101
|
Culotta VC, Daly MJ. Manganese complexes: diverse metabolic routes to oxidative stress resistance in prokaryotes and yeast. Antioxid Redox Signal 2013; 19:933-44. [PMID: 23249283 PMCID: PMC3763226 DOI: 10.1089/ars.2012.5093] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Antioxidant enzymes are thought to provide critical protection to cells against reactive oxygen species (ROS). However, many organisms can fully compensate for the loss of such enzymatic defenses by accumulating metabolites and Mn²⁺, which can form catalytic Mn-antioxidants. Accumulated metabolites can direct reactivity of Mn²⁺ with superoxide and specifically shield proteins from oxidative damage. RECENT ADVANCES There is mounting evidence that Mn-Pi (orthophosphate) complexes act as potent scavengers of superoxide in all three branches of life. Moreover, it is evident that Mn²⁺ in complexes with carbonates, peptides, nucleosides, and organic acids can also form catalytic Mn-antioxidants, pointing to diverse metabolic routes to oxidative stress resistance. CRITICAL ISSUES What conditions favor utility of Mn-metabolites versus enzymatic means for removing ROS? Mn²⁺-metabolite defenses are critical for preserving the activity of repair enzymes in Deinococcus radiodurans exposed to intense radiation stress, and in Lactobacillus plantarum, which lacks antioxidant enzymes. In other microorganisms, Mn-antioxidants can serve as an auxiliary protection when enzymatic antioxidants are insufficient or fail. These findings of a critical role of Mn-antioxidants in the survival of prokaryotes under oxidative stress parallel the trends developing for the simple eukaryote Saccharomyces cerevisiae. FUTURE DIRECTIONS Phosphates, peptides and organic acids are just a snapshot of the types of anionic metabolites that promote such reactivity of Mn²⁺. Their probable roles in pathogen defense against the host immune response and in ROS-mediated signaling pathways are also areas that are worthy of serious investigation. Moreover, it is clear that these protective chemical processes can be harnessed for practical purposes.
Collapse
Affiliation(s)
- Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | |
Collapse
|
102
|
Merchant AT, Spatafora GA. A role for the DtxR family of metalloregulators in gram-positive pathogenesis. Mol Oral Microbiol 2013; 29:1-10. [PMID: 24034418 DOI: 10.1111/omi.12039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2013] [Indexed: 11/28/2022]
Abstract
Given the central role of transition metal ions in a variety of biochemical processes, the colonization, survival, and proliferation of a bacterium within a host hinges upon its ability to overcome the metal ion deprivation that characterizes nutritional immunity. Metalloregulatory, or 'metal-sensing' proteins have evolved in bacteria to mediate metal ion homeostasis by activating or repressing the expression of genes encoding metal ion transport systems upon binding their cognate metal ion. Yet increasing evidence in the literature supports an additional role for these metalloregulatory proteins in pathogenesis. Herein, we survey studies on the DtxR family of metalloregulators, namely DtxR (Cornyebacterium diphtheriae), SloR (Streptococcus mutans), MtsR (Streptococcus pyogenes), and MntR (Staphylococcus aureus) to describe how metalloregulation enables adaptive virulence gene expression within the mammalian host. This research has important implications for drug design, as the generation of hyper-repressive metalloregulatory proteins may represent a mechanism by which to attenuate bacterial pathogenicity. The fact that metalloregulators are unique to prokaryotes makes these proteins especially attractive therapeutic targets.
Collapse
Affiliation(s)
- A T Merchant
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | | |
Collapse
|
103
|
Gribenko A, Mosyak L, Ghosh S, Parris K, Svenson K, Moran J, Chu L, Li S, Liu T, Woods VL, Jansen KU, Green BA, Anderson AS, Matsuka YV. Three-dimensional structure and biophysical characterization of Staphylococcus aureus cell surface antigen-manganese transporter MntC. J Mol Biol 2013; 425:3429-45. [PMID: 23827136 DOI: 10.1016/j.jmb.2013.06.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 01/21/2023]
Abstract
MntC is a metal-binding protein component of the Mn²⁺-specific mntABC transporter from the pathogen Staphylococcus aureus. The protein is expressed during the early stages of infection and was proven to be effective at reducing both S. aureus and Staphylococcus epidermidis infections in a murine animal model when used as a vaccine antigen. MntC is currently being tested in human clinical trials as a component of a multiantigen vaccine for the prevention of S. aureus infections. To better understand the biological function of MntC, we are providing structural and biophysical characterization of the protein in this work. The three-dimensional structure of the protein was solved by X-ray crystallography at 2.2Å resolution and suggests two potential metal binding modes, which may lead to reversible as well as irreversible metal binding. Precise Mn²⁺-binding affinity of the protein was determined from the isothermal titration calorimetry experiments using a competition approach. Differential scanning calorimetry experiments confirmed that divalent metals can indeed bind to MntC reversibly as well as irreversibly. Finally, Mn²⁺-induced structural and dynamics changes have been characterized using spectroscopic methods and deuterium-hydrogen exchange mass spectroscopy. Results of the experiments show that these changes are minimal and are largely restricted to the structural elements involved in metal coordination. Therefore, it is unlikely that antibody binding to this antigen will be affected by the occupancy of the metal-binding site by Mn²⁺.
Collapse
Affiliation(s)
- Alexey Gribenko
- Pfizer Vaccine Research, 401 North Middletown Road, Pearl River, NY 10965, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
MntABC and MntH contribute to systemic Staphylococcus aureus infection by competing with calprotectin for nutrient manganese. Infect Immun 2013; 81:3395-405. [PMID: 23817615 DOI: 10.1128/iai.00420-13] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During infection, vertebrates limit access to manganese and zinc, starving invading pathogens, such as Staphylococcus aureus, of these essential metals in a process termed "nutritional immunity." The manganese and zinc binding protein calprotectin is a key component of the nutrient-withholding response, and mice lacking this protein do not sequester manganese from S. aureus liver abscesses. One potential mechanism utilized by S. aureus to minimize host-imposed manganese and zinc starvation is the expression of the metal transporters MntABC and MntH. We performed transcriptional analyses of both mntA and mntH, which revealed increased expression of both systems in response to calprotectin treatment. MntABC and MntH compete with calprotectin for manganese, which enables S. aureus growth and retention of manganese-dependent superoxide dismutase activity. Loss of MntABC and MntH results in reduced staphylococcal burdens in the livers of wild-type but not calprotectin-deficient mice, suggesting that these systems promote manganese acquisition during infection. During the course of these studies, we observed that metal content and the importance of calprotectin varies between murine organs, and infection leads to profound changes in the anatomical distribution of manganese and zinc. In total, these studies provide insight into the mechanisms utilized by bacteria to evade host-imposed nutrient metal starvation and the critical importance of restricting manganese availability during infection.
Collapse
|
105
|
Mechanistic studies of FosB: a divalent-metal-dependent bacillithiol-S-transferase that mediates fosfomycin resistance in Staphylococcus aureus. Biochem J 2013; 451:69-79. [PMID: 23256780 DOI: 10.1042/bj20121541] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.
Collapse
|
106
|
Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, Seshu J, Hart PJ, Saito M, Culotta VC. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. J Biol Chem 2013; 288:8468-8478. [PMID: 23376276 DOI: 10.1074/jbc.m112.433540] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.
