101
|
Thomas J, Stafford GP, Hughes C. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc Natl Acad Sci U S A 2004; 101:3945-50. [PMID: 15001708 PMCID: PMC374349 DOI: 10.1073/pnas.0307223101] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bacterial type III protein export underlies flagellum assembly and delivery of virulence factors into eukaryotic cells. The sequence of protein interactions underlying the export pathway are poorly characterized; in particular, it is not known how chaperoned substrates in the cytosol are engaged by the membrane-localized export apparatus. We have identified a stalled intermediate export complex in the flagellar type III export pathway of Salmonella typhimurium by generating dominant-negative chaperone variants that are export-defective and arrest flagellar assembly in the wild-type bacterium. These chaperone variants bound their specific export substrates strongly and severely reduced their export. They also attenuated export of other flagellar proteins, indicating that inhibition occurs at a common step in the pathway. Unlike the cytosolic wild-type chaperone, the variants localized to the inner membrane, but not in the absence of the flagellar type III export apparatus. Membrane localization persisted in fliOPQR, flhB, flhA, fliJ, and fliH null mutants lacking specific flagellar export components but depended on the presence of the membrane-associated ATPase FliI. After expression of the variant chaperones in Salmonella, a stalled intermediate export complex, which contained chaperone, substrate, and the FliI ATPase with its regulator FliH, was isolated. Neither chaperone nor substrate alone was able to interact with liposome-associated FliI, but the chaperone-substrate-FliI(FliH) complex was assembled when chaperone was prebound to its substrate. Our data establish a key event in the type III protein export mechanism, docking of the cytosolic chaperone-substrate complex at the ATPase of the membrane-export apparatus.
Collapse
Affiliation(s)
- Joanne Thomas
- Department of Pathology, Cambridge University, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | | | | |
Collapse
|
102
|
Abstract
The bacterial flagellum is both a motor organelle and a protein export/assembly apparatus. It extends from the cytoplasm to the cell exterior. All the protein subunits of the external elements have to be exported. Export employs a type III pathway, also utilized for secretion of virulence factors. Six of the components of the export apparatus are integral membrane proteins and are believed to be located within the flagellar basal body. Three others are soluble: the ATPase that drives export, a regulator of the ATPase, and a general chaperone. Exported substrates diffuse down a narrow channel in the growing structure and assemble at the distal end, often with the help of a capping structure.
Collapse
Affiliation(s)
- Robert M Macnab
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
103
|
Goh CS, Milburn D, Gerstein M. Conformational changes associated with protein–protein interactions. Curr Opin Struct Biol 2004; 14:104-9. [PMID: 15102456 DOI: 10.1016/j.sbi.2004.01.005] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Motions related to protein-protein binding events can be surveyed from the perspective of the Database of Macromolecular Movements. There are a number of alternative conceptual models that describe these events, particularly induced fit and pre-existing equilibrium. There is evidence for both alternatives from recent studies of conformational change. However, there is increasing support for the pre-existing equilibrium model, whereby proteins are found to simultaneously exist in populations of diverse conformations.
Collapse
Affiliation(s)
- Chern-Sing Goh
- Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | | | | |
Collapse
|
104
|
Gauthier A, Finlay BB. Translocated intimin receptor and its chaperone interact with ATPase of the type III secretion apparatus of enteropathogenic Escherichia coli. J Bacteriol 2004; 185:6747-55. [PMID: 14617638 PMCID: PMC262708 DOI: 10.1128/jb.185.23.6747-6755.2003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Few interactions have been reported between effectors and components of the type III secretion apparatus, although many interactions have been demonstrated between type III effectors and their cognate chaperones. It is thought that chaperones may play a role in directing effectors to the type III secretion apparatus. The ATPase FliI in the flagellar assembly apparatus plays a pivotal role in interacting with other components of the apparatus and with substrates of the flagellar system. We performed experiments to determine if there were any interactions between the effector Tir and its chaperone CesT and the type III secretion apparatus of enteropathogenic Escherichia coli (EPEC). Specifically, based on analogies with the flagella system, we examined Tir-CesT interactions with the putative ATPase EscN. We showed by affinity chromatography that EscN and Tir bind CesT specifically. Tir is not necessary for CesT and EscN interactions, and EscN binds Tir specifically without its chaperone CesT. Moreover, Tir directly binds EscN, as shown via gel overlay and enzyme-linked immunosorbent assay, and coimmunoprecipitation experiments revealed that Tir interacts with EscN inside EPEC. These data provide evidence for direct interactions between a chaperone, effector, and type III component in the pathogenic type III secretion system and suggest a model for Tir translocation whereby its chaperone, CesT, brings Tir to the type III secretion apparatus by specifically interacting with the type III ATPase EscN.
Collapse
Affiliation(s)
- Annick Gauthier
- Biotechnology Laboratory and Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
105
|
Kojima S, Blair DF. The bacterial flagellar motor: structure and function of a complex molecular machine. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 233:93-134. [PMID: 15037363 DOI: 10.1016/s0074-7696(04)33003-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bacterial flagellar motor harnesses ion flow to drive rotary motion, at speeds reaching 100000 rpm and with apparently tight coupling. The functional properties of the motor are quite well understood, but its molecular mechanism remains unknown. Studies of motor physiology, together with mutational and biochemical studies of the components, place significant constraints on the mechanism. Rotation is probably driven by conformational changes in membrane-protein complexes that form the stator. These conformational changes occur as protons move on and off a critical aspartate residue in the stator protein MotB, and the resulting forces are applied to the rotor protein FliG. The bacterial flagellum is a complex structure built from about two dozen proteins. Its construction requires an apparatus at the base that exports many flagellar components to their sites of installation by way of an axial channel through the structure. The sequence of events in assembly is understood in general terms, but not yet at the molecular level. A fuller understanding of motor rotation and flagellar assembly will require more data on the structures and organization of the constituent proteins.
Collapse
Affiliation(s)
- Seiji Kojima
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
106
|
Abstract
Flagellated bacteria, such as Escherichia coli, swim by rotating thin helical filaments, each driven at its base by a reversible rotary motor, powered by an ion flux. A motor is about 45 nm in diameter and is assembled from about 20 different kinds of parts. It develops maximum torque at stall but can spin several hundred Hz. Its direction of rotation is controlled by a sensory system that enables cells to accumulate in regions deemed more favorable. We know a great deal about motor structure, genetics, assembly, and function, but we do not really understand how it works. We need more crystal structures. All of this is reviewed, but the emphasis is on function.
Collapse
Affiliation(s)
- Howard C Berg
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
107
|
Evdokimov AG, Phan J, Tropea JE, Routzahn KM, Peters HK, Pokross M, Waugh DS. Similar modes of polypeptide recognition by export chaperones in flagellar biosynthesis and type III secretion. Nat Struct Mol Biol 2003; 10:789-93. [PMID: 12958592 DOI: 10.1038/nsb982] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 07/25/2003] [Indexed: 11/09/2022]
Abstract
Assembly of the bacterial flagellum and type III secretion in pathogenic bacteria require cytosolic export chaperones that interact with mobile components to facilitate their secretion. Although their amino acid sequences are not conserved, the structures of several type III secretion chaperones revealed striking similarities between their folds and modes of substrate recognition. Here, we report the first crystallographic structure of a flagellar export chaperone, Aquifex aeolicus FliS. FliS adopts a novel fold that is clearly distinct from those of the type III secretion chaperones, indicating that they do not share a common evolutionary origin. However, the structure of FliS in complex with a fragment of FliC (flagellin) reveals that, like the type III secretion chaperones, flagellar export chaperones bind their target proteins in extended conformation and suggests that this mode of recognition may be widely used in bacteria.
