101
|
Guo S, Wang H, Qin Z, Li Z, Wang G, Dong M, Fan W, Wang J. Feasibility, Limit, and Suitable Reaction Conditions for the Production of Alcohols and Hydrocarbons from CO and CO 2 through Hydrogenation, a Thermodynamic Consideration. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shujia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Zhikai Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guofu Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
102
|
Song X, Yang C, Li X, Wang Z, Pei C, Zhao ZJ, Gong J. On the Role of Hydroxyl Groups on Cu/Al 2O 3 in CO 2 Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiwen Song
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chengsheng Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xianghong Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhongyan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Chunlei Pei
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
103
|
Lombardelli G, Mureddu M, Lai S, Ferrara F, Pettinau A, Atzori L, Conversano A, Gatti M. CO2 hydrogenation to methanol with an innovative Cu/Zn/Al/Zr catalyst: Experimental tests and process modeling. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
104
|
Kim C, Yoo CJ, Oh HS, Min BK, Lee U. Review of carbon dioxide utilization technologies and their potential for industrial application. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
105
|
Mandal SC, Das A, Roy D, Das S, Nair AS, Pathak B. Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
106
|
Tian D, Men Y, Liu S, Wang J, Li Z, Qin K, Shi T, An W. Engineering crystal phases of oxides in tandem catalysts for high-efficiency production of light olefins from CO2 hydrogenation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
107
|
The Activity of Ultrafine Cu Clusters Encapsulated in Nano-Zeolite for Selective Hydrogenation of CO2 to Methanol. Catalysts 2022. [DOI: 10.3390/catal12111296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Narrowly dispersed ultrafine Cu clusters of sizes smaller than 2.0 nm have been encapsulated in nanosized silicalite-1 zeolite through direct crystallization in the presence of Cu(en)22+ complex ions as the metal precursor. The growing silicalite-1 crystals are rich in vacancy defects and connectivity defects on the grain boundaries, where the terminating silanols promote the decomposition of Cu(en)22+, thus the deposition of ultrafine Cu species. The obtained composite material as a model catalyst is active for CO2 activation and hydrogenation to methanol. The preliminary in situ FTIR study recognizes a series of surface-adsorbed carbonyl, formyl, carbonate, and formate species when the material is exposed to CO2 and H2. Among others, the adsorbed formate decays most rapidly upon cofeeding CO2 and H2, implying that the most probable pathway toward methanol formation over this material is via the formate-mediated mechanism.
Collapse
|
108
|
Sugiyama H, Nakao T, Miyazaki M, Abe H, Niwa Y, Kitano M, Hosono H. Low-Temperature Methanol Synthesis by a Cu-Loaded LaH 2+x Electride. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hironobu Sugiyama
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Takuya Nakao
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Masayoshi Miyazaki
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Yasuhiro Niwa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masaaki Kitano
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Hideo Hosono
- Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Wpi-MANA, National Institute for Materials Science, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
109
|
Agarwal S, Joshi K. Looking beyond Adsorption Energies to Understand Interactions at Surface using Machine Learning. ChemistrySelect 2022. [DOI: 10.1002/slct.202202414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheena Agarwal
- Physical and Materials Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Kavita Joshi
- Physical and Materials Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
110
|
Adamson TT, Uttley KB, Kelley SP, Bernskoetter WH. Coordination Chemistry of (Triphos)Fe(0) Ethylene Complexes and Their Application to CO 2 Valorization. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tristan T. Adamson
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Katherine B. Uttley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P. Kelley
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
111
|
Recent Advances on Confining Noble Metal Nanoparticles Inside Metal-Organic Frameworks for Hydrogenation Reactions. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
112
|
Shen C, Sun K, Zou R, Wu Q, Mei D, Liu CJ. CO 2 Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin300387, China
| | - Chang-jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| |
Collapse
|
113
|
Synthesis of a Cu/Zn-BTC@LTA derivatived Cu–ZnO@LTA membrane reactor for CO2 hydrogenation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
114
|
Synthesis of Cu–ZnO–Pt@HZSM-5 catalytic membrane reactor for CO2 hydrogenation to dimethyl ether. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
115
|
Xu Y, Gao Z, Peng L, Liu K, Yang Y, Qiu R, Yang S, Wu C, Jiang J, Wang Y, Tan W, Wang H, Li J. A highly efficient Cu/ZnOx/ZrO2 catalyst for selective CO2 hydrogenation to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
116
|
Pinheiro Araújo T, Mondelli C, Agrachev M, Zou T, Willi PO, Engel KM, Grass RN, Stark WJ, Safonova OV, Jeschke G, Mitchell S, Pérez-Ramírez J. Flame-made ternary Pd-In2O3-ZrO2 catalyst with enhanced oxygen vacancy generation for CO2 hydrogenation to methanol. Nat Commun 2022; 13:5610. [PMID: 36153333 PMCID: PMC9509363 DOI: 10.1038/s41467-022-33391-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Palladium promotion and deposition on monoclinic zirconia are effective strategies to boost the performance of bulk In2O3 in CO2-to-methanol and could unlock superior reactivity if well integrated into a single catalytic system. However, harnessing synergic effects of the individual components is crucial and very challenging as it requires precise control over their assembly. Herein, we present ternary Pd-In2O3-ZrO2 catalysts prepared by flame spray pyrolysis (FSP) with remarkable methanol productivity and improved metal utilization, surpassing their binary counterparts. Unlike established impregnation and co-precipitation methods, FSP produces materials combining low-nuclearity palladium species associated with In2O3 monolayers highly dispersed on the ZrO2 carrier, whose surface partially transforms from a tetragonal into a monoclinic-like structure upon reaction. A pioneering protocol developed to quantify oxygen vacancies using in situ electron paramagnetic resonance spectroscopy reveals their enhanced generation because of this unique catalyst architecture, thereby rationalizing its high and sustained methanol productivity. Assembling multicomponent catalysts to harness synergic effects is challenging. Now, flame spray pyrolysis permits the synthesis of ternary Pd-In2O3-ZrO2 catalysts with an optimal architecture and an enriched density of oxygen vacancies for maximal performance in CO2-based methanol synthesis.