Collapse
Affiliation(s)
- J Dafhne Aguirre
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Hillary M Clark
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Matthew McIlvin
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Christine Vazquez
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Shaina L Palmere
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205
| | - Dennis J Grab
- Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - J Seshu
- Department of Biology, University of Texas, San Antonio, Texas 78249
| | - P John Hart
- Geriatric Research, Education, and Clinical Center, South Texas Veterans Health Care System, Department of Veterans Affairs, San Antonio, Texas 78229; Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Mak Saito
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Valeria C Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205.
| |
Collapse
|
107
|
EfaR is a major regulator of Enterococcus faecalis manganese transporters and influences processes involved in host colonization and infection. Infect Immun 2013; 81:935-44. [PMID: 23297382 DOI: 10.1128/iai.06377-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metal ions, in particular manganese, are important modulators of bacterial pathogenicity. However, little is known about the role of manganese-dependent proteins in the nosocomial pathogen Enterococcus faecalis, a major cause of bacterial endocarditis. The present study demonstrates that the DtxR/MntR family metalloregulator EfaR of E. faecalis controls the expression of several of its regulon members in a manganese-dependent way. We also show that efaR inactivation impairs the ability of E. faecalis to form biofilms, to survive inside macrophages, and to tolerate oxidative stress. Our results reveal that EfaR is an important modulator of E. faecalis virulence and link manganese homeostasis to enterococcal pathogenicity.
Collapse
|
108
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
109
|
Dosselli R, Millioni R, Puricelli L, Tessari P, Arrigoni G, Franchin C, Segalla A, Teardo E, Reddi E. Molecular targets of antimicrobial photodynamic therapy identified by a proteomic approach. J Proteomics 2012; 77:329-43. [PMID: 23000218 DOI: 10.1016/j.jprot.2012.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/19/2012] [Accepted: 09/08/2012] [Indexed: 12/24/2022]
Abstract
Antimicrobial photodynamic therapy (PDT) is a promising tool to combat antibiotic-resistant bacterial infections. During PDT, bacteria are killed by reactive oxygen species generated by a visible light absorbing photosensitizer (PS). We used a classical proteomic approach that included two-dimensional gel electrophoresis and mass spectrometry analysis, to identify some proteins of Staphylococcus aureus that are damaged during PDT with the cationic PS meso-tetra-4-N-methyl pyridyl porphine (T4). Suspensions of S. aureus cells were incubated with selected T4 concentrations and irradiated with doses of blue light that reduced the survival to about 60% or 1%. Proteomics analyses of a membrane proteins enriched fraction revealed that these sub-lethal PDT treatments affected the expression of several functional classes of proteins, and that this damage is selective. Most of these proteins were found to be involved in metabolic activities, in oxidative stress response, in cell division and in the uptake of sugar. Subsequent analyses revealed that PDT treatments delayed the growth and considerably reduced the glucose consumption capacity of S. aureus cells. This investigation provides new insights towards the characterization of PDT induced damage and mechanism of bacterial killing using, for the first time, a proteomic approach.
Collapse
Affiliation(s)
- Ryan Dosselli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35128 Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Anderson AS, Miller AA, Donald RGK, Scully IL, Nanra JS, Cooper D, Jansen KU. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother 2012; 8:1585-94. [PMID: 22922765 PMCID: PMC3601133 DOI: 10.4161/hv.21872] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Staphylococcus aureus is a major cause of healthcare-associated infections and is responsible for a substantial burden of disease in hospitalized patients. Despite increasingly rigorous infection control guidelines, the prevalence and corresponding negative impact of S. aureus infections remain considerable. Difficulties in controlling S. aureus infections as well as the associated treatment costs are exacerbated by increasing rates of resistance to available antibiotics. Despite ongoing efforts over the past 20 years, no licensed S. aureus vaccine is currently available. However, learnings from past clinical failures of vaccine candidates and a better understanding of the immunopathology of S. aureus colonization and infection have aided in the design of new vaccine candidates based on multiple important bacterial pathogenesis mechanisms. This review outlines important considerations in designing a vaccine for the prevention of S. aureus disease in healthcare settings.
Collapse
|
111
|
Sun H, Li M, Xu G, Chen H, Jiao J, Tian B, Wang L, Hua Y. Regulation of MntH by a dual Mn(II)- and Fe(II)-dependent transcriptional repressor (DR2539) in Deinococcus radiodurans. PLoS One 2012; 7:e35057. [PMID: 22523570 PMCID: PMC3327659 DOI: 10.1371/journal.pone.0035057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 03/08/2012] [Indexed: 11/18/2022] Open
Abstract
The high intracellular Mn/Fe ratio observed within the bacteria Deinococcus radiodurans may contribute to its remarkable resistance to environmental stresses. We isolated DR2539, a novel regulator of intracellular Mn/Fe homeostasis in D. radiodurans. Electrophoretic gel mobility shift assays (EMSAs) revealed that DR2539 binds specifically to the promoter of the manganese acquisition transporter (MntH) gene, and that DR0865, the only Fur homologue in D. radiodurans, cannot bind to the promoter of mntH, but it can bind to the promoter of another manganese acquisition transporter, MntABC. β-galactosidase expression analysis indicated that DR2539 acts as a manganese- and iron-dependent transcriptional repressor. Further sequence alignment analysis revealed that DR2539 has evolved some special characteristics. Site-directed mutagenesis suggested that His98 plays an important role in the activities of DR2539, and further protein-DNA binding activity assays showed that the activity of H98Y mutants decreased dramatically relative to wild type DR2539. Our study suggests that D. radiodurans has evolved a very efficient manganese regulation mechanism that involves its high intracellular Mn/Fe ratio and permits resistance to extreme conditions.
Collapse
Affiliation(s)
- Hongxing Sun
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Mingfeng Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Guangzhi Xu
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine & Life Science, Wenzhou Medical College, Wenzhou, Zhejiang, China
- Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou, China
| | - Jiandong Jiao
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (LW); (YH)
| | - Yuejin Hua
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou, China
- * E-mail: (LW); (YH)
| |
Collapse
|
112
|
Sheldon JR, Heinrichs DE. The iron-regulated staphylococcal lipoproteins. Front Cell Infect Microbiol 2012; 2:41. [PMID: 22919632 PMCID: PMC3417571 DOI: 10.3389/fcimb.2012.00041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023] Open
Abstract
Lipoproteins fulfill diverse roles in antibiotic resistance, adhesion, protein secretion, signaling and sensing, and many also serve as the substrate binding protein (SBP) partner to ABC transporters for the acquisition of a diverse array of nutrients including peptides, sugars, and scarcely abundant metals. In the staphylococci, the iron-regulated SBPs are significantly upregulated during iron starvation and function to sequester and deliver iron into the bacterial cell, enabling staphylococci to circumvent iron restriction imposed by the host environment. Accordingly, this subset of lipoproteins has been implicated in staphylococcal pathogenesis and virulence. Lipoproteins also activate the host innate immune response, triggered through Toll-like receptor-2 (TLR2) and, notably, the iron-regulated subset of lipoproteins are particularly immunogenic. In this review, we discuss the iron-regulated staphylococcal lipoproteins with regard to their biogenesis, substrate specificity, and impact on the host innate immune response.