Collapse
Affiliation(s)
- Artem G Evdokimov
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, PO Box B, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Aldridge P, Karlinsey J, Hughes KT. The type III secretion chaperone FlgN regulates flagellar assembly via a negative feedback loop containing its chaperone substrates FlgK and FlgL. Mol Microbiol 2003; 49:1333-45. [PMID: 12940991 DOI: 10.1046/j.1365-2958.2003.03637.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The type III secretion (TTS) chaperones are small proteins that act either as cytoplasmic bodyguards, protecting their secretion substrates from degradation and aggregation, facilitators of their cognate substrate secretion or both. FlgN has been previously shown to be a TTS chaperone for the hook-associated proteins FlgK and FlgL (FlgKL), and a translational regulator of the anti-sigma28 factor FlgM. Protein stability assays indicate that a flgN mutation leads to a dramatic decrease in the half-life of intracellular FlgK. However, using gene reporter fusions to flgK we show that a flgN mutation does not affect the translation of a flgK-lacZ fusion. Quantification of FlgM protein levels showed that FlgKL inhibit the positive regulation on flgM translation by FlgN when secretion of FlgKL is inhibited. Suppressors of the motility-defective phenotype of a flgN mutant were isolated and mapped to the clpXP and fliDST loci. Overexpression of flgKL on a plasmid also suppressed the motility defect of a flgN null mutant. These results suggest that FlgN is not required for secretion of FlgKL and that FlgN typifies a class of TTS chaperones that allows for the minimal amount of their substrates expression required in the assembly process by protecting the substrate from proteolysis. Our data leads us to propose a model in which the interaction between FlgN and FlgK or FlgL is a sensing mechanism to determine the stage of flagellar assembly. Furthermore, the interaction between FlgN and FlgK or FlgL inhibits the translational regulation of flgM via FlgN in response to the stage of flagellar assembly.
Collapse
Affiliation(s)
- Phillip Aldridge
- Department of Microbiology, Box 357242 University of Washington, Seattle WA 98195, USA.
| | | | | |
Collapse
|
109
|
Jouihri N, Sory MP, Page AL, Gounon P, Parsot C, Allaoui A. MxiK and MxiN interact with the Spa47 ATPase and are required for transit of the needle components MxiH and MxiI, but not of Ipa proteins, through the type III secretion apparatus of Shigella flexneri. Mol Microbiol 2003; 49:755-67. [PMID: 12864857 DOI: 10.1046/j.1365-2958.2003.03590.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. The Shigella flexneri TTS apparatus (TTSA) spans the bacterial envelope and its assembly requires the products of approximately 20 mxi and spa genes. We present a functional analysis of the mxiK, mxiN and mxiL genes. Inactivation of mxiK and mxiN, but not mxiL, resulted in the assembly of a non-functional TTSA that lacked the outer needle. The amounts of needle components MxiH and MxiI were drastically reduced in mxiK and mxiN mutants and in the secretion defective spa47 mutant, indicating that MxiH and MxiI are degraded if they do not transit through the TTSA. Remarkably, expression of MxiH-His in the mxiN mutant and MxiI-His in the mxiK mutant restored assembly of a functional TTSA, as shown by the ability of these strains to enter into epithelial cells and to secrete Ipa proteins in response to activation by Congo red. Using a two-hybrid screen in yeast and immunoprecipitation assays from S. flexneri extracts, we identified interactions between MxiK and Spa33 and Spa47 and between MxiN and Spa33 and Spa47. These results suggest that transit of the needle components MxiH and MxiI through the TTSA involves the concerted action of the cytoplasmic proteins Spa47, Spa33, MxiK and MxiN. They also show that neither MxiK nor MxiN are absolutely required for secretion of Ipa proteins, provided that the TTSA is correctly assembled.
Collapse
Affiliation(s)
- Noureddine Jouihri
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, 808 Route de Lennik, CP 614 b, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
110
|
Francez-Charlot A, Laugel B, Van Gemert A, Dubarry N, Wiorowski F, Castanié-Cornet MP, Gutierrez C, Cam K. RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 2003; 49:823-32. [PMID: 12864862 DOI: 10.1046/j.1365-2958.2003.03601.x] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes involved in flagellum synthesis, motility and chemotaxis in Escherichia coli are expressed in a hierarchical fashion. At the top of the hierarchy lies the master regulator FlhDC, required for the expression of the whole set of genes. The operon flhDC is controlled by numerous regulators including H-NS, CRP, EnvZ/OmpR, QseBC and LrhA. In the present work, we report that the flhDC operon is also negatively regulated by the His-Asp phosphorelay system RcsCDB. The regulation is potentiated by the RcsB cofactor RcsA. Genetic analysis indicates that an RcsAB box, located downstream of the promoter, is required for the regulation. The binding of RcsB and RcsA to this site was demonstrated by gel retardation and DNase I protection assays. In addition, mutation analysis suggests that RcsA-specific determinants lie in the right part of the 'RcsAB box'.
Collapse
Affiliation(s)
- Anne Francez-Charlot
- Laboratoire de Microbiologie et de Génétique Moléculaire, Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Claret L, Calder SR, Higgins M, Hughes C. Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly. Mol Microbiol 2003; 48:1349-55. [PMID: 12787361 PMCID: PMC2528289 DOI: 10.1046/j.1365-2958.2003.03506.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FliI is the peripheral membrane ATPase pivotal to the type III protein export mechanism underlying the assembly of the bacterial flagellum. Gel filtration and multiangle light scattering showed that purified soluble native FliI protein was in a monomeric state but, in the presence of ATP, FliI showed a propensity to oligomerize. Electron microscopy revealed that FliI assembles to a ring structure, the yield of which was increased by the presence of a non-hydrolysable ATP analogue. Single particle analysis of the resulting electron micrograph images, to which no symmetry was applied, showed that the FliI ring structure has sixfold symmetry and an external diameter of approximately 10 nm. The oligomeric ring has a central cavity of 2.5-3.0 nm, which is comparable to the known diameter of the flagellar export channel into which export substrates feed. Enzymatic activity of the FliI ATPase showed positive co-operativity, establishing that oligomerization and enzyme activity are coupled. Escherichia coli phospholipids increased enzyme co-operativity, and in vitro cross-linking demonstrated that they promoted FliI multimerization. The data reveal central facets of the structure and action of the flagellar assembly ATPase and, by extension, the homologous ATPases of virulence-related type III export systems.
Collapse
Affiliation(s)
| | | | | | - Colin Hughes
- For correspondence. E-mail ; Tel. (+44) 1223 333 732; Fax (+44) 1223 333 327
| |
Collapse
|
112
|
Fraser GM, Hirano T, Ferris HU, Devgan LL, Kihara M, Macnab RM. Substrate specificity of type III flagellar protein export in Salmonella is controlled by subdomain interactions in FlhB. Mol Microbiol 2003; 48:1043-57. [PMID: 12753195 DOI: 10.1046/j.1365-2958.2003.03487.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FlhB, an integral membrane protein, gates the type III flagellar export pathway of Salmonella. It permits export of rod/hook-type proteins before hook completion, whereupon it switches specificity to recognize filament-type proteins. The cytoplasmic C-terminal domain of FlhB (FlhBC) is cleaved between Asn-269 and Pro-270, defining two subdomains: FlhBCN and FlhBCC. Here, we show that subdomain interactions and cleavage within FlhB are central to substrate-specificity switching. We found that deletions between residues 216 and 240 of FlhBCN permitted FlhB cleavage but abolished function, whereas a deletion spanning Asn-269 and Pro-270 abolished both. The mutation N269A prevented cleavage at the FlhBCN-FlhBCC boundary. Cells producing FlhB(N269A) exported the same amounts of hook-capping protein as cells producing wild-type FlhB. However, they exported no flagellin, even when the fliC gene was being expressed from a foreign promoter to circumvent regulation of expression by FlgM, which is itself a filament-type substrate. Electron microscopy revealed that these cells assembled polyhook structures lacking filaments. Thus, FlhB(N269A) is locked in a conformation specific for rod/hook-type substrates. With FlhB(P270A), cleavage was reduced but not abolished, and cells producing this protein were weakly motile, exported reduced amounts of flagellin and assembled polyhook filaments.
Collapse
Affiliation(s)
- Gillian M Fraser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
113
|
Altarriba M, Merino S, Gavín R, Canals R, Rabaan A, Shaw JG, Tomás JM. A polar flagella operon (flg) of Aeromonas hydrophila contains genes required for lateral flagella expression. Microb Pathog 2003; 34:249-59. [PMID: 12732473 DOI: 10.1016/s0882-4010(03)00047-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aeromonas spp. are pathogens of both humans and poikilothermic animals, causing a variety of diseases. Certain strains are able to produce two distinct types of flagella; polar flagella for swimming in liquid and lateral flagella for swarming over surfaces. Although, both types of flagella have been associated as colonisation factors, little is known about their organisation and expression. Here we characterised a complete flagellar locus of Aeromonas hydrophila (flg) containing 16 genes, this was analogous to region 1 of the Vibrio parahaemolyticus polar flagellum, with the difference that no flagellin genes were found on A. hydrophila while V. parahaemolyticus showed three flagellin genes. The flg region was present in all Aeromonas strain tested. Defined insertion mutants in flgL, were unable to swim, had a drastic reduction in swarming, lateral flagella, HEp-2 cell adhesion and biofilm formation. Mutations in flgN caused a drastic reduction in lateral flagella, inability to swarm, but these strains were still able to swim. Whereas the cheV mutants still produced both types of flagella and were able to swim and swarm. These results suggest that FlgN is required for lateral flagella formation and swarming motility, but not for polar flagellum-mediated swimming.
