101
|
Bromocriptine and cabergoline induce cell death in prolactinoma cells via the ERK/EGR1 and AKT/mTOR pathway respectively. Cell Death Dis 2019; 10:335. [PMID: 31000722 PMCID: PMC6472389 DOI: 10.1038/s41419-019-1526-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
The treatment of hyperprolactinemia is based on the use of dopamine agonists, mainly bromocriptine (BRC) and cabergoline (CAB). They reduce tumour size effectively and restore gonadal function. However, there is a difference in drug sensitivity between CAB and BRC in patients with prolactinoma, although the underlying mechanisms are still unknown. Thus, we investigated whether there are differences in tumour sensitivity to CAB and BRC and their possible differential mechanisms in two prolactinoma cell lines. In our study, we found that GH3 cells are more sensitive to BRC and that MMQ cells are more sensitive to CAB. Moreover, BRC and CAB elicited cell death via different pathways; BRC induced prolactinoma cell death mainly through the apoptosis pathway, and CAB induced pituitary prolactinoma cell death mainly via the autophagic cell death pathway. Using gene microarray analysis, we found that BRC induces the apoptosis of prolactinoma cells through the ERK/EGR1 signalling pathway, whereas CAB induces autophagic death by inhibiting the AKT/mTOR signalling pathway. Our study showed the difference in tumour sensitivity and differential mechanisms in BRC- and CAB-treated prolactinoma cells, which provides a theoretical basis for the accurate treatment of prolactinoma.
Collapse
|
102
|
Wang H, Feng Z, Xu B. Instructed Assembly as Context-Dependent Signaling for the Death and Morphogenesis of Cells. Angew Chem Int Ed Engl 2019; 58:5567-5571. [PMID: 30801914 PMCID: PMC6456411 DOI: 10.1002/anie.201812998] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 12/28/2022]
Abstract
Context-dependent signaling is a ubiquitous phenomenon in nature, but ways to mimic the essence of these nano- and microscale dynamic molecular processes by noncovalent synthesis in the cellular environment have yet to be developed. Herein we present a dynamic continuum of noncovalent filaments formed by the instructed assembly (iA) of a supramolecular phosphoglycopeptide (sPGP) as context-dependent signals for controlling the death and morphogenesis of cells. Specifically, ectophosphatase enzymes on cancer cells catalyze the formation of sPGP filaments to result in cell death; however, damping of the enzyme activity induces the formation 3D cell spheroids. Similarly, the ratio of stromal and cancer cells in a coculture can be used to modulate the expression of the ectophosphatase, so that the iA process leads to the formation of cell spheroids. The spheroids mimic the tumor microenvironment for drug screening.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA, Fax: (+) 1-781-736-2516,
| | - Zhaoqianqi Feng
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA, Fax: (+) 1-781-736-2516,
| | - Bing Xu
- Department of chemistry, Brandeis University, 415 South St, Waltham, MA 02454, USA, Fax: (+) 1-781-736-2516,
| |
Collapse
|
103
|
Wang H, Feng Z, Xu B. Instructed Assembly as Context‐Dependent Signaling for the Death and Morphogenesis of Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Huaimin Wang
- Department of chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Zhaoqianqi Feng
- Department of chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| | - Bing Xu
- Department of chemistry Brandeis University 415 South Street Waltham MA 02454 USA
| |
Collapse
|
104
|
Antunovic M, Matic I, Nagy B, Caput Mihalic K, Skelin J, Stambuk J, Josipovic P, Dzinic T, Paradzik M, Marijanovic I. FADD-deficient mouse embryonic fibroblasts undergo RIPK1-dependent apoptosis and autophagy after NB-UVB irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:32-45. [PMID: 30904584 DOI: 10.1016/j.jphotobiol.2019.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/13/2019] [Indexed: 11/24/2022]
Abstract
Sun or therapy-related ultraviolet B (UVB) irradiation induces different cell death modalities such as apoptosis, necrosis/necroptosis and autophagy. Understanding of mechanisms implicated in regulation and execution of cell death program is imperative for prevention and treatment of skin diseases. An essential component of death-inducing complex is Fas-associated protein with death domain (FADD), involved in conduction of death signals of different death modalities. The purpose of this study was to enlighten the role of FADD in the selection of cell death mode after narrow-band UVB (NB-UVB) irradiation using specific cell death inhibitors (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone (zVAD-fmk), Necrostatin-1 and 3-Methyladenine) and FADD-deficient (FADD-/-) mouse embryonic fibroblasts (MEFs) and their wild type (wt) counterparts. The results imply that lack of FADD sensitized MEFs to induction of receptor-interacting protein 1 (RIPK1)-dependent apoptosis by the generation of reactive oxygen species (ROS), but without activation of the proteins p53, Bax and Bcl-2 as well as without the enrolment of calpain-2. Autophagy was established as a contributing factor to NB-UVB-induced death execution. By contrast, wt cells triggered intrinsic apoptotic pathway that was resistant to the inhibition by zVAD-fmk and Necrostatin-1 pointing to the mechanism overcoming the cell survival. These findings support the role of FADD in prevention of autophagy-dependent apoptosis.
Collapse
Affiliation(s)
- Maja Antunovic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Igor Matic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Biserka Nagy
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Katarina Caput Mihalic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Josipa Skelin
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Jerko Stambuk
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Pavle Josipovic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tamara Dzinic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Mladen Paradzik
- Department of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia
| | - Inga Marijanovic
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia.
| |
Collapse
|
105
|
Andjelković A, Mordas A, Bruinsma L, Ketola A, Cannino G, Giordano L, Dhandapani PK, Szibor M, Dufour E, Jacobs HT. Expression of the Alternative Oxidase Influences Jun N-Terminal Kinase Signaling and Cell Migration. Mol Cell Biol 2018; 38:e00110-18. [PMID: 30224521 PMCID: PMC6275184 DOI: 10.1128/mcb.00110-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/11/2018] [Accepted: 09/11/2018] [Indexed: 12/25/2022] Open
Abstract
Downregulation of Jun N-terminal kinase (JNK) signaling inhibits cell migration in diverse model systems. In Drosophila pupal development, attenuated JNK signaling in the thoracic dorsal epithelium leads to defective midline closure, resulting in cleft thorax. Here we report that concomitant expression of the Ciona intestinalis alternative oxidase (AOX) was able to compensate for JNK pathway downregulation, substantially correcting the cleft thorax phenotype. AOX expression also promoted wound-healing behavior and single-cell migration in immortalized mouse embryonic fibroblasts (iMEFs), counteracting the effect of JNK pathway inhibition. However, AOX was not able to rescue developmental phenotypes resulting from knockdown of the AP-1 transcription factor, the canonical target of JNK, nor its targets and had no effect on AP-1-dependent transcription. The migration of AOX-expressing iMEFs in the wound-healing assay was differentially stimulated by antimycin A, which redirects respiratory electron flow through AOX, altering the balance between mitochondrial ATP and heat production. Since other treatments affecting mitochondrial ATP did not stimulate wound healing, we propose increased mitochondrial heat production as the most likely primary mechanism of action of AOX in promoting cell migration in these various contexts.
Collapse
Affiliation(s)
- Ana Andjelković
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Amelia Mordas
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Lyon Bruinsma
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Annika Ketola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Giuseppe Cannino
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Luca Giordano
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Praveen K Dhandapani
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marten Szibor
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- BioMediTech Institute, University of Tampere, Tampere, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
106
|
Evaluation of Z-VAD-FMK as an anti-apoptotic drug to prevent granulosa cell apoptosis and follicular death after human ovarian tissue transplantation. J Assist Reprod Genet 2018; 36:349-359. [PMID: 30390176 DOI: 10.1007/s10815-018-1353-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To evaluate the efficiency of ovarian tissue treatment with Z-VAD-FMK, a broad-spectrum caspase inhibitor, to prevent follicle loss induced by ischemia/reperfusion injury after transplantation. METHODS In vitro, granulosa cells were exposed to hypoxic conditions, reproducing early ischemia after ovarian tissue transplantation, and treated with Z-VAD-FMK (50 μM). In vivo, cryopreserved human ovarian fragments (n = 39) were embedded in a collagen matrix containing or not Z-VAD-FMK (50 μM) and xenotransplanted on SCID mice ovaries for 3 days or 3 weeks. RESULTS In vitro, Z-VAD-FMK maintained the metabolic activity of granulosa cells, reduced HGL5 cell death, and decreased PARP cleavage. In vivo, no improvement of follicular pool and global tissue preservation was observed with Z-VAD-FMK in ovarian tissue recovered 3-days post-grafting. Conversely, after 3 weeks of transplantation, the primary follicular density was higher in fragments treated with Z-VAD-FMK. This improvement was associated with a decreased percentage of apoptosis in the tissue. CONCLUSIONS In situ administration of Z-VAD-FMK slightly improves primary follicular preservation and reduces global apoptosis after 3 weeks of transplantation. Data presented herein will help to guide further researches towards a combined approach targeting multiple cell death pathways, angiogenesis stimulation, and follicular recruitment inhibition.
Collapse
|
107
|
Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget 2018; 9:33832-33843. [PMID: 30333913 PMCID: PMC6173468 DOI: 10.18632/oncotarget.26112] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/01/2018] [Indexed: 01/19/2023] Open
Abstract
The cystine-glutamate antiporter subunit xCT suppresses iron-dependent oxidative cell death (ferroptosis) and is therefore a promising target for cancer treatment. Given that cancer cells often show resistance to xCT inhibition resulting in glutathione (GSH) deficiency, however, we here performed a synthetic lethal screen of a drug library to identify agents that sensitize the GSH deficiency-resistant cancer cells to the xCT inhibitor sulfasalazine. This screen identified the oral anesthetic dyclonine which has been recently reported to act as a covalent inhibitor for aldehyde dehydrogenases (ALDHs). Treatment with dyclonine induced intracellular accumulation of the toxic aldehyde 4-hydroxynonenal in a cooperative manner with sulfasalazine. Sulfasalazine-resistant head and neck squamous cell carcinoma (HNSCC) cells were found to highly express ALDH3A1 and knockdown of ALDH3A1 rendered these cells sensitive to sulfasalazine. The combination of dyclonine and sulfasalazine cooperatively suppressed the growth of highly ALDH3A1-expressing HNSCC or gastric tumors that were resistant to sulfasalazine monotherapy. Our findings establish a rationale for application of dyclonine as a sensitizer to xCT-targeted cancer therapy.
