101
|
Identification of novel cell-impermeant fluorescent substrates for testing the function and drug interaction of Organic Anion-Transporting Polypeptides, OATP1B1/1B3 and 2B1. Sci Rep 2018; 8:2630. [PMID: 29422623 PMCID: PMC5805760 DOI: 10.1038/s41598-018-20815-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
Organic Anion-Transporting Polypeptides are multispecific membrane proteins that regulate the passage of crucial endobiotics and drugs across pharmacological barriers. OATP1B1 and OATP1B3 have been described to play a major role in the hepatic uptake of statins, antivirals and various chemotherapeutics; whereas the pharmacological role of the ubiquitously expressed OATP2B1 is less well characterized. According to current industry standards, in vitro testing for susceptibility to OATP1B1 and 1B3 mediated transport is recommended for drug candidates that are eliminated in part via the liver. Here we show that human OATP1B1, 1B3 and 2B1 transport a series of commercially available viability dyes that are generally believed to be impermeable to intact cells. We demonstrate that the intracellular accumulation of Zombie Violet, Live/Dead Green, Cascade Blue and Alexa Fluor 405 is specifically increased by OATPs. Inhibition of Cascade Blue or Alexa Fluor 405 uptake by known OATP substrates/inhibitors yielded IC50 values in agreement with gold-standard radioligand assays. The fluorescence-based assays described in this study provide a new tool for testing OATP1B/2B1 drug interactions.
Collapse
|
102
|
Schaefer M, Morinaga G, Matsui A, Schänzle G, Bischoff D, Süssmuth RD. Quantitative Expression of Hepatobiliary Transporters and Functional Uptake of Substrates in Hepatic Two-Dimensional Sandwich Cultures: A Comparative Evaluation of Upcyte and Primary Human Hepatocytes. Drug Metab Dispos 2018; 46:166-177. [PMID: 29212823 DOI: 10.1124/dmd.117.078238] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/27/2017] [Indexed: 02/13/2025] Open
Abstract
Deficient functional expression of drug transporters incapacitates most hepatic cell lines as a reliable tool for evaluating transporter-mediated drug-drug interactions. Recently, genetically modified cells (referred to as upcyte hepatocytes) have emerged as an expandable, noncancerous source of human hepatic cells. Herein, we quantified mRNA and protein levels of key hepatobiliary transporters and we assessed associated uptake activity in short- and long-term cultures of upcyte human hepatocytes (UHH) in comparison to cryopreserved primary human hepatocytes (cPHH). Expression of canalicular efflux pumps, such as MRD1/ABCB1, MATE1/SLC47A1, and MRP2/ABCC2, was relatively well preserved in UHH. By contrast, long-term cultivation of UHH in a two-dimensional sandwich configuration [sandwich-cultured upcyte human hepatocytes (SCUHH)] was required to upregulate organic anion-transporting polypeptide OATP1B1/SLCO1B1, OATP2B1/SLCO2B1, NTCP/SLC10A1, and OCT1/SLC22A1 mRNA expression, which correlated well with respective protein abundances. However, mRNA and protein levels of sinusoidal solute carrier transporters, except for NTCP and OATP2B1, remained low in SCUHH compared to sandwich-cultured cPHH. OCT1- and NTCP-mediated uptake of N-methyl-4-phenylpyridinium acetate and taurocholate was demonstrated in both hepatic models, whereas active uptake of OATP1B1/1B3-selective marker substrates, paralleled by markedly reduced SLCO1B1/1B3 expression, were not detectable in SCUHH. Uptake studies under Na+-depletion and excess of taurocholate confirmed the presence of functional NTCP protein and indicated that NTCP, apart from OATP2B1, contributed substantially to the overall hepatic uptake of rosuvastatin in SCUHH. In conclusion, our data suggest that SCUHH, despite their limitation for evaluating OATP1B1/1B3-mediated transport processes, retain NTCP, OATP2B1, and OCT1 transport activities and thus may be considered as a tool for elucidating compensatory uptake pathways for OATP1B1/1B3 substrates.
Collapse
Affiliation(s)
- Michelle Schaefer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gaku Morinaga
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Akiko Matsui
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Gerhard Schänzle
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Daniel Bischoff
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| | - Roderich D Süssmuth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany (M.S., G.S., D.B.); Department of Pharmacokinetics and Nonclinical Safety, Kobe Pharma Research Institute, Nippon Boehringer Ingelheim Co. Ltd., Kobe, Japan (G.M., A.M.); and Institut für Chemie, Technische Universität Berlin, Berlin, Germany (R.D.S.)
| |
Collapse
|
103
|
Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin. Biochem Biophys Res Commun 2017; 495:2152-2157. [PMID: 29273507 DOI: 10.1016/j.bbrc.2017.12.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 01/27/2023]
Abstract
Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.