Collapse
Affiliation(s)
- Jessica R Sheldon
- Department of Microbiology and Immunology, Western University, London ON, Canada
| | | |
Collapse
|
113
|
Anderson AS, Scully IL, Timofeyeva Y, Murphy E, McNeil LK, Mininni T, Nuñez L, Carriere M, Singer C, Dilts DA, Jansen KU. Staphylococcus aureus manganese transport protein C is a highly conserved cell surface protein that elicits protective immunity against S. aureus and Staphylococcus epidermidis. J Infect Dis 2012; 205:1688-96. [PMID: 22474033 PMCID: PMC3348682 DOI: 10.1093/infdis/jis272] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Staphylococcus aureus and other staphylococci cause severe human disease, and there are currently no vaccines available. We evaluated whether manganese transport protein C (MntC), which is conserved across the staphylococcal species group, could confer protection against S. aureus and Staphylococcus epidermidis. In vivo analysis of S. aureus MntC expression revealed that expression occurs very early during the infectious cycle. Active immunization with MntC was effective at reducing the bacterial load associated with S. aureus and S. epidermidis infection in an acute murine bacteremia model. Anti-MntC monoclonal antibodies have been identified that can bind S. aureus and S. epidermidis cells and are protective in an infant rat passive protection model and induce neutrophil respiratory burst activity. This is the first description of a protein that has the potential to provide protection across the staphylococcal species group.
Collapse
|
114
|
Gaupp R, Ledala N, Somerville GA. Staphylococcal response to oxidative stress. Front Cell Infect Microbiol 2012; 2:33. [PMID: 22919625 PMCID: PMC3417528 DOI: 10.3389/fcimb.2012.00033] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/29/2012] [Indexed: 12/23/2022] Open
Abstract
Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria's interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.
Collapse
Affiliation(s)
- Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln NE, USA
| | | | | |
Collapse
|
115
|
DeDent A, Kim HK, Missiakas D, Schneewind O. Exploring Staphylococcus aureus pathways to disease for vaccine development. Semin Immunopathol 2012; 34:317-33. [PMID: 22130613 PMCID: PMC3539746 DOI: 10.1007/s00281-011-0299-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus is a commensal of the human skin or nares and a pathogen that frequently causes skin and soft tissue infections as well as bacteremia and sepsis. Recent efforts in understanding the molecular mechanisms of pathogenesis revealed key virulence strategies of S. aureus in host tissues: bacterial scavenging of iron, induction of coagulation pathways to promote staphylococcal agglutination in the vasculature, and suppression of innate and adaptive immune responses. Advances in all three areas have been explored for opportunities in vaccine design in an effort to identify the critical protective antigens of S. aureus. Human clinical trials with specific subunit vaccines have failed, yet provide important insights for the design of future trials that must address the current epidemic of S. aureus infections with drug-resistant isolates (MRSA, methicillin-resistant S. aureus).
Collapse
Affiliation(s)
- Andrea DeDent
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
116
|
Cassat JE, Skaar EP. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin Immunopathol 2012; 34:215-35. [PMID: 22048835 PMCID: PMC3796439 DOI: 10.1007/s00281-011-0294-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/14/2011] [Indexed: 12/19/2022]
Abstract
Transition metals are essential nutrients to virtually all forms of life, including bacterial pathogens. In Staphylococcus aureus, metal ions participate in diverse biochemical processes such as metabolism, DNA synthesis, regulation of virulence factors, and defense against oxidative stress. As an innate immune response to bacterial infection, vertebrate hosts sequester transition metals in a process that has been termed "nutritional immunity." To successfully infect vertebrates, S. aureus must overcome host sequestration of these critical nutrients. The objective of this review is to outline the current knowledge of staphylococcal metal ion acquisition systems, as well as to define the host mechanisms of nutritional immunity during staphylococcal infection.
Collapse
Affiliation(s)
- James E. Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, 1161 21st Ave South, A-5102 MCN, Nashville, TN 37232-2363, USA
| |
Collapse
|
117
|
Hammer ND, Skaar EP. The impact of metal sequestration on Staphylococcus aureus metabolism. Curr Opin Microbiol 2011; 15:10-4. [PMID: 22153710 DOI: 10.1016/j.mib.2011.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/26/2011] [Accepted: 11/10/2011] [Indexed: 01/04/2023]
Abstract
The Gram-positive pathogen Staphylococcus aureus poses a serious risk to public health due to its prevalence as a commensal organism, its ability to cause a multitude of diseases, and the increasing incidence of antibiotic resistant strains. S. aureus infects diverse niches within vertebrates despite being challenged by a robust immune response. The host-pathogen confrontation occurs in an environment nearly devoid of metals that are essential for bacterial proliferation. S. aureus is able to flourish in these conditions and often causes significant morbidity and mortality. This review highlights current themes pertaining to the process of host-mediated metal sequestration known as 'nutritional immunity', S. aureus metal acquisition strategies, and how proliferating within a metal restricted environment impacts bacterial physiology.
Collapse
Affiliation(s)
- Neal D Hammer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, United States
| | | |
Collapse
|
118
|
McDevitt CA, Ogunniyi AD, Valkov E, Lawrence MC, Kobe B, McEwan AG, Paton JC. A molecular mechanism for bacterial susceptibility to zinc. PLoS Pathog 2011; 7:e1002357. [PMID: 22072971 PMCID: PMC3207923 DOI: 10.1371/journal.ppat.1002357] [Citation(s) in RCA: 300] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/20/2011] [Indexed: 11/19/2022] Open
Abstract
Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria, and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a ΔpsaA mutant, which is unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro, these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by extracellular cation competition and that this can be harnessed by the innate immune response.
Collapse
Affiliation(s)
- Christopher A. McDevitt
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Abiodun D. Ogunniyi
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Michael C. Lawrence
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
119
|
The Escherichia coli MntR miniregulon includes genes encoding a small protein and an efflux pump required for manganese homeostasis. J Bacteriol 2011; 193:5887-97. [PMID: 21908668 DOI: 10.1128/jb.05872-11] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manganese is a critical micronutrient for cells, serving as an enzyme cofactor and protecting against oxidative stress. Yet, manganese is toxic in excess and little is known about its distribution in cells. Bacteria control intracellular manganese levels by the transcription regulator MntR. When this work began, the only Escherichia coli K-12 gene known to respond to manganese via MntR repression was mntH, which encodes a manganese importer. We show that mntS (formerly the small RNA gene rybA) is repressed by manganese through MntR and encodes an unannotated 42-amino-acid protein. Overproduction of MntS causes manganese sensitivity, while a lack of MntS perturbs proper manganese-dependent repression of mntH. We also provide evidence that mntP (formerly yebN), which encodes a putative efflux pump, is positively regulated by MntR. Deletion of mntP leads to profound manganese sensitivity and to elevated intracellular manganese levels. This work thus defines two new proteins involved in manganese homeostasis and suggests mechanisms for their action.
Collapse
|
120
|
Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 2011; 10:158-64. [PMID: 21843872 PMCID: PMC3157011 DOI: 10.1016/j.chom.2011.07.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 06/07/2011] [Accepted: 07/05/2011] [Indexed: 12/16/2022]
Abstract
By sequestering manganese and zinc, the neutrophil protein calprotectin plays a crucial role in host defense against bacterial and fungal pathogens. However, the essential processes disrupted by calprotectin remain unknown. We report that calprotectin enhances the sensitivity of Staphylococcus aureus to superoxide through inhibition of manganese-dependent bacterial superoxide defenses, thereby increasing superoxide levels within the bacterial cell. Superoxide dismutase activity is required for full virulence in a systemic model of S. aureus infection, and disruption of staphylococcal superoxide defenses by calprotectin augments the antimicrobial activity of neutrophils promoting in vivo clearance. Calprotectin mutated in two transition metal binding sites and therefore defective in binding manganese and zinc does not inhibit microbial growth, unequivocally linking the antimicrobial properties of calprotectin to metal chelation. These results suggest that calprotectin contributes to host defense by rendering bacterial pathogens more sensitive to host immune effectors and reducing bacterial growth.