Collapse
|
108
|
Masum AA, Yokoi K, Hisamatsu Y, Naito K, Shashni B, Aoki S. Design and synthesis of a luminescent iridium complex-peptide hybrid (IPH) that detects cancer cells and induces their apoptosis. Bioorg Med Chem 2018; 26:4804-4816. [PMID: 30177492 DOI: 10.1016/j.bmc.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/19/2018] [Accepted: 08/11/2018] [Indexed: 11/29/2022]
Abstract
Tumor necrosis factor related apoptosis inducing ligand (TRAIL) triggers the cell-extrinsic apoptosis pathway by complexation with its signaling receptors such as death receptors (DR4 and DR5). TRAIL is a C3-symmetric type II transmembrane protein, consists of three monomeric units. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) also possess a C3-symmetric structure and are known to have excellent luminescence properties. In this study, we report on the design and synthesis of a C3-symmetric and luminescent Ir complex-peptide hybrid (IPH), which contains a cyclic peptide that had been reported to bind to death receptor (DR5). The results of MTT assay of Jurkat, K562 and Molt-4 cells with IPH and co-staining experiments with IPH and an anti-DR5 antibody indicate that IPH binds to DR5 and induces apoptosis in a manner parallel to the DR5 expression level. Mechanistic studies of cell death suggest that apoptosis and necrosis-like cell death are differentiated by the position of the hydrophilic part that connects Ir complex and the peptide units. These findings suggest that IPHs could be a promising tool for controlling apoptosis and necrosis by activation of the extra-and intracellular cell death pathway and to develop new anticancer drugs that detect cancer cells and induce their cell death.
Collapse
Affiliation(s)
- Abdullah-Al Masum
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kana Naito
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Babita Shashni
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
109
|
Luminescent Iridium Complex-Peptide Hybrids (IPHs) for Therapeutics of Cancer: Design and Synthesis of IPHs for Detection of Cancer Cells and Induction of Their Necrosis-Type Cell Death. Bioinorg Chem Appl 2018; 2018:7578965. [PMID: 30154833 PMCID: PMC6092981 DOI: 10.1155/2018/7578965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Death receptors (DR4 and DR5) offer attractive targets for cancer treatment because cancer cell death can be induced by apoptotic signal upon binding of death ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with death receptors. Cyclometalated iridium(III) complexes such as fac-Ir(tpy)3 (tpy = 2-(4-tolyl)pyridine) possess a C3-symmetric structure like TRAIL and exhibit excellent luminescence properties. Therefore, cyclometalated Ir complexes functionalized with DR-binding peptide motifs would be potent TRAIL mimics to detect cancer cells and induce their cell death. In this study, we report on the design and synthesis of C3-symmetric and luminescent Ir complex-peptide hybrids (IPHs), which possess cyclic peptide that had been reported to bind DR5. The results of 27 MHz quartz-crystal microbalance (QCM) measurements of DR5 with IPHs and costaining experiments of IPHs and anti-DR5 antibody, suggest that IPHs bind with DR5 and undergo internalization into cytoplasm, possibly via endocytosis. It was also found that IPHs induce slow cell death of these cancer cells in a parallel manner to the DR5 expression level. These results indicate that IPHs may offer a promising tool as artificial luminescent mimics of death ligands to develop a new category of anticancer agents that detect and kill cancer cells.
Collapse
|
110
|
Anticancer chemotherapy and radiotherapy trigger both non-cell-autonomous and cell-autonomous death. Cell Death Dis 2018; 9:716. [PMID: 29915308 PMCID: PMC6006149 DOI: 10.1038/s41419-018-0747-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism. Under conditions of treatment with paclitaxel, non-cell-autonomous and cell-autonomous death were both detected in the treated cell population, while untreated neighboring cells exhibited features of apoptotic demise. The transcriptional activity of p53 tumor-suppressor protein contributed to the execution of cell-autonomous death, yet failed to affect the non-cell-autonomous death by cannibalism for the majority of tested anticancer agents, indicating that the induction of non-cell-autonomous death can occur under conditions in which cell-autonomous death was impaired. Altogether, these results reveal that chemotherapy and radiotherapy can induce both non-cell-autonomous and cell-autonomous death of cancer cells, highlighting the heterogeneity of cell death responses to anticancer treatments and the unsuspected potential contribution of non-cell-autonomous death to the global effects of anticancer treatment.
Collapse
|
111
|
Interferon-γ and Smac mimetics synergize to induce apoptosis of lung cancer cells in a TNFα-independent manner. Cancer Cell Int 2018; 18:84. [PMID: 29946223 PMCID: PMC6001173 DOI: 10.1186/s12935-018-0579-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022] Open
Abstract
Background The prognosis of lung cancer is very poor and hence new therapeutic strategies are urgently desired. In this study, we searched for efficacious Smac mimetic-based combination therapies with biomarkers to predict responses for non-small cell lung cancer (NSCLC). Methods NSCLC cell lines and normal human alveolar epithelial cells were treated with Smac mimetics plus IFNγ or other agonists and cell viabilities were assessed by MTS assay, cell counting, flow cytometry and cell colony assay. Western blot analysis was performed to assess the cleavage (activation) of caspases and expression of signaling molecules. Caspase activity was determined to verify caspase activation. The pathways involved in NSCLC cell death were investigated using specific inhibitors. Results We found that IFNγ could cooperate with various Smac mimetics to trigger a profound apoptosis in a number of NSCLC cell lines that are competent for IFNγ signaling (i.e. expressing IFNγ receptor-1 and STAT1) but have low expression levels of inhibitor of apoptosis proteins survivin and livin without harming normal human lung epithelial cells. IFNγ co-treatment with a novel class dimeric Smac mimetic AZD5582 eradicated NSCLC cell colony formation. Unlike IFNγ, IFNα, IFNλ, TNFα, or TRAIL alone or plus AZD5582 had minor effects on NSCLC cell viability. IFNγ/AZD5582-induced cell death in NSCLC cells was independent of TNFα autocrine but relied on apoptosis mediated by JAK kinase, caspase 8 and RIPK1 pathways. Conclusion Our results indicate that IFNγ and Smac mimetics can synergize to induce apoptosis of NSCLC cells and suggest that IFNγ and Smac mimetic regimen may be a novel and efficacious apoptosis targeted therapy with biomarkers to predict responses for NSCLC cells.
Collapse
|
112
|
Mechanism of gasdermin D recognition by inflammatory caspases and their inhibition by a gasdermin D-derived peptide inhibitor. Proc Natl Acad Sci U S A 2018; 115:6792-6797. [PMID: 29891674 DOI: 10.1073/pnas.1800562115] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The inflammasomes are signaling platforms that promote the activation of inflammatory caspases such as caspases-1, -4, -5, and -11. Recent studies identified gasdermin D (GSDMD) as an effector for pyroptosis downstream of the inflammasome signaling pathways. Cleavage of GSDMD by inflammatory caspases allows its N-terminal domain to associate with membrane lipids and form pores that induce pyroptotic cell death. Despite the important role of GSDMD in pyroptosis, the molecular mechanisms of GSDMD recognition and cleavage by inflammatory caspases that trigger pyroptosis are poorly understood. Here, we demonstrate that the catalytic domains of inflammatory caspases can directly bind to both the full-length GSDMD and its cleavage site peptide, FLTD. A GSDMD-derived inhibitor, N-acetyl-Phe-Leu-Thr-Asp-chloromethylketone (Ac-FLTD-CMK), inhibits GSDMD cleavage by caspases-1, -4, -5, and -11 in vitro, suppresses pyroptosis downstream of both canonical and noncanonical inflammasomes, as well as reduces IL-1β release following activation of the NLRP3 inflammasome in macrophages. By contrast, the inhibitor does not target caspase-3 or apoptotic cell death, suggesting that Ac-FLTD-CMK is a specific inhibitor for inflammatory caspases. Crystal structure of caspase-1 in complex with Ac-FLTD-CMK reveals extensive enzyme-inhibitor interactions involving both hydrogen bonds and hydrophobic contacts. Comparison with other caspase-1 structures demonstrates drastic conformational changes at the four active-site loops that assemble the catalytic groove. The present study not only contributes to our understanding of GSDMD recognition by inflammatory caspases but also reports a specific inhibitor for these caspases that can serve as a tool for investigating inflammasome signaling.
Collapse
|
113
|
Zhang Y, Zhan X, Xiong J, Peng S, Huang W, Joshi R, Cai Y, Liu Y, Li R, Yuan K, Zhou N, Min W. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 2018; 8:8720. [PMID: 29880902 PMCID: PMC5992202 DOI: 10.1038/s41598-018-26978-1] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Photothermal therapy (PTT) is a promising approach for cancer targeting therapy. However, the temperature-dependent killing of tumor cells in PTT remains unclear. In this study, we report necroptosis plays a role in the anti-tumor effects observed in gold nanorod (GNR)-mediated PTT in melanoma. We first synthesized gold nanorods with a targeting adaptor FA (GNRs-FA), which achieved high efficacy of targeted delivery to melanoma cells. We further demonstrated PTT, precipitated by GNRs-FA under the induction of near-infrared laser, was temperature-dependent. Furthermore, the photothermal killing of melanoma cells showed different patterns of cell death depending on varying temperature in PTT. In a lower temperature at 43 °C, the percentages of apoptosis, necroptosis and necrosis of tumor cells were 10.2%, 18.3%, and 17.6%, respectively, suggesting the cell killing is ineffective at lower temperatures. When the temperature increased to 49 °C, the cell death pattern switched to necrosis dominant (52.8%). Interestingly, when the PTT achieved a moderate temperature of 46 °C, necroptosis was significantly increased (35.1%). Additionally, GNRs-FA/PPT-mediated necroptosis was regulated by RIPK1 pathway. Taken together, this study is the first to demonstrate that temperature-dependent necroptosis is an important mechanism of inducing melanoma cell death in GNR-mediated PTT in addition to apoptosis and necrosis.