Collapse
Affiliation(s)
- Maria Altarriba
- Departamento Microbiología, Facultad Biología, Universidad Barcelona, Diagonal 645, Barcelona 08071, Spain
| | | | | | | | | | | | | |
Collapse
|
114
|
Hirano T, Minamino T, Namba K, Macnab RM. Substrate specificity classes and the recognition signal for Salmonella type III flagellar export. J Bacteriol 2003; 185:2485-92. [PMID: 12670972 PMCID: PMC152621 DOI: 10.1128/jb.185.8.2485-2492.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most flagellar proteins of Salmonella are exported to their assembly destination via a specialized apparatus. This apparatus is a member of the type III superfamily, which is widely used for secretion of virulence factors by pathogenic bacteria. Extensive studies have been carried out on the export of several of the flagellar proteins, most notably the hook protein (FlgE), the hook-capping protein (FlgD), and the filament protein flagellin (FliC). This has led to the concept of two export specificity classes, the rod/hook type and the filament type. However, little direct experimental evidence has been available on the export properties of the basal-body rod proteins (FlgB, FlgC, FlgF, and FlgG), the putative MS ring-rod junction protein (FliE), or the muramidase and putative rod-capping protein (FlgJ). In this study, we have measured the amounts of these proteins exported before and after hook completion. Their amounts in the culture supernatant from a flgE mutant (which is still at the hook-type specificity stage) were much higher than those from a flgK mutant (which has advanced to the filament-type specificity stage), placing them in the same class as the hook-type proteins. Overproduction of FliE, FlgB, FlgC, FlgF, FlgG, or FlgJ caused inhibition of the motility of wild-type cells and inhibition of the export of the hook-capping protein FlgD. We also examined the question of whether export and translation are linked and found that all substrates tested could be exported after protein synthesis had been blocked by spectinomycin or chloramphenicol. We conclude that the amino acid sequence of these proteins suffices to mediate their recognition and export.
Collapse
Affiliation(s)
- Takanori Hirano
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
115
|
Blocker A, Komoriya K, Aizawa SI. Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci U S A 2003; 100:3027-30. [PMID: 12631703 PMCID: PMC152238 DOI: 10.1073/pnas.0535335100] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Type III secretion systems and bacterial flagella are broadly compared at the level of their genetic structure, morphology, regulation, and function, integrating structural information, to provide an overview of how they might function at a molecular level.
Collapse
Affiliation(s)
- Ariel Blocker
- Sir W. Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| | | | | |
Collapse
|
116
|
Ozin AJ, Claret L, Auvray F, Hughes C. The FliS chaperone selectively binds the disordered flagellin C-terminal D0 domain central to polymerisation. FEMS Microbiol Lett 2003; 219:219-24. [PMID: 12620624 DOI: 10.1016/s0378-1097(02)01208-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Assembly of each Salmonella typhimurium flagellum filament requires export and polymerisation of ca. 30000 flagellin (FliC) subunits. This is facilitated by the cytosolic chaperone FliS, which binds to the 494 residue FliC and inhibits its polymerisation. Yeast two-hybrid assays, co-purification and affinity blotting showed that FliS binds specifically to the C-terminal 40 amino acid component of the disordered D0 domain central to polymerisation. Without FliS binding, the C-terminus is degraded. Our data provide further support for the view that FliS is a domain-specific bodyguard preventing premature monomer interaction.
Collapse
Affiliation(s)
- Amanda J Ozin
- Cambridge University Department of Pathology, Tennis Court Road, CB2 1QP, Cambridge, UK
| | | | | | | |
Collapse
|
117
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
118
|
Liaw SJ, Lai HC, Ho SW, Luh KT, Wang WB. Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. J Med Microbiol 2003; 52:19-28. [PMID: 12488561 DOI: 10.1099/jmm.0.05024-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Swarming by Proteus mirabilis involves differentiation of typical short vegetative rods into filamentous hyper-flagellated swarm cells that undergo cycles of rapid and co-ordinated population migration across surfaces and exhibit high levels of virulence gene expression. RsmA (repressor of secondary metabolites) and CsrA, its homologue in Escherichia coli, control many phenotypic traits, such as motility and pathogenesis in Erwinia species, glycogen biosynthesis, cell size and biofilm formation in Escherichia coli and swarming motility in Serratia marcescens. To investigate the role of RsmA in Proteus mirabilis, the rsmA gene from Proteus mirabilis (hereafter referred to as rsmA(Pm)) was cloned. RsmA(Pm) showed high sequence similarity to Escherichia coli CsrA and RsmA cloned from Erwinia carotovora subsp. carotovora, Serratia marcescens, Haemophilus influenzae and Bacillus subtilis and could complement an Escherichia coli csrA mutant in glycogen synthesis. A low-copy-number plasmid carrying rsmA(Pm) expressed from its native promoter caused suppression of swarming motility and expression of virulence factors in Proteus mirabilis. mRNA stability assays suggested that RsmA(Pm) inhibited virulence factor expression through promoting mRNA degradation. RsmA homologues cloned from Serratia marcescens and Erwinia carotovora subsp. carotovora could also inhibit swarming and virulence factor expression in Proteus mirabilis.
Collapse
Affiliation(s)
- Shwu-Jen Liaw
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Hsin-Chih Lai
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Shen-Wu Ho
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Kwen-Tay Luh
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| | - Won-Bo Wang
- School and Graduate Institute of Medical Technology1 and Graduate Institute of Microbiology3, College of Medicine, National Taiwan University, 1 Jen Ai Road, 1st Section, Taipei, Taiwan, Republic of China 2Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|
119
|
Abstract
The type III secretion (TTS) pathway is used by many Gram-negative bacteria to inject virulence proteins into cells of their host. The activity of the TTS apparatus is controlled by external signals and, in certain conditions, production and secretion are not coupled. Storage of some proteins before secretion involves their association with specific chaperones. Three classes of TTS chaperones have been distinguished according to whether they associate with: (i) one; (ii) several effector proteins; or (iii) the two translocators that allow passage of effectors across the membrane of eukaryotic cells. These chaperones are required for stabilization of their substrate(s) and prevention of their premature interactions with other partners during storage. They also play a role in secretion of their substrate(s). Some chaperones are also involved in transcriptional regulation of certain genes in response to the activity of secretion. The flagellar export apparatus is closely related to the TTS apparatus and some proteins of the flagellar export system have also been proposed to be chaperones that prevent premature interactions between the flagellum subunits.
Collapse
Affiliation(s)
- Anne-Laure Page
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28 rue du Docteur Roux, 75015 Paris, France
| | | |
Collapse
|
120
|
González-Pedrajo B, Fraser GM, Minamino T, Macnab RM. Molecular dissection of Salmonella FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol 2002; 45:967-82. [PMID: 12180917 DOI: 10.1046/j.1365-2958.2002.03047.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
FliH is a soluble component of the flagellar export apparatus that binds to the ATPase FliI, and negatively regulates its activity. The 235-amino-acid FliH dimerizes and interacts with FliI to form a hetero-trimeric (FliH)2FliI complex. In the present work, the importance of different regions of FliH was examined. A set of 24 scanning deletions of 10 amino acids was constructed over the entire FliH sequence, along with several combined deletions of 40 amino acids and truncations of both N- and C-termini. The mutant proteins were examined with respect to (i) complementation; (ii) dominance and multicopy effects; (iii) interaction with wild-type FliH; (iv) interaction with FliI; (v) inhibition of the ATPase activity of FliI; and (vi) interaction with the putative general chaperone FliJ. Analysis of the deletion mutants revealed a clear functional demarcation between the FliH N- and C-terminal regions. The 10-amino-acid deletions throughout most of the N-terminal half of the sequence complemented and were not dominant, whereas those throughout most of the C-terminal half did not complement and were dominant. FliI binding was disrupted by C-terminal deletions from residue 101 onwards, indicating that the C-terminal domain of FliH is essential for interaction with FliI. FliH dimerization was abolished by deletion of residues 101-140 in the centre of the sequence, as were complementation, dominance and interaction with FliI and FliJ. The importance of this region was confirmed by the fact that fragment FliHC2 (residues 99-235) interacted with FliH and FliI, whereas fragment FliHC1 (residues 119-235) did not. FliHC2 formed a relatively unstable complex with FliI and showed biphasic regulation of ATPase activity, suggesting that the FliH N-terminus stabilizes the (FliH)2FliI complex. Several of the N-terminal deletions tested permitted close to normal ATPase activity of FliI. Deletion of the last five residues of FliH caused a fivefold activation of ATPase activity, suggesting that this region of FliH governs a switch between repression and activation of FliI. Deletion of the first 10 residues of FliH abolished complementation, severely reduced its interaction with FliJ and uncoupled its role as a FliI repressor from its other export functions. Based on these data, a model is presented for the domain construction and function of FliH in complex with FliI and FliJ.