Collapse
Affiliation(s)
- Thomas E. Kehl-Fie
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee USA
| | - Seth Chitayat
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232
| | - M. Indriati Hood
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee USA
| | - Steven Damo
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232
| | - Nicole Restrepo
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232
| | - Carlos Garcia
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232
| | - Kim A. Munro
- Protein Function Discovery Facility, Queen’s University, Kingston, Ontario, Canada K7L 3N6
| | - Walter J. Chazin
- Department of Biochemistry and Chemistry, and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee USA 37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology and Immunology, Nashville, Tennessee USA
| |
Collapse
|
121
|
Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T. Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS One 2011; 6:e21323. [PMID: 21765893 PMCID: PMC3128592 DOI: 10.1371/journal.pone.0021323] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/25/2011] [Indexed: 12/21/2022] Open
Abstract
The GraS/GraR two-component system has been shown to control cationic antimicrobial peptide (CAMP) resistance in the major human pathogen Staphylococcus aureus. We demonstrated that graX, also involved in CAMP resistance and cotranscribed with graRS, encodes a regulatory cofactor of the GraSR signaling pathway, effectively constituting a three-component system. We identified a highly conserved ten base pair palindromic sequence (5' ACAAA TTTGT 3') located upstream from GraR-regulated genes (mprF and the dlt and vraFG operons), which we show to be essential for transcriptional regulation by GraR and induction in response to CAMPs, suggesting it is the likely GraR binding site. Genome-based predictions and transcriptome analysis revealed several novel GraR target genes. We also found that the GraSR TCS is required for growth of S. aureus at high temperatures and resistance to oxidative stress. The GraSR system has previously been shown to play a role in S. aureus pathogenesis and we have uncovered previously unsuspected links with the AgrCA peptide quorum-sensing system controlling virulence gene expression. We also show that the GraSR TCS controls stress reponse and cell wall metabolism signal transduction pathways, sharing an extensive overlap with the WalKR regulon. This is the first report showing a role for the GraSR TCS in high temperature and oxidative stress survival and linking this system to stress response, cell wall and pathogenesis control pathways.
Collapse
Affiliation(s)
- Mélanie Falord
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, Department for Functional Genomics, Ernst Moritz Arndt University, Greifswald, Germany
| | - Aurélia Hiron
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Michel Débarbouillé
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
| | - Tarek Msadek
- Institut Pasteur, Biology of Gram-Positive Pathogens, Department of Microbiology, Paris, France
- CNRS, URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
122
|
Champion OL, Karlyshev A, Cooper IAM, Ford DC, Wren BW, Duffield M, Oyston PCF, Titball RW. Yersinia pseudotuberculosis mntH functions in intracellular manganese accumulation, which is essential for virulence and survival in cells expressing functional Nramp1. MICROBIOLOGY-SGM 2010; 157:1115-1122. [PMID: 21183572 DOI: 10.1099/mic.0.045807-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Manganese has an important yet undefined role in the virulence of many bacterial pathogens. In this study we confirm that a null mutation in Yersinia pseudotuberculosis mntH reduces intracellular manganese accumulation. An mntH mutant was susceptible to killing by reactive oxygen species when grown under manganese-limited conditions. The mntH mutant was defective in survival and growth in macrophages expressing functional Nramp1, but in macrophages deficient in Nramp the bacteria were able to survive and replicate. In Galleria mellonella, the mntH mutant was attenuated. Taken together, these data suggest a role for manganese in Y. pseudotuberculosis during macrophage intracellular survival, protecting the bacteria from the antimicrobial products released during the respiratory burst.
Collapse
Affiliation(s)
- Olivia L Champion
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Andrey Karlyshev
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Ian A M Cooper
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Donna C Ford
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Brendan W Wren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Melanie Duffield
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Petra C F Oyston
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Richard W Titball
- School of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
123
|
Nielsen JS, Christiansen MHG, Bonde M, Gottschalk S, Frees D, Thomsen LE, Kallipolitis BH. Searching for small σB-regulated genes in Staphylococcus aureus. Arch Microbiol 2010; 193:23-34. [DOI: 10.1007/s00203-010-0641-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 08/25/2010] [Accepted: 09/09/2010] [Indexed: 02/05/2023]
|
124
|
Structure and function of CinD (YtjD) of Lactococcus lactis, a copper-induced nitroreductase involved in defense against oxidative stress. J Bacteriol 2010; 192:4172-80. [PMID: 20562311 DOI: 10.1128/jb.00372-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Lactococcus lactis IL1403, 14 genes are under the control of the copper-inducible CopR repressor. This so-called CopR regulon encompasses the CopR regulator, two putative CPx-type copper ATPases, a copper chaperone, and 10 additional genes of unknown function. We addressed here the function of one of these genes, ytjD, which we renamed cinD (copper-induced nitroreductase). Copper, cadmium, and silver induced cinD in vivo, as shown by real-time quantitative PCR. A knockout mutant of cinD was more sensitive to oxidative stress exerted by 4-nitroquinoline-N-oxide and copper. Purified CinD is a flavoprotein and reduced 2,6-dichlorophenolindophenol and 4-nitroquinoline-N-oxide with k(cat) values of 27 and 11 s(-1), respectively, using NADH as a reductant. CinD also exhibited significant catalase activity in vitro. The X-ray structure of CinD was resolved at 1.35 A and resembles those of other nitroreductases. CinD is thus a nitroreductase which can protect L. lactis against oxidative stress that could be exerted by nitroaromatic compounds and copper.
Collapse
|
125
|
O'Neill AJ. Staphylococcus aureus SH1000 and 8325-4: comparative genome sequences of key laboratory strains in staphylococcal research. Lett Appl Microbiol 2010; 51:358-61. [PMID: 20618890 DOI: 10.1111/j.1472-765x.2010.02885.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS To provide comparative genome sequence data for two related model strains of Staphylococcus aureus (SH1000 and 8325-4) that are used extensively in laboratory research. METHODS AND RESULTS Comparative genome sequencing was used to identify genetic differences between Staph. aureus SH1000 and the fully genome-sequenced ancestral strain, Staph. aureus NCTC 8325. PCR amplification and DNA sequencing were employed to determine which of the genetic polymorphisms identified were also present in Staph. aureus 8325-4, a direct derivative of 8325 and the parent strain of SH1000. Aside from known genetic differences between these strains, Staph. aureus SH1000 harboured 15 single-nucleotide polymorphisms compared with 8325 (of which 12 were also found in 8325-4), and a 63-bp deletion upstream of the spa gene not present in either 8325 or 8325-4. CONCLUSIONS Staphylococcus aureus SH1000 and 8325-4 contain a number of genetic polymorphisms relative to the progenitor strain of the lineage (8325) and to each other. SIGNIFICANCE AND IMPACT OF THE STUDY The comparative genome sequences of SH1000 and 8325-4 presented here define the genotypes of two key strains in staphylococcal laboratory research and reveal genetic polymorphisms that may impact their phenotypic properties.