Collapse
Affiliation(s)
- Yujuan Zhang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States.
| | - Xuelin Zhan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Juan Xiong
- Department of Preventive Medicine, School of Medicine, Shenzhen University, Shenzhen, China
| | - Shanshan Peng
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Wei Huang
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rakesh Joshi
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada
| | - Ying Cai
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Yanling Liu
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Rong Li
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
| | - Keng Yuan
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Nanjin Zhou
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China
| | - Weiping Min
- Institute of immunotherapy and College of Basic Medicine of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.
- Jiangxi Provincial Key Laboratory of Immunotherapy, Nanchang, China.
- Department of Surgery, Pathology and Oncology, University of Western Ontario, London, Canada.
| |
Collapse
|
114
|
New 1,2,4-triazole-Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells. Eur J Med Chem 2018; 151:705-722. [DOI: 10.1016/j.ejmech.2018.03.073] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 11/30/2022]
|
115
|
Sborgi L, Ude J, Dick MS, Vesin J, Chambon M, Turcatti G, Broz P, Hiller S. Assay for high-throughput screening of inhibitors of the ASC-PYD inflammasome core filament. Cell Stress 2018; 2:82-90. [PMID: 31225471 PMCID: PMC6551747 DOI: 10.15698/cst2018.04.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The protein ASC is a central component of most inflammasome complexes, forming functional oligomeric filaments that activate large amounts of pro-caspase-1 for further IL-1β processing and the induction of Gasdermin D-dependent cell death. The central role of inflammasomes in the innate immune response pose them as new molecular targets for therapy of diverse acute, chronic and inherited autoinflammatory pathologies. In recent years, an increasing number of molecules were proposed to modulate inflammasome signalling by interacting with different components of inflammasome complexes. However, the difficult in vitro reconstitution of the inflammasome has limited the development of specific on-target biochemical assays for compound activity confirmation and for drug discovery in high throughput screening setups. Here we describe a homogeneous, pH-based ASC oligomerization assay that employs fluorescence anisotropy (FA) to monitor the in vitro filament formation of the PYD domain of human ASC. The absence of additional solubility tags as well as of proteolytic enzymes to initiate the filament reaction makes this assay suitable for testing the direct effect of small molecules on filament formation in high throughput format. The ability of the assay to detect modulators of filament formation was confirmed by using a non-filament forming PYD mutant. The high and reproducible Z’-factor of 0.7 allowed to screen 10,100 compounds by high-throughput screening (HTS) aiming to identify inhibitors of ASC filament. While none of these molecules was able to inhibit ASC filament formation in vitro, the assay is directly amenable to screen other compound classes or validate candidate molecules from other screens.
Collapse
Affiliation(s)
- Lorenzo Sborgi
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| | - Johanna Ude
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| | - Mathias S Dick
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marc Chambon
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Petr Broz
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056 Basel, Switzerland
| |
Collapse
|
116
|
Hofmans S, Devisscher L, Martens S, Van Rompaey D, Goossens K, Divert T, Nerinckx W, Takahashi N, De Winter H, Van Der Veken P, Goossens V, Vandenabeele P, Augustyns K. Tozasertib Analogues as Inhibitors of Necroptotic Cell Death. J Med Chem 2018; 61:1895-1920. [DOI: 10.1021/acs.jmedchem.7b01449] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sam Hofmans
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Lars Devisscher
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Sofie Martens
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Dries Van Rompaey
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Kenneth Goossens
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Wim Nerinckx
- Unit for Medical Biotechnology, Center for Medical Biotechnology, VIB, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Laboratory for Protein Biochemistry and Biomolecular Engineering, Department of Biochemistry and Microbiology, Ghent University, K.L.-Ledeganckstraat 35, Ghent 9000, Belgium
| | - Nozomi Takahashi
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| | - Vera Goossens
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Technologiepark 927, Zwijnaarde-Ghent 9052, Belgium
- Methusalem Program, Ghent University, Ghent 9000, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp 2610, Belgium
| |
Collapse
|
117
|
Wu X, Li Z, Shen Y. The small molecule CS1 inhibits mitosis and sister chromatid resolution in HeLa cells. Biochim Biophys Acta Gen Subj 2018; 1862:1134-1147. [PMID: 29410075 DOI: 10.1016/j.bbagen.2018.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mitosis, the most dramatic event in the cell cycle, involves the reorganization of virtually all cellular components. Antimitotic agents are useful for dissecting the mechanism of this reorganization. Previously, we found that the small molecule CS1 accumulates cells in G2/M phase [1], but the mechanism of its action remains unknown. METHODS Cell cycle analysis, live cell imaging and nuclear staining were used. Chromosomal morphology was detected by chromosome spreading. The effects of CS1 on microtubules were confirmed by tubulin polymerization, colchicine tubulin-binding, cellular tubulin polymerization and immunofluorescence assays and by analysis of microtubule dynamics and molecular modeling. Histone phosphoproteomics was performed using mass spectrometry. Cell signaling cascades were analyzed using immunofluorescence, immunoprecipitation, immunoblotting, siRNA knockdown and chemical inhibition of specific proteins. RESULTS The small molecule CS1 was shown to be an antimitotic agent. CS1 potently inhibited microtubule polymerization via interaction with the colchicine-binding pocket of tubulin in vitro and inhibited the formation of the spindle apparatus by reducing the bulk of growing microtubules in HeLa cells, which led to activation of the spindle assembly checkpoint (SAC) and mitotic arrest of HeLa cells. Compared with colchicine, CS1 impaired the progression of sister chromatid resolution independent of cohesin dissociation, and this was reversed by the removal of CS1. Additionally, CS1 induced unique histone phosphorylation patterns distinct from those induced by colchicine. CONCLUSIONS AND SIGNIFICANCE CS1 is a unique antimitotic small molecule and a powerful tool with unprecedented value over colchicine that makes it possible to specifically and conditionally perturb mitotic progression.
Collapse
Affiliation(s)
- Xingkang Wu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, PR China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, PR China; State Key Laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, PR China.
| |
Collapse
|
118
|
Abstract
Cysteine thiols are involved in a diverse set of biological transformations, including nucleophilic and redox catalysis, metal coordination and formation of both dynamic and structural disulfides. Often posttranslationally modified, cysteines are also frequently alkylated by electrophilic compounds, including electrophilic metabolites, drugs, and natural products, and are attractive sites for covalent probe and drug development. Quantitative proteomics combined with activity-based protein profiling has been applied to annotate cysteine reactivity, susceptibility to posttranslational modifications, and accessibility to chemical probes, uncovering thousands of functional and small-molecule targetable cysteines across a diverse set of proteins, proteome-wide in an unbiased manner. Reactive cysteines have been targeted by high-throughput screening and fragment-based ligand discovery efforts. New cysteine-reactive electrophiles and compound libraries have been synthesized to enable inhibitor discovery broadly and to minimize nonspecific toxicity and off-target activity of compounds. With the recent blockbuster success of several covalent inhibitors, and the development of new chemical proteomic strategies to broadly identify reactive, ligandable and posttranslationally modified cysteines, cysteine profiling is poised to enable the development of new potent and selective chemical probes and even, in some cases, new drugs.
Collapse
|
119
|
Cis-trimethoxy resveratrol induces intrinsic apoptosis via prometaphase arrest and prolonged CDK1 activation pathway in human Jurkat T cells. Oncotarget 2017; 9:4969-4984. [PMID: 29435156 PMCID: PMC5797027 DOI: 10.18632/oncotarget.23576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cis-trimethoxy resveratrol (cis-3M-RES) induced dose-dependent cytotoxicity and apoptotic DNA fragmentation in Jurkat T cell clones (JT/Neo); however, it induced only cytostasis in BCL-2-overexpressing cells (JT/BCL-2). Treatment with 0.25 μM cis-3M-RES induced G2/M arrest, BAK activation, Δψm loss, caspase-9 and caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage in JT/Neo cells time-dependently but did not induce these events, except G2/M arrest, in JT/BCL-2 cells. Moreover, cis-3M-RES induced CDK1 activation, BCL-2 phosphorylation at Ser-70, MCL-1 phosphorylation at Ser-159/Thr-163, and BIM (BIMEL and BIML) phosphorylation irrespective of BCL-2 overexpression. Enforced G1/S arrest by using a G1/S blocker aphidicolin completely inhibited cis-3M-RES-induced apoptotic events. Cis-3M-RES-induced phosphorylation of BCL-2 family proteins and mitochondrial apoptotic events were suppressed by a validated CDK1 inhibitor RO3306. Immunofluorescence microscopy showed that cis-3M-RES induced mitotic spindle defects and prometaphase arrest. The rate of intracellular polymeric tubulin to monomeric tubulin decreased markedly by cis-3M-RES (0.1-1.0 μM). Wild-type Jurkat clone A3, FADD-deficient Jurkat clone I2.1, and caspase-8-deficient Jurkat clone I9.2 exhibited similar susceptibilities to the cytotoxicity of cis-3M-RES, excluding contribution of the extrinsic death receptor-dependent pathway to the apoptosis. IC50 values of cis-3M-RES against Jurkat E6.1, U937, HL-60, and HeLa cells were 0.07-0.17 μM, whereas those against unstimulated human peripheral T cells and phytohaemagglutinin A-stimulated peripheral T cells were >10.0 and 0.23 μM, respectively. These results indicate that the antitumor activity of cis-3M-RES is mediated by microtubule damage, and subsequent prometaphase arrest and prolonged CDK1 activation that cause BAK-mediated mitochondrial apoptosis, and suggest that cis-3M-RES is a promising agent to treat leukemia.