Collapse
Affiliation(s)
- Bertha González-Pedrajo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
121
|
van Dijk K, Tam VC, Records AR, Petnicki-Ocwieja T, Alfano JR. The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae. Mol Microbiol 2002; 44:1469-81. [PMID: 12067337 DOI: 10.1046/j.1365-2958.2002.02979.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae uses a type III protein secretion system encoded by the Hrp pathogenicity island (Pai) to translocate effector proteins into plant cells. One of these effector proteins is HopPsyA. A small open reading frame (ORF), named shcA, precedes the hopPsyA gene in the Hrp Pai of P. s. syringae 61. The predicted amino acid sequence of shcA shares general characteristics with chaperones used in type III protein secretion systems of animal pathogens. A functionally non-polar deletion of shcA in P. s. syringae 61 resulted in the loss of detectable HopPsyA in supernatant fractions, consistent with ShcA acting as a chaperone for HopPsyA. Cosmid pHIR11 carries a functional set of type III genes from P. s. syringae 61 and confers upon saprophytes the ability to secrete HopPsyA in culture and to elicit a HopPsyA-dependent hypersensitive response (HR) on tobacco. P. fluorescens carrying a pHIR11 derivative lacking shcA failed to secrete HopPsyA in culture, but maintained the ability to secrete another type III-secreted protein, HrpZ. This pHIR11 derivative was also greatly reduced in its ability to elicit an HR, indicating that the ability to translocate HopPsyA into plant cells was compromised. Using affinity chromatography, we showed that ShcA binds directly to HopPsyA and that the ShcA binding site must reside within the first 166 amino acids of HopPsyA. Thus, ShcA represents the first demonstrated chaperone used in a type III secretion system of a bacterial plant pathogen. We searched known P. syringae type III-related genes for neighbouring ORFs that shared the general characteristics of type III chaperones and identified five additional candidate type III chaperones. Therefore, it is likely that chaperones are as prevalent in bacterial plant pathogen type III systems as they are in their animal pathogenic counterparts.
Collapse
Affiliation(s)
- Karin van Dijk
- Department of Biological Sciences, University of Nevada, Las Vegas, NV 89154-4004, USA
| | | | | | | | | |
Collapse
|
122
|
Bourret RB, Charon NW, Stock AM, West AH. Bright lights, abundant operons--fluorescence and genomic technologies advance studies of bacterial locomotion and signal transduction: review of the BLAST meeting, Cuernavaca, Mexico, 14 to 19 January 2001. J Bacteriol 2002; 184:1-17. [PMID: 11741839 PMCID: PMC134778 DOI: 10.1128/jb.184.1.1-17.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Robert B Bourret
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA
| | | | | | | |
Collapse
|
123
|
Delahay RM, Shaw RK, Elliott SJ, Kaper JB, Knutton S, Frankel G. Functional analysis of the enteropathogenic Escherichia coli type III secretion system chaperone CesT identifies domains that mediate substrate interactions. Mol Microbiol 2002; 43:61-73. [PMID: 11849537 DOI: 10.1046/j.1365-2958.2002.02740.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In many Gram-negative bacteria, a key indicator of pathogenic potential is the possession of a specialized type III secretion system, which is utilized to deliver virulence effector proteins directly into the host cell cytosol. Many of the proteins secreted from such systems require small cytosolic chaperones to maintain the secreted substrates in a secretion-competent state. One such protein, CesT, serves a chaperone function for the enteropathogenic Escherichia coli (EPEC) translocated intimin receptor (Tir) protein, which confers upon EPEC the ability to alter host cell morphology following intimate bacterial attachment. Using a combination of complementary biochemical approaches, functional domains of CesT that mediate intermolecular interactions, involved in both chaperone-chaperone and chaperone-substrate associations, were determined. The CesT N-terminal is implicated in chaperone dimerization, whereas the amphipathic alpha-helical region of the C-terminal, is intimately involved in substrate binding. By functional complementation of chaperone domains using the Salmonella SicA chaperone to generate chaperone chimeras, we show that CesT-Tir interaction proceeds by a mechanism potentially common to other type III secretion system chaperones.
Collapse
Affiliation(s)
- Robin M Delahay
- Centre for Molecular Microbiology and Infection (CMMI), Department of Biological Sciences, Flowers Building, Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK.
| | | | | | | | | | | |
Collapse
|
124
|
Josenhans C, Niehus E, Amersbach S, Hörster A, Betz C, Drescher B, Hughes KT, Suerbaum S. Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol Microbiol 2002; 43:307-22. [PMID: 11985711 DOI: 10.1046/j.1365-2958.2002.02765.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Helicobacter pylori is thought to regulate gene expression with a very small set of regulatory genes. We identified a previously unannotated open reading frame (ORF) in the H. pylori 26695 genome (HP1122) as a putative H. pylori flgM gene (sigma28 factor antagonist) by a motif-based bioinformatic approach. Deletion of HP1122 resulted in a fourfold increase in transcription of the sigma28-dependent major flagellin gene flaA, supporting the function of HP1122 as H. pylori FlgM. Helicobacter pylori FlgM lacks a conserved 20-amino-acid N-terminal domain of enterobacterial FlgM proteins, but was able to interact with the Salmonella typhimurium sigma28 (FliA) and inhibit the expression of FliA-dependent genes in Salmonella. Helicobacter pylori FlgM inhibited FliA to the same extent in a Salmonella strain with an intact flagellar export system and in an export-deficient strain. Helicobacter pylori FliA was able to drive transcription of FliA-dependent genes in Salmonella. The effects of mutations in the H. pylori flgM and fliA genes on the H. pylori transcriptome were analysed using whole genome DNA microarrays. The antagonistic roles of FlgM and FliA in controlling the transcription of the major flagellin gene flaA were confirmed, and two additional FliA/FlgM dependent operons (HP472 and HP1051/HP1052) were identified. None of the three genes contained in these operons has a known function in flagellar biogenesis in other bacteria. Like other motile bacteria, H. pylori has a FliA/FlgM pair of sigma and anti-sigma factors, but the genes controlled by these differ markedly from the Salmonella/Escherichia coli paradigm.
Collapse
|
125
|
Ji WS, Hu JL, Qiu JW, Pan BR, Peng DR, Shi BL, Zhou SJ, Wu KC, Fan DM. Relationship between genotype and phenotype of flagellin C in Salmonella. World J Gastroenterol 2001; 7:864-7. [PMID: 11854918 PMCID: PMC4695611 DOI: 10.3748/wjg.v7.i6.864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To discover the relationship between the genotype and antigen serotype of flagellin C among Salmonella strains.
METHODS: Fragment of Salmonella flagellin C in plasmid pLS408 was cloned, sequenced and compared with the corresponding sequence in other strains. Salmonella strains including two typhi strains, one paratyphoid strain, one enteritidis and one typhimurium strain were isolated from outpatients. Genome DNA was purified respectively from these clinical isolates, then the corresponding flagellin C fragment was amplified by polymerase chain reaction, and the amplification products were analyzed by agarose gel electrophoresis.
RESULTS: The cloned fragment includes 582 nucleotides encoding the variable region and partial conservative region of Salmonella flagellin C in plasmid pLS408. With comparison to the corresponding sequences reported previously, there is only a little difference from other strains with the same flagellar serotype in both nucleotide and amino acid level. Specific PCR products were amplified in Salmonella strains with flagellar serotype H-1-d including S. muenchen, typhi and typhimurium, but not in S. paratyphoid C or S. enteritidis strains.
