101
|
Gren T, Whitford CM, Mohite OS, Jørgensen TS, Kontou EE, Nielsen JB, Lee SY, Weber T. Characterization and engineering of Streptomyces griseofuscus DSM 40191 as a potential host for heterologous expression of biosynthetic gene clusters. Sci Rep 2021; 11:18301. [PMID: 34526549 PMCID: PMC8443760 DOI: 10.1038/s41598-021-97571-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Streptomyces griseofuscus DSM 40191 is a fast growing Streptomyces strain that remains largely underexplored as a heterologous host. Here, we report the genome mining of S. griseofuscus, followed by the detailed exploration of its phenotype, including the production of native secondary metabolites and ability to utilise carbon, nitrogen, sulphur and phosphorus sources. Furthermore, several routes for genetic engineering of S. griseofuscus were explored, including use of GusA-based vectors, CRISPR-Cas9 and CRISPR-cBEST-mediated knockouts. Two out of the three native plasmids were cured using CRISPR-Cas9 technology, leading to the generation of strain S. griseofuscus DEL1. DEL1 was further modified by the full deletion of a pentamycin BGC and an unknown NRPS BGC, leading to the generation of strain DEL2, lacking approx. 500 kbp of the genome, which corresponds to a 5.19% genome reduction. DEL2 can be characterized by faster growth and inability to produce three main native metabolites: lankacidin, lankamycin, pentamycin and their derivatives. To test the ability of DEL2 to heterologously produce secondary metabolites, the actinorhodin BGC was used. We were able to observe a formation of a blue halo, indicating a potential production of actinorhodin by both DEL2 and a wild type.
Collapse
Affiliation(s)
- Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Eftychia E Kontou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Julie B Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
| | - Sang Yup Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, bygning 220, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
102
|
Seong J, Shin J, Kim K, Cho BK. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
103
|
The diversity and antibacterial activity of culturable actinobacteria isolated from the rhizosphere soil of Deschampsia antarctica (Galindez Island, Maritime Antarctic). Polar Biol 2021. [DOI: 10.1007/s00300-021-02924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
104
|
Cheng XW, Li JQ, Jiang YJ, Liu HZ, Huo C. A new indolizinium alkaloid from marine-derived Streptomyces sp. HNA39. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:913-918. [PMID: 32819162 DOI: 10.1080/10286020.2020.1799987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
A new indolizinium alkaloid, named as cyclizidine J (1), was identified from Gause's liquid fermentation of marine-derived Streptomyces sp. HNA39. Its structure was elucidated by extensive NMR spectroscopic methods, HRESIMS data, and ECD calculations. To our best knowledge, compound 1 was a unique cyclizidine-type alkaloid that contain a chlorine atom substituted at position C-8. Unfortunately, biological evaluation of 1 exhibited no active against PC-3 cancer cell line, BRD4, and ROCK2 protein kinase.
Collapse
Affiliation(s)
- Xiang-Wei Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Experiment Center, Zhejiang Police College, Hangzhou 310053, China
| | - Jia-Qi Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yong-Jun Jiang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hua-Zhang Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chao Huo
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
105
|
El-Gendy MMAA, Yahya SMM, Hamed AR, El-Bondkly AMA. Assessment of the phylogenetic analysis and antimicrobial, antiviral, and anticancer activities of marine endophytic Streptomyces species of the soft coral Sarcophyton convolutum. Int Microbiol 2021; 25:133-152. [PMID: 34427819 DOI: 10.1007/s10123-021-00204-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
In the present work, the extensive biological activities of marine endophytic Streptomyces strains isolated from marine soft coral Sarcophyton convolutum have been demonstrated. Within fifty-one Streptomyces isolates evaluated for their hydrolytic enzymes and enzyme inhibitors productivities, six isolates showed the hyperactivities. Pharmaceutical metabolites productivities evaluated include enzymes (alkaline protease, L-asparaginase, L-glutaminase, tyrosinase, and L-methioninase) and enzyme inhibitors (inhibitors of α-amylase, hyaluronidase, β-lactamase, α-glucosidase, and β-glucosidase). These isolates were identified based on their morphological, biochemical, and genetic characteristics as Streptomyces sp. MORSY 17, Streptomyces sp. MORSY 22, Streptomyces sp. MORSY 25, Streptomyces sp. MORSY 36, Streptomyces sp. MORSY 45, and Streptomyces sp. MORSY 50. Moreover, in further evaluation, these strains exhibited wide spectrum of antimicrobial (against bacteria and fungi), antiviral (against hepatitis C virus), antibiofilm against biofilm-forming bacteria (methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas species), and anti-proliferative activities (against liver and colon carcinoma cell lines). The GC-MS analysis of the hyperactive strains MORSY 17 and MORSY 22 revealed the presence of different bioactive agents in the ethyl acetate extract of both strains.
Collapse
Affiliation(s)
| | - Shaymaa M M Yahya
- Hormones Department, Medical Research Division, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed R Hamed
- Chemistry of Medicinal Plants Department and Biology Unit, Central Lab for the Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 El-Bohouth St, Dokki, 12622, Giza, Egypt
| | | |
Collapse
|
106
|
Luo M, Xu H, Dong Y, Shen K, Lu J, Yin Z, Qi M, Sun G, Tang L, Xiang J, Deng Z, Dickschat JS, Sun Y. Der Mechanismus von dehydatisierenden Bimodulen in der
trans
‐Acyltransferase‐Polketidbiosynthese: Eine Modellstudie am hepatoprotektiven Hangtaimycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Houchao Xu
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Yulu Dong
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Junlei Lu
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Zhiyong Yin
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Miaomiao Qi
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Lingjie Tang
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| | - Jeroen S. Dickschat
- Kekulé-Institut für Organische Chemie und Biochemie Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Deutschland
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis und Drug Discovery Ministry of Education, und School of Pharmaceutical Sciences Wuhan University No. 185 East Lake Road Wuhan 430071 People's Republic of China
| |
Collapse
|
107
|
Stariha LM, McCafferty DG. Discovery of the Class I Antimicrobial Lasso Peptide Arcumycin. Chembiochem 2021; 22:2632-2640. [PMID: 34133845 DOI: 10.1002/cbic.202100132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/27/2021] [Indexed: 12/13/2022]
Abstract
Lasso peptides are a structurally diverse superfamily of conformationally constrained peptide natural products, of which a subset exhibits broad antimicrobial activity. Although advances in bioinformatics have increased our knowledge of strains harboring the biosynthetic machinery for lasso peptide production, relating peptide sequence to bioactivity remains a continuous challenge. To this end, genome mining investigation of Actinobacteria-produced antimicrobial lasso peptides was performed to correlate predicted structure with antibiotic activity. Bioinformatic evaluation revealed eight putative novel class I lasso peptide sequences. Fermentation of one of these hits, Streptomyces NRRL F-5639, resulted in the production of a novel class I lasso peptide, arcumycin. Arcumycin exhibited antibiotic activity against Gram-positive bacteria including Bacillus subtilis (4 μg/mL), Staphylococcus aureus (8 μg/mL), and Micrococcus luteus (8 μg/mL). Arcumycin treatment of B. subtilis liaI-β-gal promoter fusion reporter strain resulted in upregulation of the liaRS system by the promoter liaI, indicating arcumycin interferes with lipid II biosynthesis. Cumulatively, the results illustrate the relationship between phylogenetically related lasso peptides and their bioactivity as validated through the isolation, structural determination, and evaluation of bioactivity of the novel class I antimicrobial lasso peptide arcumycin.
Collapse
Affiliation(s)
- Lydia M Stariha
- Department of Chemistry, Duke University, Durham, NC, 27708-0346, USA
| | | |
Collapse
|
108
|
Cheema MT, Ponomareva LV, Liu T, Voss SR, Thorson JS, Shaaban KA, Sajid I. Taxonomic and Metabolomics Profiling of Actinobacteria Strains from Himalayan Collection Sites in Pakistan. Curr Microbiol 2021; 78:3044-3057. [PMID: 34125273 PMCID: PMC10716794 DOI: 10.1007/s00284-021-02557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Actinobacteria have proven themselves as the major producers of bioactive compounds with wide applications. In this study, 35 actinobacteria strains were isolated from soil samples collected from the Himalayan mountains region in Pakistan. The isolated strains were identified by polyphasic taxonomy and were prioritized based on biological and chemical screening to identify the strains with ability to produce inimitable metabolites. The biological screening included antimicrobial activity against Staphylococcus aureus, Micrococcus luteus, Salmonella enterica, Escherichia coli, Mycobacterium aurum, and Bacillus subtilis and anticancer activity using human cancer cell lines PC3 and A549. For chemical screening, methanolic extracts were investigated using TLC, HPLC-UV/MS. The actinobacteria strain PU-MM93 was selected for scale-up fermentation based on its unique chemical profile and cytotoxicity (50-60% growth inhibition) against PC3 and A549 cell lines. The scale-up fermentation of PU-MM93, followed by purification and structure elucidation of compounds revealed this strain as a promising producer of the cytotoxic anthracycline aranciamycin and aglycone SM-173-B along with the potent neuroprotective carboxamide oxachelin C. Other interesting metabolites produced include taurocholic acid as first report herein from microbial origin, pactamycate and cyclo(L-Pro-L-Leu). The study suggested exploring more bioactive microorganisms from the untapped Himalayan region in Pakistan, which can produce commercially significant compounds.