Collapse
|
120
|
Pugh JL, Nemat-Gorgani N, Norman PJ, Guethlein LA, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. THE JOURNAL OF IMMUNOLOGY 2017; 200:1146-1158. [PMID: 29263215 DOI: 10.4049/jimmunol.1700542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The extent of NK cell activity during the innate immune response affects downstream immune functions and, ultimately, the outcome of infectious or malignant disease. However, the mechanisms that terminate human NK cell responses have yet to be defined. When activation receptors expressed on NK cell surfaces bind to ligands on diseased cells, they initiate a signal that is propagated by a number of intracellular kinases, including Zap70 and Syk, eventually leading to NK cell activation. We assayed Zap70 and Syk content in NK cells from healthy human donors and identified a subset of NK cells with unusually low levels of these two kinases. We found that this Zap70lowSyklow subset consisted of NK cells expressing a range of surface markers, including CD56hi and CD56low NK cells. Upon in vitro stimulation with target cells, Zap70lowSyklow NK cells failed to produce IFN-γ and lysed target cells at one third the capacity of Zap70hiSykhi NK cells. We determined two independent in vitro conditions that induce the Zap70lowSyklow phenotype in NK cells: continuous stimulation with activation beads and DNA damage. The expression of inhibitory receptors, including NKG2A and inhibitory killer Ig-like receptors (KIRs), was negatively correlated with the Zap70lowSyklow phenotype. Moreover, expression of multiple KIRs reduced the likelihood of Zap70 downregulation during continuous activation, regardless of whether NK cells had been educated through KIR-HLA interactions in vivo. Our findings show that human NK cells are able to terminate their functional activity without the aid of other immune cells through the downregulation of activation kinases.
Collapse
Affiliation(s)
- Jason L Pugh
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
121
|
Veloria JR, Li L, Breen GAM, Goux WJ. Novel Cell Model for Tauopathy Induced by a Cell-Permeable Tau-Related Peptide. ACS Chem Neurosci 2017; 8:2734-2745. [PMID: 28837764 DOI: 10.1021/acschemneuro.7b00275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the present study, a cell penetrating peptide (CPP)-amyloid conjugate was prepared (T-peptide), where the amyloid-forming sequence was homologous to a nucleating sequence from human Tau protein (306VQIVYK311). Kinetic and biophysical studies showed the peptide formed long-lived oligomers which were taken up by endocytosis and localized in perinuclear vesicles and in the cytoplasm of murine hippocampal neuroblastoma cells and human HeLa cells. Thioflavin S (ThS) staining of amyloid colocalized with pathological phosphorylated Tau, suggesting that the peptide was able to seed endogenous wild-type Tau. Subsequent experiments showed that aggregates present in the lysosomes mediated lysosome membrane permeability (LMP). We observed a decrease in total Tau, irrespective of phosphorylation state, consistent with Tau fragmentation by lysosomal proteases. We found cytotoxicity of T-peptide could be abrogated by inhibitors of lysosomal hydrolases and caspases, consistent with a model where Tau fragments processed by the lysosome leak into the cytoplasm and induce toxicity in subsequent downstream steps. It is our hope that the T-peptide system may prove amenable to the evaluation of small molecule inhibitors of cytotoxicity, especially those which target either Tau aggregation or the lysosomal/autophagy system.
Collapse
Affiliation(s)
- John R. Veloria
- Department
of Biological Sciences and ‡Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Lin Li
- Department
of Biological Sciences and ‡Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Gail A. M. Breen
- Department
of Biological Sciences and ‡Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Warren J. Goux
- Department
of Biological Sciences and ‡Department of Chemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
122
|
Aztopal N, Erkisa M, Erturk E, Ulukaya E, Tokullugil AH, Ari F. Valproic acid, a histone deacetylase inhibitor, induces apoptosis in breast cancer stem cells. Chem Biol Interact 2017; 280:51-58. [PMID: 29225137 DOI: 10.1016/j.cbi.2017.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/15/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
Cancer stem-like cells (CSCs) are a cell subpopulation that can reinitiate tumors, resist chemotherapy, give rise to metastases and lead to disease relapse because of an acquired resistance to apoptosis. Especially, epigenetic alterations play a crucial role in the regulation of stemness and also have been implicated in the development of drug resistance. Hence, in the present study, we examined the cytotoxic and apoptotic activity of valproic acid (VPA) as an inhibitor of histone deacetylases (HDACs) against breast CSCs (BCSCs). Increased expression of stemness markers were determined by western blotting in mammospheres (MCF-7s, a cancer stem cell-enriched population) propagated from parental MCF-7 cells. Anti-growth activity of VPA was determined via ATP viability assay. The sphere formation assay (SFA) was performed to assess the inhibitory effect of VPA on the self-renewal capacity of MCF-7s cells. Acetylation of histon H3 was detected with ELISA assay. Cell death mode was performed by Hoechst dye 33342 and propidium iodide-based flouresent stainings (for pyknosis and membrane integrity), by M30 and M65 ELISA assays (for apoptosis and primary or secondary necrosis) as well as cytofluorimetric analysis (caspase 3/7 activity and annexin-V-FITC staining for early and late stage apoptosis). VPA exhibited anti-growth effect against both MCF-7 and MCF-7s cells in a dose (0.6-20 mM) and time (24, 48, 72 h) dependent manner. As expected, MCF-7s cells were found more resistant to VPA than MCF-7 cells. It was observed that VPA prevented mammosphere formation at relatively lower doses (2.5 and 5 mM) while the acetylation of histon H3 was increased. At the same doses, VPA increased the M30 levels, annexin-V-FITC positivity and caspase 3/7 activation, implying the induction of apoptosis. The secondary necrosis (late stage of apoptosis) was also evidenced by nuclear pyknosis with propidium iodide staining positivity. Taken together, inhibition of HDACs is cytotoxic to BCSCs by apoptosis. Our results suggested that targeting the epigenetic regulation of histones may be a novel approach and hold significant promise for successful treatment of breast cancer.
Collapse
Affiliation(s)
- Nazlıhan Aztopal
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Merve Erkisa
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey; Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey
| | - Elif Erturk
- Uludag University, Vocational School of Health Services, Bursa, Turkey
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Clinical Biochemistry, Istanbul, Turkey
| | | | - Ferda Ari
- Uludag University, Science and Art Faculty, Department of Biology, Bursa, Turkey.
| |
Collapse
|
123
|
Pisano C, Balistreri CR, Ricasoli A, Ruvolo G. Cardiovascular Disease in Ageing: An Overview on Thoracic Aortic Aneurysm as an Emerging Inflammatory Disease. Mediators Inflamm 2017; 2017:1274034. [PMID: 29203969 PMCID: PMC5674506 DOI: 10.1155/2017/1274034] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/16/2017] [Accepted: 09/28/2017] [Indexed: 02/07/2023] Open
Abstract
Medial degeneration associated with thoracic aortic aneurysm and acute aortic dissection was originally described by Erdheim as a noninflammatory lesion related to the loss of smooth muscle cells and elastic fibre fragmentation in the media. Recent evidences propose the strong role of a chronic immune/inflammatory process in aneurysm evocation and progression. The coexistence of inflammatory cells with markers of apoptotic vascular cell death in the media of ascending aorta with aneurysms and type A dissections raises the possibility that activated T cells and macrophages may contribute to the elimination of smooth muscle cells and degradation of the matrix. On the other hand, several inflammatory pathways (including TGF-β, TLR-4 interferon-γ, chemokines, and interferon-γ) seem to be involved in the medial degeneration related to aged and dilated aorta. This is an overview on thoracic aortic aneurysm as an emerging inflammatory disease.