Collapse
|
117
|
Zhao H, Yu R, Ma S, Xu K, Chen Y, Jiang K, Fang Y, Zhu C, Liu X, Tang Y, Wu L, Wu Y, Jiang Q, He P, Liu Z, Tan L. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat Catal 2022. [DOI: 10.1038/s41929-022-00840-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
118
|
Zhai S, Jiang S, Liu C, Li Z, Yu T, Sun L, Ren G, Deng W. Liquid Sunshine: Formic Acid. J Phys Chem Lett 2022; 13:8586-8600. [PMID: 36073927 DOI: 10.1021/acs.jpclett.2c02149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
"Liquid sunshine" is the conceptual green liquid fuel that is produced by a combination of solar energy, CO2, and H2O. Alcohols are commonly regarded as the preferred candidates for liquid sunshine because of their advantages of high energy density and extensive industrial applications. However, both the alcohol synthesis and H2 release processes require harsh reaction conditions, resulting in large external energy input. Unlike alcohols, the synthesis and dehydrogenation of formic acid (FA)/formate can be performed under mild conditions. Herein, we propose liquid sunshine FA/formate as a promising supplement to alcohol. First, we outline the vision of using FA/formate as liquid sunshine and discuss its feasibility. Then, we concentrate on the application of FA/formate as liquid organic hydrogen carrier and summarize the recent developments of CO2 hydrogenation to FA/formate and FA/formate dehydrogenation under mild conditions. Finally, we discuss the current applications, challenges, and opportunities surrounding the use of FA/formate as liquid sunshine.
Collapse
Affiliation(s)
- Shengliang Zhai
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Shuchao Jiang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Chengcheng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Zhen Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Tie Yu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Lei Sun
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Guoqing Ren
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Weiqiao Deng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
119
|
Alabsi MH, Chen X, Wang X, Zhang M, Ramirez A, Duan A, Xu C, Cavallo L, Huang KW. Highly dispersed Pd nanoparticles supported on dendritic mesoporous CeZrZnOx for efficient CO2 hydrogenation to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
120
|
Zhang W, Wang S, Guo S, Qin Z, Dong M, Wang J, Fan W. Effective conversion of CO2 into light olefins along with generation of low amounts of CO. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
121
|
Goud D, Churipard SR, Bagchi D, Singh AK, Riyaz M, Vinod CP, Peter SC. Strain-Enhanced Phase Transformation of Iron Oxide for Higher Alcohol Production from CO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Devender Goud
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sathyapal R. Churipard
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mohd Riyaz
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - C. P. Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sebastian C. Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
122
|
Sun J, Jiang S, Zhao Y, Wang H, Zhai D, Deng W, Sun L. First-principles study of CO 2 hydrogenation to formic acid on single-atom catalysts supported on SiO 2. Phys Chem Chem Phys 2022; 24:19938-19947. [PMID: 35968889 DOI: 10.1039/d2cp02225g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydrogenation of CO2 into valuable chemical fuels reduces the atmospheric CO2 content and also has broad economic prospects. Support is essential for catalysts, but many of the reported support materials cannot meet the requirements of accessibility and durability. Herein, we theoretically designed a series of single-atom noble metals anchored on a SiO2 surface for CO2 hydrogenation using density functional theory (DFT) calculations. Through theoretical evaluation of the formation energy, hydrogen dissociation capacity, and activity of CO2 hydrogenation, we found that Ru@SiO2 is a promising candidate for CO2 hydrogenation to formic acid. The energy barrier of the rate-determining step of the entire conversion process is 23.9 kcal mol-1; thus, the reaction can occur under mild conditions. In addition, active and stable origins were revealed through electronic structure analysis. The charge of the metal atom is a good descriptor of the catalytic activity. The Pearson correlation coefficient (PCC) between metal charge and its CO2 hydrogenation barrier is 0.99. Two solvent models were also used to investigate hydrogen spillover processes and the reaction path was searched by the climbing image nudged-elastic-band (CI-NEB) method. The results indicated that the explicit solvent model could not be simplified into a few solvent molecules, leading to a large difference in the reaction paths. This work will serve as a reference for the future design of more efficient catalysts for CO2 hydrogenation.