Collapse
Affiliation(s)
- Mohsin T Cheema
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Tao Liu
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
109
|
Kim DR, Kwak YS. A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4. THE PLANT PATHOLOGY JOURNAL 2021; 37:389-395. [PMID: 34365750 PMCID: PMC8357572 DOI: 10.5423/ppj.nt.03.2021.0047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.
Collapse
Affiliation(s)
- Da-Ran Kim
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Division of Applied Life Science (BK21Plus) and IALS, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
110
|
Luo M, Xu H, Dong Y, Shen K, Lu J, Yin Z, Qi M, Sun G, Tang L, Xiang J, Deng Z, Dickschat JS, Sun Y. The Mechanism of Dehydrating Bimodules in trans-Acyltransferase Polyketide Biosynthesis: A Showcase Study on Hepatoprotective Hangtaimycin. Angew Chem Int Ed Engl 2021; 60:19139-19143. [PMID: 34219345 PMCID: PMC8456789 DOI: 10.1002/anie.202106250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Indexed: 11/29/2022]
Abstract
A bioassay‐guided fractionation led to the isolation of hangtaimycin (HTM) from Streptomyces spectabilis CCTCC M2017417 and the discovery of its hepatoprotective properties. Structure elucidation by NMR suggested the need for a structural revision. A putative HTM degradation product was also isolated and its structure was confirmed by total synthesis. The biosynthetic gene cluster was identified and resembles a hybrid trans‐AT PKS/NRPS biosynthetic machinery whose first PKS enzyme contains an internal dehydrating bimodule, which is usually found split in other trans‐AT PKSs. The mechanisms of such dehydrating bimodules have often been proposed, but have never been deeply investigated. Here we present in vivo mutations and in vitro enzymatic experiments that give first and detailed mechanistic insights into catalysis by dehydrating bimodules.
Collapse
Affiliation(s)
- Minghe Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Houchao Xu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Yulu Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Kun Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Junlei Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Miaomiao Qi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Guo Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Lingjie Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Jin Xiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Yuhui Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, No. 185 East Lake Road, Wuhan, 430071, People's Republic of China
| |
Collapse
|
111
|
Facilitating Imaging Mass Spectrometry of Microbial Specialized Metabolites with METASPACE. Metabolites 2021; 11:metabo11080477. [PMID: 34436418 PMCID: PMC8401310 DOI: 10.3390/metabo11080477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolite annotation from imaging mass spectrometry (imaging MS) data is a difficult undertaking that is extremely resource intensive. Here, we adapted METASPACE, cloud software for imaging MS metabolite annotation and data interpretation, to quickly annotate microbial specialized metabolites from high-resolution and high-mass accuracy imaging MS data. Compared with manual ion image and MS1 annotation, METASPACE is faster and, with the appropriate database, more accurate. We applied it to data from microbial colonies grown on agar containing 10 diverse bacterial species and showed that METASPACE was able to annotate 53 ions corresponding to 32 different microbial metabolites. This demonstrates METASPACE to be a useful tool to annotate the chemistry and metabolic exchange factors found in microbial interactions, thereby elucidating the functions of these molecules.
Collapse
|
112
|
Zdouc MM, Iorio M, Vind K, Simone M, Serina S, Brunati C, Monciardini P, Tocchetti A, Zarazúa GS, Crüsemann M, Maffioli SI, Sosio M, Donadio S. Effective approaches to discover new microbial metabolites in a large strain library. J Ind Microbiol Biotechnol 2021; 48:6144606. [PMID: 33599744 PMCID: PMC9113118 DOI: 10.1093/jimb/kuab017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022]
Abstract
Natural products have provided many molecules to treat and prevent illnesses in humans, animals and plants. While only a small fraction of the existing microbial diversity has been explored for bioactive metabolites, tens of thousands of molecules have been reported in the literature over the past 80 years. Thus, the main challenge in microbial metabolite screening is to avoid the re-discovery of known metabolites in a cost-effective manner. In this perspective, we report and discuss different approaches used in our laboratory over the past few years, ranging from bioactivity-based screening to looking for metabolic rarity in different datasets to deeply investigating a single Streptomyces strain. Our results show that it is possible to find novel chemistry through a limited screening effort, provided that appropriate selection criteria are in place.
Collapse
Affiliation(s)
- Mitja M Zdouc
- NAICONS Srl, 20139 Milan, Italy.,Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | - Kristiina Vind
- NAICONS Srl, 20139 Milan, Italy.,Host-Microbe Interactomics Group, Wageningen University, 6708 WD Wageningen, The Netherlands
| | | | | | | | | | | | - Guadalupe S Zarazúa
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | - Max Crüsemann
- Institut für Pharmazeutische Biologie, Rheinische Friedrich-Wilhelms-Universität, 53115 Bonn, Germany
| | | | | | | |
Collapse
|
113
|
Siupka P, Hansen FT, Schier A, Rocco S, Sørensen T, Piotrowska-Seget Z. Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water. Int J Mol Sci 2021; 22:ijms22147441. [PMID: 34299061 PMCID: PMC8303363 DOI: 10.3390/ijms22147441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Crop infections by fungi lead to severe losses in food production and pose risks for human health. The increasing resistance of pathogens to fungicides has led to the higher usage of these chemicals, which burdens the environment and highlights the need to find novel natural biocontrol agents. Members of the genus Streptomyces are known to produce a plethora of bioactive compounds. Recently, researchers have turned to extreme and previously unexplored niches in the search for new strains with antimicrobial activities. One such niche are underground coal mine environments. We isolated the new Streptomyces sp. MW-W600-10 strain from coal mine water samples collected at 665 m below ground level. We examined the antifungal activity of the strain against plant pathogens Fusarium culmorum DSM62188 and Nigrospora oryzae roseF7. Furthermore, we analyzed the strain’s biosynthetic potential with the antiSMASH tool. The strain showed inhibitory activity against both fungi strains. Genome mining revealed that it has 39 BGCs, among which 13 did not show similarity to those in databases. Additionally, we examined the activity of the Streptomyces sp. S-2 strain isolated from black soot against F. culmorum DSM62188. These results show that coal-related strains could be a source of novel bioactive compounds. Future studies will elucidate their full biotechnological potential.
Collapse
Affiliation(s)
- Piotr Siupka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
- Correspondence:
| | - Frederik Teilfeldt Hansen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Aleksandra Schier
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Simone Rocco
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| | - Trine Sørensen
- Faculty of Engineering and Science, Department of Chemistry and Biosciences, University of Aalborg, 9220 Aalborg, Denmark; (F.T.H.); (T.S.)
| | - Zofia Piotrowska-Seget
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40032 Katowice, Poland; (A.S.); (S.R.); (Z.P.-S.)
| |
Collapse
|
114
|
Marín L, Gutiérrez-Del-Río I, Villar CJ, Lombó F. De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3-hydroxylase with 2-hydroxylase side activity. Microb Biotechnol 2021; 14:2009-2024. [PMID: 34216097 PMCID: PMC8449655 DOI: 10.1111/1751-7915.13874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
Flavonoids are important plant secondary metabolites, which were shown to have antioxidant, anti-inflammatory or antiviral activities. Heterologous production of flavonoids in engineered microbial cell factories is an interesting alternative to their purification from plant material representing the natural source. The use of engineered bacteria allows to produce specific compounds, independent of soil, climatic or other plant-associated production parameters. The initial objective of this study was to achieve an engineered production of two interesting flavanonols, garbanzol and fustin, using Streptomyces albus as the production host. Unexpectedly, the engineered strain produced several flavones and flavonols in the absence of the additional expression of a flavone synthase (FNS) or flavonol synthase (FLS) gene. It turned out that the heterologous flavanone 3-hydroxylase (F3H) has a 2-hydroxylase side activity, which explains the observed production of 7,4'-dihydroxyflavone, resokaempferol, kaempferol and apigenin, as well as the biosynthesis of the extremely rare 2-hydroxylated intermediates 2-hydroxyliquiritigenin, 2-hydroxynaringenin and probably licodione. Other related metabolites, such as quercetin, dihydroquercetin and eriodictyol, have also been detected in culture extracts of this recombinant strain. Hence, the enzymatic versatility of S. albus can be conveniently exploited for the heterologous production of a large diversity of plant metabolites of the flavonoid family.