CONCLUSION: In this experiment, the specificity of nucleotide sequence could be found in flagellin C central variable regions as it exists in flagellar serotypes in Salmonella. It may be helpful to developing a rapid, sensitive, accurate and PCR-based method to detect Salmonella strains with serotype H-1-d.
Collapse
Affiliation(s)
- W S Ji
- Chinese PLA Institute of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Francis MS, Lloyd SA, Wolf-Watz H. The type III secretion chaperone LcrH co-operates with YopD to establish a negative, regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol Microbiol 2001; 42:1075-93. [PMID: 11737648 DOI: 10.1046/j.1365-2958.2001.02702.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens secrete and subsequently translocate antihost effector proteins into target eukaryotic cells by a common type III secretion system (TTSS). In this process, YopD (Yersinia outer protein D) is essential to establish regulatory control of Yop synthesis and the ensuing translocation process. YopD function depends upon the non-secreted TTSS chaperone LcrH (low-calcium response H), which is required for presecretory stabilization of YopD. However, as a new role for TTSS chaperones in virulence gene regulation has been proposed recently, we undertook a detailed analysis of LcrH. A lcrH null mutant constitutively produced Yops, even when this strain was engineered to produce wild-type levels of YopD. Furthermore, the YopD-LcrH interaction was necessary to regain the negative regulation of virulence associated genes yops). This finding was used to investigate the biological significance of several LcrH mutants with varied YopD binding potential. Mutated LcrH alleles were introduced in trans into a lcrH null mutant to assess their impact on yop regulation and the subsequent translocation of YopE, a Rho-GTPase activating protein, across the plasma membrane of eukaryotic cells. Two mutants, LcrHK20E, E30G, I31V, M99V, D136G and LcrHE30G lost all regulatory control, even though YopD binding and secretion and the subsequent translocation of YopE was indistinguishable from wild type. Moreover, these regulatory deficient mutants showed a reduced ability to bind YscY in the two-hybrid assay. Collectively, these findings confirm that LcrH plays an active role in yop regulation that might be mediated via an interaction with the Ysc secretion apparatus. This chaperone-substrate interaction presents an innovative means to establish a regulatory hierarchy in Yersinia infections. It also raises the question as to whether or not LcrH is a true chaperone involved in stabilization and secretion of YopD or a regulatory protein responsible for co-ordinating synthesis of Yersinia virulence determinants. We suggest that LcrH can exhibit both of these activities.
Collapse
Affiliation(s)
- M S Francis
- Department of Molecular Biology, Umeå University, S-90187 Umeå, Sweden.
| | | | | |
Collapse
|
127
|
Minamino T, Tame JR, Namba K, Macnab RM. Proteolytic analysis of the FliH/FliI complex, the ATPase component of the type III flagellar export apparatus of Salmonella. J Mol Biol 2001; 312:1027-36. [PMID: 11580247 DOI: 10.1006/jmbi.2001.5000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ATPase FliI of the Salmonella type III flagellar protein export apparatus is a 456 amino acid residue cytoplasmic protein consisting of two regions, an N-terminal flagellum-specific region and a C-terminal ATPase region. It forms a complex with a regulatory protein FliH in the cytoplasm. Multi-angle light-scattering studies indicate that FliH forms a homodimer, (FliH)2, and that FliH and FliI together form a heterotrimer, (FliH)2FliI. Mobility upon gel-filtration chromatography gives much higher apparent molecular masses for both species, whereas the mobility of FliI is normal. Sedimentation velocity measurements indicate that both (FliH)2 and the FliH/FliI complex are quite elongated. We have analyzed FliH, FliI and the FliH/FliI complex for proteolytic sensitivity. FliI was degraded by clostripain into two stable fragments, one of 48 kDa (FliI(CL48), missing the first seven amino acid residues) and the other of 46 kDa (FliI(CL46), missing the first 26 residues). Small amounts of two closely spaced 38 kDa fragments (FliI(CL38), missing the first 93 and 97 residues, respectively) were also detected. The FliH homodimer was insensitive to clostripain proteolysis and provided protection to FliI within the FliH/FliI complex. Neither FliI(CL48) nor FliI(CL46) could form a complex with FliH, demonstrating that the N terminus of FliI is essential for the interaction. ATP, AMP-PNP, and ADP bound forms of FliI within the FliH/FliI complex regained sensitivity to clostripain cleavage. Also, the sensitivity of the two FliI(CL38) cleavage sites was much greater in the ATP and AMP-PNP bound forms than in either the ADP bound form or nucleotide-free FliI. The ATPase domain itself was insensitive to clostripain cleavage. We suggest that the N-terminal flagellum-specific region of FliI is flexible and changes its conformation during the ATP hydrolysis cycle.
Collapse
Affiliation(s)
- T Minamino
- Protonic Nanomachine Project ERATO, JST, 3-4 Hikaridai, Seika, Kyoto 619-0237, Japan
| | | | | | | |
Collapse
|
128
|
Abstract
Polar flagella of Vibrio species can rotate at speeds as high as 100,000 rpm and effectively propel the bacteria in liquid as fast as 60 microm/s. The sodium motive force powers rotation of the filament, which acts as a propeller. The filament is complex, composed of multiple subunits, and sheathed by an extension of the cell outer membrane. The regulatory circuitry controlling expression of the polar flagellar genes of members of the Vibrionaceae is different from the peritrichous system of enteric bacteria or the polar system of Caulobacter crescentus. The scheme of gene control is also pertinent to other members of the gamma purple bacteria, in particular to Pseudomonas species. This review uses the framework of the polar flagellar system of Vibrio parahaemolyticus to provide a synthesis of what is known about polar motility systems of the Vibrionaceae. In addition to its propulsive role, the single polar flagellum of V. parahaemolyticus is believed to act as a tactile sensor controlling surface-induced gene expression. Under conditions that impede rotation of the polar flagellum, an alternate, lateral flagellar motility system is induced that enables movement through viscous environments and over surfaces. Although the dual flagellar systems possess no shared structural components and although distinct type III secretion systems direct the simultaneous placement and assembly of polar and lateral organelles, movement is coordinated by shared chemotaxis machinery.
Collapse
Affiliation(s)
- L L McCarter
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
129
|
Duménil G, Isberg RR. The Legionella pneumophila IcmR protein exhibits chaperone activity for IcmQ by preventing its participation in high-molecular-weight complexes. Mol Microbiol 2001; 40:1113-27. [PMID: 11401716 DOI: 10.1046/j.1365-2958.2001.02454.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A key event in legionellosis is the ability of Legionella pneumophila to survive and proliferate inside alveolar macrophages. The dot/icm genes, which are necessary for intracellular growth, show sequence similarity to genes encoding conjugative transfer systems, and it is believed that they are responsible for the formation of a secretion apparatus. Evidence is provided here that the IcmR and IcmQ proteins participate in a chaperone-substrate relationship similar to that observed for translocated proteins in type III and type IV secretion apparatuses. Immobilized IcmQ was found to bind IcmR from crude bacterial extracts efficiently. Furthermore, purified IcmR and IcmQ bind with high affinity. This interaction was also observed in vivo by co-immunoprecipitation. The presence of IcmR was found to affect the physical state of IcmQ directly. In the absence of IcmR, IcmQ formed high-molecular-weight complexes both in vivo and in vitro, whereas IcmR prevented and reversed the formation of these complexes.
Collapse
Affiliation(s)
- G Duménil
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
130
|
Abstract
Assembly of the long helical filament of the bacterial flagellum requires polymerisation of ca 20,000 flagellin (FliC) monomeric subunits into the growing structure extending from the cell surface. Here, we show that export of Salmonella flagellin is facilitated specifically by a cytosolic protein, FliS, and that FliS binds to the FliC C-terminal helical domain, which contributes to stabilisation of flagellin subunit interactions during polymerisation. Stable complexes of FliS with flagellin were assembled efficiently in vitro, apparently by FliS homodimers binding to FliC monomers. The data suggest that FliS acts as a substrate-specific chaperone, preventing premature interaction of newly synthesised flagellin subunits in the cytosol. Compatible with this view, FliS was able to prevent in vitro polymerisation of FliC into filaments.
Collapse
|
131
|
Abstract
Gram-negative bacteria use type III secretion (TTS) systems to translocate proteins into the extracellular environment or directly into eukaryotic cells. These complex secretory systems are assembled from over 20 different structural proteins, including 10 that have counterparts in the flagellar export pathway. Secretion substrates are directed to the TTS machinery via mRNA and/or amino acid secretion signals. TTS chaperones bind to select secretion substrates and assist in the export process. Recent progress in the understanding of TTS is reviewed.