Collapse
Affiliation(s)
- Jikai Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| | - Shuchao Jiang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| | - Honglei Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China.
| |
Collapse
|
123
|
Sun Y, Wu J, Wang Y, Li J, Wang N, Harding J, Mo S, Chen L, Chen P, Fu M, Ye D, Huang J, Tu X. Plasma-Catalytic CO 2 Hydrogenation over a Pd/ZnO Catalyst: In Situ Probing of Gas-Phase and Surface Reactions. JACS AU 2022; 2:1800-1810. [PMID: 36032530 PMCID: PMC9400056 DOI: 10.1021/jacsau.2c00028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Plasma-catalytic CO2 hydrogenation is a complex chemical process combining plasma-assisted gas-phase and surface reactions. Herein, we investigated CO2 hydrogenation over Pd/ZnO and ZnO in a tubular dielectric barrier discharge (DBD) reactor at ambient pressure. Compared to the CO2 hydrogenation using Plasma Only or Plasma + ZnO, placing Pd/ZnO in the DBD almost doubled the conversion of CO2 (36.7%) and CO yield (35.5%). The reaction pathways in the plasma-enhanced catalytic hydrogenation of CO2 were investigated by in situ Fourier transform infrared (FTIR) spectroscopy using a novel integrated in situ DBD/FTIR gas cell reactor, combined with online mass spectrometry (MS) analysis, kinetic analysis, and emission spectroscopic measurements. In plasma CO2 hydrogenation over Pd/ZnO, the hydrogenation of adsorbed surface CO2 on Pd/ZnO is the dominant reaction route for the enhanced CO2 conversion, which can be ascribed to the generation of a ZnO x overlay as a result of the strong metal-support interactions (SMSI) at the Pd-ZnO interface and the presence of abundant H species at the surface of Pd/ZnO; however, this important surface reaction can be limited in the Plasma + ZnO system due to a lack of active H species present on the ZnO surface and the absence of the SMSI. Instead, CO2 splitting to CO, both in the plasma gas phase and on the surface of ZnO, is believed to make an important contribution to the conversion of CO2 in the Plasma + ZnO system.
Collapse
Affiliation(s)
- Yuhai Sun
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- School
of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
- International
Science and Technology Cooperation Platform for Low-Carbon Recycling
of Waste and Green Development, Zhejiang
Gongshang University, Hangzhou 310012, China
| | - Junliang Wu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Yaolin Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jingjing Li
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ni Wang
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Jonathan Harding
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| | - Shengpeng Mo
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong
Provincial Key Laboratory of Atmospheric Environment and Pollution
Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- National
Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Laboratory
for Catalysis Engineering, School of Chemical and Biomolecular Engineering,
Sydney Nano Institute, The University of
Sydney, Sydney, NSW 2006, Australia
| | - Xin Tu
- Department
of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, U.K.
| |
Collapse
|
124
|
Cheng Z, Jiang C, Sun X, Lan G, Wang X, He L, Li Y, Tang H, Li Y. Insights into the Inducing Effect of Aluminum on Cu–ZnO Synergy for Methanol Steam Reforming. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zaizhe Cheng
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Chuan Jiang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Xiucheng Sun
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Guojun Lan
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Xiaolong Wang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Lingjie He
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Yunzhi Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Haodong Tang
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| | - Ying Li
- Institute of Industrial Catalysis, Zhejiang University of Technology, Chaowang Road 18, Hangzhou 310014, China
| |
Collapse
|
125
|
Integrated Process for Producing Glycolic Acid from Carbon Dioxide Capture Coupling Green Hydrogen. Processes (Basel) 2022. [DOI: 10.3390/pr10081610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A novel process path is proposed to produce glycolic acid (GA) from CO2 as the feedstock, including CO2 capture, power-to-hydrogen, CO2 hydrogenation to methanol, methanol oxidation to formaldehyde, and formaldehyde carbonylation units. The bottlenecks are discussed from the perspectives of carbon utilization, CO2 emissions, total site energy integration, and techno-economic analysis. The carbon utilization ratio of the process is 82.5%, and the CO2 capture unit has the largest percentage of discharge in carbon utilization. Among the indirect emissions of each unit, the CO2 hydrogenation to methanol has the largest proportion of indirect carbon emissions, followed by the formaldehyde carbonylation to glycolic acid and the CO2 capture. After total site energy integration, the utility consumption is 1102.89 MW for cold utility, 409.67 MW for heat utility, and 45.98 MW for power. The CO2 hydrogenation to methanol makes the largest contribution to utility consumption due to the multi-stage compression of raw hydrogen and the distillation of crude methanol. The unit production cost is 834.75 $/t-GA; CO2 hydrogenation to methanol accounts for the largest proportion, at 70.8% of the total production cost. The total production cost of the unit depends on the price of hydrogen due to the currently high renewable energy cost. This study focuses on the capture and conversion of CO2 emitted from coal-fired power plants, which provides a path to a feasible low-carbon and clean use of CO2 resources.