Collapse
Affiliation(s)
- Laura Marín
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Ignacio Gutiérrez-Del-Río
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Claudio Jesús Villar
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| | - Felipe Lombó
- Research Group BIONUC (Biotechnology of Nutraceuticals and Bioactive Compounds), Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, Oviedo, Principality of Asturias, Spain.,IUOPA (Instituto Universitario de Oncología del Principado de Asturias), Oviedo, Principality of Asturias, Spain.,ISPA (Instituto de Investigación Sanitaria del Principado de Asturias), Oviedo, Principality of Asturias, Spain
| |
Collapse
|
115
|
Schrinner K, Schrader M, Niebusch J, Althof K, Schwarzer FA, Nowka PF, Dinius A, Kwade A, Krull R. Macroparticle-enhanced cultivation of Lentzea aerocolonigenes: Variation of mechanical stress and combination with lecithin supplementation for a significantly increased rebeccamycin production. Biotechnol Bioeng 2021; 118:3984-3995. [PMID: 34196390 DOI: 10.1002/bit.27875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 11/06/2022]
Abstract
The actinomycete Lentzea aerocolonigenes produces the antitumor antibiotic rebeccamycin. In previous studies the rebeccamycin production was significantly increased by the addition of glass beads during cultivation in different diameters between 0.5 and 2 mm and the induced mechanical stress by the glass beads was proposed to be responsible for the increased production. Thus, this study was conducted to be a systematic investigation of different parameters for macroparticle addition, such as bead diameter, concentration, and density (glass and ceramic) as well as shaking frequency, for a better understanding of the particle-induced stress on L. aerocolonigenes. The induced stress for optimal rebeccamycin production can be estimated by a combination of stress energy and stress frequency. In addition, the macroparticle-enhanced cultivation of L. aerocolonigenes was combined with soy lecithin addition to further increase the rebeccamycin concentration. With 100 g L-1 glass beads in a diameter of 969 µm and 5 g L-1 soy lecithin a concentration of 388 mg L-1 rebeccamycin was reached after 10 days of cultivation, which corresponds to the highest rebeccamycin concentrations achieved in shake flask cultivations of L. aerocolonigenes stated in literature so far.
Collapse
Affiliation(s)
- Kathrin Schrinner
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcel Schrader
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jana Niebusch
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristin Althof
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Friederike A Schwarzer
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Paul-Frederik Nowka
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Anna Dinius
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| | - Arno Kwade
- Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Institute for Particle Technology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rainer Krull
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
116
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
117
|
Nogueira T, Botelho A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics (Basel) 2021; 10:787. [PMID: 34203511 PMCID: PMC8300701 DOI: 10.3390/antibiotics10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The shortage of wild fishery resources and the rising demand for human nutrition has driven a great expansion in aquaculture during the last decades in terms of production and economic value. As such, sustainable aquaculture production is one of the main priorities of the European Union's 2030 agenda. However, the intensification of seafood farming has resulted in higher risks of disease outbreaks and in the increased use of antimicrobials to control them. The selective pressure exerted by these drugs provides the ideal conditions for the emergence of antimicrobial resistance hotspots in aquaculture facilities. Omics technology is an umbrella term for modern technologies such as genomics, metagenomics, transcriptomics, proteomics, culturomics, and metabolomics. These techniques have received increasing recognition because of their potential to unravel novel mechanisms in biological science. Metagenomics allows the study of genomes in microbial communities contained within a certain environment. The potential uses of metagenomics in aquaculture environments include the study of microbial diversity, microbial functions, and antibiotic resistance genes. A snapshot of these high throughput technologies applied to microbial diversity and antimicrobial resistance studies in aquacultures will be presented in this review.
Collapse
Affiliation(s)
- Teresa Nogueira
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Evolutionary Ecology of Microorganisms Group, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Botelho
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
| |
Collapse
|
118
|
Singh TA, Passari AK, Jajoo A, Bhasin S, Gupta VK, Hashem A, Alqarawi AA, Abd Allah EF. Tapping Into Actinobacterial Genomes for Natural Product Discovery. Front Microbiol 2021; 12:655620. [PMID: 34239507 PMCID: PMC8258257 DOI: 10.3389/fmicb.2021.655620] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
The presence of secondary metabolite biosynthetic gene clusters (BGCs) makes actinobacteria well-known producers of diverse metabolites. These ubiquitous microbes are extensively exploited for their ability to synthesize diverse secondary metabolites. The extent of their ability to synthesize various molecules is yet to be evaluated. Current advancements in genome sequencing, metabolomics, and bioinformatics have provided a plethora of information about the mechanism of synthesis of these bioactive molecules. Accessing the biosynthetic gene cluster responsible for the production of metabolites has always been a challenging assignment. The genomic approach developments have opened a new gateway for examining and manipulating novel antibiotic gene clusters. These advancements have now developed a better understanding of actinobacterial physiology and their genetic regulation for the prolific production of natural products. These new approaches provide a unique opportunity to discover novel bioactive compounds that might replenish antibiotics’ exhausted stock and counter the microbes’ resistance crisis.
Collapse
Affiliation(s)
- Tanim Arpit Singh
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India.,School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, Mexico
| | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Sheetal Bhasin
- Department of Biosciences, Maharaja Ranjit Singh College of Professional Sciences, Indore, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center and Center for Safe and Improved Food, Scotland's Rural College (SRUC), SRUC Barony Campus, Dumfries, United Kingdom
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Mycology and Plant Disease Survey, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Abdulaziz A Alqarawi
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
119
|
Multi-omics Study of Planobispora rosea, Producer of the Thiopeptide Antibiotic GE2270A. mSystems 2021; 6:e0034121. [PMID: 34156292 PMCID: PMC8269224 DOI: 10.1128/msystems.00341-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Planobispora rosea is the natural producer of the potent thiopeptide antibiotic GE2270A. Here, we present the results of a metabolomics and transcriptomics analysis of P. rosea during production of GE2270A. The data generated provides useful insights into the biology of this genetically intractable bacterium. We characterize the details of the shutdown of protein biosynthesis and the respiratory chain associated with the end of the exponential growth phase. We also provide the first description of the phosphate regulon in P. rosea. Based on the transcriptomics data, we show that both phosphate and iron are limiting P. rosea growth in our experimental conditions. Additionally, we identified and validated a new biosynthetic gene cluster associated with the production of the siderophores benarthin and dibenarthin in P. rosea. Together, the metabolomics and transcriptomics data are used to inform and refine the very first genome-scale metabolic model for P. rosea, which will be a valuable framework for the interpretation of future studies of the biology of this interesting but poorly characterized species. IMPORTANCEPlanobispora rosea is a genetically intractable bacterium used for the production of GE2270A on an industrial scale. GE2270A is a potent thiopeptide antibiotic currently used as a precursor for the synthesis of two compounds under clinical studies for the treatment of Clostridium difficile infection and acne. Here, we present the very first systematic multi-omics investigation of this important bacterium, which provides a much-needed detailed picture of the dynamics of metabolism of P. rosea while producing GE2270A. Author Video: An author video summary of this article is available.
Collapse
|
120
|
Ren X, Xie X, Chen B, Liu L, Jiang C, Qian Q. Marine Natural Products: A Potential Source of Anti-hepatocellular Carcinoma Drugs. J Med Chem 2021; 64:7879-7899. [PMID: 34128674 DOI: 10.1021/acs.jmedchem.0c02026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) has high associated morbidity and mortality rates. Although chemical medication represents a primary HCC treatment strategy, low response rates and therapeutic resistance serve to reduce its efficacy. Hence, identifying novel effective drugs is urgently needed, and many researchers have sought to identify new anti-cancer drugs from marine organisms. The marine population is considered a "blue drug bank" of unique anti-cancer compounds with diverse groups of chemical structures. Here, we discuss marine-derived compounds, including PM060184 and bryostatin-1, with demonstrated anti-cancer activity in vitro or in vivo. Based on the marine source (sponges, algae, coral, bacteria, and fungi), we introduce pharmacological parameters, compound-induced cytotoxicity, effects on apoptosis and metastasis, and potential molecular mechanisms. Cumulatively, this review provides insights into anti-HCC research conducted to date in the field of marine natural products and marine-derived compounds, as well as the potential pharmacological mechanisms of these compounds and their status in drug development.