Collapse
Affiliation(s)
- A J O'Neill
- Antimicrobial Research Centre and Institute of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
126
|
Foster TJ. Colonization and infection of the human host by staphylococci: adhesion, survival and immune evasion. Vet Dermatol 2010; 20:456-70. [PMID: 20178484 DOI: 10.1111/j.1365-3164.2009.00825.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The natural habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. Several bacterial surface proteins are implicated in promoting adhesion to desquamated epithelial cells. Clumping factor B (ClfB) and iron-regulated surface determinant A both promote nasal colonization in rodent models, and in the case of ClfB, humans. One of the ligands involved in adhesion is cytokeratin 10. Reduction in nasal colonization can be achieved by active and passive immunization. S. aureus is well endowed with secreted and surface components that compromise innate immune responses, particularly the function of neutrophils. S. aureus secretes proteins that reduce migration of neutrophils from the bloodstream to the site of infection by impeding diapedesis and receptors for chemotactic molecules. Several secreted proteins interfere with complement C3 and C5 convertases, thus reducing the level of C3b opsonin and the chemotactic peptide C5a. Host proteases are recruited to the cell surface to enhance destruction of opsonic C3b and IgG. Surface components ClfA, protein A and polysaccharide capsule compromise the recognition of opsonins on the bacterial cell surface. If engulfed by neutrophils the intracellular bacterium can resist reactive oxygen intermediates, nitric oxide radicals, defensin peptides and bactericidal proteins. A prior infection by S. aureus does not induce complete protective immunity. This could be due to immunosuppression caused by expression of superantigen proteins that disrupt normal activation of T cells and B cells during antigen presentation. By studying the molecular pathogenesis of S. aureus infections markers might be found for investigating S. pseudintermedius infections of dogs.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
127
|
The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response. PLoS Pathog 2010; 6:e1000894. [PMID: 20485570 PMCID: PMC2869319 DOI: 10.1371/journal.ppat.1000894] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/02/2010] [Indexed: 12/20/2022] Open
Abstract
We have characterized a novel pleiotropic role for CymR, the master regulator of cysteine metabolism. We show here that CymR plays an important role both in stress response and virulence of Staphylococcus aureus. Genes involved in detoxification processes, including oxidative stress response and metal ion homeostasis, were differentially expressed in a ΔcymR mutant. Deletion of cymR resulted in increased sensitivity to hydrogen peroxide-, disulfide-, tellurite- and copper-induced stresses. Estimation of metabolite pools suggests that this heightened sensitivity could be the result of profound metabolic changes in the ΔcymR mutant, with an increase in the intracellular cysteine pool and hydrogen sulfide formation. Since resistance to oxidative stress within the host organism is important for pathogen survival, we investigated the role of CymR during the infectious process. Our results indicate that the deletion of cymR promotes survival of S. aureus inside macrophages, whereas virulence of the ΔcymR mutant is highly impaired in mice. These data indicate that CymR plays a major role in virulence and adaptation of S. aureus for survival within the host. Staphylococcus aureus is a very harmful human pathogen that is a major cause of nosocomial infections. Humans have developed sophisticated defense strategies against invading bacteria, including the innate immune response, with the generation of an oxidative burst inside phagocytic cells. Staphylococcal infections are extremely difficult to eradicate due to the remarkable capacity of these bacteria to adapt to different environmental conditions both inside and outside the host organism. Sulfur metabolism is essential for all living organisms and is tightly controlled by regulatory proteins. In this paper, we revealed an important role for CymR, a major regulator of sulfur metabolism, in adaptation of S. aureus to the host environment. Inactivation of the gene encoding this regulator in S. aureus leads to a mutant bacterium with increased vulnerability to stress conditions including oxidative stress encountered inside the host. More importantly, the deletion of the cymR gene strongly affected the interaction of S. aureus with its host, leading to impaired virulence in mice. Our results place CymR among the potential targets for attenuation of S. aureus infections.
Collapse
|
128
|
DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans. Biochem Biophys Res Commun 2010; 396:413-8. [PMID: 20417183 DOI: 10.1016/j.bbrc.2010.04.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 04/17/2010] [Indexed: 11/22/2022]
Abstract
Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.
Collapse
|
129
|
Control of thioredoxin reductase gene (trxB) transcription by SarA in Staphylococcus aureus. J Bacteriol 2010; 192:336-45. [PMID: 19854896 DOI: 10.1128/jb.01202-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thioredoxin reductase (encoded by trxB) protects Staphylococcus aureus against oxygen or disulfide stress and is indispensable for growth. Among the different sarA family mutants analyzed, transcription of trxB was markedly elevated in the sarA mutant under conditions of aerobic as well as microaerophilic growth, indicating that SarA acts as a negative regulator of trxB expression. Gel shift analysis showed that purified SarA protein binds directly to the trxB promoter region DNA in vitro. DNA binding of SarA was essential for repression of trxB transcription in vivo in S. aureus. Northern blot analysis and DNA binding studies of the purified wild-type SarA and the mutant SarAC9G with oxidizing agents indicated that oxidation of Cys-9 reduced the binding of SarA to the trxB promoter DNA. Oxidizing agents, in particular diamide, could further enhance transcription of the trxB gene in the sarA mutant, suggesting the presence of a SarA-independent mode of trxB induction. Analysis of two oxidative stress-responsive sarA regulatory target genes, trxB and sodM, with various mutant sarA constructs showed a differential ability of the SarA to regulate expression of the two above-mentioned genes in vivo. The overall data demonstrate the important role played by SarA in modulating expression of genes involved in oxidative stress resistance in S. aureus.
Collapse
|
130
|
Cooper EL, García-Lara J, Foster SJ. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiol 2009; 9:266. [PMID: 20021644 PMCID: PMC2811118 DOI: 10.1186/1471-2180-9-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022] Open
Abstract
Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.
Collapse
Affiliation(s)
- Elizabeth L Cooper
- Department of Molecular Biology and Microbiology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
131
|
Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol 2009; 14:218-24. [PMID: 20015678 DOI: 10.1016/j.cbpa.2009.11.008] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/05/2009] [Accepted: 11/06/2009] [Indexed: 12/14/2022]
Abstract
Vertebrates sequester iron from invading pathogens, and conversely, pathogens express a variety of factors to steal iron from the host. Recent work has demonstrated that in addition to iron, vertebrates sequester zinc and manganese both intracellularly and extracellularly to protect against infection. Intracellularly, vertebrates utilize the ZIP/ZnT families of transporters to manipulate zinc levels, as well as Nramp1 to manipulate manganese levels. Extracellularly, the S100 protein calprotectin sequesters manganese and potentially zinc to inhibit microbial growth. To circumvent these defenses, bacteria possess high affinity transporters to import specific nutrient metals. Limiting the availability of zinc and manganese as a mechanism to defend against infection expands the spectrum of nutritional immunity and further establishes metal sequestration as a key defense against microbial invaders.