Collapse
|
126
|
Zhang Y, Cao X, Cao Z. Unraveling the Catalytic Performance of the Nonprecious Metal Single-Atom-Embedded Graphitic s-Triazine-Based C 3N 4 for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35844-35853. [PMID: 35904900 DOI: 10.1021/acsami.2c09813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphitic carbon nitride (g-C3N4) is regarded as a promising potent photoelectrocatalyst for CO2 reduction. Here, extensive first-principles calculations and ab initio molecular dynamics (AIMD) simulations are performed to systematically explore the structural and electronic properties of nonprecious metal single-atom-embedded graphitic s-triazine-based C3N4 (M@gt-C3N4, M = Mn, Fe, Co, Ni, Cu, and Mo) monolayer materials and their catalytic performances as the single-atom catalysts (SACs) for CO2 hydrogenation to HCOOH, CO, and CH3OH. It is found that the atomically dispersed non-noble metal Mn, Fe, Co, and Mo sites anchored on gt-C3N4 can efficiently activate both H2 and CO2, and their coadsorbed state serves as a precursor to the hydrogenation of CO2 to different C1 products. Among these SACs (M@gt-C3N4, M = Mn, Fe, Co, and Mo), Co@gt-C3N4 was predicted to have the best catalytic performance for CO2 hydrogenation to C1 products, although their mechanistic details are somewhat different. The predicted energy barriers of the rate-determining steps for the conversion of CO2 into HCOOH, CO, and CH3OH on Co@gt-C3N4 are 0.58, 0.67, and 1.19 eV, respectively. The desorption of products is generally energy-demanding, but it can be facilitated remarkably by the subsequent adsorption of H2, which regenerates M@gt-C3N4 for the next catalytic cycle. The present study demonstrates that the catalytic performance of gt-C3N4 can be well regulated by embedding the non-noble metal single atom, and the porous gt-C3N4 is nicely suited for the construction of high-performance single-atom catalysts.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Cao
- Department of Physics and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
127
|
Kubovics M, Trigo A, Sánchez A, Marbán G, Borrás A, Vico JM, López-Periago AM, Domingo C. Role of graphene oxide aerogel support on the CuZnO catalytic activity: enhancing methanol selectivity in the hydrogenation reaction of CO2. ChemCatChem 2022. [DOI: 10.1002/cctc.202200607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Márta Kubovics
- ICMAB: Institut de Ciencia de Materials de Barcelona Solid State Chemistry SPAIN
| | - Albert Trigo
- ICMAB: Institut de Ciencia de Materials de Barcelona Solid State Chemistry SPAIN
| | - Antoni Sánchez
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona Departamento de Ingeniería Química, Biológica y Ambiental SPAIN
| | - Gregorio Marbán
- INCAR: Instituto de Ciencia y Tecnologia del Carbono Functional Porous Materials SPAIN
| | - Alejandro Borrás
- ICMAB: Institut de Ciencia de Materials de Barcelona Solid State Chemistry SPAIN
| | - Javier Moral Vico
- Universitat Autònoma de Barcelona: Universitat Autonoma de Barcelona Departamento de Ingeniería Química, Biológica y Ambiental SPAIN
| | - Ana M. López-Periago
- ICMAB: Institut de Ciencia de Materials de Barcelona Solid State Chemistry SPAIN
| | - Concepcion Domingo
- Instituto de Ciencia de Materiales de Barcelona. CSIC Crystal Growth Campus UAB s/n 8193 Bellaterra SPAIN
| |
Collapse
|
128
|
M. Barros JL, Nunes MM, Alves OC, Franchini CA, Corat EJ, Silva AM. Evaluation of Al2O3 and ZrO2 addition to reduced graphene oxide (rGO) supports and their interplay with Cu sites in the catalyst surface. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
129
|
Zhou Z, Gao P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
130
|
The need for speed - optimal CO 2 hydrogenation processes selection via mixed integer linear programming. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
131
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
132
|
Zhou S, Zeng HC. Boxlike Assemblages of Few-Layer MoS 2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO 2 to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
133
|
Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nat Catal 2022; 5:605-614. [PMID: 35892076 PMCID: PMC7613158 DOI: 10.1038/s41929-022-00808-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Abstract
Understanding hydrocarbon generation in the zeolite-catalysed conversions of methanol and methyl chloride requires advanced spectroscopic approaches to distinguish the complex mechanisms governing C-C bond formation, chain growth and the deposition of carbonaceous species. Here operando photoelectron photoion coincidence (PEPICO) spectroscopy enables the isomer-selective identification of pathways to hydrocarbons of up to C14 in size, providing direct experimental evidence of methyl radicals in both reactions and ketene in the methanol-to-hydrocarbons reaction. Both routes converge to C5 molecules that transform into aromatics. Operando PEPICO highlights distinctions in the prevalence of coke precursors, which is supported by electron paramagnetic resonance measurements, providing evidence of differences in the representative molecular structure, density and distribution of accumulated carbonaceous species. Radical-driven pathways in the methyl chloride-to-hydrocarbons reaction(s) accelerate the formation of extended aromatic systems, leading to fast deactivation. By contrast, the generation of alkylated species through oxygenate-driven pathways in the methanol-to-hydrocarbons reaction extends the catalyst lifetime. The findings demonstrate the potential of the presented methods to provide valuable mechanistic insights into complex reaction networks.
