101
|
Development of a Handheld Nano-centrifugal Device for Visual Virus Detection. JOURNAL OF ANALYSIS AND TESTING 2022; 6:353-364. [PMID: 35966388 PMCID: PMC9361950 DOI: 10.1007/s41664-022-00232-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
Abstract
Gold nanoparticles (AuNPs) colorimetric assays based on distance-dependent optical characteristics have been widely employed for bioanalysis. However, this assay is not effective for visually detecting low-concentration targets due to the faint color change. Here, we developed a handheld nano-centrifugal device which could separate the crosslinked and non-crosslinked AuNPs. Results showed that the handheld nano-centrifugal device could easily reach more than 6000 r/min within 10 s simply by stretching and tightening the coiled rope in an appropriate rhythm. Further, combined with the CRISPR/Cas12a nucleic acids recognition system, a field-deployable colorimetric platform termed handheld nano-centrifugal device assisted CRISPR/Cas12a (Hand-CRISPR) has been validated. Moreover, clinical diagnostics applications for Epstein-Barr virus (EBV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection with high sensitivity and accuracy (100% consistency with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) test results) have been demonstrated. Overall, the Hand-CRISPR platform showed great promise in point-of-care-test (POCT) application, expected to become a powerful supplement to the standard nucleic acid testing method in remote or poverty-stricken areas.
Collapse
|
102
|
Cheng CH, Peng YC, Lin SM, Yatsuda H, Liu SH, Liu SJ, Kuo CY, Wang RYL. Measurements of Anti-SARS-CoV-2 Antibody Levels after Vaccination Using a SH-SAW Biosensor. BIOSENSORS 2022; 12:599. [PMID: 36004995 PMCID: PMC9405803 DOI: 10.3390/bios12080599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
To prevent the COVID-19 pandemic that threatens human health, vaccination has become a useful and necessary tool in the response to the pandemic. The vaccine not only induces antibodies in the body, but may also cause adverse effects such as fatigue, muscle pain, blood clots, and myocarditis, especially in patients with chronic disease. To reduce unnecessary vaccinations, it is becoming increasingly important to monitor the amount of anti-SARS-CoV-2 S protein antibodies prior to vaccination. A novel SH-SAW biosensor, coated with SARS-CoV-2 spike protein, can help quantify the amount of anti-SARS-CoV-2 S protein antibodies with 5 μL of finger blood within 40 s. The LoD of the spike-protein-coated SAW biosensor was determined to be 41.91 BAU/mL, and the cut-off point was determined to be 50 BAU/mL (Youden’s J statistic = 0.94733). By using the SH-SAW biosensor, we found that the total anti-SARS-CoV-2 S protein antibody concentrations spiked 10−14 days after the first vaccination (p = 0.0002) and 7−9 days after the second vaccination (p = 0.0116). Furthermore, mRNA vaccines, such as Moderna or BNT, could achieve higher concentrations of total anti-SARS-CoV-2 S protein antibodies compared with adenovirus vaccine, AZ (p < 0.0001). SH-SAW sensors in vitro diagnostic systems are a simple and powerful technology to investigate the local prevalence of COVID-19.
Collapse
Affiliation(s)
| | - Yu-Chi Peng
- Tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
- Biotechnology Industry Master and Ph.D. Program, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shu-Min Lin
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| | - Hiromi Yatsuda
- Tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Szu-Heng Liu
- Tst Biomedical Electronics Co., Ltd., Taoyuan 324403, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, Taoyuan 33302, Taiwan
| | - Chen-Yen Kuo
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou 33305, Taiwan
| | - Robert Y. L. Wang
- Biotechnology Industry Master and Ph.D. Program, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial and Children’s Hospital, Linkou 33305, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Linkou 33305, Taiwan
| |
Collapse
|
103
|
Madurani KA, Suprapto, Yudha Syahputra M, Puspita I, Furqoni AH, Puspasari L, Rosyidah H, Hatta AM, Juniastuti, Lusida MI, Tominaga M, Kurniawan F. Fluorescence spectrophotometry for COVID-19 determination in clinical swab samples. ARAB J CHEM 2022; 15:104020. [PMID: 35664893 PMCID: PMC9150911 DOI: 10.1016/j.arabjc.2022.104020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Considering the limitations of the assays currently available for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants, a simple and rapid method using fluorescence spectrophotometry was developed to detect coronavirus disease 2019 (COVID-19). Forty clinical swab samples were collected from the nasopharyngeal and oropharyngeal cavities of COVID-19-positive and -negative. Each sample was divided into two parts. The first part of the samples was analyzed using reverse transcription-polymerase chain reaction (RT-qPCR) as the control method to identify COVID-19-positive and -negative samples. The second part of the samples was analyzed using fluorescence spectrophotometry. Fluorescence measurements were performed at excitation and emission wavelengths ranging from 200 to 800 nm. Twenty COVID-19-positive samples and twenty COVID-19-negative samples were detected based on RT-qPCR results. The fluorescence spectrum data indicated that the COVID-19-positive and -negative samples had significantly different characteristics. All positive samples could be distinguished from negative samples by fluorescence spectrophotometry. Principal component analysis showed that COVID-19-positive samples were clustered separately from COVID-19-negative samples. The specificity and accuracy of this experiment reached 100%. Limit of detection (LOD) obtained 42.20 copies/ml (Ct value of 33.65 cycles) for E gene and 63.60 copies/ml (Ct value of 31.36 cycles) for ORF1ab gene. This identification process only required 4 min. Thus, this technique offers an efficient and accurate method to identify an individual with active SARS-CoV-2 infection and can be easily adapted for the early investigation of COVID-19, in general.
Collapse
Affiliation(s)
- Kartika A Madurani
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Suprapto
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Muhammad Yudha Syahputra
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ika Puspita
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Abdul Hadi Furqoni
- Human Genetic Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Listya Puspasari
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Hafildatur Rosyidah
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Agus Muhamad Hatta
- Photonics Engineering Laboratory, Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Juniastuti
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Maria Inge Lusida
- Faculty of Medicine, Airlangga University, Surabaya 60131, Indonesia.,Institute of Tropical Disease, Airlangga University, Surabaya 60115, Indonesia
| | - Masato Tominaga
- Department of Chemistry and Applied Chemistry, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Fredy Kurniawan
- Laboratory of Instrumentation and Analytical Science, Chemistry Department, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| |
Collapse
|
104
|
Yin B, Wan X, Sohan ASMMF, Lin X. Microfluidics-Based POCT for SARS-CoV-2 Diagnostics. MICROMACHINES 2022; 13:mi13081238. [PMID: 36014162 PMCID: PMC9413395 DOI: 10.3390/mi13081238] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
A microfluidic chip is a tiny reactor that can confine and flow a specific amount of fluid into channels of tens to thousands of microns as needed and can precisely control fluid flow, pressure, temperature, etc. Point-of-care testing (POCT) requires small equipment, has short testing cycles, and controls the process, allowing single or multiple laboratory facilities to simultaneously analyze biological samples and diagnose infectious diseases. In general, rapid detection and stage assessment of viral epidemics are essential to overcome pandemic situations and diagnose promptly. Therefore, combining microfluidic devices with POCT improves detection efficiency and convenience for viral disease SARS-CoV-2. At the same time, the POCT of microfluidic chips increases user accessibility, improves accuracy and sensitivity, shortens detection time, etc., which are beneficial in detecting SARS-CoV-2. This review shares recent advances in POCT-based testing for COVID-19 and how it is better suited to help diagnose in response to the ongoing pandemic.
Collapse
Affiliation(s)
- Binfeng Yin
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (X.W.); (A.S.M.M.F.S.)
- Correspondence: (B.Y.); (X.L.); Tel.: +86-189-1118-5500 (B.Y.); +86-182-2266-7931 (X.L.)
| | - Xinhua Wan
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China; (X.W.); (A.S.M.M.F.S.)
| | | | - Xiaodong Lin
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
- Correspondence: (B.Y.); (X.L.); Tel.: +86-189-1118-5500 (B.Y.); +86-182-2266-7931 (X.L.)