Collapse
Affiliation(s)
- G V Plano
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
132
|
Thomas NA, Bardy SL, Jarrell KF. The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev 2001; 25:147-74. [PMID: 11250034 DOI: 10.1111/j.1574-6976.2001.tb00575.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The archaeal flagellum is a unique motility apparatus distinct in composition and likely in assembly from the bacterial flagellum. Gene families comprised of multiple flagellin genes co-transcribed with a number of conserved, archaeal-specific accessory genes have been identified in several archaea. However, no homologues of any bacterial genes involved in flagella structure have yet been identified in any archaeon, including those archaea in which the complete genome sequence has been published. Archaeal flagellins possess a highly conserved hydrophobic N-terminal sequence that is similar to that of type IV pilins and clearly unlike that of bacterial flagellins. Also unlike bacterial flagellins but similar to type IV pilins, archaeal flagellins are initially synthesized with a short leader peptide that is cleaved by a membrane-located peptidase. With recent advances in genetic transfer systems in archaea, knockouts have been reported in several genes involved in flagellation in different archaea. In addition, techniques to isolate flagella with attached hook and anchoring structures have been developed. Analysis of these preparations is under way to identify minor structural components of archaeal flagella. This and the continued isolation and characterization of flagella mutants should lead to significant advances in our knowledge of the composition and assembly of archaeal flagella.
Collapse
Affiliation(s)
- N A Thomas
- Department of Microbiology and Immunology, Queen's University, Kingston, Ont. K7L 3N6, Canada
| | | | | |
Collapse
|
133
|
Hacker J. Urinary tract infection: from basic science to clinical application. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:1-8. [PMID: 11109081 DOI: 10.1007/0-306-46840-9_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J Hacker
- Institut für Molekulare Infektionsbiologie, Universität Würzburg
| |
Collapse
|
134
|
Kihara M, Minamino T, Yamaguchi S, Macnab RM. Intergenic suppression between the flagellar MS ring protein FliF of Salmonella and FlhA, a membrane component of its export apparatus. J Bacteriol 2001; 183:1655-62. [PMID: 11160096 PMCID: PMC95050 DOI: 10.1128/jb.183.5.1655-1662.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 12/06/2000] [Indexed: 11/20/2022] Open
Abstract
The MS ring of the flagellar basal body of Salmonella is an integral membrane structure consisting of about 26 subunits of a 61-kDa protein, FliF. Out of many nonflagellate fliF mutants tested, three gave rise to intergenic suppressors in flagellar region II. The pseudorevertants swarmed, though poorly; this partial recovery of motile function was shown to be due to partial recovery of export function and flagellar assembly. The three parental mutants were all found to carry the same mutation, a six-base deletion corresponding to loss of Ala-174 and Ser-175 in the predicted periplasmic domain of the FliF protein. The 19 intergenic suppressors identified all lay in flhA, and they consisted of 10 independent examples at the nucleotide level or 9 at the amino acid level. Since two of the nine corresponded to different substitutions at the same amino acid position, only eight positions in the FlhA protein have given rise to suppressors. Thus, FliF-FlhA intergenic suppression is a fairly rare event. FlhA is a component of the flagellar protein export apparatus, with an integral membrane domain encompassing the N-terminal half of the sequence and a cytoplasmic C-terminal domain. All of the suppressing mutations lay within the integral membrane domain. These mutations, when placed in a wild-type fliF background, had no mutant phenotype. In the fliF mutant background, mutant FlhA was dominant, yielding a pseudorevertant phenotype. Wild-type FlhA did not exert significant negative dominance in the pseudorevertant background, indicating that it does not compete effectively with mutant FlhA for interaction with mutant FliF. Mutant FliF was partially dominant over wild-type FliF in both the wild-type and second-site FlhA backgrounds. Membrane fractionation experiments indicated that the fliF mutation, though preventing export, was mild enough to permit assembly of the MS ring itself, and also assembly of the cytoplasmic C ring onto the MS ring. The data from this study provide genetic support for a model in which at least the FlhA component of the export apparatus physically interacts with the MS ring within which it is housed.
Collapse
Affiliation(s)
- M Kihara
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
135
|
Abstract
Type III secretion systems allow Yersinia spp., Salmonella spp., Shigella spp., Bordetella spp., and Pseudomonas aeruginosa and enteropathogenic Escherichia coli adhering at the surface of a eukaryotic cell to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane to destroy or subvert the target cell. These systems consist of a secretion apparatus, made of approximately 25 proteins, and an array of proteins released by this apparatus. Some of these released proteins are "effectors," which are delivered into the cytosol of the target cell, whereas the others are "translocators," which help the effectors to cross the membrane of the eukaryotic cell. Most of the effectors act on the cytoskeleton or on intracellular-signaling cascades. A protein injected by the enteropathogenic E. coli serves as a membrane receptor for the docking of the bacterium itself at the surface of the cell. Type III secretion systems also occur in plant pathogens where they are involved both in causing disease in susceptible hosts and in eliciting the so-called hypersensitive response in resistant or nonhost plants. They consist of 15-20 Hrp proteins building a secretion apparatus and two groups of effectors: harpins and avirulence proteins. Harpins are presumably secreted in the extracellular compartment, whereas avirulence proteins are thought to be targeted into plant cells. Although a coherent picture is clearly emerging, basic questions remain to be answered. In particular, little is known about how the type III apparatus fits together to deliver proteins in animal cells. It is even more mysterious for plant cells where a thick wall has to be crossed. In spite of these haunting questions, type III secretion appears as a fascinating trans-kingdom communication device.
Collapse
Affiliation(s)
- G R Cornelis
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology and Faculté de Médecine, Université Catholique de Louvain, B-1200 Brussels, Belgium.
| | | |
Collapse
|
136
|
Abstract
We present a summary of recent progress in understanding Escherichia coli K-12 gene and protein functions. New information has come both from classical biological experimentation and from using the analytical tools of functional genomics. The content of the E. coli genome can clearly be seen to contain elements acquired by horizontal transfer. Nevertheless, there is probably a large, stable core of >3500 genes that are shared among all E. coli strains. The gene-enzyme relationship is examined, and, in many cases, it exhibits complexity beyond a simple one-to-one relationship. Also, the E. coli genome can now be seen to contain many multiple enzymes that carry out the same or closely similar reactions. Some are similar in sequence and may share common ancestry; some are not. We discuss the concept of a minimal genome as being variable among organisms and obligatorily linked to their life styles and defined environmental conditions. We also address classification of functions of gene products and avenues of insight into the history of protein evolution.
Collapse
Affiliation(s)
- M Riley
- The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA. ,
| | | |
Collapse
|
137
|
Bennett JCQ, Thomas J, Fraser GM, Hughes C. Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 2001; 39:781-91. [PMID: 11169117 PMCID: PMC2528293 DOI: 10.1046/j.1365-2958.2001.02268.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flagellar proteins FlgN and FliT have been proposed to act as substrate-specific export chaperones, facilitating incorporation of the enterobacterial hook-associated axial proteins (HAPs) FlgK/FlgL and FliD into the growing flagellum. In Salmonella typhimurium flgN and fliT mutants, the export of target HAPs was reduced, concomitant with loss of unincorporated flagellin into the surrounding medium. Gel filtration chromatography of wild-type S. typhimurium cell extracts identified stable pools of FlgN and FliT homodimers in the cytosol, but no chaperone-substrate complexes were evident. Nevertheless, stable unique complexes were assembled efficiently in vitro by co-incubation of FlgN and FliT with target HAPs purified from recombinant Escherichia coli. The sizes of the chaperone-substrate complexes indicated that, in each case, a chaperone homodimer binds to a substrate monomer. FlgN prevented in vitro aggregation of FlgK monomers, generating a soluble form of the HAP. Recombinant polypeptides spanning the potentially amphipathic C-terminal regions of FlgN or FliT could not complement in trans the chaperone deficiency of the respective flgN and fliT mutants, but efficient flagellar assembly was restored by homodimeric translational fusions of these domains to glutathione S-transferase, which bound FlgK and FlgL like the wild-type FlgN. These data provide further evidence for the substrate-specific chaperone function of FlgN and FliT and indicate that these chaperones comprise common N- and C-terminal domains mediating homodimerization and HAP substrate binding respectively. In support of this view, the flgN mutation was specifically complemented by a hybrid chaperone comprising the N-terminal half of FliT and the C-terminal half of FlgN.