Collapse
|
134
|
Fayisa BA, Yang Y, Zhen Z, Wang MY, Lv J, Wang Y, Ma X. Engineered Chemical Utilization of CO 2 to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Busha Assaba Fayisa
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Youwei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Ziheng Zhen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Mei-Yan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
| | - Yue Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, P. R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
135
|
Kim DY, Ham H, Chen X, Liu S, Xu H, Lu B, Furukawa S, Kim HH, Takakusagi S, Sasaki K, Nozaki T. Cooperative Catalysis of Vibrationally Excited CO 2 and Alloy Catalyst Breaks the Thermodynamic Equilibrium Limitation. J Am Chem Soc 2022; 144:14140-14149. [PMID: 35862699 DOI: 10.1021/jacs.2c03764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Using nonthermal plasma (NTP) to promote CO2 hydrogenation is one of the most promising approaches that overcome the limitations of conventional thermal catalysis. However, the catalytic surface reaction dynamics of NTP-activated species are still under debate. The NTP-activated CO2 hydrogenation was investigated in Pd2Ga/SiO2 alloy catalysts and compared to thermal conditions. Although both thermal and NTP conditions showed close to 100% CO selectivity, it is worth emphasizing that when activated by NTP, CO2 conversion not only improves more than 2-fold under thermal conditions but also breaks the thermodynamic equilibrium limitation. Mechanistic insights into NTP-activated species and alloy catalyst surface were investigated by using in situ transmission infrared spectroscopy, where catalyst surface species were identified during NTP irradiation. Moreover, in in situ X-ray absorption fine-structure analysis under reaction conditions, the catalyst under NTP conditions not only did not undergo restructuring affecting CO2 hydrogenation but also could clearly rule out catalyst activation by heating. In situ characterizations of the catalysts during CO2 hydrogenation depict that vibrationally excited CO2 significantly enhances the catalytic reaction. The agreement of approaches combining experimental studies and density functional theory (DFT) calculations substantiates that vibrationally excited CO2 reacts directly with hydrogen adsorbed on Pd sites while accelerating formate formation due to neighboring Ga sites. Moreover, DFT analysis deduces the key reaction pathway that the decomposition of monodentate formate is promoted by plasma-activated hydrogen species. This work enables the high designability of CO2 hydrogenation catalysts toward value-added chemicals based on the electrification of chemical processes via NTP.
Collapse
Affiliation(s)
- Dae-Yeong Kim
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Hyungwon Ham
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Xiaozhong Chen
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shuai Liu
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Haoran Xu
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Bang Lu
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Hyun-Ha Kim
- National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan
| | - Satoru Takakusagi
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Koichi Sasaki
- Division of Applied Quantum Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Tomohiro Nozaki
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| |
Collapse
|
136
|
Li B, Ma B, Wang SY, Yu MM, Zhang ZQ, Xiao MJ, Zhang H, Wu JF, Peng Y, Wang Q, Zhang HL. Vacancy engineering of two-dimensional W 2N 3 nanosheets for efficient CO 2 hydrogenation. NANOSCALE 2022; 14:9736-9742. [PMID: 35765938 DOI: 10.1039/d2nr02262a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Peaking carbon emissions and achieving carbon neutrality have become the consensus goal of the international community to solve the environmental problems threatening mankind caused by accumulative greenhouse gases like CO2. Herein we proposed vacancy engineering of two-dimensional (2D) topological W2N3 for efficient CO2 hydrogenation into high value-added chemicals and fuels. Spherical aberration corrected scanning transmission electron microscopy (Cs-corrected STEM) confirmed a large amount of N vacancies on the catalyst surface, which significantly reduced the energy barrier for the formation of the essential intermediates of *CO and *CHO as revealed by density functional theory (DFT) calculations. Consequently, the highly stable catalyst exhibited efficient CO2 hydrogenation superior to many previous reports with a maximum CO2 conversion rate of 24% and a high selectivity of 23% for C2+ hydrocarbons. This work provided not only insight into the vacancy-controlled CO2 hydrogenation mechanism, but also fresh ammunition to bring the remaining potential of 2D topological transition metal nitrides in the field of catalysis.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Shu-Yan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Ming Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Ming-Jun Xiao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hong Zhang
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Jian-Feng Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Yong Peng
- Electron Microscopy Centre of Lanzhou University and Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Advanced Catalysis of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
137
|
Singh T, Jalwal S, Chakraborty S. Homogeneous First‐row Transition Metal Catalyzed Carbon dioxide Hydrogenation to Formic acid/Formate, and Methanol. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Tushar Singh