| |
Collapse
|
105
|
Yin H, Tong Z, Shen C, Xu X, Ma H, Wu Z, Qi Y, Mao H. Micro-PCR chip-based multifunctional ultrafast SARS-CoV-2 detection platform. LAB ON A CHIP 2022; 22:2671-2681. [PMID: 35543190 DOI: 10.1039/d2lc00101b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When dealing with infectious pathogens, the point-of-care screening and diagnosis strategy should be low-cost, simple, rapid and accurate. Here, we report a multifunctional rapid PCR platform allowing both simultaneous screening of suspected cases and accurate identification and quantification of the virus. Based on the platform, samples suspected of being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are screened first, after which subsequent precise quantification of the virus (SARS-CoV-2) can be performed if necessary. This fast screening technique offers a detection limit of 10 nucleic acid copies per test during the entire running time of 15 minutes, with a throughput of 9 samples at a time. Besides, depending on a droplet microfluidic chip, this platform could also provide assays of nucleic acids across four orders of magnitude of concentration within less than 15 minutes. Additionally, we successfully use the platform to quickly distinguish between positive and negative cases in clinical samples and rapidly quantify the viral load in each sample, which is consistent with standard RT-qPCR tests. As such, we demonstrate a promising and versatile rapid PCR platform for point-of-care diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu, 210000, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
106
|
Xiao X, Yuan C, Li T, Fock J, Svedlindh P, Tian B. Optomagnetic biosensors: Volumetric sensing based on magnetic actuation-induced optical modulations. Biosens Bioelectron 2022; 215:114560. [PMID: 35841765 DOI: 10.1016/j.bios.2022.114560] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
In comparison to alternative nanomaterials, magnetic micron/nano-sized particles show unique advantages, e.g., easy manipulation, stable signal, and high contrast. By applying magnetic actuation, magnetic particles exert forces on target objects for highly selective operation even in non-purified samples. We herein describe a subgroup of magnetic biosensors, namely optomagnetic biosensors, which employ alternating magnetic fields to generate periodic movements of magnetic labels. The optical modulation induced by the dynamics of magnetic labels is then analyzed by photodetectors, providing information of, e.g., hydrodynamic size changes of the magnetic labels. Optomagnetic sensing mechanisms can suppress the noise (by performing lock-in detection), accelerate the reaction (by magnetic force-enhanced molecular collision), and facilitate homogeneous/volumetric detection. Moreover, optomagnetic sensing can be performed using a low magnetic field (<10 mT) without sophisticated light sources or pickup coils, further enhancing its applicability for point-of-care tests. This review concentrates on optomagnetic biosensing techniques of different concepts classified by the magnetic actuation strategy, i.e., magnetic field-enhanced agglutination, rotating magnetic field-based particle rotation, and oscillating magnetic field-induced Brownian relaxation. Optomagnetic sensing principles applied with different actuation strategies are introduced as well. For each representative optomagnetic biosensor, a simple immunoassay strategy-based application is introduced (if possible) for methodological comparison. Thereafter, challenges and perspectives are discussed, including minimization of nonspecific binding, on-chip integration, and multiplex detection, all of which are key requirements in point-of-care diagnostics.
Collapse
Affiliation(s)
- Xiaozhou Xiao
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Chuqi Yuan
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Tingting Li
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China
| | - Jeppe Fock
- Blusense Diagnostics ApS, Fruebjergvej 3, DK-2100, Copenhagen, Denmark
| | - Peter Svedlindh
- Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03, Uppsala, Sweden
| | - Bo Tian
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha Hunan, 410013, China.
| |
Collapse
|
107
|
Zhang T, Ding F, Yang Y, Zhao G, Zhang C, Wang R, Huang X. Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis. BIOSENSORS 2022; 12:485. [PMID: 35884289 PMCID: PMC9313202 DOI: 10.3390/bios12070485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (μPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. μPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to μPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of μPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for μPADs are summarized, and the innovative achievements of μPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of μPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent μPAD research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaowen Huang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; (T.Z.); (F.D.); (Y.Y.); (G.Z.); (C.Z.); (R.W.)
| |
Collapse
|
108
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
109
|
Cui W, Zhao P, Wang J, Qin N, Ho EA, Ren CL. Reagent free detection of SARS-CoV-2 using an antibody-based microwave sensor in a microfluidic platform. LAB ON A CHIP 2022; 22:2307-2314. [PMID: 35466338 DOI: 10.1039/d2lc00145d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The global COVID-19 pandemic caused by SARS-CoV-2 has resulted in an unprecedented economic and societal impact. Developing simple and accurate testing methods for point-of-care (POC) diagnosis is crucial not only for the control of COVID-19, but also for better response to similar outbreaks in the future. In this work, we present a novel proof-of-concept of a microfluidic microwave sensing method for POC diagnosis of the SARS-CoV-2 virus. This method relies on the antibody immobilized on the microwave sensor to selectively capture and concentrate the SARS-CoV-2 antigen or virus present in a buffer solution flowing through the sensor region in a microchannel. The capturing of the SARS-CoV-2 antigen or virus results in a change in the permittivity of the medium near the sensor region reflected by the resonance frequency shift which is used for detection. The use of microchannels offers precise control of the sample volume and the continuous flow nature also offers the potential to monitor the dynamic capturing process. The microwave-microfluidic device shows a good sensitivity of 0.1 ng ml-1 for the SARS-CoV-2 antigen and 4000 copies per ml for the SARS-CoV-2 virus. The resonance frequency shift presents a linear relationship with the logarithm of antigen or virus concentration, respectively. This detection method is able to distinguish SARS-CoV-2 from the antigen of human CD4 and two human coronaviruses (MERS and HKU1), which presents a new pathway towards POC diagnosis of the COVID-19 at the community level. It presents the potential to detect other viruses by functionalizing the microwave sensor with respective antibodies.
Collapse
Affiliation(s)
- Weijia Cui
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
| | - Pei Zhao
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
- School of Energy and Power Engineering, Shandong University, Jinan Shandong, China
| | - Jin Wang
- School of Pharmacy, University of Waterloo, Canada
| | - Ning Qin
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
- School of Energy and Power Engineering, Shandong University, Jinan Shandong, China
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Canada
- Waterloo Institute for Nanotechnology, Canada
| | - Carolyn L Ren
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Canada
| |
Collapse
|
110
|
Wang Y, Xu H, Dong Z, Wang Z, Yang Z, Yu X, Chang L. Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022; 14:100116. [PMID: 35187465 PMCID: PMC8837495 DOI: 10.1016/j.medntd.2022.100116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Corona Virus Disease 2019 (COVID-19) has developed into a global pandemic in the last two years, causing significant impacts on our daily life in many countries. Rapid and accurate detection of COVID-19 is of great importance to both treatments and pandemic management. Till now, a variety of point-of-care testing (POCT) approaches devices, including nucleic acid-based test and immunological detection, have been developed and some of them has been rapidly ruled out for clinical diagnosis of COVID-19 due to the requirement of mass testing. In this review, we provide a summary and commentary on the methods and biomedical devices innovated or renovated for the quick and early diagnosis of COVID-19. In particular, some of micro and nano devices with miniaturized structures, showing outstanding analytical performances such as ultra-sensitivity, rapidness, accuracy and low cost, are discussed in this paper. We also provide our insights on the further implementation of biomedical devices using advanced micro and nano technologies to meet the demand of point-of-care diagnosis and home testing to facilitate pandemic management. In general, our paper provides a comprehensive overview of the latest advances on the POCT device for diagnosis of COVID-19, which may provide insightful knowledge for researcher to further develop novel diagnostic technologies for rapid and on-site detection of pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Huiren Xu
- School of Biomedical Information and Engineering, Hainan Medical University, Haikou, 471100, China
| | - Zaizai Dong
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhiying Wang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom,Corresponding author
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China,Corresponding author.
| | - Lingqian Chang
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China,Corresponding author.
| |
Collapse
|
111
|
Zhang Y, Li Z, Su W, Zhong G, Zhang X, Wu Y, Situ B, Xiao Y, Yan X, Zheng L. A highly sensitive and versatile fluorescent biosensor for pathogen nucleic acid detection based on toehold-mediated strand displacement initiated primer exchange reaction. Anal Chim Acta 2022; 1221:340125. [DOI: 10.1016/j.aca.2022.340125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
|
112
|
Ghafouri T, Manavizadeh N. Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity. Bioelectrochemistry 2022; 145:108096. [PMID: 35316730 PMCID: PMC8923711 DOI: 10.1016/j.bioelechem.2022.108096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 12/02/2022]
Abstract
Differential diagnosis of pathogenic diseases, presently coronavirus disease 2019 (COVID-19) and influenza, is crucial with due attention to their superspreading events, presumably long incubation period, particular complications, and treatments. In this paper, a label-free, self-powered, and ultrafast immunosensor device working based on triboelectric effect is proposed. Equilibrium constants of specific antibody-antigen reactions are accompanied by IEP-relevant electric charges of antigens to recognize SARS-CoV-2 and H1N1. Simulation attributes including fluid flow and geometrical parameters are optimized so that the maximum capture efficiency of 85.63% is achieved. Accordingly, antibody-antigen complexes form electric double layers (EDLs) across the channel interfaces. The resultant built-in electric field affects the following external electric field derived from triboelectricity, leading to the variation of open-circuit voltage as a sensing metric. The device is flexible to operate in conductor-to-dielectric single-electrode and contact-separation modes simultaneously. While the detection limit is reduced utilizing the single-electrode mode compared to the latter one, surface treatment of the triboelectric pair contributes to the sensitivity enhancement. A threshold value equal to −4.113 V is featured to discriminate these two viruses in a vast detectable region; however, further surface engineering can allow the on-site detection of any electrically-charged pathogen applying the emerging triboelectric immunosensor enjoying a lower detection limit.
Collapse
|
113
|
Gosselin B, Retout M, Dutour R, Troian-Gautier L, Bevernaegie R, Herens S, Lefèvre P, Denis O, Bruylants G, Jabin I. Ultrastable Silver Nanoparticles for Rapid Serology Detection of Anti-SARS-CoV-2 Immunoglobulins G. Anal Chem 2022; 94:7383-7390. [PMID: 35561247 PMCID: PMC9127678 DOI: 10.1021/acs.analchem.2c00870] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 01/24/2023]
Abstract
Dipstick assays using silver nanoparticles (AgNPs) stabilized by a thin calix[4]arene-based coating were developed and used for the detection of Anti-SARS-CoV-2 IgG in clinical samples. The calixarene-based coating enabled the covalent bioconjugation of the SARS-CoV-2 Spike Protein via the classical EDC/sulfo-NHS procedure. It further conferred remarkable stability to the resulting bioconjugated AgNPs, as no degradation was observed over several months. In comparison with lateral-flow immunoassays (LFIAs) based on classical gold nanoparticles, our AgNP-based system constitutes a clear step forward, as the limit of detection for Anti-SARS-CoV-2 IgG was reduced by 1 order of magnitude and similar signals were observed with 10 times fewer particles. In real clinical samples, the AgNP-based dipstick assays showed impressive results: 100% specificity was observed for negative samples, while a sensitivity of 73% was determined for positive samples. These values match the typical sensitivities obtained for reported LFIAs based on gold nanoparticles. These results (i) represent one of the first examples of the use of AgNP-based dipstick assays in the case of real clinical samples, (ii) demonstrate that ultrastable calixarene-coated AgNPs could advantageously replace AuNPs in LFIAs, and thus (iii) open new perspectives in the field of rapid diagnostic tests.