Collapse
Affiliation(s)
- Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.,Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan 430071, China
| |
Collapse
|
121
|
Yi W, Cheng J, Wei Q, Pan R, Song S, He Y, Tang C, Liu X, Zhou Y, Su H. Effect of temperature stress on gut-brain axis in mice: Regulation of intestinal microbiome and central NLRP3 inflammasomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:144568. [PMID: 33770895 DOI: 10.1016/j.scitotenv.2020.144568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Temperature stress was reported to impact the gut-brain axis including intestinal microbiome and neuroinflammation, but the molecular markers involved remain unclear. We aimed to examine the effects of different temperature stress on the intestinal microbiome and central nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasomes. MATERIALS AND METHODS Mice models were established under low temperature (LT), room temperature (RT), high temperature (HT), and temperature variation (TV) respectively for seven days. We examined temperature-induced changes of intestinal microbiome composition and the levels of its metabolites short-chain fatty acids (SCFAs), as well as the expressions of central NLRP3 inflammasomes and inflammatory cytokines. Redundancy analysis and Spearman correlation analysis were performed to explore the relationships between microbiome and NLRP3 inflammasomes and other indicators. RESULTS HT and LT significantly increased the Alpha diversity of intestinal microbiome. Compared with RT group, Bacteroidetes were most abundant in LT group while Actinobacteria were most abundant in HT and TV groups. Nineteen discriminative bacteria were identified among four groups. LT increased the expressions of acetate and propionate while decreased that of NLRP3 inflammasomes; HT decreased the expression of butyrate while increased that of NLRP3 inflammasomes, interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α; TV decreased the expression of propionate while increased that of NLRP3 inflammasomes and TNF-α. Microbiome distribution could significantly explain the differences in NLRP3 between comparison groups (LT&RT: R2 = 0.82, HT&RT: R2 = 0.86, TV&RT: R2 = 0.94; P < 0.05). The discriminative bacteria were significantly correlated with SCFAs but were correlated with NLRP3 inflammasomes and cytokines in the opposite direction. CONCLUSIONS LT inhibits while HT and TV promote the activation of NLRP3 inflammasomes in brain, and intestinal microbiome and its metabolites may be the potential mediators. Findings may shed some light on the impact of temperature stress on gut-brain axis.
Collapse
Affiliation(s)
- Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Qiannan Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Shasha Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Chao Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xiangguo Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
122
|
Breitling R, Avbelj M, Bilyk O, Carratore F, Filisetti A, Hanko EKR, Iorio M, Redondo RP, Reyes F, Rudden M, Severi E, Slemc L, Schmidt K, Whittall DR, Donadio S, García AR, Genilloud O, Kosec G, De Lucrezia D, Petković H, Thomas G, Takano E. Synthetic biology approaches to actinomycete strain improvement. FEMS Microbiol Lett 2021; 368:6289918. [PMID: 34057181 PMCID: PMC8195692 DOI: 10.1093/femsle/fnab060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Their biochemical versatility and biotechnological importance make actinomycete bacteria attractive targets for ambitious genetic engineering using the toolkit of synthetic biology. But their complex biology also poses unique challenges. This mini review discusses some of the recent advances in synthetic biology approaches from an actinomycete perspective and presents examples of their application to the rational improvement of industrially relevant strains.
Collapse
Affiliation(s)
- Rainer Breitling
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Martina Avbelj
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Oksana Bilyk
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Francesco Del Carratore
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | - Erik K R Hanko
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Michelle Rudden
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | - Lucija Slemc
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Kamila Schmidt
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Dominic R Whittall
- Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento 34, Parque Tecnologico de Ciencias de la Salud, 18016 Armilla, Granada, Spain
| | - Gregor Kosec
- Acies Bio d.o.o., Tehnološki Park 21, 1000, Ljubljana, Slovenia
| | - Davide De Lucrezia
- Explora Biotech Srl, Doulix business unit, Via Torino 107, 30133 Venice, Italy
| | - Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gavin Thomas
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Eriko Takano
- Corresponding author: Department of Chemistry, Manchester Institute of Biotechnology, Manchester Synthetic Biology Research Centre SYNBIOCHEM, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK. E-mail:
| |
Collapse
|
123
|
Devi TS, Vijay K, Vidhyavathi RM, Kumar P, Govarthanan M, Kavitha T. Antifungal activity and molecular docking of phenol, 2,4-bis(1,1-dimethylethyl) produced by plant growth-promoting actinobacterium Kutzneria sp. strain TSII from mangrove sediments. Arch Microbiol 2021; 203:4051-4064. [PMID: 34046705 DOI: 10.1007/s00203-021-02397-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
The present study reveals the plant growth-promoting (PGP) potentials and characterizes the antifungal metabolites of Kutzneria sp. strain TSII isolated from mangrove sediment soil through in vitro and in silico studies. In this study, Kutzneria sp. strain TSII was screened for PGP activities and the antifungal activities against Pithomyces atro-olivaceous, a leaf spot-associated pathogen in groundnut plants. The ethyl acetate extract of Kutzneria sp. strain TSII was purified using column chromatography, and the presence of various antimicrobial compounds was studied by gas chromatography-mass spectrometry (GC-MS) analysis. In silico modeling and docking were carried out to evaluate the antifungal potent of bioactive compound. Kutzneria sp. strain TSII produced proteases, phosphatases, ammonia, siderophores, cellulases, indole acetic acid (IAA), lipases, and amylases, indicating its ability to enhance the growth of plants. The ethyl acetate extract of Kutzneria sp strain TSII was found to be a potent inhibitor of fungal mycelial growth in the potato dextrose agar (PDA) plates. The GC-MS spectral study showed 24 antimicrobial compounds belonging to five chemical groups: phenolics, phthalates, fatty acid methyl esters (FAME), spiro, and fatty alcohols. In silico docking studies showed that phenol, 2,4-bis(1,1-dimethylethyl)-effectively attaches with the active site of mitochondrial F1F0 Adenosine triphosphate synthase enzymes of Pithomyces atro-olivaceous. Hence, it is clear that these antifungal compounds shall be formulated shortly to treat many plant fungal diseases in an eco-friendly manner.
Collapse
Affiliation(s)
- Thangarasu Suganya Devi
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Karuppiah Vijay
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - R M Vidhyavathi
- Department of Bioinformatics Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Ponnuchamy Kumar
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Thangavel Kavitha
- Department of Microbiology, Science Campus, Alagappa University, Karaikudi, Tamilnadu, India.
| |
Collapse
|
124
|
Walker AS, Clardy J. A Machine Learning Bioinformatics Method to Predict Biological Activity from Biosynthetic Gene Clusters. J Chem Inf Model 2021; 61:2560-2571. [PMID: 34042443 PMCID: PMC8243324 DOI: 10.1021/acs.jcim.0c01304] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research in natural products, the genetically encoded small molecules produced by organisms in an idiosyncratic fashion, deals with molecular structure, biosynthesis, and biological activity. Bioinformatics analyses of microbial genomes can successfully reveal the genetic instructions, biosynthetic gene clusters, that produce many natural products. Genes to molecule predictions made on biosynthetic gene clusters have revealed many important new structures. There is no comparable method for genes to biological activity predictions. To address this missing pathway, we developed a machine learning bioinformatics method for predicting a natural product's antibiotic activity directly from the sequence of its biosynthetic gene cluster. We trained commonly used machine learning classifiers to predict antibacterial or antifungal activity based on features of known natural product biosynthetic gene clusters. We have identified classifiers that can attain accuracies as high as 80% and that have enabled the identification of biosynthetic enzymes and their corresponding molecular features that are associated with antibiotic activity.
Collapse
Affiliation(s)
- Allison S Walker
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
125
|
Lin SC, Lehman CW, Stewart AK, Panny L, Bracci N, Wright JLC, Paige M, Strangman WK, Kehn-Hall K. Homoseongomycin, a compound isolated from marine actinomycete bacteria K3-1, is a potent inhibitor of encephalitic alphaviruses. Antiviral Res 2021; 191:105087. [PMID: 33965437 DOI: 10.1016/j.antiviral.2021.105087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 01/09/2023]
Abstract
Marine microorganisms have been a resource for novel therapeutic drugs for decades. In addition to anticancer drugs, the drug acyclovir, derived from a marine sponge, is FDA-approved for the treatment of human herpes simplex virus-1 infections. Most alphaviruses that are infectious to terrestrial animals and humans, such as Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV), lack efficient antiviral drugs and it is imperative to develop these remedies. To push the discovery and development of anti-alphavirus compounds forward, this study aimed to isolate and screen for potential antiviral compounds from cultured marine microbes originating from the marine environment. Compounds from marine microbes were of interest as they are prolific producers of bioactive compounds across the spectrum of human diseases and infections. Homoseongomycin, an actinobacteria isolated from a marine sponge displayed impressive activity against VEEV from a total of 76 marine bioactive products. The 50% effective concentration (EC50) for homoseongomycin was 8.6 μM for suppressing VEEV TC-83 luciferase reporter virus replication. Homoseongomycin was non-toxic up to 50 μM and partially rescued cells from VEEV induced cell death. Homoseongomycin exhibited highly efficient antiviral activity with a reduction of VEEV infectious titers by 8 log10 at 50 μM. It also inhibited EEEV replication with an EC50 of 1.2 μM. Mechanism of action studies suggest that homoseongomycin affects both early and late stages of the viral life cycle. Cells treated with 25 μM of homoseongomycin had a ~90% reduction in viral entry. In comparison, later stages showed a more robust reduction in infectious titers (6 log10) and VEEV extracellular viral RNA levels (4 log10), but a lesser impact on intracellular viral RNA levels (1.5 log10). In sum, this work demonstrates that homoseongomycin is a potential anti-VEEV and anti-EEEV compound due to its low cytotoxicity and potent antiviral activity.