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Sachin Jalwal
- IIT Jodhpur: Indian Institute of Technology Jodhpur Chemistry INDIA
| | - Subrata Chakraborty
- Indian Institute of Technology Jodhpur Chemistry Department of ChemistryNH62, Nagaur RoadKarwar 342037 Jodhpur INDIA
| |
Collapse
|
138
|
Biswal T, Shadangi KP, Sarangi PK, Srivastava RK. Conversion of carbon dioxide to methanol: A comprehensive review. CHEMOSPHERE 2022; 298:134299. [PMID: 35304218 DOI: 10.1016/j.chemosphere.2022.134299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
This review explains the various methods of conversion of Carbon dioxide (CO2) to methanol by using homogenous, heterogeneous catalysts through hydrogenation, photochemical, electrochemical, and photo-electrochemical techniques. Since, CO2 is the major contributor to global warming, its utilization for the production of fuels and chemicals is one of the best ways to save our environment in a sustainable manner. However, as the CO2 is very stable and less reactive, a proper method and catalyst development is most important to break the CO2 bond to produce valuable chemicals like methanol. Litertaure says the catalyt types, ratio and it surface structure along with the temperature and pressure are the most controlling parameters to optimize the process for the production of methanol from CO2. This article explains about the various controlling parameters of synthesis of Methanol from CO2 along with the advantages and drawbacks of each process. The mechanism of each synthesis process in presence of metal supported catalyst is described. Basically the activity of Cu supported catalyst and its stability based on the activity for the methanol synthesis from CO2 through various methods is critically described.
Collapse
Affiliation(s)
- Trinath Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla. Sambalpur, Odisha, 768018, India
| | - Krushna Prasad Shadangi
- Department of Chemical Engineering, Veer Surendra Sai University of Technology, Burla. Sambalpur, Odisha, 768018, India.
| | - Prakash Kumar Sarangi
- College of Agriculture, Central Agricultural University, Imphal, Manipur, 795004, India.
| | - Rajesh K Srivastava
- Department of Biotechnology, GITAM Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to Be University, Gandhinagar, Rushikonda, Visakhapatnam, 530 045, AP, India
| |
Collapse
|
139
|
Zhang Z, Zheng Y, Qian L, Luo D, Dou H, Wen G, Yu A, Chen Z. Emerging Trends in Sustainable CO 2 -Management Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201547. [PMID: 35307897 DOI: 10.1002/adma.202201547] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
With the rising level of atmospheric CO2 worsening climate change, a promising global movement toward carbon neutrality is forming. Sustainable CO2 management based on carbon capture and utilization (CCU) has garnered considerable interest due to its critical role in resolving emission-control and energy-supply challenges. Here, a comprehensive review is presented that summarizes the state-of-the-art progress in developing promising materials for sustainable CO2 management in terms of not only capture, catalytic conversion (thermochemistry, electrochemistry, photochemistry, and possible combinations), and direct utilization, but also emerging integrated capture and in situ conversion as well as artificial-intelligence-driven smart material study. In particular, insights that span multiple scopes of material research are offered, ranging from mechanistic comprehension of reactions, rational design and precise manipulation of key materials (e.g., carbon nanomaterials, metal-organic frameworks, covalent organic frameworks, zeolites, ionic liquids), to industrial implementation. This review concludes with a summary and new perspectives, especially from multiple aspects of society, which summarizes major difficulties and future potential for implementing advanced materials and technologies in sustainable CO2 management. This work may serve as a guideline and road map for developing CCU material systems, benefiting both scientists and engineers working in this growing and potentially game-changing area.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Lanting Qian
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Haozhen Dou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
140
|
Zhou Y, Liu H, Jin X, Xing X, Wang X, Wang G, Zhou M. Significant π Bonding in Coinage Metal Complexes OCTMCCO- from Infrared Photodissociation Spectroscopy and Theoretical Calculations. J Chem Phys 2022; 157:014302. [DOI: 10.1063/5.0099789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of coinage metal complexes in the form of TMC(CO)n- (TM=Cu, Ag, Au; n = 0-3) were generated using a laser ablation-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy in conjunction with quantum chemical calculations indicated that the TMC(CO)3- complexes contain a linear OCTMCCO- core anion. Bonding analyses suggest that the linear OCTMCCO- anions are better described as the bonding interactions between a singlet ground state TM+ metal cation and the OC/CCO2- ligands in the singlet ground state. Besides the strong ligands to metal σ donation bonding components, the π-bonding components also contribute significantly to the metal-ligands bonding due to the synergetic effects of the CO and CCO2- ligands. The strengths of the bonding of the three metals show a V-shaped trend in which the second-row transition metal Ag exhibits the weakest interactions whereas the third-row transition metal Au has the strongest interactions due to the relativistic effects.