Collapse
|
132
|
Genome-wide characterization of the SloR metalloregulome in Streptococcus mutans. J Bacteriol 2009; 192:1433-43. [PMID: 19915021 DOI: 10.1128/jb.01161-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Streptococcus mutans is the primary causative agent of human dental caries, a ubiquitous infectious disease for which effective treatment strategies remain elusive. We investigated a 25-kDa SloR metalloregulatory protein in this oral pathogen, along with its target genes that contribute to cariogenesis. Previous studies have demonstrated manganese- and SloR-dependent repression of the sloABCR metal ion transport operon in S. mutans. In the present study, we demonstrate that S. mutans coordinates this repression with that of certain virulence attributes. Specifically, we noted virulence gene repression in a manganese-containing medium when SloR binds to promoter-proximal sequence palindromes on the S. mutans chromosome. We applied a genome-wide approach to elucidate the sequences to which SloR binds and to reveal additional "class I" genes that are subject to SloR- and manganese-dependent repression. These analyses identified 204 S. mutans genes that are preceded by one or more conserved palindromic SloR recognition elements (SREs). We cross-referenced these genes with those that we had identified previously as SloR and/or manganese modulated in microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) experiments. From this analysis, we identified a number of S. mutans virulence genes that are subject to transcriptional upregulation by SloR and noted that such "class II"-type regulation is dependent on direct SloR binding to promoter-distal SREs. These observations are consistent with a bifunctional role for the SloR metalloregulator and implicate it as a target for the development of therapies aimed at alleviating S. mutans-induced caries formation.
Collapse
|
133
|
Anderson ES, Paulley JT, Gaines JM, Valderas MW, Martin DW, Menscher E, Brown TD, Burns CS, Roop RM. The manganese transporter MntH is a critical virulence determinant for Brucella abortus 2308 in experimentally infected mice. Infect Immun 2009; 77:3466-74. [PMID: 19487482 PMCID: PMC2715675 DOI: 10.1128/iai.00444-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/03/2009] [Accepted: 05/20/2009] [Indexed: 11/20/2022] Open
Abstract
The gene designated BAB1_1460 in the Brucella abortus 2308 genome sequence is predicted to encode the manganese transporter MntH. Phenotypic analysis of an isogenic mntH mutant indicates that MntH is the sole high-affinity manganese transporter in this bacterium but that MntH does not play a detectable role in the transport of Fe(2+), Zn(2+), Co(2+), or Ni(2+). Consistent with the apparent selectivity of the corresponding gene product, the expression of the mntH gene in B. abortus 2308 is repressed by Mn(2+), but not Fe(2+), and this Mn-responsive expression is mediated by a Mur-like repressor. The B. abortus mntH mutant MWV15 exhibits increased susceptibility to oxidative killing in vitro compared to strain 2308, and a comparative analysis of the superoxide dismutase activities present in these two strains indicates that the parental strain requires MntH in order to make wild-type levels of its manganese superoxide dismutase SodA. The B. abortus mntH mutant also exhibits extreme attenuation in both cultured murine macrophages and experimentally infected C57BL/6 mice. These experimental findings indicate that Mn(2+) transport mediated by MntH plays an important role in the physiology of B. abortus 2308, particularly during its intracellular survival and replication in the host.
Collapse
Affiliation(s)
- Eric S Anderson
- Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, NC 27834, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
134
|
At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 2009; 73:233-48. [PMID: 19487727 DOI: 10.1128/mmbr.00005-09] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteria live in environments that are subject to rapid changes in the availability of the nutrients that are necessary to provide energy and biosynthetic intermediates for the synthesis of macromolecules. Consequently, bacterial survival depends on the ability of bacteria to regulate the expression of genes coding for enzymes required for growth in the altered environment. In pathogenic bacteria, adaptation to an altered environment often includes activating the transcription of virulence genes; hence, many virulence genes are regulated by environmental and nutritional signals. Consistent with this observation, the regulation of most, if not all, virulence determinants in staphylococci is mediated by environmental and nutritional signals. Some of these external signals can be directly transduced into a regulatory response by two-component regulators such as SrrAB; however, other external signals require transduction into intracellular signals. Many of the external environmental and nutritional signals that regulate virulence determinant expression can also alter bacterial metabolic status (e.g., iron limitation). Altering the metabolic status results in the transduction of external signals into intracellular metabolic signals that can be "sensed" by regulatory proteins (e.g., CodY, Rex, and GlnR). This review uses information derived primarily using Bacillus subtilis and Escherichia coli to articulate how gram-positive pathogens, with emphasis on Staphylococcus aureus and Staphylococcus epidermidis, regulate virulence determinant expression in response to a changing environment.
Collapse
|
135
|
Anjem A, Varghese S, Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 2009; 72:844-58. [PMID: 19400769 DOI: 10.1111/j.1365-2958.2009.06699.x] [Citation(s) in RCA: 242] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Very little manganese is imported into Escherichia coli under routine growth conditions: the import system is weakly expressed, the manganese content is low, and a manganese-dependent enzyme is not correctly metallated. Mutants that lack MntH, the importer, grow at wild-type rates, indicating that manganese plays no critical role. However, MntH supports the growth of iron-deficient cells, suggesting that manganese can substitute for iron in activating at least some metalloenzymes. MntH is also strongly induced when cells are stressed by hydrogen peroxide. This adaptation is essential, as E. coli cannot tolerate peroxide stress if mntH is deleted. Other workers have observed that manganese improves the ability of a variety of microbes to tolerate oxidative stress, and the prevailing hypothesis is that manganese does so by chemically scavenging hydrogen peroxide and/or superoxide. We found that manganese does not protect peroxide-stressed cells by scavenging peroxide. Instead, the beneficial effects of manganese correlate with its ability to metallate mononuclear enzymes. Because iron-loaded enzymes are vulnerable to the Fenton reaction, the substitution of manganese may prevent protein damage. Accordingly, during H2O2 stress, mutants that cannot import manganese and/or are unable to sequester iron suffer high rates of protein oxidation.
Collapse
Affiliation(s)
- Adil Anjem
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
136
|
Hohle TH, O’Brian MR. The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein. Mol Microbiol 2009; 72:399-409. [PMID: 19298371 PMCID: PMC2675660 DOI: 10.1111/j.1365-2958.2009.06650.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The bacterial Nramp family protein MntH is a divalent metal transporter, but mntH mutants have little or no phenotype in organisms where it has been studied. Here, we identify the mntH homologue of Bradyrhizobium japonicum, and demonstrate that it is essential for Mn(2+) transport and for maintenance of cellular manganese homeostasis. Transport activity was induced under manganese deficiency, and Fe(2+) did not compete with (54)Mn(2+) for uptake by cells. The steady-state level of mntH mRNA was negatively regulated by manganese, but was unaffected by iron. Control of mntH expression and Mn(2+) transport by manganese was lost in a fur strain, resulting in constitutively high activity. Fur protected a 35 bp region of the mntH promoter in DNase I footprinting analysis that includes three imperfect direct repeat hexamers that are needed for full occupancy. Mn(2+) increased the affinity of Fur for the mntH promoter by over 50-fold, with a K(d) value of 2.2 nM in the presence of metal. The findings identify MntH as the major Mn(2+) transporter in B. japonicum, and show that Fur is a manganese-responsive regulator in that organism. Furthermore, Fe(2+) is neither a substrate for MntH nor a regulator of mntH expression in vivo.