Collapse
Affiliation(s)
- Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA; Bachelor Degree in Marine Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Caitlin W Lehman
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Allison K Stewart
- Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC, 27607, USA
| | - Lauren Panny
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Jeffrey L C Wright
- Department of Chemistry and Biochemistry, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA, 20110, USA
| | - Wendy K Strangman
- Department of Chemistry and Biochemistry, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, 28403, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA, 20110, USA; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| |
Collapse
|
126
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
127
|
De Simeis D, Serra S. Actinomycetes: A Never-Ending Source of Bioactive Compounds-An Overview on Antibiotics Production. Antibiotics (Basel) 2021; 10:antibiotics10050483. [PMID: 33922100 PMCID: PMC8143475 DOI: 10.3390/antibiotics10050483] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
The discovery of penicillin by Sir Alexander Fleming in 1928 provided us with access to a new class of compounds useful at fighting bacterial infections: antibiotics. Ever since, a number of studies were carried out to find new molecules with the same activity. Microorganisms belonging to Actinobacteria phylum, the Actinomycetes, were the most important sources of antibiotics. Bioactive compounds isolated from this order were also an important inspiration reservoir for pharmaceutical chemists who realized the synthesis of new molecules with antibiotic activity. According to the World Health Organization (WHO), antibiotic resistance is currently one of the biggest threats to global health, food security, and development. The world urgently needs to adopt measures to reduce this risk by finding new antibiotics and changing the way they are used. In this review, we describe the primary role of Actinomycetes in the history of antibiotics. Antibiotics produced by these microorganisms, their bioactivities, and how their chemical structures have inspired generations of scientists working in the synthesis of new drugs are described thoroughly.
Collapse
|
128
|
Biosynthesis and Heterologous Expression of Cacaoidin, the First Member of the Lanthidin Family of RiPPs. Antibiotics (Basel) 2021; 10:antibiotics10040403. [PMID: 33917820 PMCID: PMC8068269 DOI: 10.3390/antibiotics10040403] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 01/05/2023] Open
Abstract
Cacaoidin is produced by the strain Streptomyces cacaoi CA-170360 and represents the first member of the new lanthidin (class V lanthipeptides) RiPP family. In this work, we describe the complete identification, cloning and heterologous expression of the cacaoidin biosynthetic gene cluster, which shows unique RiPP genes whose functions were not predicted by any bioinformatic tool. We also describe that the cacaoidin pathway is restricted to strains of the subspecies Streptomyces cacaoi subsp. cacaoi found in public genome databases, where we have also identified the presence of other putative class V lanthipeptide pathways. This is the first report on the heterologous production of a class V lanthipeptide.
Collapse
|
129
|
Assad BM, Savi DC, Biscaia SMP, Mayrhofer BF, Iantas J, Mews M, de Oliveira JC, Trindade ES, Glienke C. Endophytic actinobacteria of Hymenachne amplexicaulis from the Brazilian Pantanal wetland produce compounds with antibacterial and antitumor activities. Microbiol Res 2021; 248:126768. [PMID: 33873141 DOI: 10.1016/j.micres.2021.126768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/28/2021] [Accepted: 04/03/2021] [Indexed: 12/24/2022]
Abstract
The increase in the number of deaths from infections caused by multidrug-resistant bacteria and cancer diseases highlights the need for new molecules with biological activity. Actinobacteria represent a potential source of new compounds, as these microorganisms have already produced a great diversity of clinically employed antibiotics. Endophytes from unexplored biomes, such as the Pantanal (the largest wetland in the world), can be a source of new molecules. Hymenachne amplexicaulis is among the unexplored native plants of the Pantanal in terms of its endophytic community. This plant is considered a weed in other countries due to its ability to adapt and compete with native plants, and there is evidence to suggest that the endophytic community of H. amplexicaulis plays an important role in this competitiveness. To explore its therapeutic potential, the present study isolated, identified (using partial sequence of the 16S rDNA) and bioprospected H. amplexicaulis endophytic actinobacteria. Ten isolates belonging to the genera Streptomyces, Microbispora, Leifsonia, and Verrucosispora were obtained from root fragments. The susceptibility profile of the isolates to the different classes of antibiotics was evaluated, with 80 % of the isolates showing resistance to the antibiotics Nalidixic Acid, Ampicillin, Chloramphenicol, Oxacillin, and Rifampicin. To assess antibacterial and antitumor activities, methanolic extracts were obtained by fermentation in SG culture medium at 36 °C at 180 rpm for 10 days. The extract produced from the S. albidoflavus CMRP4854 isolate was the only one to show activity against the Gram-negative bacterium Acinetobacter baumanii. Due to the great clinical importance of this pathogen and the difficulty in obtaining active compounds against it, the CMRP4854 isolate should be further investigated for the identification of active compounds and mode of action. We also emphasize the results obtained by the extract of the isolates Streptomyces albidoflavus CMRP4852 and Verrucosispora sp. CMRP4860 that presented antibacterial effect against Methicilin-resistant Staphylococcus aureus (MRSA) (MIC: 1.5 μg/mL and 13 μg/mL, respectively) and Vancomycin-resistant Enterococcus (VRE) (MIC: 40 μg/mL for both extracts). Extracts (200 μg/mL) of these two endophytes also showed selective cytotoxicity action against murine B16-F10 melanoma cells. However, the CMRP4852 extract also affected the density of normal cells. Due to these results, the crude extract of isolate CMRP4860 Verrucosispora sp., which was the only one that presented cytotoxicity and reduced cell density only in tumor cells, was selected for subsequent analysis involving scale-up fermentation of the CMRP4860 resulting in 9 fractions that were tested against both bacteria and tumor cells, with particular fractions showing promise and meriting further investigation. Taken together, the results of this study not only show for the first time that the endophytic community of H. amplexicaulis actinobacteria can produce secondary metabolites that potentially possess important antibacterial and cytotoxic properties, but also reinforce the pressing need to conserve biomes such as the Brazilian Pantanal.
Collapse
Affiliation(s)
- Beatriz M Assad
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil
| | - Daiani C Savi
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil; University Center - Católica de Santa Catarina, Joinville, SC, Brazil
| | - Stellee M P Biscaia
- Postgraduate Program in Cell and Molecular Biology, Department of Cellular Biology, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100. CEP, 81531-970, Curitiba, PR, Brazil
| | - Bárbara F Mayrhofer
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil
| | - Jucelia Iantas
- Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil
| | - Mathias Mews
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil
| | - Jaqueline C de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil
| | - Edvaldo S Trindade
- Postgraduate Program in Cell and Molecular Biology, Department of Cellular Biology, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100. CEP, 81531-970, Curitiba, PR, Brazil
| | - Chirlei Glienke
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil; Postgraduate Program in Microbiology, Department of Pathology, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-990, Curitiba, Paraná State, Brazil.
| |
Collapse
|
130
|
Streptomyces typhae sp. nov., a novel endophytic actinomycete with antifungal activity isolated the root of cattail (Typha angustifolia L.). Antonie van Leeuwenhoek 2021; 114:823-833. [PMID: 33774760 DOI: 10.1007/s10482-021-01561-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
A novel endophytic actinomycete with antagonistic activity against various phytopathogenic fungi, designated strain p1417T, was isolated from the root of cattail (Typha angustifolia L.) collected from Yunnan Province, Southwest China. A polyphasic taxonomic study was carried out to establish the taxonomic status of this strain. Strain p1417T was found to have morphological and chemotaxonomic characteristics typical of the genus Streptomyces. The diamino acid present in the cell wall was LL-diaminopimelic acid. Xylose and arabinose occurred in whole cell hydrolysates. The menaquinones were identified as MK-9(H8), MK-9(H6) and MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were found to be iso-C16:0, anteiso-C15:0, iso-C15:0 and C16:0. The genomic DNA G + C content of strain p1417T based on the genome sequence was 72.0 mol%. Based on 16 S rRNA gene, five housekeeping genes and whole genome sequences analysis, strain p1417T was most closely related to Streptomyces flavofungini JCM 4753T (99.4% 16 S rRNA gene sequence similarity), Streptomyces alboflavus JCM 4615T (98.8%) and Streptomyces aureoverticillatus JCM 4347T (98.2%). However, the average nucleotide identity values, the digital DNA-DNA hybridization values and the multilocus sequence analysis evolutionary distances between this strain and its closely related strains showed that it belonged to one distinct species. In addition, these results were also supported by differences in the phenotypic and chemotaxonomic characteristics between strain p1417T and three closely related type strains. Therefore, it is concluded that strain p1417T represents a novel species of the genus of Streptomyces, for which the name Streptomyces typhae sp. nov. is proposed. The type strain is p1417T (= CCTCC AA 2019091T = DSM 110636T).