Collapse
Affiliation(s)
| | | | | | - Colin Hughes
- For correspondence. E-mail ; Tel. (+44)122 333 3732; Fax (+44) 122 333 3327
| |
Collapse
|
138
|
Abstract
From genes to cells there are many steps of hierarchical increments in building up complex frameworks that provide intricate networks of macromolecular interactions, through which cellular activities such as gene expression, signal processing, energy transduction and material conversion are dynamically organized and regulated. The self-assembly of macromolecules into large complexes is one such important step, but this process is by no means a simple aggregation of macromolecules with predefined, rigid complementary structures. In many cases the component molecules undergo either domain rearrangements or folding of disordered portions, which occurs only following binding to their correct partners. The partial disorder is used in some cases to prevent spontaneous assembly at inappropriate times or locations. It is also often used for finely tuning the equilibrium and activation energy of reversible binding. In other cases, such as protein translocation across membranes, an unfolded terminus appears to be the prerequisite for the process as an initiation signal, as well as the physical necessity to be taken into narrow channels. Self-assembly processes of viruses and bacterial flagella are typical examples where the induced folding of disordered chains plays a key role in regulating the addition of new components to a growing assembly. Various aspects of mechanistic roles of natively unfolded conformations of proteins are overviewed and discussed in this short review.
Collapse
Affiliation(s)
- K Namba
- Protonic NanoMachine Project, ERATO, JST, and Advanced Technology Research Laboratories, Matsushita Electric Industrial Co. Ltd, 3-4 Hikaridai, Seika, Kyoto 619-0237 Japan.
| |
Collapse
|
139
|
Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev 2000; 64:694-708. [PMID: 11104815 PMCID: PMC99010 DOI: 10.1128/mmbr.64.4.694-708.2000] [Citation(s) in RCA: 502] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
How do organisms assess the degree of completion of a large structure, especially an extracellular structure such as a flagellum? Bacteria can do this. Mutants that lack key components needed early in assembly fail to express proteins that would normally be added at later assembly stages. In some cases, the regulatory circuitry is able to sense completion of structures beyond the cell surface, such as completion of the external hook structure. In Salmonella and Escherichia coli, regulation occurs at both transcriptional and posttranscriptional levels. One transcriptional regulatory mechanism involves a regulatory protein, FlgM, that escapes from the cell (and thus can no longer act) through a complete flagellum and is held inside when the structure has not reached a later stage of completion. FlgM prevents late flagellar gene transcription by binding the flagellum-specific transcription factor sigma(28). FlgM is itself regulated in response to the assembly of an incomplete flagellum known as the hook-basal body intermediate structure. Upon completion of the hook-basal body structure, FlgM is exported through this structure out of the cell. Inhibition of sigma(28)-dependent transcription is relieved, and genes required for the later assembly stages are expressed, allowing completion of the flagellar organelle. Distinct posttranscriptional regulatory mechanisms occur in response to assembly of the flagellar type III secretion apparatus and of ring structures in the peptidoglycan and lipopolysaccharide layers. The entire flagellar regulatory pathway is regulated in response to environmental cues. Cell cycle control and flagellar development are codependent. We discuss how all these levels of regulation ensure efficient assembly of the flagellum in response to environmental stimuli.
Collapse
Affiliation(s)
- G S Chilcott
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
140
|
Francis MS, Aili M, Wiklund ML, Wolf-Watz H. A study of the YopD-lcrH interaction from Yersinia pseudotuberculosis reveals a role for hydrophobic residues within the amphipathic domain of YopD. Mol Microbiol 2000; 38:85-102. [PMID: 11029692 DOI: 10.1046/j.1365-2958.2000.02112.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The enteropathogen Yersinia pseudotuberculosis is a model system used to study the molecular mechanisms by which Gram-negative pathogens translocate effector proteins into target eukaryotic cells by a common type III secretion machine. Of the numerous proteins produced by Y. pseudotuberculosis that act in concert to establish an infection, YopD (Yersinia outer protein D) is a crucial component essential for yop regulation and Yop effector translocation. In this study, we describe the mechanisms by which YopD functions to control these processes. With the aid of the yeast two-hybrid system, we investigated the interaction between YopD and the cognate chaperone LcrH. We confirmed that non-secreted LcrH is necessary for YopD stabilization before secretion, presumably by forming a complex with YopD in the bacterial cytoplasm. At least in yeast, this complex depends upon the N-terminal domain and a C-terminal amphipathic alpha-helical domain of YopD. Introduction of amino acid substitutions within the hydrophobic side of the amphipathic alpha-helix abolished the YopD-LcrH interaction, indicating that hydrophobic, as opposed to electrostatic, forces of attraction are important for this process. Suppressor mutations isolated within LcrH could compensate for defects in the amphipathic domain of YopD to restore binding. Isolation of LcrH mutants unable to interact with wild-type YopD revealed no single domain responsible for YopD binding. The YopD and LcrH mutants generated in this study will be relevant tools for understanding YopD function during a Yersinia infection.
Collapse
Affiliation(s)
- M S Francis
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | |
Collapse
|
141
|
Sauer FG, Barnhart M, Choudhury D, Knight SD, Waksman G, Hultgren SJ. Chaperone-assisted pilus assembly and bacterial attachment. Curr Opin Struct Biol 2000; 10:548-56. [PMID: 11042452 DOI: 10.1016/s0959-440x(00)00129-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Bacterial pili assembled by the chaperone-usher pathway can mediate microbial attachment, an early step in the establishment of an infection, by binding specifically to sugars present in host tissues. Recent work has begun to reveal the structural basis both of chaperone function in the biogenesis of these pili and of bacterial attachment.
Collapse
Affiliation(s)
- F G Sauer
- Department of Molecular Microbiology, Washington University School of Medicine, Missouri 63110, St Louis, USA
| | | | | | | | | | | |
Collapse
|
142
|
Minamino T, Macnab RM. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J Bacteriol 2000; 182:4906-14. [PMID: 10940035 PMCID: PMC111371 DOI: 10.1128/jb.182.17.4906-4914.2000] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the properties of the cytoplasmic domain (FlhB(C)) of the 383-amino-acid Salmonella membrane protein FlhB, a component of the type III flagellar export apparatus. FlhB, along with the hook-length control protein FliK, mediates the switching of export specificity from rod- and hook-type substrates to filament-type substrates during flagellar morphogenesis. Wild-type FlhB(C) was unstable (half-life, ca. 5 min), being specifically cleaved at Pro-270 into two polypeptides, FlhB(CN) and FlhB(CC), which retained the ability to interact with each other after cleavage. Full-length wild-type FlhB was also subject to cleavage. Coproduction of the cleavage products, FlhB(delta CC) (i.e., the N-terminal transmembrane domain FlhB(TM) plus FlhB(CN)) and FlhB(CC), resulted in restoration of both motility and flagellar protein export to an flhB mutant host, indicating that the two polypeptides were capable of productive association. Mutant FlhB proteins that can undergo switching of substrate specificity even in the absence of FliK were much more resistant to cleavage (half-lives, 20 to 60 min). The cleavage products of wild-type FlhB(C), existing as a FlhB(CN)-FlhB(CC) complex on an affinity blot membrane, bound the rod- and hook-type substrate FlgD more strongly than the filament-type substrate FliC. In contrast, the intact form of FlhB(C) (mutant or wild type) or the FlhB(CC) polypeptide alone bound FlgD and FliC to about the same extent. FlhB(CN) by itself did not bind substrates appreciably. We propose that FlhB(C) has two substrate specificity states and that a conformational change, mediated by the interaction between FlhB(CN) and FlhB(CC), is responsible for the specificity switching process. FliK itself is an export substrate; its binding properties for FlhB(C) resemble those of FlgD and do not provide any evidence for a physical interaction beyond that of the export process.
Collapse
Affiliation(s)
- T Minamino
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | |
Collapse
|
143
|
Abstract
Type III secretion systems mediate export of virulence proteins and flagellar assembly subunits in Gram-negative bacteria. Chaperones specific to each class of secreted protein are believed to prevent degradation of the secreted substrates. We show that an additional role of chaperones may be to regulate translation of secreted proteins. We show that the chaperone FIgN is required for translation of the flgM gene transcribed from one mRNA transcript (a flagellar class 3 transcript), but not from another (a flagellar class 2 transcript). FIgM translated from the class 3 transcript is primarily secreted whereas FIgM translated from the class 2 transcript is primarily retained in the cytoplasm. These results suggest FIgM and other type III secretion substrates possess both mRNA and amino acid secretion signals, and supports a new role for type III chaperones in translation/secretion coupling.