Collapse
Affiliation(s)
- Bryan Gosselin
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Maurice Retout
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Raphaël Dutour
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Robin Bevernaegie
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Sophie Herens
- Service
de Biologie Clinique, Clinique CHC MontLégia, Bvd Patience et Beaujonc 2, 4000 Liège, Belgium
| | - Philippe Lefèvre
- Service
de Biologie Clinique, Hôpital de
Marche, Groupe VIVALIA, Rue du Vivier 21, 6900 Marche en Famenne, Belgium
| | - Olivier Denis
- Service
Immune Response, Sciensano, Site Ukkel Engelandstraat 642, 1180 Brussels, Belgium
| | - Gilles Bruylants
- Engineering
of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP165/64, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire
de Chimie Organique, Université libre
de Bruxelles (ULB), Avenue
F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| |
Collapse
|
114
|
Ye Q, Lu D, Zhang T, Mao J, Shang S. Recent advances and clinical application in point-of-care testing of SARS-CoV-2. J Med Virol 2022; 94:1866-1875. [PMID: 35080017 PMCID: PMC9015580 DOI: 10.1002/jmv.27617] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/09/2023]
Abstract
The novel coronavirus 2019 (COVID-19) caused by SARS-CoV-2 spread rapidly worldwide, posing a severe threat to public life and health. It is significant to realize rapid testing and timely control of epidemic situations under the condition of limited resources. However, laboratory-based standardized nucleic acid detection methods have a long turnaround time and high cost, so it is urgent to develop convenient methods for detecting COVID-19. This paper summarizes the point-of-care testing (POCT) developed for novel coronavirus from three aspects: nucleic acid extraction, nucleic acid amplification, and detection methods. This paper introduces a commercial real-time detection system that integrates the abovementioned three steps and the matters needing attention in use. The primary purpose of this review is to provide a reference for emergency response and rapid deployment of COVID-19 and some other emerging infectious diseases.
Collapse
Affiliation(s)
- Qing Ye
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Dezhao Lu
- School of Life ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Ting Zhang
- School of Medical Technology and Information EngineeringZhejiang Chinese Medical UniversityHangzhouChina
| | - Jianhua Mao
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| | - Shiqiang Shang
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child HealthNational Children's Regional Medical CenterHangzhouChina
| |
Collapse
|
115
|
CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Anal Chim Acta 2022; 1205:339749. [PMID: 35414398 PMCID: PMC8939626 DOI: 10.1016/j.aca.2022.339749] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has brought to light the need for fast and sensitive detection methods to prevent the spread of pathogens. The scientific community is making a great effort to design new molecular detection methods suitable for fast point-of-care applications. In this regard, a variety of approaches have been developed or optimized, including isothermal amplification of viral nucleic acids, CRISPR-mediated target recognition, and read-out systems based on nanomaterials. Herein, we present CASCADE (CRISPR/CAS-based Colorimetric nucleic Acid DEtection), a sensing system for fast and specific naked-eye detection of SARS-CoV-2 RNA. In this approach, viral RNA is recognized by the LwaCas13a CRISPR protein, which activates its collateral RNase activity. Upon target recognition, Cas13a cleaves ssRNA oligonucleotides conjugated to gold nanoparticles (AuNPs), thus inducing their colloidal aggregation, which can be easily visualized. After an exhaustive optimization of functionalized AuNPs, CASCADE can detect picomolar concentrations of SARS-CoV-2 RNA. This sensitivity is further increased to low femtomolar (3 fM) and even attomolar (40 aM) ranges when CASCADE is coupled to RPA or NASBA isothermal nucleic acid amplification, respectively. We finally demonstrate that CASCADE succeeds in detecting SARS-CoV-2 in clinical samples from nasopharyngeal swabs. In conclusion, CASCADE is a fast and versatile RNA biosensor that can be coupled to different isothermal nucleic acid amplification methods for naked-eye diagnosis of infectious diseases.
Collapse
|
116
|
Zhang Y, Chen F, Xie H, Zhou B. Electrochemical biosensors for the detection of SARS-CoV-2 pathogen and protein biomarkers. INT J ELECTROCHEM SC 2022; 17:220541. [PMID: 37360860 PMCID: PMC10276346 DOI: 10.20964/2022.05.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/01/2022] [Indexed: 09/21/2024]
Abstract
Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV CoV-2) pathogen and protein biomarkers can improve the diagnosis accuracy for Coronavirus disease 2019 (COVID-19). Electrochemical biosensors have attracted extensive attention in the scientific community because of their simple design, fast response, good portability, high sensitivity and high selectivity. In this review, we summarized the progress in the electrochemical detection of COVID-19 pathogen and SARS-CoV-2 biomarkers, including SARS-CoV-2 spike protein and nucleocapsid protein and their antibodies.
Collapse
Affiliation(s)
- Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Fang Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
- Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, P. R. China
| | - Hao Xie
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| |
Collapse
|
117
|
Borro M, Salerno G, Montori A, Petrucca A, Anibaldi P, Marcolongo A, Bonfini R, Simmaco M, Santino I. SARS-CoV-2 Transmission Control Measures in the Emergency Department: The Role of Rapid Antigenic Testing in Asymptomatic Subjects. Healthcare (Basel) 2022; 10:healthcare10050790. [PMID: 35627926 PMCID: PMC9140606 DOI: 10.3390/healthcare10050790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
Limiting transmission of SARS-CoV-2 from asymptomatic people assumes the paramount importance of keeping fragile subjects protected. We evaluated the utility of rapid SARS-CoV-2 antigen testing in asymptomatic subjects attending emergency departments in non-COVID-19 areas, using a single nasopharyngeal swab specimen collected in universal transport medium to perform both rapid antigen testing and rRT-PCR (used as reference standard) in a cohort of 899 patients. In the overall sample, the rapid antigen test had 43.9% sensitivity, 100% specificity, 100% positive predictive value, 93.6% negative predictive value. Considering subjects with rRT-PCR cycle threshold ≤30, the test had 80.4% sensitivity, 100% specificity, 100% positive predictive value, 98.8% negative predictive value. Considering subjects with rRT-PCR cycle threshold ≤25, the test had 94.7% sensitivity, 100% specificity, 100% positive predictive value and 99.7% negative predictive value. Despite low sensitivity, routine application of rapid antigen testing in the emergency department can lead to isolation in less than 30 min of about a half of asymptomatic COVID-19 subjects assigned to non-COVID-19 areas by clinical triage. The rapid test correctly identified 94.7% of asymptomatic patients with cycle threshold ≤ 25 that are supposed to be more infective; thus, it could be a useful measure to contain viral transmission in non-COVID-19 areas.
Collapse
Affiliation(s)
- Marina Borro
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.S.); (I.S.)
- Laboratory of Clinical Biochemistry, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
- Correspondence: (M.B.); (G.S.)
| | - Gerardo Salerno
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.S.); (I.S.)
- Laboratory of Clinical Biochemistry, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
- Correspondence: (M.B.); (G.S.)
| | - Andrea Montori
- Microbiology Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Andrea Petrucca
- Laboratory of Clinical Biochemistry, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Paolo Anibaldi
- Medical Direction, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Adriano Marcolongo
- General Direction, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Rita Bonfini
- Emergency Department Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.S.); (I.S.)
- Laboratory of Clinical Biochemistry, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Iolanda Santino
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sapienza University, Via di Grottarossa 1035/1039, 00189 Rome, Italy; (M.S.); (I.S.)
- Microbiology Unit, Sant’Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy;
| |
Collapse
|
118
|
Phan T, Cravener Z, McCullough M, Mays A, Gribschaw J, Wells A. Clinical evaluation of the Cue's COVID-19 diagnostic test to detect. J Med Virol 2022; 94:3517-3519. [PMID: 35451060 PMCID: PMC9088410 DOI: 10.1002/jmv.27805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/12/2022]
Abstract
Point-of-care testing (POCT) known as near-patient testing has a relatively lower cost and short turnaround time. In this study, we performed the evaluation of the Cues COVID-19 test to detect SARS-CoV-2 in the upper respiratory tract. Given the persistence of the SARS-CoV-2 testing backlog, low availability of testing supply and shortage of licensed personnel in clinical laboratories, we need to migrate more testing capacity to the outpatient setting and the Cue's COVID-19 test is a good option This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tung Phan
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Zachary Cravener
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA, 15261, USA
| | - Melissa McCullough
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA, 15261, USA
| | - Ashley Mays
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA, 15261, USA
| | - Jamie Gribschaw
- Clinical Microbiology Laboratory, UPMC Hospital System, Pittsburgh, PA, 15261, USA
| | - Alan Wells
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
119
|
McClements J, Bar L, Singla P, Canfarotta F, Thomson A, Czulak J, Johnson RE, Crapnell RD, Banks CE, Payne B, Seyedin S, Losada-Pérez P, Peeters M. Molecularly Imprinted Polymer Nanoparticles Enable Rapid, Reliable, and Robust Point-of-Care Thermal Detection of SARS-CoV-2. ACS Sens 2022; 7:1122-1131. [PMID: 35416035 PMCID: PMC9016778 DOI: 10.1021/acssensors.2c00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Rapid antigen tests are currently used for population screening of COVID-19. However, they lack sensitivity and utilize antibodies as receptors, which can only function in narrow temperature and pH ranges. Consequently, molecularly imprinted polymer nanoparticles (nanoMIPs) are synthetized with a fast (2 h) and scalable process using merely a tiny SARS-CoV-2 fragment (∼10 amino acids). The nanoMIPs rival the affinity of SARS-CoV-2 antibodies under standard testing conditions and surpass them at elevated temperatures or in acidic media. Therefore, nanoMIP sensors possess clear advantages over antibody-based assays as they can function in various challenging media. A thermal assay is developed with nanoMIPs electrografted onto screen-printed electrodes to accurately quantify SARS-CoV-2 antigens. Heat transfer-based measurements demonstrate superior detection limits compared to commercial rapid antigen tests and most antigen tests from the literature for both the alpha (∼9.9 fg mL-1) and delta (∼6.1 fg mL-1) variants of the spike protein. A prototype assay is developed, which can rapidly (∼15 min) validate clinical patient samples with excellent sensitivity and specificity. The straightforward epitope imprinting method and high robustness of nanoMIPs produce a SARS-CoV-2 sensor with significant commercial potential for population screening, in addition to the possibility of measurements in diagnostically challenging environments.