Collapse
|
131
|
Ueoka R, Hashimoto J, Kozone I, Hashimoto T, Kudo K, Kagaya N, Suenaga H, Ikeda H, Shin-Ya K. A novel methymycin analog, 12-ketomethymycin N-oxide, produced by the heterologous expression of the large pikromycin/methymycin biosynthetic gene cluster of Streptomyces sp. AM4900. Biosci Biotechnol Biochem 2021; 85:890-894. [PMID: 33590846 DOI: 10.1093/bbb/zbaa111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022]
Abstract
A novel methymycin analog, 12-ketomethymycin N-oxide, was produced by the heterologous expression of the pikromycin/methymycin biosynthetic gene cluster of Streptomyces sp. AM4900 together with 12-ketomethymycin, which was only isolated by the biotransformation of the synthetic intermediate before. Their structures were determined by the spectroscopic data and the chemical derivatization. 12-Ketomethymycin showed a weak cytotoxicity against SKOV-3 and Jurkat cells, although its N-oxide analog did not show any activity. Both showed no antibacterial activities against Escherichia coli and Micrococcus luteus.
Collapse
Affiliation(s)
- Reiko Ueoka
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Ikuko Kozone
- Japan Biological Informatics Consortium (JBIC), Tokyo, Japan
| | - Takuya Hashimoto
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Kei Kudo
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Noritaka Kagaya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, Kanagawa, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.,Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
132
|
Dahal RH, Chaudhary DK, Kim J. Genome insight and description of antibiotic producing Massilia antibiotica sp. nov., isolated from oil-contaminated soil. Sci Rep 2021; 11:6695. [PMID: 33758279 PMCID: PMC7988111 DOI: 10.1038/s41598-021-86232-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
An ivory-coloured, motile, Gram-stain-negative bacterium, designated TW-1T was isolated from oil-contaminated experimental soil in Kyonggi University. The phylogenetic analysis based on 16S rRNA gene sequence revealed, strain TW-1T formed a lineage within the family Oxalobacteraceae and clustered as members of the genus Massilia. The closest members were M. pinisoli T33T (98.8% sequence similarity), M. putida 6NM-7T (98.6%), M. arvi THG-RS2OT (98.5%), M. phosphatilytica 12-OD1T (98.3%) and M. niastensis 5516S-1T (98.2%). The sole respiratory quinone is ubiquinone-8. The major cellular fatty acids are hexadeconic acid, cis-9, methylenehexadeconic acid, summed feature 3 and summed feature 8. The major polar lipids are phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The DNA G + C content of the type strain is 66.3%. The average nucleotide identity (ANI) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain TW-1T and closest members were below the threshold value for species demarcation. The genome size is 7,051,197 bp along with 46 contigs and 5,977 protein-coding genes. The genome showed 5 putative biosynthetic gene clusters (BGCs) that are responsible for different secondary metabolites. Cluster 2 showed thiopeptide BGC with no known cluster blast, indicating TW-1T might produce novel antimicrobial agent. The antimicrobial assessment also showed that strain TW-1T possessed inhibitory activity against Gram-negative pathogens (Escherichia coli and Pseudomonas aeruginosa). This is the first report of the species in the genus Massilia which produces antimicrobial compounds. Based on the polyphasic study, strain TW-1T represents novel species in the genus Massilia, for which the name Massilia antibiotica sp. nov. is proposed. The type strain is TW-1T (= KACC 21627T = NBRC 114363T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea.,Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea.,Department of Environmental Engineering, Korea University Sejong Campus, Sejong City, 30019, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
133
|
Wex KW, Saur JS, Handel F, Ortlieb N, Mokeev V, Kulik A, Niedermeyer THJ, Mast Y, Grond S, Berscheid A, Brötz-Oesterhelt H. Bioreporters for direct mode of action-informed screening of antibiotic producer strains. Cell Chem Biol 2021; 28:1242-1252.e4. [PMID: 33761329 DOI: 10.1016/j.chembiol.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
A big challenge in natural product research of today is rapid dereplication of already known substances, to free capacities for the exploration of new agents. Prompt information on bioactivities and mode of action (MOA) speeds up the lead discovery process and is required for rational compound optimization. Here, we present a bioreporter approach as a versatile strategy for combined bioactivity- and MOA-informed primary screening for antimicrobials. The approach is suitable for directly probing producer strains grown on agar, without need for initial compound enrichment or purification, and works along the entire purification pipeline with culture supernatants, extracts, fractions, and pure substances. The technology allows for MOA-informed purification to selectively prioritize activities of interest. In combination with high-resolution mass spectrometry, the biosensor panel is an efficient and sensitive tool for compound deconvolution. Concomitant information on the affected metabolic pathway enables the selection of appropriate follow-up assays to elucidate the molecular target.
Collapse
Affiliation(s)
- Katharina W Wex
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Julian S Saur
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Franziska Handel
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Nico Ortlieb
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Vladislav Mokeev
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Andreas Kulik
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Timo H J Niedermeyer
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department of Pharmaceutical Biology/Pharmacognosy Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Sachsen-Anhalt 06120, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Yvonne Mast
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Department Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Niedersachsen 38124, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Stephanie Grond
- Biomolecular Chemistry, Institute of Organic Chemistry, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; German Center for Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Baden-Württemberg 72076, Germany; Cluster of Excellence EXC 2124 - Controlling Microbes to Fight Infections, Tuebingen, Baden-Württemberg 72076, Germany.
| |
Collapse
|
134
|
Isolation and Characterization of Potential Antibiotic-Producing Actinomycetes from Water and Soil Sediments of Different Regions of Nepal. Int J Microbiol 2021; 2021:5586165. [PMID: 33763135 PMCID: PMC7946463 DOI: 10.1155/2021/5586165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction The actinomycetes are diversely distributed microorganisms in nature. The geographical diversity of Nepal is suitable for adaptation of various species of actinomycetes. The distribution of the actinomycetes is dependent upon the altitude and nature of the soil and water. Methods A total of 22 water and soil samples were collected from different regions of Nepal and were processed. Different isolates were characterized by observing colony characteristics and microscopic characteristics. Screening of the antimicrobial property was based upon perpendicular line streaking and submerged-state fermentation for antibiotic production. Results From the identification tool used, 12 were found to be Micromonospora, 9 were Nocardia, and 7 were Streptomyces. Out of total samples, 8 isolates of actinomycetes were tested effective against the tested bacteria by primary screening using the well diffusion method. Among the primarily screened, all isolates were subjected to submerged-state fermentation methods to produce crude extracts and 4 were found to be effective against the tested bacterial group. The actinomycetes identified from a water source showed better antimicrobial property towards the tested bacteria than the soil sample. Most isolates were found to be Micromonospora followed by Nocardia and Streptomyces with higher antimicrobial activities. Conclusion The water source and soil sediments of Nepal provide suitable environments for actinomycetes towards obtaining a novel antimicrobial agent. The study of actinomycetes from various unexploited areas of Nepal is necessary. Thus, exploitation of various regions of Nepal for the discovery of an effective antimicrobial agent is helpful in providing a solution to the cost-effective therapy and action against antibiotic resistance.
Collapse
|
135
|
Heng E, Tan LL, Zhang MM, Wong FT. CRISPR-Cas strategies for natural product discovery and engineering in actinomycetes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
136
|
Abdelrahman SM, Patin NV, Hanora A, Aboseidah A, Desoky S, Desoky SG, Stewart FJ, Lopanik NB. The natural product biosynthetic potential of Red Sea nudibranch microbiomes. PeerJ 2021; 9:e10525. [PMID: 33604161 PMCID: PMC7868072 DOI: 10.7717/peerj.10525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/18/2020] [Indexed: 01/21/2023] Open
Abstract
Background Antibiotic resistance is a growing problem that can be ameliorated by the discovery of novel drug candidates. Bacterial associates are often the source of pharmaceutically active natural products isolated from marine invertebrates, and thus, important targets for drug discovery. While the microbiomes of many marine organisms have been extensively studied, microbial communities from chemically-rich nudibranchs, marine invertebrates that often possess chemical defences, are relatively unknown. Methods We applied both culture-dependent and independent approaches to better understand the biochemical potential of microbial communities associated with nudibranchs. Gram-positive microorganisms isolated from nudibranchs collected in the Red Sea were screened for antibacterial and antitumor activity. To assess their biochemical potential, the isolates were screened for the presence of natural product biosynthetic gene clusters, including polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) genes, using PCR. The microbiomes of the nudibranchs were investigated by high-throughput sequencing of 16S rRNA amplicons. Results In screens against five model microorganisms, 51% of extracts displayed antimicrobial activity against more than one organism, and 19% exhibited antitumor activity against Ehrlich’s ascites carcinoma. Sixty-four percent of isolates contained PKS and NRPS genes, suggesting their genomes contain gene clusters for natural product biosynthesis. Thirty-five percent were positive for more than one class of biosynthetic gene. These strains were identified as belonging to the Firmicutes and Actinobacteria phyla via 16S rRNA gene sequencing. In addition, 16S rRNA community amplicon sequencing revealed all bacterial isolates were present in the uncultured host-associated microbiome, although they were a very small percentage of the total community. Taken together, these results indicate that bacteria associated with marine nudibranchs are potentially a rich source of bioactive compounds and natural product biosynthetic genes.