Collapse
Affiliation(s)
- Calogera Pisano
- Cardiac Surgery Unit, “P. Giaccone” University Hospital, Palermo, Italy
| | - Carmela Rita Balistreri
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | | | - Giovanni Ruvolo
- Cardiac Surgery Unit, Tor Vergata University Hospital, Rome, Italy
| |
Collapse
|
124
|
Feng Z, Wang H, Chen X, Xu B. Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. J Am Chem Soc 2017; 139:15377-15384. [PMID: 28990765 PMCID: PMC5669277 DOI: 10.1021/jacs.7b07147] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Enzyme-instructed
self-assembly (EISA) represents a dynamic continuum
of supramolecular nanostructures that selectively inhibits cancer
cells via simultaneously targeting multiple hallmark capabilities
of cancer, but how to design the small molecules for EISA from the
vast molecular space remains an unanswered question. Here we show
that the self-assembling ability of small molecules controls the anticancer
activity of EISA. Examining the EISA precursor analogues consisting
of an N-capped d-tetrapeptide, a phosphotyrosine residue,
and a diester or a diamide group, we find that, regardless of the
stereochemistry and the regiochemistry of their tetrapeptidic backbones,
the anticancer activities of these precursors largely match their
self-assembling abilities. Additional mechanistic studies confirm
that the assemblies of the small peptide derivatives result in cell
death, accompanying significant rearrangement of cytoskeletal proteins
and plasma membranes. These results imply that the diester or diamide
derivatives of the d-tetrapeptides self-assemble pericellularly,
as well as intracellularly, to result in cell death. As the first
case to correlate thermodynamic properties (e.g., self-assembling
ability) of small molecules with the efficacy of a molecule process
against cancer cells, this work provides an important insight for
developing a molecular dynamic continuum for potential cancer therapy,
as well as understanding the cytotoxicity of pathogenic assemblies.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Huaimin Wang
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Xiaoyi Chen
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
125
|
Elkis Y, Cohen M, Yaffe E, Satmary-Tusk S, Feldman T, Hikri E, Nyska A, Feiglin A, Ofran Y, Shpungin S, Nir U. A novel Fer/FerT targeting compound selectively evokes metabolic stress and necrotic death in malignant cells. Nat Commun 2017; 8:940. [PMID: 29038547 PMCID: PMC5643328 DOI: 10.1038/s41467-017-00832-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2017] [Indexed: 12/31/2022] Open
Abstract
Disruption of the reprogrammed energy management system of malignant cells is a prioritized goal of targeted cancer therapy. Two regulators of this system are the Fer kinase, and its cancer cell specific variant, FerT, both residing in subcellular compartments including the mitochondrial electron transport chain. Here, we show that a newly developed inhibitor of Fer and FerT, E260, selectively evokes metabolic stress in cancer cells by imposing mitochondrial dysfunction and deformation, and onset of energy-consuming autophagy which decreases the cellular ATP level. Notably, Fer was also found to associate with PARP-1 and E260 disrupted this association thereby leading to PARP-1 activation. The cooperative intervention with these metabolic pathways leads to energy crisis and necrotic death in malignant, but not in normal human cells, and to the suppression of tumors growth in vivo. Thus, E260 is a new anti-cancer agent which imposes metabolic stress and cellular death in cancer cells. The tyrosine-kinases Fer/FerT associate with the mitochondrial electron transport chain in cancer cells supporting their metabolic reprogramming. Here the authors discover a compound that disrupts Fer /FerT activity and selectively induces cell death of cancer cell lines displaying anti-tumor activity in vivo.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Moshe Cohen
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Etai Yaffe
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shirly Satmary-Tusk
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tal Feldman
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Elad Hikri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Abraham Nyska
- Consultant in Toxicological Pathology, Timrat, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, 36576, Israel
| | - Ariel Feiglin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yanay Ofran
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
126
|
Lorente E, Barriga A, García-Arriaza J, Lemonnier FA, Esteban M, López D. Complex antigen presentation pathway for an HLA-A*0201-restricted epitope from Chikungunya 6K protein. PLoS Negl Trop Dis 2017; 11:e0006036. [PMID: 29084215 PMCID: PMC5679651 DOI: 10.1371/journal.pntd.0006036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/09/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The adaptive cytotoxic T lymphocyte (CTL)-mediated immune response is critical for clearance of many viral infections. These CTL recognize naturally processed short viral antigenic peptides bound to human leukocyte antigen (HLA) class I molecules on the surface of infected cells. This specific recognition allows the killing of virus-infected cells. The T cell immune T cell response to Chikungunya virus (CHIKV), a mosquito-borne Alphavirus of the Togaviridae family responsible for severe musculoskeletal disorders, has not been fully defined; nonetheless, the importance of HLA class I-restricted immune response in this virus has been hypothesized. METHODOLOGY/PRINCIPAL FINDINGS By infection of HLA-A*0201-transgenic mice with a recombinant vaccinia virus that encodes the CHIKV structural polyprotein (rVACV-CHIKV), we identified the first human T cell epitopes from CHIKV. These three novel 6K transmembrane protein-derived epitopes are presented by the common HLA class I molecule, HLA-A*0201. One of these epitopes is processed and presented via a complex pathway that involves proteases from different subcellular locations. Specific chemical inhibitors blocked these events in rVACV-CHIKV-infected cells. CONCLUSIONS/SIGNIFICANCE Our data have implications not only for the identification of novel Alphavirus and Togaviridae antiviral CTL responses, but also for analyzing presentation of antigen from viruses of different families and orders that use host proteinases to generate their mature envelope proteins.
Collapse
Affiliation(s)
- Elena Lorente
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Alejandro Barriga
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - François A. Lemonnier
- Unité d'Immunité Cellulaire Antivirale, Département d'Immunologie, Institut Pasteur, France
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Daniel López
- Unidad de Procesamiento Antigénico, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
127
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
128
|
Li J, Shi J, Medina JE, Zhou J, Du X, Wang H, Yang C, Liu J, Yang Z, Dinulescu DM, Xu B. Selectively Inducing Cancer Cell Death by Intracellular Enzyme-Instructed Self-Assembly (EISA) of Dipeptide Derivatives. Adv Healthc Mater 2017; 6:10.1002/adhm.201601400. [PMID: 28233466 PMCID: PMC5550337 DOI: 10.1002/adhm.201601400] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Indexed: 12/12/2022]
Abstract
Tight ligand-receptor binding, paradoxically, is a major root of drug resistance in cancer chemotherapy. To address this problem, instead of using conventional inhibitors or ligands, this paper focuses on the development of a novel process-enzyme-instructed self-assembly (EISA)-to kill cancer cells selectively. Here it is demonstrated that EISA as an intracellular process to generate nanofibrils of short peptides for selectively inhibiting cancer cell proliferation, including drug resistant ones. As the process that turns the non-self-assembling precursors into the self-assembling peptides upon the catalysis of carboxylesterases (CES), EISA occurs intracellularly to selectively inhibit a range of cancer cells that exhibit relatively high CES activities. More importantly, EISA inhibits drug resistant cancer cells (e.g., triple negative breast cancer cells (HCC1937) and platinum-resistant ovarian cells (SKOV3, A2780cis)). With the IC50 values of 28-80 and 25-44 µg mL-1 of l- and d-dipeptide precursors against cancer cells, respectively, EISA is innocuous to normal cells. Moreover, using coculture of cancer and normal cells, the selectivity of EISA is validated against cancer cells. Besides revealing that intracellular EISA cause apoptosis or necroptosis to kill the cancer cells, this work illustrates a new approach to amplify the enzymatic difference between cancer and normal cells and to expand the pool of drug candidates for potentially overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Jie Li
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Junfeng Shi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jamie E Medina
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Zhou
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Xuewen Du
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cuihong Yang
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Jianfeng Liu
- Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Daniela M Dinulescu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
129
|
Mehta A, Ramachandra CJA, Chitre A, Singh P, Lua CH, Shim W. Acetylated Signal Transducer and Activator of Transcription 3 Functions as Molecular Adaptor Independent of Transcriptional Activity During Human Cardiogenesis. Stem Cells 2017; 35:2129-2137. [DOI: 10.1002/stem.2665] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore; Singapore
- Cardiovascular Academic Clinical Program, DUKE-NUS Medical School; Singapore
| | | | - Anuja Chitre
- National Heart Research Institute Singapore; Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore; Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore; Singapore
| | - Winston Shim
- National Heart Research Institute Singapore; Singapore
- Cardiovascular and Metabolic Disorders Program; DUKE-NUS Medical School; Singapore
| |
Collapse
|
130
|
Flamme M, Cressey PB, Lu C, Bruno PM, Eskandari A, Hemann MT, Hogarth G, Suntharalingam K. Induction of Necroptosis in Cancer Stem Cells using a Nickel(II)-Dithiocarbamate Phenanthroline Complex. Chemistry 2017; 23:9674-9682. [PMID: 28556445 DOI: 10.1002/chem.201701837] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 12/27/2022]
Abstract
The cytotoxic properties of a series of nickel(II)-dithiocarbamate phenanthroline complexes is reported. The complexes 1-6 kill bulk cancer cells and cancer stem cells (CSCs) with micromolar potency. Two of the complexes, 2 and 6, kill twice as many breast cancer stem cell (CSC)-enriched HMLER-shEcad cells as compared to breast CSC-depleted HMLER cells. Complex 2 inhibits mammosphere formation to a similar extent as salinomycin (a CSC-specific toxin). Detailed mechanistic studies suggest that 2 induces CSC death by necroptosis, a programmed form of necrosis. Specifically, 2 triggers MLKL phosphorylation, oligomerization, and translocation to the cell membrane. Additionally, 2 induces necrosome-mediated propidium iodide (PI) uptake and mitochondrial membrane depolarisation, as well as morphological changes consistent with necroptotosis. Strikingly, 2 does not evoke necroptosis by intracellular reactive oxygen species (ROS) production or poly(ADP) ribose polymerase (PARP-1) activation.
Collapse
Affiliation(s)
- Marie Flamme
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Paul B Cressey
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Chunxin Lu
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Peter M Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Arvin Eskandari
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | - Michael T Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Graeme Hogarth
- Department of Chemistry, King's College London, London, SE1 1DB, UK
| | | |
Collapse
|
131
|
Montolio M, Téllez N, Biarnés M, Soler J, Montanya E. Short-Term Culture with the Caspase Inhibitor z-VAD.fmk Reduces Beta Cell Apoptosis in Transplanted Islets and Improves the Metabolic Outcome of the Graft. Cell Transplant 2017; 14:59-65. [PMID: 15789663 DOI: 10.3727/000000005783983269] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the initial days after transplantation islets are particularly vulnerable and show increased apoptosis and necrosis. We have studied the effects of caspase inhibition on this early beta cell death in syngeneically transplanted islets. Streptozotocin-diabetic C57BL/6 mice were transplanted with 150 syngeneic islets, an insufficient mass to restore normoglycemia, preincubated with or without the pan-caspase inhibitor z-VAD. fmk 2 h before transplantation. Beta cell apoptosis was increased in control islets on day 3 after transplantation (0.28 ± 0.02%) compared with freshly isolated islets (0.08 ± 0.02%, p< 0.001), and was partially reduced in transplanted islets preincubated with z-VAD.fmk 200 μM (0.14 ± 0.02%, p = 0.003) or with z-VAD.fmk 500 μM (0.17 ± 0.01%, p = 0.012), but not with a lower z-VAD.fmk (100 μM) concentration. Diabetic mice transplanted with islets preincubated with z-VAD.fmk 500 μM showed an improved metabolic evolution compared with control and z-VAD.fmk 200 μM groups. The z-VAD.fmk 500 μM group showed an overall lower blood glucose after transplantation (p = 0.02), and at the end of the study blood glucose values were reduced compared with transplantation day (15.7 ± 3.6 vs. 32.5 ± 0.5 mmol/L, p = 0.001). In contrast, blood glucose was not significantly changed in control and z-VAD.fmk 200 μM groups. Four weeks after transplantation beta cell mass was higher in z-VAD.fmk 500 μM group (0.15 ± 0.02 mg) than in the control group (0.10 ± 0.02 mg) (p = 0.043). In summary, the treatment of freshly isolated islets with the caspase inhibitor z-VAD.fmk reduced the subsequent apoptosis of the islets once they were transplanted and improved the outcome of the graft.