Collapse
Affiliation(s)
- Thomas H. Hohle
- Department of Biochemistry and Witebsky Center for Microbial Pathogenesis and Immunology, 140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214 USA
| | - Mark R. O’Brian
- Department of Biochemistry and Witebsky Center for Microbial Pathogenesis and Immunology, 140 Farber Hall, State University of New York at Buffalo, Buffalo, New York 14214 USA
| |
Collapse
|
137
|
Regulation of superoxide dismutase (sod) genes by SarA in Staphylococcus aureus. J Bacteriol 2009; 191:3301-10. [PMID: 19286803 DOI: 10.1128/jb.01496-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The scavenging of reactive oxygen species (ROS) within cells is regulated by several interacting factors, including transcriptional regulators. Involvement of sarA family genes in the regulation of proteins involved in the scavenging of ROS is largely unknown. In this report, we show that under aerobic conditions, the levels of sodM and sodA transcription, in particular the sodM transcript, are markedly enhanced in the sarA mutant among the tested sarA family mutants. Increased levels of sod expression returned to near the parental level in a single-copy sarA complemented strain. Under microaerophilc conditions, transcription of both sodM and sodA was considerably enhanced in the sarA mutant compared to the wild-type strain. Various genotypic, phenotypic, and DNA binding studies confirmed the involvement of SarA in the regulation of sod transcripts in different strains of Staphylococcus aureus. The sodA mutant was sensitive to an oxidative stress-inducing agent, methyl viologen, but the sarA sodA double mutant was more resistant to the same stressor than the single sodA mutant. These results suggest that overexpression of SodM, which occurs in the sarA background, can rescue the methyl viologen-sensitive phenotype observed in the absence of the sodA gene. Analysis with various oxidative stress-inducing agents indicates that SarA may play a greater role in modulating oxidative stress resistance in S. aureus. This is the first report that demonstrates the direct involvement of a regulatory protein (SarA) in control of sod expression in S. aureus.
Collapse
|
138
|
Rosch JW, Gao G, Ridout G, Wang YD, Tuomanen EI. Role of the manganese efflux system mntE for signalling and pathogenesis in Streptococcus pneumoniae. Mol Microbiol 2009; 72:12-25. [PMID: 19226324 DOI: 10.1111/j.1365-2958.2009.06638.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of bacteria to sense and respond to both environmental and intracellular metal concentrations plays an important role in pathogenesis. The acquisition of manganese is vital for the virulence of several bacterial species. Although manganese uptake systems have been well studied in bacteria, no manganese efflux system has yet been identified. In this study we have identified a cation diffusion facilitator (CDF) protein (Sp1552) of unknown substrate specificity that functions as a manganese export system in Streptococcus pneumoniae. We designated the gene for this manganese efflux system mntE and found that the mutant strain was highly sensitive to manganese stress. Although the mutant was more resistant to oxidative stress and produced more H(2)O(2) and pili, it had reduced virulence in a murine model of infection, indicating that manganese export plays a role in host pathogenesis. There was a distinct differential transcriptional response to extracellular and intracellular manganese accumulation. Our study indicates that manganese efflux is required for invasive disease and may provide a useful antimicrobial target to devise future therapeutics.
Collapse
Affiliation(s)
- Jason W Rosch
- Department of Infectious Diseases, St Jude's Children's Research Hospital, Memphis, TN 38105, USA.
| | | | | | | | | |
Collapse
|
139
|
A manganese transporter, BB0219 (BmtA), is required for virulence by the Lyme disease spirochete, Borrelia burgdorferi. Proc Natl Acad Sci U S A 2009; 106:3449-54. [PMID: 19218460 DOI: 10.1073/pnas.0812999106] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Borrelia burgdorferi (Bb), the causative agent of Lyme disease, is transmitted to mammalian hosts through an arthropod (tick) vector. To establish infection, Bb must acquire essential nutrients, including transition metals, from its mammalian and tick hosts. Thus far, no metal transporter has been identified in Bb. Here, we report the identification of the first metal transporter, BmtA (BB0219), in Bb. BmtA-deficient mutants of virulent Bb were readily generated, and the mutants grew slightly slower than wild-type Bb in vitro. However, BmtA mutants were sensitive to the chelating actions of EDTA, suggesting a role for BmtA in metal utilization. Intracellular accumulation of manganese (Mn) was substantially diminished in the bmtA mutant, indicating that BmtA was operative in Mn uptake. Given that BmtA lacks homology to any known Mn transporter, we postulate that BmtA is part of a novel mechanism for Mn acquisition by a bacterial pathogen. BmtA also was essential to the infectious life cycle of Bb in ticks and mammals, thereby qualifying BmtA as a new borrelial virulence factor. In addition, the bmtA mutant was sensitive to treatment with t-butyl hydroperoxide, implying that BmtA, and thus Mn, is important to Bb for detoxifying reactive oxygen species, including those potentially liberated by immune effector cells during the innate immune response. Our discovery of the first molecule involved in metal transport in Bb provides a foundation for further elucidating metal homeostasis in this important human pathogen, which may lead to new strategies for thwarting Lyme disease.
Collapse
|
140
|
Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS One 2008; 3:e3844. [PMID: 19050758 PMCID: PMC2585143 DOI: 10.1371/journal.pone.0003844] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022] Open
Abstract
S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (σS), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that σS is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that σS is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a σS mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that σS is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network.
Collapse
|
141
|
Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron. Antonie van Leeuwenhoek 2008; 95:101-9. [DOI: 10.1007/s10482-008-9291-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
142
|
Abstract
Life evolved in an anaerobic world; therefore, fundamental enzymatic mechanisms and biochemical pathways were refined and integrated into metabolism in the absence of any selective pressure to avoid reactivity with oxygen. After photosystem II appeared, environmental oxygen levels rose very slowly. During this time, microorganisms acquired oxygen tolerance by jettisoning enzymes that use glycyl radicals and exposed low-potential iron-sulfur clusters, which can be directly poisoned by oxygen. They also developed mechanisms to defend themselves against superoxide (O(2)()) and hydrogen peroxide, partially reduced oxygen species that are generated as inadvertent by-products of aerobic metabolism. Contemporary organisms have inherited both the vulnerabilities and the defenses of these ancestral microbes. Current research seeks to identify these, and bacteria comprise an exceptionally accessible experimental system that has provided many of the answers. This manuscript reviews recent developments and identifies remaining puzzles.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
143
|
Abstract
Staphylococcus aureus infections induce formation of neutrophil-rich abscesses filled with debris from dead phagocytes. Corbin and colleagues report that this pus has antimicrobial powers through the activity of calprotectin. Calprotectin, a member of the S100 family of proinflammatory proteins, acts through chelation of manganese. As manganese is an essential cofactor for several enzymes in S. aureus, this impacts bacterial growth and the bacterium's ability to withstand oxidative stress.
Collapse
Affiliation(s)
- David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
144
|
Staphylococcus aureus HrtA is an ATPase required for protection against heme toxicity and prevention of a transcriptional heme stress response. J Bacteriol 2008; 190:3588-96. [PMID: 18326576 DOI: 10.1128/jb.01921-07] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During systemic infection, Staphylococcus aureus acquires nutrient iron from heme, the cofactor of vertebrate myoglobin and hemoglobin. Upon exposure to heme, S. aureus up-regulates the expression of the heme-regulated transporter, HrtAB. Strains lacking hrtAB exhibit increased sensitivity to heme toxicity, and upon heme exposure they elaborate a secreted protein response that interferes with the recruitment of neutrophils to the site of infection. Taken together, these results have led to the suggestion that hrtAB encodes an efflux system responsible for relieving the toxic effects of accumulated heme. Here we extend these observations by demonstrating that HrtA is the ATPase component of the HrtAB transport system. We show that HrtA is an Mn(2+)/Mg(2+)-dependent ATPase that functions at an optimal pH of 7.5 and exhibits in vitro temperature dependence uncommon to ABC transporter ATPases. Furthermore, we identify conserved residues within HrtA that are required for in vitro ATPase activity and are essential for the functionality of HrtA in vivo. Finally, we show that heme induces an alteration in the gene expression pattern of S. aureus Delta hrtA, implying the presence of a novel transcriptional regulatory mechanism responsible for the previously described immunomodulatory characteristics of hrtA mutants exposed to heme.