Collapse
Affiliation(s)
- J E Karlinsey
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
144
|
Abstract
We isolated and characterized spontaneous mutants with defects in the 147-amino-acid Salmonella protein FliJ, which is a cytoplasmic component of the type III flagellar export apparatus. These mutants, including ones with null mutations, have the ability to form swarms on motility agar plates after prolonged incubation at 30 degrees C; i.e., they display a leaky motile phenotype. One mutant, SJW277, which formed significantly bigger swarms than the others, encoded only the N-terminal 73 amino acids of FliJ, one-half of the protein. At 30 degrees C, overproduction of this mutant protein improved, to wild-type levels, both motility and the ability to export both rod/hook-type (FlgD; hook capping protein) and filament-type (FliC; flagellin) substrates. At 42 degrees C, however, export was inhibited, indicating that the mutant FliJ protein was temperature sensitive. Taking advantage of this, we performed temperature upshift experiments, which demonstrated that FliJ is directly required for the export of FliC. Co-overproduction of FliJ and either of two export substrates, FliE or FlgG, hindered their aggregation in the cytoplasm. We conclude that FliJ is a general component of the flagellar export apparatus and has a chaperone-like activity for both rod/hook-type and filament-type substrates.
Collapse
Affiliation(s)
- T Minamino
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
145
|
Abstract
Vibrio parahaemolyticus has dual flagellar systems adapted for locomotion under different circumstances. A single, sheathed polar flagellum propels the swimmer cell in liquid environments. Numerous unsheathed lateral flagella move the swarmer cell over surfaces. The polar flagellum is produced continuously, whereas the synthesis of lateral flagella is induced under conditions that impede the function of the polar flagellum, e.g., in viscous environments or on surfaces. Thus, the organism possesses two large gene networks that orchestrate polar and lateral flagellar gene expression and assembly. In addition, the polar flagellum functions as a mechanosensor controlling lateral gene expression. In order to gain insight into the genetic circuitry controlling motility and surface sensing, we have sought to define the polar flagellar gene system. The hierarchy of regulation appears to be different from the polar system of Caulobacter crescentus or the peritrichous system of enteric bacteria but is pertinent to many Vibrio and Pseudomonas species. The gene identity and organization of 60 potential flagellar and chemotaxis genes are described. Conserved sequences are defined for two classes of polar flagellar promoters. Phenotypic and genotypic analysis of mutant strains with defects in swimming motility coupled with primer extension analysis of flagellar and chemotaxis transcription provides insight into the polar flagellar organelle, its assembly, and regulation of gene expression.
Collapse
Affiliation(s)
- Y K Kim
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
146
|
Cornelis GR. Type III secretion: a bacterial device for close combat with cells of their eukaryotic host. Philos Trans R Soc Lond B Biol Sci 2000; 355:681-93. [PMID: 10874740 PMCID: PMC1692769 DOI: 10.1098/rstb.2000.0608] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Salmonella, Shigella, Yersinia, Pseudomonas aeruginosa, enteropathogenic Escherichia coli and several plant-pathogenic Gram-negative bacteria use a new type of systems called 'type III secretion' to attack their host. These systems are activated by contact with a eukaryotic cell membrane and they allow bacteria to inject bacterial proteins across the two bacterial membranes and the eukaryotic cell membrane to reach a given compartment and destroy or subvert the target cell. These systems consist of a secretion apparatus made up of about 25 individual proteins and a set of proteins released by this apparatus. Some of these released proteins are 'effectors' that are delivered by extracellular bacteria into the cytosol of the target cell while the others are 'translocators' that help the 'effectors' to cross the membrane of the eukaryotic cell. Most of the 'effectors' act on the cytoskeleton or on intracellular signalling cascades. One of the proteins injected by the enteropathogenic E. coli serves as a membrane receptor for the docking of the bacterium itself at the surface of the cell.
Collapse
Affiliation(s)
- G R Cornelis
- Microbial Pathogenesis Unit, Christian de Duve Institute of Cellular Pathology (ICP), Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
147
|
Bennett JC, Hughes C. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol 2000; 8:202-4. [PMID: 10785634 DOI: 10.1016/s0966-842x(00)01751-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- J C Bennett
- Dept of Pathology, University of Cambridge, UK.CB2 1QP
| | | |
Collapse
|
148
|
Abstract
Many Gram-negative pathogens use a type III secretion machine to translocate protein toxins across the bacterial cell envelope. Pathogenic Yersinia spp. export at least 14 Yop proteins via a type III machine, which recognizes secretion substrates by signals encoded in yop mRNA or chaperones bound to unfolded Yop proteins. During infection, substrate recognition appears to be regulated in a manner that allows the Yersinia type III pathway to direct Yops to the bacterial envelope, the extracellular medium or into the cytosol of host cells.
Collapse
Affiliation(s)
- L W Cheng
- Dept of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | |
Collapse
|
149
|
Nambu T, Kutsukake K. The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 5):1171-1178. [PMID: 10832645 DOI: 10.1099/00221287-146-5-1171] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
P ring is a periplasmic substructure of the flagellar basal body and is believed to connect with the peptidoglycan layer in Salmonella. Two flagellar genes, flgA and flgI, are known to be indispensable for P ring formation. The flgI gene encodes the component protein of the P ring. However, the role of the flgA gene product in P ring assembly remained unknown. Here, evidence is presented that FlgA is synthesized as a precursor form and exported via the Sec secretory pathway into the periplasmic space where P ring formation takes place. Overproduction of the FlgI protein led flgA mutants to form flagella with a P ring, suggesting that FlgA plays an auxiliary role in P ring assembly. Far-Western blot analysis revealed that FlgA binds in vitro to both FlgI and FlgA itself. Though a direct FlgI-FlgI interaction in the absence of FlgA could not be demonstrated, an indirect or direct interaction between the FlgI proteins was observed in the presence of FlgA. FlgA alone was very unstable in vivo, but co-expression with FlgI could stabilize FlgA. This suggests the presence of FlgA-FlgI interaction in vivo. On the basis of these results, a hypothesis is proposed that FlgA acts as a periplasmic chaperone, which assists a polymerization reaction of FlgI into the P ring through FlgA-FlgI interaction.
Collapse
Affiliation(s)
- Takayuki Nambu
- Faculty of Applied Biological Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima 739-8528, Japan1
| | - Kazuhiro Kutsukake
- Faculty of Applied Biological Science, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima, Hiroshima 739-8528, Japan1
| |
Collapse
|
150
|
Minamino T, MacNab RM. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol Microbiol 2000; 35:1052-64. [PMID: 10712687 DOI: 10.1046/j.1365-2958.2000.01771.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have examined the cytoplasmic components (FliH, FliI and FliJ) of the type III flagellar protein export apparatus, plus the cytoplasmic domains (FlhAC and FlhBC) of two of its six membrane components. FliH, FlhAC and FliJ, when overproduced, caused inhibition of motility of wild-type cells and inhibition of the export of substrates such as the hook protein FlgE. Co-overproduction of FliH and FliI substantially relieved the inhibition caused by FliH, suggesting that it is excess free FliH that is inhibitory and that FliH and FliI form a complex. We purified His-FLAG-tagged versions of: (i) export components FliH, FliI, FliJ, FlhAC and FlhBC; (ii) rod/hook-type export substrates FlgB (rod protein), FlgE (hook protein), FlgD (hook capping protein) and FliE (basal body protein); and (iii) filament-type export substrates FlgK and FlgL (hook-filament junction proteins) and FliC (flagellin). We tested for protein-protein interactions by affinity blotting. In many cases, a given protein interacted with more than one other component, indicating that there are likely to be multiple dynamic interactions or interactions that involve more than two components. Interactions of FlhBC with rod/hook-type substrates were strong, whereas those with filament-type substrates were very weak; this may reflect the role of FlhB in substrate specificity switching. We propose a model for the flagellar export apparatus in which FlhA and FlhB and the other four integral membrane proteins of the apparatus form a complex at the base of the flagellar motor. A soluble complex of at least three proteins (FliH, FliI and FliJ) bind the protein to be exported and then interact with the complex at the motor to deliver the protein, which is then exported in an ATP-dependent process mediated by FliI.
Collapse
Affiliation(s)
- T Minamino
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | |
Collapse
|