Collapse
Affiliation(s)
- Samar M Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Faculty of Science, Suez University, Suez, Egypt
| | - Nastassia V Patin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Amro Hanora
- Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | | | | | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Nicole B Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
137
|
Liu T, Huang Z, Gui X, Xiang W, Jin Y, Chen J, Zhao J. Multi-omics Comparative Analysis of Streptomyces Mutants Obtained by Iterative Atmosphere and Room-Temperature Plasma Mutagenesis. Front Microbiol 2021; 11:630309. [PMID: 33584595 PMCID: PMC7876522 DOI: 10.3389/fmicb.2020.630309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Sponges, the most primitive multicellular animals, contain a large number of unique microbial communities. Sponge-associated microorganisms, particularly actinomyces, have the potential to produce diverse active natural products. However, a large number of silent secondary metabolic gene clusters have failed to be revived under laboratory culture conditions. In this study, iterative atmospheric room-temperature plasma. (ARTP) mutagenesis coupled with multi-omics conjoint analysis was adopted to activate the inactive wild Streptomyces strain. The desirable exposure time employed in this study was 75 s to obtain the appropriate lethality rate (94%) and mutation positive rate (40.94%). After three iterations of ARTP mutagenesis, the proportion of mutants exhibiting antibacterial activities significantly increased by 75%. Transcriptome analysis further demonstrated that the differential gene expression levels of encoding type I lasso peptide aborycin had a significant upward trend in active mutants compared with wild-type strains, which was confirmed by LC-MS results with a relative molecular mass of 1082.43 ([M + 2H]2+ at m/z = 2164.86). Moreover, metabolome comparative analysis of the mutant and wild-type strains showed that four spectra or mass peaks presented obvious differences in terms of the total ion count or extracting ion current profiles with each peak corresponding to a specific compound exhibiting moderate antibacterial activity against Gram-positive indicators. Taken together, our data suggest that the ARTP treatment method coupled with multi-omics profiling analysis could be used to estimate the valid active molecules of metabolites from microbial crudes without requiring a time-consuming isolation process.
Collapse
Affiliation(s)
- Tan Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xi Gui
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Wei Xiang
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Yubo Jin
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jun Chen
- College of Ocean and Earth Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- College of Ocean and Earth Science, Xiamen University, Xiamen, China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, China
| |
Collapse
|
138
|
Yushchuk O, Ostash I, Mösker E, Vlasiuk I, Deneka M, Rückert C, Busche T, Fedorenko V, Kalinowski J, Süssmuth RD, Ostash B. Eliciting the silent lucensomycin biosynthetic pathway in Streptomyces cyanogenus S136 via manipulation of the global regulatory gene adpA. Sci Rep 2021; 11:3507. [PMID: 33568768 PMCID: PMC7875965 DOI: 10.1038/s41598-021-82934-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Actinobacteria are among the most prolific sources of medically and agriculturally important compounds, derived from their biosynthetic gene clusters (BGCs) for specialized (secondary) pathways of metabolism. Genomics witnesses that the majority of actinobacterial BGCs are silent, most likely due to their low or zero transcription. Much effort is put into the search for approaches towards activation of silent BGCs, as this is believed to revitalize the discovery of novel natural products. We hypothesized that the global transcriptional factor AdpA, due to its highly degenerate operator sequence, could be used to upregulate the expression of silent BGCs. Using Streptomyces cyanogenus S136 as a test case, we showed that plasmids expressing either full-length adpA or its DNA-binding domain led to significant changes in the metabolome. These were evident as changes in the accumulation of colored compounds, bioactivity, as well as the emergence of a new pattern of secondary metabolites as revealed by HPLC-ESI-mass spectrometry. We further focused on the most abundant secondary metabolite and identified it as the polyene antibiotic lucensomycin. Finally, we uncovered the entire gene cluster for lucensomycin biosynthesis (lcm), that remained elusive for five decades until now, and outlined an evidence-based scenario for its adpA-mediated activation.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Eva Mösker
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany
| | - Iryna Vlasiuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Maksym Deneka
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Christian Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Roderich D Süssmuth
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany.
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
139
|
Tistechok SI, Tymchuk IV, Korniychuk OP, Fedorenko VO, Luzhetskyy AM, Gromyko OM. Genetic Identification and Antimicrobial Activity of Streptomyces sp. Strain Je 1–6 Isolated from Rhizosphere Soil of Juniperus excelsa Bieb. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
140
|
Depoorter E, De Canck E, Coenye T, Vandamme P. Burkholderia Bacteria Produce Multiple Potentially Novel Molecules that Inhibit Carbapenem-Resistant Gram-Negative Bacterial Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10020147. [PMID: 33540653 PMCID: PMC7912996 DOI: 10.3390/antibiotics10020147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/12/2023] Open
Abstract
Antimicrobial resistance in Gram-negative pathogens represents a global threat to human health. This study determines the antimicrobial potential of a taxonomically and geographically diverse collection of 263 Burkholderia (sensu lato) isolates and applies natural product dereplication strategies to identify potentially novel molecules. Antimicrobial activity is almost exclusively present in Burkholderia sensu stricto bacteria and rarely observed in the novel genera Paraburkholderia, Caballeronia, Robbsia, Trinickia, and Mycetohabitans. Fourteen isolates show a unique spectrum of antimicrobial activity and inhibited carbapenem-resistant Gram-negative bacterial pathogens. Dereplication of the molecules present in crude spent agar extracts identifies 42 specialized metabolites, 19 of which represented potentially novel molecules. The known identified Burkholderia metabolites include toxoflavin, reumycin, pyrrolnitrin, enacyloxin, bactobolin, cepacidin, ditropolonyl sulfide, and antibiotics BN-227-F and SF 2420B, as well as the siderophores ornibactin, pyochelin, and cepabactin. Following semipreparative fractionation and activity testing, a total of five potentially novel molecules are detected in active fractions. Given the molecular formula and UV spectrum, two of those putative novel molecules are likely related to bactobolins, and another is likely related to enacyloxins. The results from this study confirm and extend the observation that Burkholderia bacteria present exciting opportunities for the discovery of potentially novel bioactive molecules.
Collapse
Affiliation(s)
- Eliza Depoorter
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; (E.D.); (E.D.C.)
| | - Evelien De Canck
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; (E.D.); (E.D.C.)
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Ghent University, 9000 Ghent, Belgium;
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium; (E.D.); (E.D.C.)
- Correspondence: ; Tel.: +32-9264-5113
| |
Collapse
|
141
|
Tesche S, Krull R. An image analysis method to quantify heterogeneous filamentous biomass based on pixel intensity values – Interrelation of macro- and micro-morphology in Actinomadura namibiensis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
142
|
She W, Ye W, Cheng A, Liu X, Tang J, Lan Y, Chen F, Qian PY. Discovery, Bioactivity Evaluation, Biosynthetic Gene Cluster Identification, and Heterologous Expression of Novel Albofungin Derivatives. Front Microbiol 2021; 12:635268. [PMID: 33633715 PMCID: PMC7902042 DOI: 10.3389/fmicb.2021.635268] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/08/2021] [Indexed: 01/07/2023] Open
Abstract
The crude extract of Streptomyces chrestomyceticus exhibited strong and broad activities against most “ESKAPE pathogens.” We conducted a comprehensive chemical investigation for secondary metabolites from the S. chrestomyceticus strain and identified two novel albofungin (alb) derivatives, i.e., albofungins A (1) and B (2), along with two known compounds, i.e., albofungin (3) and chloroalbofungin (4). The chemical structures of the novel compounds were elucidated using HRMS, 1D and 2D NMR, and electronic circular dichroism spectroscopy. The draft genome of S. chrestomyceticus was sequenced, and a 72 kb albofungin (alb) gene cluster with 72 open reading frames encoding type II polyketide synthases (PKSs), regulators, and transporters, and tailoring enzymes were identified using bioinformatics analysis. The alb gene cluster was confirmed using the heterologous expression in Streptomyces coelicolor, which successfully produced the compounds 3 and 4. Furthermore, compounds 1–4 displayed remarkable activities against Gram-positive bacteria and antitumor activities toward various cancer cells. Notably, compounds 1 and 3 showed potent activities against Gram-negative pathogenic bacteria. The terminal deoxynucleotidyl transferase (dUTP) nick-end labeling and flow cytometry analysis verified that compound 1 inhibited cancer cell proliferation by inducing cellular apoptosis. These results indicated that albofungins might be potential candidates for the development of antibiotics and antitumor drugs.