Collapse
Affiliation(s)
- Jake McClements
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Laure Bar
- Experimental
Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libré de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Pankaj Singla
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Francesco Canfarotta
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Alan Thomson
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Joanna Czulak
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Rhiannon E. Johnson
- MIP
Diagnostics Ltd., The Exchange Building, Colworth Park, Sharnbrook, Bedford MK44 1LQ, United Kingdom
| | - Robert D. Crapnell
- Faculty
of Science and Engineering, Manchester Metropolitan
University, John Dalton
Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Craig E. Banks
- Faculty
of Science and Engineering, Manchester Metropolitan
University, John Dalton
Building, Chester Street, Manchester M1 5GD, United Kingdom
| | - Brendan Payne
- Department
of Infection and Tropical Medicine, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1
4LP, United Kingdom
- Translational
and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Shayan Seyedin
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Patricia Losada-Pérez
- Experimental
Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libré de Bruxelles, Boulevard du Triomphe CP223, Brussels 1050, Belgium
| | - Marloes Peeters
- School
of Engineering, Newcastle University, Merz Court, Claremont Road, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
120
|
Kawasaki D, Yamada H, Sueyoshi K, Hisamoto H, Endo T. Imprinted Photonic Crystal-Film-Based Smartphone-Compatible Label-Free Optical Sensor for SARS-CoV-2 Testing. BIOSENSORS 2022; 12:200. [PMID: 35448260 PMCID: PMC9026776 DOI: 10.3390/bios12040200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The coronavirus disease (COVID-19) caused by SARS-CoV-2 has caused a global pandemic. To manage and control the spread of the infection, it is crucial to develop and implement technologies for the early identification of infected individuals and rapid informatization in communities. For the realization of such a technology, a widely available and highly usable sensor for sensitive and specific assay of the virus plays a fundamental role. In this study, we developed an optical sensor based on an imprinted photonic crystal film (IPCF) for quick, simple, and cost-effective detection of SARS-CoV-2 spike protein in artificial saliva. Our IPCF sensor enabled label-free and highly sensitive detection with a smartphone-equipped optical setup. The IPCF surface was functionalized with an anti-SARS-CoV-2 spike protein antibody for immunoassay. We evaluated the specificity and sensitivity of the IPCF sensor for quantitative detection of the spike protein in artificial saliva using simple reflectometry with a spectrometer-equipped optical setup. Specific and quantitative detection of the spike protein was successfully achieved, with a low detection limit of 429 fg/mL. In the demonstration of reflectometric detection with a smartphone-equipped setup, the sensitivity was comparable with that with a spectrometer-equipped setup. The test result is returned immediately and can be saved to cloud storage. In addition, it costs less than USD 1 for one IPCF to be used for diagnosis. Thus, the developed IPCF has the potential to realize a widely available and highly usable sensor.
Collapse
Affiliation(s)
- Daiki Kawasaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (D.K.); (H.Y.); (K.S.); (H.H.)
| | - Hirotaka Yamada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (D.K.); (H.Y.); (K.S.); (H.H.)
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (D.K.); (H.Y.); (K.S.); (H.H.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 5-3 Yonban-cho, Chiyoda, Tokyo 102-8666, Japan
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (D.K.); (H.Y.); (K.S.); (H.H.)
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan; (D.K.); (H.Y.); (K.S.); (H.H.)
| |
Collapse
|
121
|
Wang X, Hong XZ, Li YW, Li Y, Wang J, Chen P, Liu BF. Microfluidics-based strategies for molecular diagnostics of infectious diseases. Mil Med Res 2022; 9:11. [PMID: 35300739 PMCID: PMC8930194 DOI: 10.1186/s40779-022-00374-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 02/08/2023] Open
Abstract
Traditional diagnostic strategies for infectious disease detection require benchtop instruments that are inappropriate for point-of-care testing (POCT). Emerging microfluidics, a highly miniaturized, automatic, and integrated technology, are a potential substitute for traditional methods in performing rapid, low-cost, accurate, and on-site diagnoses. Molecular diagnostics are widely used in microfluidic devices as the most effective approaches for pathogen detection. This review summarizes the latest advances in microfluidics-based molecular diagnostics for infectious diseases from academic perspectives and industrial outlooks. First, we introduce the typical on-chip nucleic acid processes, including sample preprocessing, amplification, and signal read-out. Then, four categories of microfluidic platforms are compared with respect to features, merits, and demerits. We further discuss application of the digital assay in absolute nucleic acid quantification. Both the classic and recent microfluidics-based commercial molecular diagnostic devices are summarized as proof of the current market status. Finally, we propose future directions for microfluidics-based infectious disease diagnosis.
Collapse
Affiliation(s)
- Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Xian-Zhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yi-Wei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan National Laboratory for Optoelectronics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430071 China
| | - Jie Wang
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304 USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 China
| |
Collapse
|
122
|
Weishampel ZA, Young J, Fischl M, Fischer RJ, Donkor IO, Riopelle JC, Schulz JE, Port JR, Saturday TA, van Doremalen N, Berry JD, Munster VJ, Yinda CK. OraSure InteliSwab™ Rapid Antigen Test Performance with the SARS-CoV-2 Variants of Concern—Alpha, Beta, Gamma, Delta, and Omicron. Viruses 2022; 14:v14030543. [PMID: 35336950 PMCID: PMC8951130 DOI: 10.3390/v14030543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic have led to the development of various diagnostic tests. The OraSure InteliSwab™ COVID-19 Rapid Test is a recently developed and FDA emergency use-authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern such as Omicron. In this study, the sensitivity of the OraSure InteliSwab™ Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab™ Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants, with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the six VOCs. Ultimately, the OraSure InteliSwab™ COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.
Collapse
Affiliation(s)
- Zachary A. Weishampel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Janean Young
- OraSure Technologies Inc., Research and Development Corporation, Bethlehem, PA 18015, USA; (J.Y.); (M.F.); (J.D.B.)
| | - Mark Fischl
- OraSure Technologies Inc., Research and Development Corporation, Bethlehem, PA 18015, USA; (J.Y.); (M.F.); (J.D.B.)
| | - Robert J. Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Irene Owusu Donkor
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Jade C. Riopelle
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Jonathan E. Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Julia R. Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Taylor A. Saturday
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| | - Jody D. Berry
- OraSure Technologies Inc., Research and Development Corporation, Bethlehem, PA 18015, USA; (J.Y.); (M.F.); (J.D.B.)
| | - Vincent J. Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
- Correspondence:
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA; (Z.A.W.); (R.J.F.); (I.O.D.); (J.C.R.); (J.E.S.); (J.R.P.); (T.A.S.); (N.v.D.); (C.K.Y.)
| |
Collapse
|
123
|
Kim D, Han S, Ji Y, Youn H, Kim H, Ko O, Lee JB. RNA polymerization actuating nucleic acid membrane (RANAM)-based biosensing for universal RNA virus detection. Biosens Bioelectron 2022; 199:113880. [PMID: 34915215 PMCID: PMC8662841 DOI: 10.1016/j.bios.2021.113880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
The coronavirus disease (COVID-19) pandemic has shown the importance of early disease diagnosis in preventing further infection and mortality. Despite major advances in the development of highly precise and rapid detection approaches, the time-consuming process of designing a virus-specific diagnostic kit has been a limiting factor in the early management of the pandemic. Here, we propose an RNA polymerase activity-sensing strategy utilizing an RNA polymerization actuating nucleic acid membrane (RANAM) partially metallized with gold for colorimetric RNA virus detection. Following RANAM-templated amplification of newly synthesized RNA, the presence of the RNA polymerase was determined by visualization of the inhibition of an oxidation/reduction (redox) reaction between 3,3',5,5'-tetramethylbenzidine (TMB) and blocked Au3+. As a proof of concept, a viral RNA-dependent RNA polymerase (RdRP), which is found in various RNA virus-infected cells, was chosen as a target molecule. With this novel RANAM biosensor, as little as 10 min of RdRP incubation could significantly reduce the colorimetric signal. Further development into an easy-to-use prototype kit in viral infection diagnosis detected RdRP present at levels even as low as 100 aM. Color formation based on the presence of RdRP could be simply and clearly confirmed through smartphone-assisted color imaging of the prototype kit. This study provides a non-PCR-based RNA virus detection including its variants using RdRP-mediated polymerization.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Yoonbin Ji
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Heejeong Youn
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Ohsung Ko
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, South Korea.
| |
Collapse
|
124
|
Zhang Z, Fan M, Wang Q, Li H, Zhu C, Ma Y, Fu T. Effects of the resultant force due to two-phase density difference on droplet formation in a step-emulsification microfluidic device. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
125
|
Karako K, Song P, Chen Y, Tang W. Increasing demand for point-of-care testing and the potential to incorporate the Internet of medical things in an integrated health management system. Biosci Trends 2022; 16:4-6. [PMID: 35197419 DOI: 10.5582/bst.2022.01074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the number of people with COVID-19 increases daily around the world, point-of-care testing (POCT) is gaining attention as a tool that can provide immediate test results and greatly help to deter infection and determine what to do next. POCT has several drawbacks such as a low sensitivity and specificity, but according to studies POCT has increased sensitivity on par with that of polymerase chain reaction testing. The advantage of POCT is that the results can be obtained quickly, regardless of the location. To further enhance its benefits, POCT is being developed and researched in conjunction with the Internet of medical things (IoMT), which allows POCT results to be collected, recorded, and managed over a network. IoMT will be beneficial not only for the use of POCT simply as a testing tool but also for its integration into diagnostic and health management systems. IoMT will enable people to regularly receive their test results in their daily lives and to provide personalized diagnosis and treatment of individual conditions, which will be beneficial in terms of disease prevention and maintenance of health.