Collapse
Affiliation(s)
- Marta Montolio
- Laboratory of Diabetes and Experimental Endocrinology, Endocrine Unit, IDIBELL-Hospital Universitari de Bellvitge, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
132
|
Lin G, Zhu S, Wu Y, Song C, Wang W, Zhang Y, Chen YL, He Z. ω-3 free fatty acids and all-trans retinoic acid synergistically induce growth inhibition of three subtypes of breast cancer cell lines. Sci Rep 2017; 7:2929. [PMID: 28592877 PMCID: PMC5462805 DOI: 10.1038/s41598-017-03231-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
All-trans retinoic acid (ATRA), one of vitamin A derivatives, shows greater growth inhibition of breast cancer cell for ER-positive than ER-negative cells, while triple negative breast cancer cell such as MDA-MB-231 cell is poorly responsive to ATRA treatment. In this study, we found that combination of ω-3 free fatty acids (ω-3 FFAs) and ATRA exhibited synergistic inhibition of cell growth in three subtypes (ER+ MCF7, HER2+ SK-BR-3, Triple negative HCC1806 and MDA-MB-231 cells) of human breast cancer cell lines. The combined treatment of ω-3 FFAs and ATRA resulted in cell cycle arrest. ω-3 FFAs combined with ATRA synergistically provoked cell apoptosis via the caspase signals but not p53. These findings suggest that combined chemotherapy of ω-3 FFAs with ATRA is beneficial for improvement of ATRA sensitivity in breast cancer cells.
Collapse
Affiliation(s)
- Guangxiao Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Shenglong Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yikuan Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Ci Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Wanjing Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yuan Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China
| | - Yue-Lei Chen
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, P.R. China.
| | - Zhao He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Synergistic Innovation Center for Food Safety and Nutrition, Jiangnan University, Wuxi, 214122, China.
- School of Medicine, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
133
|
Bieri R, Scherr N, Ruf MT, Dangy JP, Gersbach P, Gehringer M, Altmann KH, Pluschke G. The Macrolide Toxin Mycolactone Promotes Bim-Dependent Apoptosis in Buruli Ulcer through Inhibition of mTOR. ACS Chem Biol 2017; 12:1297-1307. [PMID: 28294596 DOI: 10.1021/acschembio.7b00053] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mycolactone, the macrolide exotoxin produced by Mycobacterium ulcerans, is central to the pathogenesis of the chronic necrotizing skin disease Buruli ulcer (BU). Here we show that mycolactone acts as an inhibitor of the mechanistic Target of Rapamycin (mTOR) signaling pathway by interfering with the assembly of the two distinct mTOR protein complexes mTORC1 and mTORC2, which regulate different cellular processes. Inhibition of the assembly of the rictor containing mTORC2 complex by mycolactone prevents phosphorylation of the serine/threonine protein kinase Akt. The associated inactivation of Akt leads to the dephosphorylation and activation of the Akt-targeted transcription factor FoxO3. Subsequent up-regulation of the FoxO3 target gene BCL2L11 (Bim) increases expression of the pro-apoptotic regulator Bim, driving mycolactone treated mammalian cells into apoptosis. The central role of Bim-dependent apoptosis in BU pathogenesis deduced from our experiments with cultured mammalian cells was further verified in an experimental M. ulcerans infection model. As predicted by the model, M. ulcerans infected Bim knockout mice did not develop necrotic BU lesions with large clusters of extracellular bacteria, but were able to contain the mycobacterial multiplication. Our findings provide a new coherent and comprehensive concept of BU pathogenesis.
Collapse
Affiliation(s)
- Raphael Bieri
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Nicole Scherr
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Jean-Pierre Dangy
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| | - Philipp Gersbach
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Matthias Gehringer
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department
of Chemistry and Applied Biosciences, Institute of Pharmaceutical
Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University of Basel, Petersplatz
1, 4003 Basel, Switzerland
| |
Collapse
|
134
|
Deoxypodophyllotoxin, a semi-synthetic compound from Dysosma versipellis, induces selective cell death in human breast cancer cell lines. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1844-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
135
|
A trans-platinum(II) complex induces apoptosis in cancer stem cells of breast cancer. Bioorg Med Chem 2017; 25:269-276. [DOI: 10.1016/j.bmc.2016.10.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 11/18/2022]
|
136
|
Wang H, Feng Z, Wang Y, Zhou R, Yang Z, Xu B. Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. J Am Chem Soc 2016; 138:16046-16055. [PMID: 27960313 PMCID: PMC5291163 DOI: 10.1021/jacs.6b09783] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeting organelles by modulating the redox potential of mitochondria is a promising approach to kill cancer cells that minimizes acquired drug resistance. However, it lacks selectivity because mitochondria perform essential functions for (almost) all cells. We show that enzyme-instructed self-assembly (EISA), a bioinspired molecular process, selectively generates the assemblies of redox modulators (e.g., triphenyl phosphinium (TPP)) in the pericellular space of cancer cells for uptake, which allows selectively targeting the mitochondria of cancer cells. The attachment of TPP to a pair of enantiomeric, phosphorylated tetrapeptides produces the precursors (L-1P or D-1P) that form oligomers. Upon dephosphorylation catalyzed by ectophosphatases (e.g., alkaline phosphatase (ALP)) overexpressed on cancer cells (e.g., Saos2), the oligomers self-assemble to form nanoscale assemblies only on the surface of the cancer cells. The cancer cells thus uptake these assemblies of TPP via endocytosis, mainly via a caveolae/raft-dependent pathway. Inside the cells, the assemblies of TPP-peptide conjugates escape from the lysosome, induce dysfunction of mitochondria to release cytochrome c, and result in cell death, while the controls (i.e., omitting TPP motif, inhibiting ALP, or removing phosphate trigger) hardly kill the Saos2 cells. Most importantly, the repeated stimulation of the cancers by the precursors, unexpectedly, sensitizes the cancer cells to the precursors. As the first example of the integration of subcellular targeting with cell targeting, this study validates the spatial control of the assemblies of nonspecific cytotoxic agents by EISA as a promising molecular process for selectively killing cancer cells without inducing acquired drug resistance.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States.,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Youzhi Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Rong Zhou
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Collaborative Innovation Center of Chemical Science, Nankai University , Tianjin 300071, P.R. China
| | - Bing Xu
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
137
|
Gan H, Hao Q, Idell S, Tang H. Interferon-γ promotes double-stranded RNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1101-L1112. [PMID: 27793801 DOI: 10.1152/ajplung.00278.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022] Open
Abstract
Viral respiratory tract infections are the most common illness in humans. Infection of the respiratory viruses results in accumulation of viral replicative double-stranded RNA (dsRNA), which is one of the important components of infecting viruses for the induction of lung epithelial cell apoptosis and innate immune response, including the production of interferon (IFN). In the present study, we have investigated the regulation of dsRNA-induced airway epithelial cell apoptosis by IFN. We found that transcription factor Runx3 was strongly induced by type-II IFNγ, slightly by type-III IFNλ, but essentially not by type-I IFNα in airway epithelial cells. IFNγ-induced expression of Runx3 was predominantly mediated by JAK-STAT1 pathway and partially by NF-κB pathway. Interestingly, Runx3 can be synergistically induced by IFNγ with a synthetic analog of viral dsRNA polyinosinic-polycytidylic acid [poly(I:C)] or tumor necrosis factor-α (TNFα) through both JAK-STAT1 and NF-κB pathways. We further found that dsRNA poly(I:C)-induced apoptosis of airway epithelial cells was mediated by dsRNA receptor toll-like receptor 3 (TLR3) and was markedly augmented by IFNγ through the enhanced expression of TLR3 and subsequent activation of both extrinsic and intrinsic apoptosis pathways. Last, we demonstrated that upregulation of Runx3 by IFNγ promoted TLR3 expression, thus amplifying the dsRNA-induced apoptosis in airway epithelial cells. These novel findings indicate that IFNγ promotes dsRNA-induced TLR3-dependent apoptosis via upregulation of transcription factor Runx3 in airway epithelial cells. Findings from our study may provide new insights into the regulation of airway epithelial cell apoptosis by IFNγ during viral respiratory tract infection.
Collapse
Affiliation(s)
- Huachen Gan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Qin Hao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and.,Texas Lung Injury Institute, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Hua Tang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas; and
| |
Collapse
|
138
|
Thansa K, Yocawibun P, Suksodsai H. The cellular death pattern of primary haemocytes isolated from the black tiger shrimp (Penaeus monodon). FISH & SHELLFISH IMMUNOLOGY 2016; 57:243-251. [PMID: 27561625 DOI: 10.1016/j.fsi.2016.08.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/03/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
A key to successfully generate the penaeid shrimp cell line is to find out how primary cells died. The most suitable period to culture Penaeus monodon haemocytes was in the first 48 h of culture because cells had normal morphology, high percent of viable cells (65.29 ± 5.43%), low percent of early (11.75 ± 1.30%) and late apoptotic cells (15.47 ± 11.71%) determined by Annexin V and TUNEL including constant IAP (0.06 ± 0.01-0.07 ± 0.01) and caspase-3 expression (0.30 ± 0.06-0.39 ± 0.10) by real-time PCR throughout the experiment. Moreover, adding 50 and 250 μM of the cell permeable pan caspase inhibitor Z-VAD-FMK produced some melanised cells since the 48(th) hour, while percent of viable cells was decreased since the 24(th) hour with no difference in percent of early and late apoptotic cells compared to control at each time point. No difference of IAP and caspase-3 expression level in both Z-VAD-FMK groups was found compared to control and vehicle groups at each time point, excluding caspase-3 in 250 μM Z-VAD-FMK at the 24(th) hour was higher than control and vehicle. Supplementing sodium fluoride (NaF) induced cell membrane damage and cellular shrinkage of primary haemocytes within 2 h. Even percent of viable cells was reduced down to zero and percent of late apoptotic cells was increased by 2 h of incubation in 25 and 50 mM NaF, IAP and caspase-3 in all NaF groups was not different from control. These results indicate that a number of primary haemocytes derived in this study die through the apoptotic process.