Collapse
|
145
|
Affiliation(s)
- Richard P Novick
- Kimmel Center for Biology and Medicine, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
146
|
Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJ, Anderson KL, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP. Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses. Science 2008; 319:962-5. [DOI: 10.1126/science.1152449] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
147
|
Abstract
Life evolved in an anaerobic world; therefore, fundamental enzymatic mechanisms and biochemical pathways were refined and integrated into metabolism in the absence of any selective pressure to avoid reactivity with oxygen. After photosystem II appeared, environmental oxygen levels rose very slowly. During this time, microorganisms acquired oxygen tolerance by jettisoning enzymes that use glycyl radicals and exposed low-potential iron-sulfur clusters, which can be directly poisoned by oxygen. They also developed mechanisms to defend themselves against superoxide (O(2)()) and hydrogen peroxide, partially reduced oxygen species that are generated as inadvertent by-products of aerobic metabolism. Contemporary organisms have inherited both the vulnerabilities and the defenses of these ancestral microbes. Current research seeks to identify these, and bacteria comprise an exceptionally accessible experimental system that has provided many of the answers. This manuscript reviews recent developments and identifies remaining puzzles.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
148
|
Lee JW, Helmann JD. Functional specialization within the Fur family of metalloregulators. Biometals 2007; 20:485-99. [PMID: 17216355 DOI: 10.1007/s10534-006-9070-7] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 11/28/2006] [Indexed: 01/01/2023]
Abstract
The ferric uptake regulator (Fur) protein, as originally described in Escherichia coli, is an iron-sensing repressor that controls the expression of genes for siderophore biosynthesis and iron transport. Although Fur is commonly thought of as a metal-dependent repressor, Fur also activates the expression of many genes by either indirect or direct mechanisms. In the best studied model systems, Fur functions as a global regulator of iron homeostasis controlling both the induction of iron uptake functions (under iron limitation) and the expression of iron storage proteins and iron-utilizing enzymes (under iron sufficiency). We now appreciate that there is a tremendous diversity in metal selectivity and biological function within the Fur family which includes sensors of iron (Fur), zinc (Zur), manganese (Mur), and nickel (Nur). Despite numerous studies, the mechanism of metal ion sensing by Fur family proteins is still controversial. Other family members use metal catalyzed oxidation reactions to sense peroxide-stress (PerR) or the availability of heme (Irr).
Collapse
Affiliation(s)
- Jin-Won Lee
- Department of Microbiology, Cornell University, Wing Hall, Ithaca, NY 14853-8101, USA
| | | |
Collapse
|
149
|
Allen MD, Kropat J, Tottey S, Del Campo JA, Merchant SS. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. PLANT PHYSIOLOGY 2007; 143:263-77. [PMID: 17085511 PMCID: PMC1761973 DOI: 10.1104/pp.106.088609] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
For photoheterotrophic growth, a Chlamydomonas reinhardtii cell requires at least 1.7 x 10(7) manganese ions in the medium. At lower manganese ion concentrations (typically <0.5 microm), cells divide more slowly, accumulate less chlorophyll, and the culture reaches stationary phase at lower cell density. Below 0.1 microm supplemental manganese ion in the medium, the cells are photosynthetically defective. This is accompanied by decreased abundance of D1, which binds the Mn(4)Ca cluster, and release of the OEE proteins from the membrane. Assay of Mn superoxide dismutase (MnSOD) indicates loss of activity of two isozymes in proportion to the Mn deficiency. The expression of MSD3 through MSD5, encoding various isoforms of the MnSODs, is up-regulated severalfold in Mn-deficient cells, but neither expression nor activity of the plastid Fe-containing superoxide dismutase is changed, which contrasts with the dramatically increased MSD3 expression and plastid MnSOD activity in Fe-deficient cells. Mn-deficient cells are selectively sensitive to peroxide but not methyl viologen or Rose Bengal, and GPXs, APX, and MSRA2 genes (encoding glutathione peroxidase, ascorbate peroxidase, and methionine sulfoxide reductase 2) are slightly up-regulated. Elemental analysis indicates that the Mn, Fe, and P contents of cells in the Mn-deficient cultures were reduced in proportion to the deficiency. A natural resistance-associated macrophage protein homolog and one of five metal tolerance proteins were induced in Mn-deficient cells but not in Fe-deficient cells, suggesting that the corresponding gene products may be components of a Mn(2+)-selective assimilation pathway.
Collapse
Affiliation(s)
- Michael D Allen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | | | |
Collapse
|
150
|
Massonet C, Pintens V, Merckx R, Anné J, Lammertyn E, Van Eldere J. Effect of iron on the expression of sirR and sitABC in biofilm-associated Staphylococcus epidermidis. BMC Microbiol 2006; 6:103. [PMID: 17177984 PMCID: PMC1764749 DOI: 10.1186/1471-2180-6-103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 12/19/2006] [Indexed: 11/28/2022] Open
Abstract
Background Different gene expression patterns correlate with the altered phenotype in biofilm-associated bacteria. Iron and iron-linked genes are thought to play a key-role in biofilm formation. The expression of Fe-linked genes (sirR, sitABC operon) in Staphylococcus epidermidis, was compared in planktonic versus sessile bacteria in vitro and in vivo in a subcutaneous foreign body rat model. Results In vitro in a Fe-limited environment, the planktonic form of S. epidermidis produces siderophores and grows slower than in Fe-rich environment. The expression of sirR in planktonic bacteria, in vitro, was not different in medium without Fe or with 1 μM FeCl3. High Fe concentrations (25 μM FeCl3) increased expression of sirR transiently during the early phase of incubation. Expression of sitC in vitro, in planktonic bacteria, was inversely correlated with sirR expression in medium with 25 μM FeCl3: sitC expression decreased for the first 3 hours followed by an up regulation. In sessile bacteria in vitro, sirR expression was high and independent of the Fe concentration. The expression of sitC was not inversely correlated to sirR expression. In vivo, expression levels of sirR and of sitABC were high during the initial phase after implantation and, after a transient decrease, remained stable over a period of two weeks. Conclusion Our data suggest that the expression of sirR and the regulatory effect of sirR on the sitABC operon are different in planktonic and sessile bacteria.
Collapse
Affiliation(s)
- Caroline Massonet
- Lab medical microbiology, Department Medical Diagnostic Sciences, KULeuven, U.Z.Gasthuisberg, Herestraat 49 CDG8th floor, B-3000, Leuven, Belgium
| | - Valerie Pintens
- Lab medical microbiology, Department Medical Diagnostic Sciences, KULeuven, U.Z.Gasthuisberg, Herestraat 49 CDG8th floor, B-3000, Leuven, Belgium
| | - Rita Merckx
- Lab medical microbiology, Department Medical Diagnostic Sciences, KULeuven, U.Z.Gasthuisberg, Herestraat 49 CDG8th floor, B-3000, Leuven, Belgium
| | - Jozef Anné
- Lab Bacteriology, Department Microbiology and Immunology, KULeuven, Rega institute, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Elke Lammertyn
- Lab Bacteriology, Department Microbiology and Immunology, KULeuven, Rega institute, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Johan Van Eldere
- Lab medical microbiology, Department Medical Diagnostic Sciences, KULeuven, U.Z.Gasthuisberg, Herestraat 49 CDG8th floor, B-3000, Leuven, Belgium
| |
Collapse
|