Collapse
Affiliation(s)
- Kenji Karako
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yu Chen
- Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
126
|
Kumar N, Shetti NP, Jagannath S, Aminabhavi TM. Electrochemical sensors for the detection of SARS-CoV-2 virus. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022; 430:132966. [PMID: 34690533 PMCID: PMC8525496 DOI: 10.1016/j.cej.2021.132966] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Coronavirus (COVID-19), a deadly pandemic has spread worldwide and created many global health issues. Though methods of its detection are being continuously developed for the early detection and monitoring of COVID-19, still there is need for more novel methods. The presently used methods include rapid antigen tests, serological surveys, reverse transcription-polymerase chain reaction (RT-PCR), artificial intelligence-based techniques, and assays based on sensors/biosensors. Of all these, RT-PCR test has high sensitivity and specificity though it requires more time for testing and need for skilled technicians. Recently, electrochemical sensors have been developed for rapid monitoring and detection of SARS-CoV-2 from the patient's biological fluid samples. This review covers the recently developed electrochemical sensors that are focused on the detection of viral nucleic acid, immunoglobulin, antigen, and the entire viral particles. In addition, we also compare and assess their detection limits, sensitivities and specificities for the identification and monitoring of COVID-19. Furthermore, this review will address the best practices for the development of electrochemical sensors such as electrode fouling, limit of detection/limit of quantification determination and verification.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore 560012, India
| | - Nagaraj P Shetti
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| |
Collapse
|
127
|
Kawasaki H, Suzuki H, Furuhashi K, Yamashita K, Ishikawa J, Nagura O, Maekawa M, Miwa T, Tandou T, Hariyama T. Highly Sensitive and Quantitative Diagnosis of SARS-CoV-2 Using a Gold/Platinum Particle-Based Lateral Flow Assay and a Desktop Scanning Electron Microscope. Biomedicines 2022; 10:biomedicines10020447. [PMID: 35203656 PMCID: PMC8962435 DOI: 10.3390/biomedicines10020447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 12/23/2022] Open
Abstract
The gold standard test for identifying SARS-CoV-2, the causative agent of COVID-19, is polymerase chain reaction (PCR). Despite their limited sensitivity, SARS-CoV-2 antigen rapid diagnostic tests are vital tools in the fight against viral spread. Owing to its simplicity and low cost, the lateral flow assay (LFA) is the most extensively used point-of-care diagnostic test. Here, we report a newly designed LFA-NanoSuit method (LNSM) that works in conjunction with desktop scanning electron microscopy (SEM) to detect SARS-CoV-2. LNSM requires no standard SEM treatment, avoids cellulose and residual buffer deformation, and enables the capture of high-resolution images of antibody-labeled gold/platinum particles reacting with SARS-CoV-2 antigens. To assess its applicability, we compared clinical SARS-CoV-2 samples via visual detection of LFA, LSNM detection of LFA, and real-time reverse transcription-PCR (qRT-PCR). Compared to qRT-PCR, LNSM showed 86.7% sensitivity (26/30; 95% confidence interval (CI): 69.28–96.24%) and 93.3% specificity (14/15; 95% CI: 68.05–99.83%) for SARS-CoV-2. In samples with a relatively low SARS-CoV-2 RNA copy number (30 < Ct ≤ 40), the sensitivity of LNSM was greater (73.3%) than that of visual detection (0%). A simple, sensitive, and quantitative LNSM can be used to diagnose SARS-CoV-2.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
- Correspondence: ; Tel.: +81-53-435-2504
| | - Hiromi Suzuki
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
| | - Kazuki Furuhashi
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Keita Yamashita
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Jinko Ishikawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Osanori Nagura
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (K.F.); (K.Y.); (J.I.); (O.N.); (M.M.)
| | - Takafumi Miwa
- Research & Development Group, Hitachi Ltd., 1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan;
| | - Takumi Tandou
- Social Solution Department, Hitachi Social Information Services Ltd., Omori Bellport D 17F, 6-26-3, Minamioi, Shinagawa-ku, Tokyo 140-0013, Japan;
| | - Takahiko Hariyama
- Institute for NanoSuit Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan; (H.S.); (T.H.)
- NanoSuit Inc., 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
128
|
Shiju TM, Tripura C, Saha P, Mansingh A, Challa V, Bhatnagar I, Nagesh N, Asthana A. Ready-to-Use Vertical Flow Paper Device for Instrument-Free Room Temperature Reverse Transcription. N Biotechnol 2022; 68:77-86. [PMID: 35150929 DOI: 10.1016/j.nbt.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 10/19/2022]
Abstract
Paper-based nucleic acid detection and diagnosis are currently gaining much interest in point-of-care (POC) applications. The major steps involved in any nucleic acid amplification testing (NAAT) based diagnostics are nucleic acid isolation, reverse transcription (RT) (in the case of RNA), amplification and detection. RT is an important step in quantifying the viral load in case of disease diagnosis as well as quantifying gene expression levels in other molecular studies. cDNA synthesis is routinely carried out using a thermal cycler, with the process requiring temperatures between 40ºC to 65ºC. Here we report for the first time an instrument-free RT, performed at room temperature on cellulose-based paper devices. cDNA synthesis on paper was confirmed by RT-PCR and Sanger sequencing of the PCR products. Purified RNA from varied sources such as cell lysate, tissue and blood were used to test the methodology. Synthetic hepatitis C virus (HCV) RNA and human blood RNA were used as proof-of-concept to demonstrate the use of these devices in diagnostic applications. Further, ready-to-use paper-based reverse transcription (PRT) devices have been developed, wherein only the RNA sample is added onto the device and the cDNA can be eluted after 30minutes of incubation at room temperature. The devices were found to be stable for 30 days at -20ºC storage. The cellulose-based PRT devices are simple, time saving and user-friendly for a complete instrument-free cDNA synthesis at room temperature.
Collapse
Affiliation(s)
- Thomas Michael Shiju
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Chaturvedula Tripura
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India.
| | - Pritam Saha
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Arushi Mansingh
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Venkatapathi Challa
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Ira Bhatnagar
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Narayana Nagesh
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India
| | - Amit Asthana
- CCMB-Annexe-II, Medical Biotechnology Complex, CSIR- Centre for Cellular & Molecular Biology, Uppal Road, Uppal, Hyderabad - 500 039, Telangana, India; Department of Medical Devices, National Institute of Pharmaceutical Education And Research (NIPER), NH 9, Kukatpally Industrial Estate, Balanagar, Hyderabad - 500037, Telangana, India.
| |
Collapse
|
129
|
Weishampel ZA, Young J, Fischl M, Fischer RJ, Donkor IO, Riopelle JC, Schulz JE, Port JR, Saturday TA, van Doremalen N, Berry JD, Munster VJ, Yinda CK. OraSure InteliSwab ® Rapid Antigen Test performance with the SARS-CoV-2 Variants of Concern Alpha, Beta, Gamma, Delta, and Omicron.. [PMID: 35169818 PMCID: PMC8845516 DOI: 10.1101/2022.02.02.22270254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThe emergence of SARS-CoV-2 in the human population and the resulting COVID-19 pandemic has led to the development of various diagnostic tests. The OraSure InteliSwab® COVID-19 Rapid Test is a recently developed and FDA emergency use authorized rapid antigen-detecting test that functions as a lateral flow device targeting the nucleocapsid protein. Due to SARS-CoV-2 evolution, there is a need to evaluate the sensitivity of rapid antigen-detecting tests for new variants, especially variants of concern like Omicron. In this study, the sensitivity of the OraSure InteliSwab® Test was investigated using cultured strains of the known variants of concern (VOCs, Alpha, Beta, Gamma, Delta, and Omicron) and the ancestral lineage (lineage A). Based on dilution series in cell culture medium, an approximate limit of detection for each variant was determined. The OraSure InteliSwab® Test showed an overall comparable performance using recombinant nucleocapsid protein and different cultured variants with recorded limits of detection ranging between 3.77 × 105 and 9.13 × 105 RNA copies/mL. Finally, the sensitivity was evaluated using oropharyngeal swabs from Syrian golden hamsters inoculated with the 6 VOCs. Ultimately, the OraSure InteliSwab® COVID-19 Rapid Test showed no decrease in sensitivity between the ancestral SARS-CoV-2 strain and any VOCs including Omicron.