Collapse
Affiliation(s)
- Kwanta Thansa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| | - Patchari Yocawibun
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand; Center of Excellence for Marine Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Hathaitip Suksodsai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand.
| |
Collapse
|
139
|
Wang H, Feng Z, Wu D, Fritzsching KJ, Rigney M, Zhou J, Jiang Y, Schmidt-Rohr K, Xu B. Enzyme-Regulated Supramolecular Assemblies of Cholesterol Conjugates against Drug-Resistant Ovarian Cancer Cells. J Am Chem Soc 2016; 138:10758-61. [PMID: 27529637 PMCID: PMC5010010 DOI: 10.1021/jacs.6b06075] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
We
report that phosphotyrosine–cholesterol conjugates effectively
and selectively kill cancer cells, including platinum-resistant ovarian
cancer cells. The conjugate increases the degree of noncovalent oligomerization
upon enzymatic dephosphorylation in aqueous buffer. This enzymatic
conversion also results in the assembly of the cholesterol conjugates
inside and outside cells and leads to cell death. Preliminary mechanistic
studies suggest that the formed assemblies of the conjugates not only
interact with actin filaments and microtubules but also affect lipid
rafts. As the first report of multifaceted supramolecular assemblies
of cholesterol conjugates against cancer cells, this work illustrates
the integration of enzyme catalysis and self-assembly of essential
biological small molecules on and inside cancer cells as a promising
strategy for developing multifunctional therapeutics to treat drug-resistant
cancers.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Dongdong Wu
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Keith J Fritzsching
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Mike Rigney
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Yujie Jiang
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University , 415 South Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
140
|
Feng Z, Wang H, Du X, Shi J, Li J, Xu B. Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chem Commun (Camb) 2016; 52:6332-5. [PMID: 27087169 PMCID: PMC4855835 DOI: 10.1039/c6cc02282k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Here we reported the first case in which enhancing self-assembling ability boosts anti-cancer efficacy through a simple and minimal modification of the C-terminus of a d-tripeptide. By only a 2% change of the molecular weight, this facile approach increases the inhibitory activity by over an order of magnitude (IC50 from 431 to 23 μM) towards an osteosarcoma cell line.
Collapse
Affiliation(s)
- Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 2016; 127:2890-902. [PMID: 27099147 DOI: 10.1182/blood-2015-11-683581] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
Up to 30% of patients with acute myeloid leukemia have constitutively activating internal tandem duplications (ITDs) of the FLT3 receptor tyrosine kinase. Such mutations are associated with a poor prognosis and a high propensity to relapse after remission. FLT3 inhibitors are being developed as targeted therapy for FLT3-ITD(+) acute myeloid leukemia; however, their use is complicated by rapid development of resistance, which illustrates the need for additional therapeutic targets. We show that the US Food and Drug Administration-approved CDK4/6 kinase inhibitor palbociclib induces apoptosis of FLT3-ITD leukemic cells. The effect is specific for FLT3-mutant cells and is ascribed to the transcriptional activity of CDK6: CDK6 but not its functional homolog CDK4 is found at the promoters of the FLT3 and PIM1 genes, another important leukemogenic driver. There CDK6 regulates transcription in a kinase-dependent manner. Of potential clinical relevance, combined treatment with palbociclib and FLT3 inhibitors results in synergistic cytotoxicity. Simultaneously targeting two critical signaling nodes in leukemogenesis could represent a therapeutic breakthrough, leading to complete remission and overcoming resistance to FLT3 inhibitors.
Collapse
|
142
|
Cocaine elicits autophagic cytotoxicity via a nitric oxide-GAPDH signaling cascade. Proc Natl Acad Sci U S A 2016; 113:1417-22. [PMID: 26787898 DOI: 10.1073/pnas.1524860113] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cocaine exerts its behavioral stimulant effects by facilitating synaptic actions of neurotransmitters such as dopamine and serotonin. It is also neurotoxic and broadly cytotoxic, leading to overdose deaths. We demonstrate that the cytotoxic actions of cocaine reflect selective enhancement of autophagy, a process that physiologically degrades metabolites and cellular organelles, and that uncontrolled autophagy can also lead to cell death. In brain cultures, cocaine markedly increases levels of LC3-II and depletes p62, both actions characteristic of autophagy. By contrast, cocaine fails to stimulate cell death processes reflecting parthanatos, monitored by cleavage of poly(ADP ribose)polymerase-1 (PARP-1), or necroptosis, assessed by levels of phosphorylated mixed lineage kinase domain-like protein. Pharmacologic inhibition of autophagy protects neurons against cocaine-induced cell death. On the other hand, inhibition of parthanatos, necroptosis, or apoptosis did not change cocaine cytotoxicity. Depletion of ATG5 or beclin-1, major mediators of autophagy, prevents cocaine-induced cell death. By contrast, depleting caspase-3, whose cleavage reflects apoptosis, fails to alter cocaine cytotoxicity, and cocaine does not alter caspase-3 cleavage. Moreover, depleting PARP-1 or RIPK1, key mediators of parthanatos and necroptosis, respectively, did not prevent cocaine-induced cell death. Autophagic actions of cocaine are mediated by the nitric oxide-glyceraldehyde-3-phosphate dehydrogenase signaling pathway. Thus, cocaine-associated autophagy is abolished by depleting GAPDH via shRNA; by the drug CGP3466B, which prevents GAPDH nitrosylation; and by mutating cysteine-150 of GAPDH, its site of nitrosylation. Treatments that selectively influence cocaine-associated autophagy may afford therapeutic benefit.
Collapse
|
143
|
The Vitamin A Derivative All-Trans Retinoic Acid Repairs Amyloid-β-Induced Double-Strand Breaks in Neural Cells and in the Murine Neocortex. Neural Plast 2016; 2016:3707406. [PMID: 26881107 PMCID: PMC4735929 DOI: 10.1155/2016/3707406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/13/2015] [Indexed: 12/17/2022] Open
Abstract
The amyloid-β peptide or Aβ is the key player in the amyloid-cascade hypothesis of Alzheimer's disease. Aβ appears to trigger cell death but also production of double-strand breaks (DSBs) in aging and Alzheimer's disease. All-trans retinoic acid (RA), a derivative of vitamin A, was already known for its neuroprotective effects against the amyloid cascade. It diminishes, for instance, the production of Aβ peptides and their oligomerisation. In the present work we investigated the possible implication of RA receptor (RAR) in repair of Aβ-induced DSBs. We demonstrated that RA, as well as RAR agonist Am80, but not AGN 193109 antagonist, repair Aβ-induced DSBs in SH-SY5Y cells and an astrocytic cell line as well as in the murine cortical tissue of young and aged mice. The nonhomologous end joining pathway and the Ataxia Telangiectasia Mutated kinase were shown to be involved in RA-mediated DSBs repair in the SH-SY5Y cells. Our data suggest that RA, besides increasing cell viability in the cortex of young and even of aged mice, might also result in targeted DNA repair of genes important for cell or synaptic maintenance. This phenomenon would remain functional up to a point when Aβ increase and RA decrease probably lead to a pathological state.
Collapse
|
144
|
Sica V, Manic G, Kroemer G, Vitale I, Galluzzi L. Cytofluorometric Quantification of Cell Death Elicited by NLR Proteins. Methods Mol Biol 2016; 1417:231-245. [PMID: 27221495 DOI: 10.1007/978-1-4939-3566-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nucleotide-binding domain and leucine-rich repeat containing (NLR) proteins, also known as NOD-like receptors, are critical components of the molecular machinery that senses intracellular danger signals to initiate an innate immune response against invading pathogens or endogenous sources of hazard. The best characterized effect of NLR signaling is the secretion of various cytokines with immunostimulatory effects, including interleukin (IL)-1β and IL-18. Moreover, at least under specific circumstances, NLRs can promote regulated variants of cell death. Here, we detail two protocols for the cytofluorometric quantification of cell death-associated parameters that can be conveniently employed to assess the lethal activity of specific NLRs or their ligands.
Collapse
Affiliation(s)
- Valentina Sica
- Gustave Roussy Cancer Campus, Villejuif, France
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Faculté de Medicine, Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | | | - Guido Kroemer
- INSERM, U1138, Paris, France
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute, Rome, Italy
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus, Villejuif, France.
- INSERM, U1138, Paris, France.
- Equipe 11, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine, Paris, 75005, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, 12 Rue de E'cole de Medecine, 75006, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
145
|
Sica V, Maiuri MC, Kroemer G, Galluzzi L. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry. Methods Mol Biol 2016; 1419:1-16. [PMID: 27108427 DOI: 10.1007/978-1-4939-3581-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.
Collapse
Affiliation(s)
- Valentina Sica
- Gustave Roussy Cancer Campus, Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 15, rue de l'Ecole de Médecine, 75006, Paris, France
- INSERM, U1138, Paris, France
- Faculté de Medicine, Université Paris Saclay/Paris XI, Le Kremlin-Bicêtre, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
| | - M Chiara Maiuri
- Gustave Roussy Cancer Campus, Villejuif, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 15, rue de l'Ecole de Médecine, 75006, Paris, France
- INSERM, U1138, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 15, rue de l'Ecole de Médecine, 75006, Paris, France.
- INSERM, U1138, Paris, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou AP-HP, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus, Villejuif, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 15, rue de l'Ecole de Médecine, 75006, Paris, France.
- INSERM, U1138, Paris, France.
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.
- Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
146
|
Transcription Factor Runx3 Is Induced by Influenza A Virus and Double-Strand RNA and Mediates Airway Epithelial Cell Apoptosis. Sci Rep 2015; 5:17916. [PMID: 26643317 PMCID: PMC4672321 DOI: 10.1038/srep17916] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022] Open
Abstract
Influenza A virus (IAV) targets airway epithelial cells and exploits the host cell machinery to replicate, causing respiratory illness in annual epidemics and pandemics of variable severity. The high rate of antigenic drift (viral mutation) and the putative antigenic shift (reassortant strains) have raised the need to find the host cell inducible factors modulating IAV replication and its pathogenesis to develop more effective antiviral treatment. In this study, we found for the first time that transcription factor Runx3, a developmental regulator and tumor suppressor, was induced by IAV H1N1 and H3N2, viral RNA, a synthetic analog of viral double-stranded RNA (dsRNA) polyinosinic-polycytidylic acid, and type-II interferon-γ (IFNγ) in human airway epithelial cells. Whereas Runx3 was essentially not induced by type-I IFNα and type-III IFNλ, we show that Runx3 induction by IAV infection and viral RNA is mediated through the innate immune receptor MDA5 and the IκB kinase-β−NF-κB pathway. Moreover, we provide substantial evidence indicating that Runx3 plays a crucial role in airway epithelial cell apoptosis induced by IAV infection and dsRNA through the activation of extrinsic and intrinsic apoptosis pathways. Thus, we have identified Runx3 as an inducible and important transcription factor modulating IAV-induced host epithelial cell apoptosis.
Collapse
|
147
|
Mohanty S, Dal Molin M, Ganguli G, Padhi A, Jena P, Selchow P, Sengupta S, Meuli M, Sander P, Sonawane A. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages. Tuberculosis (Edinb) 2015; 96:44-57. [PMID: 26786654 DOI: 10.1016/j.tube.2015.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium tuberculosis (Mtb) survives inside the macrophages by modulating the host immune responses in its favor. The 6-kDa early secretory antigenic target (ESAT-6; esxA) of Mtb is known as a potent virulence and T-cell antigenic determinant. At least 23 such ESAT-6 family proteins are encoded in the genome of Mtb; however, the function of many of them is still unknown. We herein report that ectopic expression of Mtb Rv2346c (esxO), a member of ESAT-6 family proteins, in non-pathogenic Mycobacterium smegmatis strain (MsmRv2346c) aids host cell invasion and intracellular bacillary persistence. Further mechanistic studies revealed that MsmRv2346c infection abated macrophage immunity by inducing host cell death and genomic instability as evident from the appearance of several DNA damage markers. We further report that the induction of genomic instability in infected cells was due to increase in the hosts oxidative stress responses. MsmRv2346c infection was also found to induce autophagy and modulate the immune function of macrophages. In contrast, blockade of Rv2346c induced oxidative stress by treatment with ROS inhibitor N-acetyl-L-cysteine prevented the host cell death, autophagy induction and genomic instability in infected macrophages. Conversely, MtbΔRv2346c mutant did not show any difference in intracellular survival and oxidative stress responses. We envision that Mtb ESAT-6 family protein Rv2346c dampens antibacterial effector functions namely by inducing oxidative stress mediated genomic instability in infected macrophages, while loss of Rv2346c gene function may be compensated by other redundant ESAT-6 family proteins. Thus EsxO plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Soumitra Mohanty
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Dal Molin
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | | | - Avinash Padhi
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Prajna Jena
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Petra Selchow
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Srabasti Sengupta
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 32, CH 8006 Zurich, Switzerland; National Reference Laboratory for Mycobacteria, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | - Avinash Sonawane
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.
| |
Collapse
|
148
|
Kim SY, Lee HM, Kim KS, Kim HS, Moon A. Noninvasive Biomarker Candidates for Cadmium-Induced Nephrotoxicity by 2DE/MALDI-TOF-MS and SILAC/LC-MS Proteomic Analyses. Toxicol Sci 2015; 148:167-182. [PMID: 26259607 DOI: 10.1093/toxsci/kfv172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
Cadmium (Cd(2+)) is a major environmental pollutant that induces cytotoxicity by heavy-metal accumulation. Prolonged Cd(2+) exposure leads to cell damage by oxidative stress mainly in the kidneys, a critical organ for detoxification. To identify reliable on invasive protein biomarkers for Cd(2+)-induced nephrotoxicity, we performed 2-dimensional gel electrophoresis/matrix-assisted laser desorption/ionization time of flight mass spectra and stable isotope labeling by amino acids in cell culture/liquid chromatography-mass spectrometry analyses using conditioned media (CM) of HK-2 human kidney epithelial cells treated with CdCl2. Here, we identified heat shock cognate 71 kDa protein isoform1 (HSPA8) and α-enolase (ENO1) as potential biomarker candidates for the evaluation of Cd(2+)-induced nephrotoxicity. Treatment with CdCl2 increased the protein level of HSPA8 in CM and lysates of HK-2 cells. The mRNA level of HSPA8 was also increased by CdCl2 treatment, indicating transcriptional regulation. The level of ENO1 was increased in CM, but not in lysates of CdCl2-treated HK-2 cells. CdCl2 did not affect the mRNA level of ENO1. We provide evidence that the increases of HSPA8 and ENO1 in CM were due to Cd(2+)-induced cell death through oxidative stress. The increases of HSPA8 and ENO1 levels were also detected in CM of HK-2 cells treated with other nephrotoxic agents, such as HgCl2, NaAsO2, cisplatin, amphotericin B, and cyclosporine A. Urine and kidney tissues of CdCl2-treated rats showed increased levels of HSPA8. Taken together, this study identified HSPA8 and ENO1 as noninvasive biomarker candidates by 2 comparative proteomic analyses. These new biomarker candidates may have potential as alternatives to traditional biomarkers for the efficient and sensitive assessment of nephrotoxicity.
Collapse
Affiliation(s)
- Sun Young Kim
- *College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea; and
| | - Hye Min Lee
- *College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea; and
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Aree Moon
- *College of Pharmacy, Duksung Women's University, Seoul 132-714, Republic of Korea; and
| |
Collapse
|
149
|
Patankar YR, Mabaera R, Berwin B. Differential ASC requirements reveal a key role for neutrophils and a noncanonical IL-1β response to Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 2015; 309:L902-13. [PMID: 26472815 DOI: 10.1152/ajplung.00228.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022] Open
Abstract
The NLRC4 inflammasome is responsible for IL-1β processing by macrophages in response to Pseudomonas aeruginosa infection. We therefore hypothesized that mice that lack ASC, an NLRC4 inflammasome adaptor protein necessary for in vitro IL-1β production by macrophages, would be preferentially protected from a hyperinflammatory lethal challenge that is dependent on bacterial type three secretion system (T3SS) activity. We report herein that lack of ASC does not confer preferential protection in response to P. aeruginosa acute infection and that ASC(-/-) mice are capable of producing robust amounts of IL-1β comparable with C57BL/6 mice. We now identify that neutrophils represent the ASC-independent source of IL-1β production during the acute phases of infection both in models of acute pneumonia and peritonitis. Consequently, depletion of neutrophils in ASC(-/-) mice leads to a marked deficit in IL-1β production in vivo. The pulmonary neutrophil IL-1β response is predominantly dependent on caspase-1, which contrasts with data derived from ocular infection. These studies therefore identify a noncanonical mechanism of IL-1β production by neutrophils independent of ASC and demonstrate the first physiological contribution of neutrophils as an important source of IL-1β in response to acute P. aeruginosa infection during acute pneumonia and peritonitis.
Collapse
Affiliation(s)
- Yash R Patankar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Brent Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
150
|
Ramani V, Awasthi S. Toll-like receptor 4-interacting SPA4 peptide suppresses the NLRP3 inflammasome in response to LPS and ATP stimuli. J Leukoc Biol 2015; 98:1037-48. [PMID: 26254306 DOI: 10.1189/jlb.3a1114-570r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 07/18/2015] [Indexed: 12/18/2022] Open
Abstract
Inflammation is induced because of interplay among multiple signaling pathways and molecules during infectious and noninfectious tissue injuries. Crosstalk between Toll-like receptor-4 signaling and the neuronal apoptosis inhibitor protein, major histocompatibility class 2 transcription activator, incompatibility locus protein from Podospora anserina, and telomerase-associated protein (NACHT), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome against pathogen- or damage-associated molecular patterns can cause exaggerated inflammation. We previously established that the Toll-like receptor-4-interacting SPA4 peptide suppresses gram-negative bacterial lipopolysaccharide (Toll-like receptor-4 ligand)-induced nuclear factor-κB and inflammatory response. In the present study, we hypothesized that the SPA4 peptide exerts its anti-inflammatory effects by suppressing the crosstalk between Toll-like receptor-4 signaling and the NLRP3 inflammasome. We evaluated binding of the lipopolysaccharide-ligand to cell-surface Toll-like receptor-4 in the presence or absence of adenosine triphosphate (an NLRP3 inflammasome inducer) by flow cytometry. The expression and activity of NLRP3 inflammasome-related parameters were studied in cells challenged with lipopolysaccharide and adenosine triphosphate using molecular and immunologic methods. The cells were challenged with lipopolysaccharide and treated with SPA4 peptide before (pre-adenosine triphosphate) or after (post-adenosine triphosphate) secondary challenge with adenosine triphosphate. Our data demonstrate that the Toll-like receptor-4-interacting SPA4 peptide does not affect the binding of lipopolysaccharide to Toll-like receptor-4 in the presence or absence of adenosine triphosphate. We also found that the SPA4 peptide inhibits mRNA and cellular protein levels of pro-interleukin-1β and NLRP3, formation of the NLRP3 inflammasome, caspase activity, and release of interleukin-1β. Furthermore, the SPA4 peptide treatment reduced the secreted levels of interleukin-1β from cells overexpressing Toll-like receptor-4 compared with cells expressing the dominant-negative form of Toll-like receptor-4. Together our results suggest that the SPA4 peptide exerts its anti-inflammatory activity by suppressing Toll-like receptor-4-priming of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Vijay Ramani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|