover new approaches to inhibit this kinase as only limited chemotypes have been developed. Here we describe Necrostatin-34 (Nec-34), a small molecule that inhibits RIPK1 kinase with a mechanism distinct from known RIPK1 inhibitors such as Nec-1s. Mechanistic studies suggest that Nec-34 stabilizes RIPK1 kinase in an inactive conformation by occupying a distinct binding pocket in the kinase domain. Furthermore, we show that Nec-34 series of compounds can synergize with Nec-1s to inhibit RIPK1 in vitro and in vivo. Thus, Nec-34 defines a new strategy to target RIPK1 kinase and provides a potential option of combinatorial therapy for RIPK1-mediated diseases.
Collapse
Affiliation(s)
- Huyan Meng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guowei Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinsuo Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anhui Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Dekang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yilun Tong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Taijie Jin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shichen Hu
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxu Tian
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ping Wu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Chao Peng
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Guohui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China.
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Zhaoyin Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
147
|
Biehn SE, Limpikirati P, Vachet RW, Lindert S. Utilization of Hydrophobic Microenvironment Sensitivity in Diethylpyrocarbonate Labeling for Protein Structure Prediction. Anal Chem 2021; 93:8188-8195. [PMID: 34061512 DOI: 10.1021/acs.analchem.1c00395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diethylpyrocarbonate (DEPC) labeling analyzed with mass spectrometry can provide important insights into higher order protein structures. It has been previously shown that neighboring hydrophobic residues promote a local increase in DEPC concentration such that serine, threonine, and tyrosine residues are more likely to be labeled despite low solvent exposure. In this work, we developed a Rosetta algorithm that used the knowledge of labeled and unlabeled serine, threonine, and tyrosine residues and assessed their local hydrophobic environment to improve protein structure prediction. Additionally, DEPC-labeled histidine and lysine residues with higher relative solvent accessible surface area values (i.e., more exposed) were scored favorably. Application of our score term led to reductions of the root-mean-square deviations (RMSDs) of the lowest scoring models. Additionally, models that scored well tended to have lower RMSDs. A detailed tutorial describing our protocol and required command lines is included. Our work demonstrated the considerable potential of DEPC covalent labeling data to be used for accurate higher order structure determination.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Patanachai Limpikirati
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
148
|
Lloyd JR, Hogan A, Paschalis V, Bellamy-Carter J, Bottley A, Seymour GB, Hayes CJ, Oldham NJ. Mapping the interaction between eukaryotic initiation factor 4A (eIF4A) and the inhibitor hippuristanol using carbene footprinting and mass spectrometry. Proteomics 2021; 21:e2000288. [PMID: 34028182 DOI: 10.1002/pmic.202000288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Protein-ligand interactions are central to protein activity and cell functionality. Improved knowledge of these relationships greatly benefits our understanding of key biological processes and aids in rational drug design towards the treatment of clinically relevant diseases. Carbene footprinting is a recently developed mass spectrometry-based chemical labelling technique that provides valuable information relating to protein-ligand interactions, such as the mapping of binding sites and associated conformational change. Here, we show the application of carbene footprinting to the interaction between eIF4A helicase and a natural product inhibitor, hippuristanol, found in the coral Isis hippuris. Upon addition of hippuristanol we identified reduced carbene labelling (masking) in regions of eIF4A previously implicated in ligand binding. Additionally, we detected hippuristanol-associated increased carbene labelling (unmasking) around the flexible hinge region of eIF4A, indicating ligand-induced conformational change. This work represents further development of the carbene footprinting technique and demonstrates its potential in characterising medicinally relevant protein-ligand interactions.
Collapse
Affiliation(s)
- James R Lloyd
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Amy Hogan
- School of Chemistry, University of Nottingham, Nottingham, UK
| | - Vasileios Paschalis
- School of Chemistry, University of Nottingham, Nottingham, UK.,Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jeddidiah Bellamy-Carter
- School of Chemistry, University of Nottingham, Nottingham, UK.,School of Biosciences, University of Birmingham, Birmingham, UK
| | - Andrew Bottley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Graham B Seymour
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | | | - Neil J Oldham
- School of Chemistry, University of Nottingham, Nottingham, UK
| |
Collapse
|
149
|
Ducharme J, Polic V, Thibodeaux CJ, Auclair K. Combining Small-Molecule Bioconjugation and Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chem Biol 2021; 16:882-890. [PMID: 33913317 DOI: 10.1021/acschembio.1c00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a novel approach to study allostery which combines the use of carefully selected bioconjugates and hydrogen-deuterium exchange mass spectrometry (HDX-MS). This strategy avoids issues related to weak substrate binding and ligand relocalization. The utility of our method is demonstrated using human cytochrome P450 3A4 (CYP3A4), the most important drug-metabolizing enzyme. Allosteric activation and inhibition of CYP3A4 by pharmaceuticals is an important mechanism of drug interactions. We performed HDX-MS analysis on several CYP3A4-effector bioconjugates, some of which mimic the allosteric effect of positive effectors, while others show activity enhancement even though the label does not occupy the allosteric pocket (agonistic) or do not show activation while still blocking the allosteric site (antagonistic). This allowed us to better define the position of the allosteric site, the protein structural dynamics associated with allosteric activation, and the presence of coexisting conformers.
Collapse
Affiliation(s)
- Julie Ducharme
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Vanja Polic
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Christopher J. Thibodeaux
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, Canada H3A 0B8
| |
Collapse
|
150
|
Fauser J, Itzen A, Gulen B. Current Advances in Covalent Stabilization of Macromolecular Complexes for Structural Biology. Bioconjug Chem 2021; 32:879-890. [PMID: 33861574 DOI: 10.1021/acs.bioconjchem.1c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.
Collapse
Affiliation(s)
- Joel Fauser
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Burak Gulen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|