Collapse
|
130
|
Digital Microfluidic qPCR Cartridge for SARS-CoV-2 Detection. MICROMACHINES 2022; 13:mi13020196. [PMID: 35208320 PMCID: PMC8874717 DOI: 10.3390/mi13020196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023]
Abstract
Point-of-care (POC) tests capable of individual health monitoring, transmission reduction, and contact tracing are especially important in a pandemic such as the coronavirus disease 2019 (COVID-19). We develop a disposable POC cartridge that can be mass produced to detect the SARS-CoV-2 N gene through real-time quantitative polymerase chain reaction (qPCR) based on digital microfluidics (DMF). Several critical parameters are studied and improved, including droplet volume consistency, temperature uniformity, and fluorescence intensity linearity on the designed DMF cartridge. The qPCR results showed high accuracy and efficiency for two primer-probe sets of N1 and N2 target regions of the SARS-CoV-2 N gene on the DMF cartridge. Having multiple droplet tracks for qPCR, the presented DMF cartridge can perform multiple tests and controls at once.
Collapse
|
131
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Towards application of CRISPR-Cas12a in the design of modern viral DNA detection tools (Review). J Nanobiotechnology 2022; 20:41. [PMID: 35062978 PMCID: PMC8777428 DOI: 10.1186/s12951-022-01246-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Early detection of viral pathogens by DNA-sensors in clinical samples, contaminated foods, soil or water can dramatically improve clinical outcomes and reduce the socioeconomic impact of diseases such as COVID-19. Clustered regularly interspaced short palindromic repeat (CRISPR) and its associated protein Cas12a (previously known as CRISPR-Cpf1) technology is an innovative new-generation genomic engineering tool, also known as 'genetic scissors', that has demonstrated the accuracy and has recently been effectively applied as appropriate (E-CRISPR) DNA-sensor to detect the nucleic acid of interest. The CRISPR-Cas12a from Prevotella and Francisella 1 are guided by a short CRISPR RNA (gRNA). The unique simultaneous cis- and trans- DNA cleavage after target sequence recognition at the PAM site, sticky-end (5-7 bp) employment, and ssDNA/dsDNA hybrid cleavage strategies to manipulate the attractive nature of CRISPR-Cas12a are reviewed. DNA-sensors based on the CRISPR-Cas12a technology for rapid, robust, sensitive, inexpensive, and selective detection of virus DNA without additional sample purification, amplification, fluorescent-agent- and/or quencher-labeling are relevant and becoming increasingly important in industrial and medical applications. In addition, CRISPR-Cas12a system shows great potential in the field of E-CRISPR-based bioassay research technologies. Therefore, we are highlighting insights in this research direction.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania.
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
132
|
Zheng J, Zhu M, Kong J, Li Z, Jiang J, Xi Y, Li F. Microfluidic paper-based analytical device by using Pt nanoparticles as highly active peroxidase mimic for simultaneous detection of glucose and uric acid with use of a smartphone. Talanta 2022; 237:122954. [PMID: 34736679 DOI: 10.1016/j.talanta.2021.122954] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Herein, a simple microfluidic paper-based analytical device (μPAD) by using platinum nanoparticles (Pt NPs) as highly active peroxidase mimic for simultaneous determination of glucose and uric acid was fabricated. The μPAD consisted of one sample transportation layer, four paper-based detection chips, and two layers of hydrophobic polyethylene terephthalate (PET) films. The four detection chips were immobilized with various chromogenic reagents, Pt NPs, and specific oxidase (glucose oxidase or uricase). H2O2 generated by specific enzymatic reactions could oxidize co-immobilized chromogenic reagents to produce colored products by using Pt NPs as efficient catalyst. The multi-layered structure of μPAD could effectively improve the color uniformity and color intensity. Total color intensity from each two detection chips modified with distinct chromogenic reagents were used for quantitative analysis of glucose and uric acid, respectively, resulting in significantly improved sensitivity. The linear range for glucose and uric acid detection was 0.01-5.0 mM and 0.01-2.5 mM, respectively. Satisfied results were obtained for glucose and uric acid detection in real serum samples. An easy-to-use smartphone APP was developed for convenient and intelligent detection. The developed μPAD integrated with smartphone as detector holds great applicability for simple and portable on-site analysis.
Collapse
Affiliation(s)
- Jie Zheng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Min Zhu
- PLA Army Academy of Artillery and Air Defense, Hefei, Anhui, 230031, People's Republic of China
| | - Jiao Kong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Zimu Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Jianming Jiang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Yachao Xi
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Fang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China.
| |
Collapse
|
133
|
Park S, Kim H, Woo K, Kim JM, Jo HJ, Jeong Y, Lee KH. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. NANO LETTERS 2022; 22:50-57. [PMID: 34962130 PMCID: PMC8751015 DOI: 10.1021/acs.nanolett.1c03108] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/18/2021] [Indexed: 05/31/2023]
Abstract
SARS-CoV-2 variants are of particular interest because they can potentially increase the transmissibility and virulence of COVID-19 or reduce the effectiveness of available vaccines. However, screening SARS-CoV-2 variants is a challenge because biosensors target viral components that can mutate. One promising strategy is to screen variants via angiotensin-converting enzyme 2 (ACE2), a virus receptor shared by all known SARS-CoV-2 variants. Here we designed a highly sensitive and portable COVID-19 screening biosensor based on the virus receptor. We chose a dual-gate field-effect transistor to overcome the low sensitivity of virus-receptor-based biosensors. To optimize the biosensor, we introduced a synthetic virus that mimics the important features of SARS-CoV-2 (size, bilayer structure, and composition). The developed biosensor successfully detected SARS-CoV-2 in 20 min and showed sensitivity comparable to that of molecular diagnostic tests (∼165 copies/mL). Our results indicate that a virus-receptor-based biosensor can be an effective strategy for screening infectious diseases to prevent pandemics.
Collapse
Affiliation(s)
- Sungwook Park
- Biomaterials
Research Center, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hojun Kim
- Biomaterials
Research Center, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyungmin Woo
- Biomaterials
Research Center, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jeong-Min Kim
- Division
of Emerging Infectious Diseases, Korea Disease
Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| | - Hye-Jun Jo
- Division
of Emerging Infectious Diseases, Korea Disease
Control and Prevention Agency (KDCA), Cheongju 28159, Republic of Korea
| | - Youngdo Jeong
- Biomaterials
Research Center, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
- Department
of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Kwan Hyi Lee
- Biomaterials
Research Center, Korea Institute of Science
and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST
Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
134
|
Mao R, Wang T, Zhao Y, Wu X, Zhang S, Cai T. Closed dumbbell mediated isothermal amplification of nucleic acids for DNA diagnostic assays. Talanta 2022; 240:123217. [PMID: 35033926 DOI: 10.1016/j.talanta.2022.123217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/05/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
Abstract
Nucleic acid amplification tests have been widely applied in clinical diagnostics, food safety monitoring, and molecular biology. As a well-established isothermal amplification method, Loop-mediated isothermal amplification (LAMP) has gained recognition. However, the need for specifically designed four to six primers and non-specific amplification pose challenges for further application of LAMP based detection methods. Here, a novel isothermal amplification method, termed closed dumbbell mediated isothermal amplification (CDA) of nucleic acids, was developed. The primers are easily designed by adding two different parts of middle sequence to the canonical PCR primers at 5'-ends. CDA method was demonstrated in detecting MERS-CoV orf1a gene and H1N1 gene fragments with merits of short core primer, simple primer design process and high amplification efficiency. In addition, CDA showed excellent amplification efficacy over LAMP and competitive annealing mediated isothermal amplification (CAMP) by slight modification of primers targeting at same sequence. Furthermore, real-time and HNB based colorimetric CDA detection of Shigella were developed for practical application, both exhibited 100% success. In all, the developed CDA method with high specificity, simplicity, efficiency and rapidity has shown its great potential for point of care nucleic acids diagnostic.
Collapse
Affiliation(s)
- Rui Mao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | - Tianzuo Wang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Yue Zhao
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Xinyao Wu
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Shun Zhang
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China
| | - Ting Cai
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| |
Collapse
|
135
|
Zhao Y, Fang X, Yu H, Fu Y, Zhao Y. Universal Exponential Amplification Confers Multilocus Detection of Mutation-Prone Virus. Anal Chem 2022; 94:927-933. [PMID: 34983181 DOI: 10.1021/acs.analchem.1c03702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yue Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Xiaoxing Fang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Huahang Yu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Youlan Fu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an, Shaanxi 710049, P. R. China
| |
Collapse
|
136
|
Gangula A, Kim B, Casey B, Hamill A, Regunath H, Upendran A. Point-of-Care Testing of COVID-19: Current Status, Clinical Impact, and Future Therapeutic Perspectives. SPRINGERBRIEFS IN APPLIED SCIENCES AND TECHNOLOGY 2022:1-70. [DOI: 10.1007/978-981-19-4957-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
137
|
Zhang Z, Ma P, Ahmed R, Wang J, Akin D, Soto F, Liu BF, Li P, Demirci U. Advanced Point-of-Care Testing Technologies for Human Acute Respiratory Virus Detection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103646. [PMID: 34623709 DOI: 10.1002/adma.202103646] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/25/2021] [Indexed: 04/14/2023]
Abstract
The ever-growing global threats to human life caused by the human acute respiratory virus (RV) infections have cost billions of lives, created a significant economic burden, and shaped society for centuries. The timely response to emerging RVs could save human lives and reduce the medical care burden. The development of RV detection technologies is essential for potentially preventing RV pandemic and epidemics. However, commonly used detection technologies lack sensitivity, specificity, and speed, thus often failing to provide the rapid turnaround times. To address this problem, new technologies are devised to address the performance inadequacies of the traditional methods. These emerging technologies offer improvements in convenience, speed, flexibility, and portability of point-of-care test (POCT). Herein, recent developments in POCT are comprehensively reviewed for eight typical acute respiratory viruses. This review discusses the challenges and opportunities of various recognition and detection strategies and discusses these according to their detection principles, including nucleic acid amplification, optical POCT, electrochemistry, lateral flow assays, microfluidics, enzyme-linked immunosorbent assays, and microarrays. The importance of limits of detection, throughput, portability, and specificity when testing clinical samples in resource-limited settings is emphasized. Finally, the evaluation of commercial POCT kits for both essential RV diagnosis and clinical-oriented practices is included.