Collapse
Affiliation(s)
| | | | | | - Xiaopeng Xing
- School of Chemical Science and Engineering, Tongji University, China
| | | | | | | |
Collapse
|
141
|
De Sousa RA, Ocampo-Restrepo VK, Verga LG, Da Silva JLF. Ab initio study of the adsorption properties of CO 2 reduction intermediates: The effect of Ni 5Ga 3 alloy and the Ni 5Ga 3/ZrO 2 interface. J Chem Phys 2022; 156:214106. [DOI: 10.1063/5.0091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Ni5Ga3 alloy supported on ZrO2 is a promising catalyst for the reduction of CO2 due to its higher selectivity to methanol at ambient pressure, e.g., activity comparable to industrial catalysts. However, our atomistic understanding of the role of the cooperative effects induced by the Ni5Ga3 alloy formation and its Ni5Ga3/ZrO2 interface in the CO2 reduction is still far from satisfactory. In this work, we tackle these questions by employing density functional theory calculations to investigate the adsorption properties of key CO2 reduction intermediates (CO2, H2, cis-COOH, trans-COOH, HCOO, CO, HCO, and COH) on Ni8, Ga8, Ni5Ga3, (ZrO2)16, and Ni5Ga3/(ZrO2)16. We found that Ni containing clusters tended to assume wetting configurations on the (ZrO2)16 cluster, while the presence of Ga atoms weakens the adsorption energies on the oxide surface. We also observed that CO2 was better activated on the metal–oxide interfaces and on the oxide surface, where it was able to form CO3-like structures. Meanwhile, H2 activation was only observed on Ni sites, which indicates the importance of distinct adsorption sites that can favor different CO2 reduction steps. Moreover, the formation of the metal–oxide interface showed to be beneficial for the adsorption of COOH isomers and unfavorable for the adsorption of HCOO.
Collapse
Affiliation(s)
- Rafael A. De Sousa
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Vivianne K. Ocampo-Restrepo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Lucas G. Verga
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| | - Juarez L. F. Da Silva
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
142
|
Liu X, Luo J, Wang H, Huang L, Wang S, Li S, Sun Z, Sun F, Jiang Z, Wei S, Li WX, Lu J. In Situ Spectroscopic Characterization and Theoretical Calculations Identify Partially Reduced ZnO 1-x /Cu Interfaces for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2022; 61:e202202330. [PMID: 35322514 DOI: 10.1002/anie.202202330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/16/2022]
Abstract
The active site of the industrial Cu/ZnO/Al2 O3 catalyst used in CO2 hydrogenation to methanol has been debated for decades. Grand challenges remain in the characterization of structure, composition, and chemical state, both microscopically and spectroscopically, and complete theoretical calculations are limited when it comes to describing the intrinsic activity of the catalyst over the diverse range of structures that emerge under realistic conditions. Here a series of inverse model catalysts of ZnO on copper hydroxide were prepared where the size of ZnO was precisely tuned from atomically dispersed species to nanoparticles using atomic layer deposition. ZnO decoration boosted methanol formation to a rate of 877 gMeOH kgcat -1 h-1 with ≈80 % selectivity at 493 K. High pressure in situ X-ray absorption spectroscopy demonstrated that the atomically dispersed ZnO species are prone to aggregate at oxygen-deficient ZnO ensembles instead of forming CuZn metal alloys. By modeling various potential active structures, density functional theory calculations and microkinetic simulations revealed that ZnO/Cu interfaces with oxygen vacancies, rather than stoichiometric interfaces, Cu and CuZn alloys were essential to catalytic activation.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Luo
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Hengwei Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Li Huang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Shasha Wang
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Shang Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Fanfei Sun
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Zheng Jiang
- Shanghai Advanced Research Institute, Chinese Academy of Science, China Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai, 201204, China
| | - Shiqiang Wei
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Wei-Xue Li
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| | - Junling Lu
- Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
143
|
Wu D, Han D, Zhou W, Streiff S, Khodakov AY, Ordomsky VV. Surface modification of metallic catalysts for the design of selective processes. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2079809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dan Wu
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Stephane Streiff
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Andrei Y. Khodakov
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| | - Vitaly V. Ordomsky
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| |
Collapse
|
144
|
Guan S, Liu Y, Zhang H, Wei H, Liu T, Wu X, Wen H, Shen R, Mehdi S, Ge X, Wang C, Liu B, Liang E, Fan Y, Li B. Atomic Interface-Exciting Catalysis on Cobalt Nitride-Oxide for Accelerating Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107417. [PMID: 35508765 DOI: 10.1002/smll.202107417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The rational design of the interface structure between nitride and oxide using the same metallic element and correlating the interfacial active center with a determined catalytic mechanism remain challenging. Herein, a Co4 N-Co3 O4 interface structure is designed to determine the effect of interfacial active centers on hydrogen generation from ammonia borane. An unparalleled catalytic activity toward H2 production with a turnover frequency up to 79 min-1 is achieved on Co4 N-Co3 O4 @C catalyst for ten recycles. Experimental analyses and theoretical simulation suggest that the atomic interface-exciting effect (AieE) is responsible for the high catalytic activity. The Co4 N-Co3 O4 interface facilitates the targeted adsorption and activation of NH3 BH3 and H2 O molecules to generate H* and H2 . The two active centers of Co(N)* and Co(O)* at the Co4 N-Co3 O4 interface activate NH3 BH3 and H2 O, respectively. This proof-of-concept research on AieE provides important insights regarding the design of heterogeneous catalysts and promotes the development of the nature and regulation of energy chemical conversion.