Collapse
Affiliation(s)
- Weiyi She
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenkang Ye
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aifang Cheng
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianwei Tang
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Feng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong, Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China.,Division of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
143
|
Zhang J, Liang X, Zhang S, Song Z, Wang C, Xu Y. Maipomycin A, a Novel Natural Compound With Promising Anti-biofilm Activity Against Gram-Negative Pathogenic Bacteria. Front Microbiol 2021; 11:598024. [PMID: 33510721 PMCID: PMC7835661 DOI: 10.3389/fmicb.2020.598024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/15/2020] [Indexed: 01/01/2023] Open
Abstract
Pathogenic bacterial biofilms play an important role in recurrent nosocomial and medical device-related infections. Once occurred, the complex structure of the biofilm promotes the development of antibiotic resistance and becomes extremely difficult to eradicate. Here we describe a novel and effective anti-biofilm compound maipomycin A (MaiA), which was isolated from the metabolites of a rare actinomycete strain Kibdelosporangium phytohabitans XY-R10. Its structure was deduced from analyses of spectral data and confirmed by single-crystal X-ray crystallography. This natural product demonstrated a broad spectrum of anti-biofilm activities against Gram-negative bacteria. Interestingly, the addition of Fe(II) or Fe(III) ions could block the biofilm inhibition activity of MaiA because it is an iron chelator. However, not all iron chelators showed biofilm inhibition activity, suggesting that MaiA prevents biofilm formation through a specific yet currently undefined pathway. Furthermore, MaiA acts as a synergist to enhance colistin efficacy against Acinetobacter baumannii. Our results indicate that MaiA may potentially serve as an effective antibiofilm agent to prevent Gram-negative biofilm formation in future clinical applications.
Collapse
Affiliation(s)
- Junliang Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyan Liang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shiling Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhiman Song
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Changyun Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
144
|
Kim GS, Jang JP, Kwon M, Oh TH, Heo KT, Lee B, Lee JS, Ko SK, Hong YS, Ahn JS, Jang JH. Jejucarbazoles A–C, carbazole glycosides with indoleamine 2,3-dioxygenase 1 inhibitory activity from Streptomyces sp. KCB15JA151. RSC Adv 2021; 11:19805-19812. [PMID: 35479225 PMCID: PMC9033820 DOI: 10.1039/d1ra02895b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
A bioassay-guided investigation led to the isolation of three new carbazole glycosides, jejucarbazoles A–C (1–3), from Streptomyces sp. KCB15JA151. Their planar structures were elucidated by detailed NMR and MS spectroscopic analysis with a literature study. Their relative and absolute configurations were established by ROESY correlations, coupling constants, LC-MS analysis of thiocarbamoyl-thiazolidine carboxylate derivatives, and ECD calculation. Compounds 1–3 showed indoleamine 2,3-dioxygenase 1 (IDO1) inhibitory activity with IC50 values of 18.38, 9.17, and 8.81 μM. The molecular docking analysis suggested that all compounds act as heme-displacing inhibitors against IDO1 enzyme. This study presents the isolation and structure elucidation of jejucarbazoles A–C, isolated from Streptomyces sp. KCB15JA15 and their inhibitory effect and molecular docking analysis against the IDO1 enzyme.![]()
Collapse
|
145
|
Zhao HW, Li JQ, Ding WJ. Chemical constituents from salt lake-derived Streptomyces sp. QHA10. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:26-32. [PMID: 31847583 DOI: 10.1080/10286020.2019.1700230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Two new alkaloids (1,2) and one new enoic acid (3), together with three known piericidins (4-6), were isolated from the liquid fermentation of the salt lake derived Streptomyces sp. QHA10. The structures of 1-3 were elucidated based on extensive spectroscopic data (NMR, HRESIMS) as well as single-crystal X-ray diffraction. Compound 3 showed potential anti-inflammatory activity by inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages with the IC50 value of 24.5 μM.
Collapse
Affiliation(s)
- Hao-Wen Zhao
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Jia-Qi Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Wan-Jing Ding
- Ocean College, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
146
|
Thamer BM, Esmail GA, Al-Dhabi NA, Moydeen A. M, Arasu MV, Al-Enizi AM, El-Newehy MH. Fabrication of biohybrid electrospun nanofibers for the eradication of wound infection and drug-resistant pathogens. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
147
|
Romero F, Fernández A. Screening Fermentation and Extract Generation. Methods Mol Biol 2021; 2296:209-216. [PMID: 33977450 DOI: 10.1007/978-1-0716-1358-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This chapter describes the process of fermenting actinomycetes in flask and the generation of extracts from these broths. A medium for secondary metabolite production and a general procedure for flask fermentation are specified. Directions are given to reproduce aeration when using different flasks. The generation of extracts is based on a solvent mixture that could be varied in order to improve the extraction of products with different polarity. These extracts are then stored in a 96-well microtube format to facilitate their usage for the screening of bioactive compounds.
Collapse
Affiliation(s)
- Francisco Romero
- Bacteriology Department, Biomar Microbial Technologies S.A., Parque Tecnológicode León, León, Spain.
| | - Antonio Fernández
- Bacteriology Department, Biomar Microbial Technologies S.A., León, Spain
| |
Collapse
|
148
|
Novel Macrolactams from a Deep-Sea-Derived Streptomyces Species. Mar Drugs 2020; 19:md19010013. [PMID: 33383849 PMCID: PMC7824713 DOI: 10.3390/md19010013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 11/16/2022] Open
Abstract
Four polyene macrolactams including the previously reported niizalactam C (4), and three new ones, streptolactams A-C (1-3) with a 26-membered monocyclic, [4,6,20]-fused tricyclic and 11,23-oxygen bridged [14,16]-bicyclic skeletons, respectively, were isolated from the fermentation broth of the deep-sea sediment-derived Streptomyces sp. OUCMDZ-3159. Their structures were determined based on spectroscopic analysis, X-ray diffraction analysis, and chemical methods. The abiotic formation of compounds 2 and 4 from compound 1 were confirmed by a series of chemical reactions under heat and light conditions. Compounds 1 and 3 showed a selective antifungal activity against Candida albicans ATCC 10231.
Collapse
|
149
|
Voloshina AD, Sapunova AS, Kulik NV, Belenok MG, Strobykina IY, Lyubina AP, Gumerova SK, Kataev VE. Antimicrobial and cytotoxic effects of ammonium derivatives of diterpenoids steviol and isosteviol. Bioorg Med Chem 2020; 32:115974. [PMID: 33461146 DOI: 10.1016/j.bmc.2020.115974] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Antimicrobial and cytotoxic activities of several ammonium derivatives of diterpenoids steviol and isosteviol have been investigated in vitro. The results have showed that these compounds possess high antibacterial activity against MRSA strains and cytotoxic effect against cancer cell lines MCF-7, M-HeLa, A-549, PC3, HepG2, T98G. Lead compounds 4 and 5 were detected, which, in the case of the MCF-7 cell line (human breast adenocarcinoma), showed IC50 at the doxorubicin level with a selectivity index of 5.0-5.2. Flow cytometry and laser confocal microscopy analysis demonstrated that the mechanism of cytotoxic effects of the tested compounds on MCF-7 cells could be associated with the induction of apoptosis along the mitochondrial pathway. At the same time, they did not cause hemolysis and showed only slight cytotoxicity with respect to normal human cells of embryonic lung (Wi-38). The obtained results allow us to consider the studied compounds as promising scaffolds for the design of new effective antibacterial drugs and anticancer agents targeting mitochondria.
Collapse
Affiliation(s)
- Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia.
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Natalia V Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Syumbelya K Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia
| |
Collapse
|
150
|
Alvarez R, de Lera AR. Natural polyenic macrolactams and polycyclic derivatives generated by transannular pericyclic reactions: optimized biogenesis challenging chemical synthesis. Nat Prod Rep 2020; 38:1136-1220. [PMID: 33283831 DOI: 10.1039/d0np00050g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering from 1992 to the end of 2020-11-20.Genetically-encoded polyenic macrolactams, which are constructed by Nature using hybrid polyketide synthase/nonribosomal peptide synthase (PKSs/NRPSs) assembly lines, are part of the large collection of natural products isolated from bacteria. Activation of cryptic (i.e., silent) gene clusters in these microorganisms has more recently allowed to generate and eventually isolate additional members of the family. Having two unsaturated fragments separated by short saturated chains, the primary macrolactam is posited to undergo transannular reactions and further rearrangements thus leading to the generation of a structurally diverse collection of polycyclic (natural) products and oxidized derivatives. The review will cover the challenges that scientists face on the isolation of these unstable compounds from the cultures of the producing microorganisms, their structural characterization, biological activities, optimized biogenetic routes, as well as the skeletal rearrangements of the primary structures of the natural macrolactams derived from pericyclic reactions of the polyenic fragments. The efforts of the synthetic chemists to emulate Nature on the successful generation and structural confirmation of these natural products will also be reported.
Collapse
Affiliation(s)
- Rosana Alvarez
- Department of Organic Chemistry and Center for Biomedical Research (CINBIO), IBIV, Universidade de Vigo, 36310 Vigo, Spain.
| | | |
Collapse
|