Collapse
Affiliation(s)
- Zhaowei Zhang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Peng Ma
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Demir Akin
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peiwu Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, National Reference Laboratory for Agricultural Testing (Biotoxin), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, P. R. China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
138
|
Sahebkar A, Abbasifard M, Chaibakhsh S, Guest PC, Pourhoseingholi MA, Vahedian-Azimi A, Kesharwani P, Jamialahmadi T. A Deep Learning Approach to Identify Chest Computed Tomography Features for Prediction of SARS-CoV-2 Infection Outcomes. Methods Mol Biol 2022; 2511:395-404. [PMID: 35838977 DOI: 10.1007/978-1-0716-2395-4_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is still an urgent need to develop effective treatments to help minimize the cases of severe COVID-19. A number of tools have now been developed and applied to address these issues, such as the use of non-contrast chest computed tomography (CT) for evaluation and grading of the associated lung damage. Here we used a deep learning approach for predicting the outcome of 1078 patients admitted into the Baqiyatallah Hospital in Tehran, Iran, suffering from COVID-19 infections in the first wave of the pandemic. These were classified into two groups of non-severe and severe cases according to features on their CT scans with accuracies of approximately 0.90. We suggest that incorporation of molecular and/or clinical features, such as multiplex immunoassay or laboratory findings, will increase accuracy and sensitivity of the model for COVID-19 -related predictions.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Medicine, The University of Western Australia, Perth, Australia.
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Samira Chaibakhsh
- Eye Research Center, The five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mohamad Amin Pourhoseingholi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Vahedian-Azimi
- Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
139
|
Nguyen HQ, Bui HK, Phan VM, Seo TS. An internet of things-based point-of-care device for direct reverse-transcription-loop mediated isothermal amplification to identify SARS-CoV-2. Biosens Bioelectron 2022; 195:113655. [PMID: 34571479 PMCID: PMC8458107 DOI: 10.1016/j.bios.2021.113655] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022]
Abstract
Rapid and accurate testing tools for SARS-CoV-2 detection are urgently needed to prevent the spreading of the virus and to take timely governmental actions. Internet of things (IoT)-based diagnostic devices would be an ideal platform for point-of-care (POC) screening of COVID-19 and ubiquitous healthcare monitoring for patients. Herein, we present an advanced IoT-based POC device for real-time direct reverse-transcription-loop mediated isothermal amplification assay to detect SARS-CoV-2. The diagnostic system is miniaturized (10 cm [height] × 9 cm [width] × 5.5 cm [length]) and lightweight (320 g), which can be operated with a portable battery and a smartphone. Once a liquid sample was loaded into an integrated microfluidic chip, a series of sample lysis, nucleic amplification, and real-time monitoring of the fluorescent signals of amplicons were automatically performed. Four reaction chambers were patterned on the chip, targeting As1e, N, E genes and a negative control, so multiple genes of SARS-CoV-2 could be simultaneously analyzed. The fluorescence intensities in each chamber were measured by a CMOS camera upon excitation with a 488 nm LED light source. The recorded data were processed by a microprocessor inside the IoT-based POC device and transferred and displayed on the wirelessly connected smartphone in real-time. The positive results could be obtained using three primer sets of SARS-CoV-2 with a limit of detection of 2 × 101 genome copies/μL, and the clinical sample of SARS-CoV-2 was successfully analyzed with high sensitivity and accuracy. Our platform could provide an advanced molecular diagnostic tool to test SARS-CoV-2 anytime and anywhere.
Collapse
Affiliation(s)
- Huynh Quoc Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Hoang Khang Bui
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Vu Minh Phan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
140
|
Linert J. Applications of Microfluidics and Nanotechnologies for Point-of-Care Devices. IFAC-PAPERSONLINE 2022; 55:364-369. [DOI: 10.1016/j.ifacol.2022.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
141
|
Wang X, Zhang Z, Wu G, Xu C, Wu J, Zhang X, Liu J. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 14:7-16. [PMID: 34877580 DOI: 10.1039/d1ay01570b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The detection of biomolecular analytes is of great importance in clinical, environmental, and argo-food areas, among which the electrochemical methodology is attracting much attention. In particular, screen-printed electrode (SPE)-based sensing applications have exhibited potential possibility for on-site detection, especially for fast clinical biomarker detection, since they provide a miniaturized but robust and portable electrode detection system. In this context, we focused on the modification of SPE with functional antibodies to improve the electrochemical detection performance in versatile sensing applications, particularly for COVID-19 detection. These antibodies were immobilized onto the electrode surface via various methodologies, through which the powerful potential from the modification of SPE was revealed. Finally, more novel and excellent works on the biomolecular modification of SPE and the prospects of this technology from its state-of-art status to commercialization are previewed and future perspectives in this field are mentioned.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Zhenqi Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Guolin Wu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Chunxia Xu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jianping Wu
- Department of Clinical Laboratory, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xingguo Zhang
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| | - Jian Liu
- Precision Medicine Center, Beilun People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, Zhejiang, 315806, P. R. China.
| |
Collapse
|
142
|
Zhao H, Zhang Y, Chen Y, Ho NRY, Sundah NR, Natalia A, Liu Y, Miow QH, Wang Y, Tambyah PA, Ong CWM, Shao H. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens Bioelectron 2021; 194:113629. [PMID: 34534949 PMCID: PMC8435073 DOI: 10.1016/j.bios.2021.113629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022]
Abstract
Accurate and accessible nucleic acid diagnostics is critical to reducing the spread of COVID-19 and resuming socioeconomic activities. Here, we present an integrated platform for the direct detection of SARS-CoV-2 RNA targets near patients. Termed electrochemical system integrating reconfigurable enzyme-DNA nanostructures (eSIREN), the technology leverages responsive molecular nanostructures and automated microfluidics to seamlessly transduce target-induced molecular activation into an enhanced electrochemical signal. Through responsive enzyme-DNA nanostructures, the technology establishes a molecular circuitry that directly recognizes specific RNA targets and catalytically enhances signaling; only upon target hybridization, the molecular nanostructures activate to liberate strong enzymatic activity and initiate cascading reactions. Through automated microfluidics, the system coordinates and interfaces the molecular circuitry with embedded electronics; its pressure actuation and liquid-guiding structures improve not only analytical performance but also automated implementation. The developed platform establishes a detection limit of 7 copies of RNA target per μl, operates against the complex biological background of native patient samples, and is completed in <20 min at room temperature. When clinically evaluated, the technology demonstrates accurate detection in extracted RNA samples and direct swab lysates to diagnose COVID-19 patients.
Collapse
Affiliation(s)
- Haitao Zhao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Yu Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Qing Hao Miow
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Wang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - Catherine W M Ong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
143
|
Natsuhara D, Saito R, Aonuma H, Sakurai T, Okamoto S, Nagai M, Kanuka H, Shibata T. A method of sequential liquid dispensing for the multiplexed genetic diagnosis of viral infections in a microfluidic device. LAB ON A CHIP 2021; 21:4779-4790. [PMID: 34812455 DOI: 10.1039/d1lc00829c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we introduce polydimethylsiloxane (PDMS)-based microfluidic devices capable of sequential dispensing of samples into multiple reaction microchambers in a single operation to provide a fast and easy sample-to-answer platform for multiplexed genetic diagnosis of multiple viral infectious diseases. This approach utilizes the loop-mediated isothermal amplification (LAMP) method to amplify and detect specific nucleic acid (DNA/RNA) targets. We present a microfluidic flow control theory for sequential liquid dispensing phenomena, which provides design guidelines for device optimization. The device specifications, such as the possible dispensing number and maximal allowable flow rate, can be theoretically designed by optimizing the geometric dimensions of the microchannels and a pair of passive stop valves integrated into each microchamber together with the water contact angles of the materials used to fabricate the microfluidic devices. In addition, a passive stop valve with a vertical-type phaseguide structure was designed to improve device performance. We could simultaneously diagnose coronavirus disease 2019 (COVID-19) and other infectious diseases, such as severe acute respiratory syndrome (SARS), seasonal influenza A, and pandemic influenza A (H1N1) 2009. The colorimetric reverse transcription LAMP (RT-LAMP) assay suggests that the four viral infectious diseases can be detected within 30 min using a hue-based quantitative analysis, and the naked eye using our microfluidic devices.
Collapse
Affiliation(s)
- Daigo Natsuhara
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8560, Japan.
| | - Ryogo Saito
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8560, Japan.
| | - Hiroka Aonuma
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Tatsuya Sakurai
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shunya Okamoto
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8560, Japan.
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8560, Japan.