Collapse
Affiliation(s)
- Shuyan Guan
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P. R. China
| | - Yanyan Liu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, Zhengzhou, 450002, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafery, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianghong Ge
- College of Science, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chengming Wang
- College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Jiaozuo, 454003, P. R. China
| | - Erjun Liang
- School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
145
|
Oxygen Vacancies in Cu/TiO2 Boost Strong Metal-Support Interaction and CO2 Hydrogenation to Methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
146
|
A three-dimensional conjugate heat transfer model for methanol synthesis in a modular millireactor. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
147
|
Chang X, Han X, Pan Y, Hao Z, Chen J, Li M, Lv J, Ma X. Insight into the Role of Cu–ZrO 2 Interaction in Methanol Synthesis from CO 2 Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Han
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Ziwen Hao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Jiyi Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
148
|
Jiang F, Jiang F, Wang S, Xu Y, Liu B, Liu X. Catalytic Activity for CO2 Hydrogenation is Linearly Dependent on Generated Oxygen Vacancies over CeO2‐Supported Pd Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Feng Jiang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Feng Jiang
- Jiangnan University Department of Chemical Engineering CHINA
| | - Shanshan Wang
- Jiangnan University Department of Chemical Engineering CHINA
| | - Yuebing Xu
- Jiangnan University Department of Chemical Engineering CHINA
| | - Bing Liu
- Jiangnan University Department of Chemical Engineering CHINA
| | - Xiaohao Liu
- Jiangnan University School of Chemical and Material Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| |
Collapse
|
149
|
Bowker M, Lawes N, Gow I, Hayward J, Esquius JR, Richards N, Smith LR, Slater TJA, Davies TE, Dummer NF, Kabalan L, Logsdail A, Catlow RC, Taylor S, Hutchings GJ. The Critical Role of βPdZn Alloy in Pd/ZnO Catalysts for the Hydrogenation of Carbon Dioxide to Methanol. ACS Catal 2022; 12:5371-5379. [PMID: 35557711 PMCID: PMC9087181 DOI: 10.1021/acscatal.2c00552] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/07/2022] [Indexed: 11/28/2022]
Abstract
![]()
The rise in atmospheric
CO2 concentration and the concomitant
rise in global surface temperature have prompted massive research
effort in designing catalytic routes to utilize CO2 as
a feedstock. Prime among these is the hydrogenation of CO2 to make methanol, which is a key commodity chemical intermediate,
a hydrogen storage molecule, and a possible future fuel for transport
sectors that cannot be electrified. Pd/ZnO has been identified as
an effective candidate as a catalyst for this reaction, yet there
has been no attempt to gain a fundamental understanding of how this
catalyst works and more importantly to establish specific design criteria
for CO2 hydrogenation catalysts. Here, we show that Pd/ZnO
catalysts have the same metal particle composition, irrespective of
the different synthesis procedures and types of ZnO used here. We
demonstrate that all of these Pd/ZnO catalysts exhibit the same activity
trend. In all cases, the β-PdZn 1:1 alloy is produced and dictates
the catalysis. This conclusion is further supported by the relationship
between conversion and selectivity and their small variation with
ZnO surface area in the range 6–80 m2g–1. Without alloying with Zn, Pd is a reverse water-gas shift catalyst
and when supported on alumina and silica is much less active for CO2 conversion to methanol than on ZnO. Our approach is applicable
to the discovery and design of improved catalysts for CO2 hydrogenation and will aid future catalyst discovery.
Collapse
Affiliation(s)
- Michael Bowker
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Catalyst Hub, RCAH, Rutherford Appleton Lab, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Naomi Lawes
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Isla Gow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - James Hayward
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Jonathan Ruiz Esquius
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- now at: Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Nia Richards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Louise R. Smith
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas J. A. Slater
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Electron Physical Sciences Imaging Centre, Diamond Light Source Ltd., Oxfordshire OX11 0DE, United Kingdom
| | - Thomas E Davies
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Nicholas F. Dummer
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Lara Kabalan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Andrew Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Richard C. Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Catalyst Hub, RCAH, Rutherford Appleton Lab, Harwell, Oxford, Didcot OX11 0QX, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Stuart Taylor
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
150
|
Wang J, Liu H, Wang T, Xi Y, Sun P, Li F. Boosting CO2 hydrogenation to methanol via Cu-Zn synergy over highly dispersed Cu,Zn-codoped ZrO2 catalysts. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|