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takayuki Shibata
- Department of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8560, Japan.
| |
Collapse
|
144
|
Ali MA, Hu C, Yuan B, Jahan S, Saleh MS, Guo Z, Gellman AJ, Panat R. Breaking the barrier to biomolecule limit-of-detection via 3D printed multi-length-scale graphene-coated electrodes. Nat Commun 2021; 12:7077. [PMID: 34873183 PMCID: PMC8648898 DOI: 10.1038/s41467-021-27361-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Sensing of clinically relevant biomolecules such as neurotransmitters at low concentrations can enable an early detection and treatment of a range of diseases. Several nanostructures are being explored by researchers to detect biomolecules at sensitivities beyond the picomolar range. It is recognized, however, that nanostructuring of surfaces alone is not sufficient to enhance sensor sensitivities down to the femtomolar level. In this paper, we break this barrier/limit by introducing a sensing platform that uses a multi-length-scale electrode architecture consisting of 3D printed silver micropillars decorated with graphene nanoflakes and use it to demonstrate the detection of dopamine at a limit-of-detection of 500 attomoles. The graphene provides a high surface area at nanoscale, while micropillar array accelerates the interaction of diffusing analyte molecules with the electrode at low concentrations. The hierarchical electrode architecture introduced in this work opens the possibility of detecting biomolecules at ultralow concentrations.
Collapse
Affiliation(s)
- Md. Azahar Ali
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Chunshan Hu
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Bin Yuan
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Sanjida Jahan
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Mohammad S. Saleh
- grid.147455.60000 0001 2097 0344Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Zhitao Guo
- grid.147455.60000 0001 2097 0344Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Andrew J. Gellman
- grid.147455.60000 0001 2097 0344Department of Chemical Engineering, and Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, PA 15213 USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
145
|
Luong AD, Buzid A, Vashist SK, Luong JHT. Perspectives on electrochemical biosensing of COVID-19. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 30:100794. [PMID: 34250313 PMCID: PMC8254385 DOI: 10.1016/j.coelec.2021.100794] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Rapid detection of human coronavirus disease 2019, termed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 infection, is urgently needed for containment strategy owing to its unprecedented spreading. Novel biosensors can be deployed in remote clinical settings without central facilities for infection screening. Electrochemical biosensors serve as analytical tools for rapid detection of viral structure proteins, mainly spike (S) and nucleocapsid (N) proteins, human immune responses, reactive oxygen species, viral ribonucleic acid, polymerase chain reaction by-products, and other potential biomarkers. The development of point-of-care testing devices is challenging due to the requirement of extensive validation, a time-consuming and expensive step. Together with specific biorecognition molecules, nanomaterial-based biosensors have emerged for the fast detection of early viral infections.
Collapse
Affiliation(s)
- Albert D Luong
- Department of Surgery, Jacobs School of Medicine, University of Buffalo, Buffalo, NY, 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
| | - Sandeep K Vashist
- Pictor Pvt. Ltd., 24 Balfour Road Parnell, Auckland, 1052, New Zealand
| | - John H T Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, Cork, T12 YN60, Ireland
| |
Collapse
|
146
|
|
147
|
Abstract
Global pandemics such as COVID-19 have resulted in significant global social and economic disruption. Although polymerase chain reaction (PCR) is recommended as the standard test for identifying the SARS-CoV-2, conventional assays are time-consuming. In parallel, although artificial intelligence (AI) has been employed to contain the disease, the implementation of AI in PCR analytics, which may enhance the cognition of diagnostics, is quite rare. The information that the amplification curve reveals can reflect the dynamics of reactions. Here, we present a novel AI-aided on-chip approach by integrating deep learning with microfluidic paper-based analytical devices (µPADs) to detect synthetic RNA templates of the SARS-CoV-2 ORF1ab gene. The µPADs feature a multilayer structure by which the devices are compatible with conventional PCR instruments. During analysis, real-time PCR data were synchronously fed to three unsupervised learning models with deep neural networks, including RNN, LSTM, and GRU. Of these, the GRU is found to be most effective and accurate. Based on the experimentally obtained datasets, qualitative forecasting can be made as early as 13 cycles, which significantly enhances the efficiency of the PCR tests by 67.5% (∼40 min). Also, an accurate prediction of the end-point value of PCR curves can be obtained by GRU around 20 cycles. To further improve PCR testing efficiency, we also propose AI-aided dynamic evaluation criteria for determining critical cycle numbers, which enables real-time quantitative analysis of PCR tests. The presented approach is the first to integrate AI for on-chip PCR data analysis. It is capable of forecasting the final output and the trend of qPCR in addition to the conventional end-point Cq calculation. It is also capable of fully exploring the dynamics and intrinsic features of each reaction. This work leverages methodologies from diverse disciplines to provide perspectives and insights beyond the scope of a single scientific field. It is universally applicable and can be extended to multiple areas of fundamental research.
Collapse
|
148
|
Merrick B, Noronha M, Batra R, Douthwaite S, Nebbia G, Snell L, Pickering S, Galao R, Whitfield J, Jahangeer A, Gunawardena R, Godfrey T, Laifa R, Webber K, Cliff P, Cunningham E, Neil S, Gettings H, Edgeworth J, Harrison H. Real-world deployment of lateral flow SARS-CoV-2 antigen detection in the emergency department to provide rapid, accurate and safe diagnosis of COVID-19. Infect Prev Pract 2021; 3:100186. [PMID: 34812417 PMCID: PMC8598289 DOI: 10.1016/j.infpip.2021.100186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Point-of-care (POC) SARS-CoV-2 lateral-flow antigen detection (LFD) testing in the emergency department (ED) could inform rapid infection control decisions but requirements for safe deployment have not been fully defined. METHODS Review of LFD test results, laboratory and POC-RT-PCR results and ED-performance metrics during a two-week high SARS-CoV-2 prevalence period followed by several months of falling prevalence. AIM Determine whether LFD testing can be safely deployed in ED to provide an effective universal SARS-CoV-2 testing capability. FINDINGS 93% (345/371) of COVID-19 patients left ED with a virological diagnosis during the 2-week universal LFD evaluation period compared to 77% with targeted POC-RT-PCR deployment alone, on background of approximately one-third having an NHS Track and Trace RT-PCR test-result at presentation. LFD sensitivity and specificity was 70.7% and 99.1% respectively providing a PPV of 97.7% and NPV of 86.4% with disease prevalence of 34.7%. ED discharge-delays (breaches) attributable to COVID-19 fell to 33/3532 (0.94%) compared with the preceding POC-RT-PCR period (107/4114 (2.6%); p=<0.0001). Importantly, LFD testing identified 1 or 2 clinically-unsuspected COVID-19 patients/day. Three clinically-confirmed LFD false positive patients were appropriately triaged based on LFD action-card flowchart, and only 5 of 95 false-negative LFD results were inappropriately admitted to non-COVID-19 areas where no onward-transmission was identified. LFD testing was restricted to asymptomatic patients when disease prevalence fell below 5% and detected 1-3 cases/week. CONCLUSION Universal SARS-CoV-2 LFD testing can be safely and effectively deployed in ED alongside POC-RT-PCR testing during periods of high and low disease prevalence.
Collapse
Affiliation(s)
- B. Merrick
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - M. Noronha
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - R. Batra
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - S. Douthwaite
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - G. Nebbia
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - L.B. Snell
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - S. Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
| | - R.P. Galao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
| | - J. Whitfield
- Guy's King's and Thomas' School of Medicine, King's College London, UK
| | - A. Jahangeer
- Guy's King's and Thomas' School of Medicine, King's College London, UK
| | - R. Gunawardena
- Guy's King's and Thomas' School of Medicine, King's College London, UK
| | - T. Godfrey
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
| | - R. Laifa
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | | | | | - S.J.D. Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
| | - H. Gettings
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - J.D. Edgeworth
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, UK
- Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - H.L. Harrison
- Emergency Department, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
149
|
Harpaldas H, Arumugam S, Campillo Rodriguez C, Kumar BA, Shi V, Sia SK. Point-of-care diagnostics: recent developments in a pandemic age. LAB ON A CHIP 2021; 21:4517-4548. [PMID: 34778896 PMCID: PMC8860149 DOI: 10.1039/d1lc00627d] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this review, we provide an overview of developments in point-of-care (POC) diagnostics during the COVID-19 pandemic. We review these advances within the framework of a holistic POC ecosystem, focusing on points of interest - both technological and non-technological - to POC researchers and test developers. Technologically, we review design choices in assay chemistry, microfluidics, and instrumentation towards nucleic acid and protein detection for severe acute respiratory coronavirus 2 (SARS-CoV-2), and away from the lab bench, developments that supported the unprecedented rapid development, scale up, and deployment of POC devices. We describe common features in the POC technologies that obtained Emergency Use Authorization (EUA) for nucleic acid, antigen, and antibody tests, and how these tests fit into four distinct POC use cases. We conclude with implications for future pandemics, infectious disease monitoring, and digital health.
Collapse
Affiliation(s)
- Harshit Harpaldas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | - Bhoomika Ajay Kumar
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Vivian Shi
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
150
|
Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, Cruz MT, Moreira FTC, Martins R, Fortunato E, Sales MGF. Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS OMEGA 2021; 6:29268-29290. [PMID: 34778604 PMCID: PMC8577188 DOI: 10.1021/acsomega.1c04012] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - A. Rita Cardoso
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Cristina E. A. Sousa
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Ana C. Marques
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - Ana P. M. Tavares
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Ana Miguel Matos
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical
Engineering Processes and Forest Products Research Center, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Faculty
of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, Coimbra 3004-504, Portugal
| | - Felismina T. C. Moreira
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Rodrigo Martins
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - M. Goreti F. Sales
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| |
Collapse
|