Collapse
|
104
|
Malagnino V, Hussner J, Seibert I, Stolzenburg A, Sager CP, Meyer Zu Schwabedissen HE. LST-3TM12 is a member of the OATP1B family and a functional transporter. Biochem Pharmacol 2017; 148:75-87. [PMID: 29248594 DOI: 10.1016/j.bcp.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023]
Abstract
Organic anion transporting polypeptides (OATPs) and particularly the two members of the OATP1B family are known for their role in pharmacokinetics. Both SLCO1B3 and SLCO1B1 are located on chromosome 12 encompassing the gene locus SLCO1B7. Hitherto, this particular gene has been assumed to be a pseudogene, even though there are published mRNA sequences linked to this chromosomal area. It was aim of this study to further investigate SLCO1B7 and the associated mRNA LST-3TM12. In a first step, we aligned all mRNAs linked to the chromosomal region of SLCO1B-transporters. This in silico analysis revealed that LST-3TM12 is a product of splicing of SLCO1B3 and SLCO1B7, and encodes for a protein with twelve transmembrane domains. The existence of LST-3TM12 mRNA was verified by polymerase chain reaction showing liver enriched expression. In addition, immunohistological staining showed that LST-3TM12 protein was expressed in the endoplasmic reticulum (ER) of hepatocytes. Localization in the ER was further verified by immunoblot analysis showing high amounts of LST-3TM12 in liver microsomes. Function of LST-3TM12 was assessed by transport studies after heterologous expression in HeLa cells, where the transporter was shown to be expressed not only in the ER but also in the plasma membrane. Overexpression of LST-3TM12 was associated with enhanced cellular accumulation of dehydroepiandrosterone sulfate (Vmax 300.2 pmol mg-1 min-1; Km 34.2 µm) and estradiol 17β-glucuronide (Vmax 29.9 mol mg-1 min-1 and Km 32.8 µM). In conclusion, LST-3TM12 is a functional splice variant of SLCO1B3 and SLCO1B7 expressed in the ER of human liver.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antje Stolzenburg
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Germany
| | - Christoph P Sager
- Molecular Modeling, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
105
|
Alam K, Farasyn T, Crowe A, Ding K, Yue W. Treatment with proteasome inhibitor bortezomib decreases organic anion transporting polypeptide (OATP) 1B3-mediated transport in a substrate-dependent manner. PLoS One 2017; 12:e0186924. [PMID: 29107984 PMCID: PMC5673231 DOI: 10.1371/journal.pone.0186924] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/10/2017] [Indexed: 01/26/2023] Open
Abstract
OATP1B1 and OATP1B3 mediate hepatic uptake of many drugs (e.g., statins) and can mediate transporter-mediated drug-drug-interactions (DDIs). Bortezomib is the first-in-class proteasome inhibitor drug approved by the U. S. Food and Drug Administration for the treatment of multiple myeloma. The potential of bortezomib to cause OATP-mediated DDIs has not been assessed. The current study investigated the involvement of the ubiquitin-proteasome system (UPS) in OATP1B1 and OATP1B3 degradation and determined the effects of proteasome inhibitors on OATP1B1- and OATP1B3-mediated transport. Co-immunoprecipitation of FLAG-OATP1B1/1B3 and HA-ubiquitin was observed in human embryonic kidney (HEK) 293 cells co-transfected with FLAG-tagged OATP1B1/OATP1B3 and hemagglutinin (HA)-tagged ubiquitin, suggesting that OATP1B1 and OATP1B3 can be ubiquitin-modified. Although blocking proteasome activity by bortezomib treatment (50 nM, 7 h) increased the endogenous ubiquitin-conjugated FLAG-OATP1B1 and FLAG-OATP1B3 in HEK293-FLAG-OATP1B1 and-OATP1B3 cells, such treatment did not affect the total protein levels of OATP1B1 and OATP1B3, suggesting that the UPS plays a minor role in degradation of OATP1B1 and OATP1B3 under current constitutive conditions. Pretreatment with bortezomib (50-250 nM, 2-7 h) significantly decreased transport of [3H]CCK-8, a specific OATP1B3 substrate, in HEK293-OATP1B3 and human sandwich-cultured hepatocytes (SCH). However, bortezomib pretreatment had negligible effects on the transport of [3H]E217βG and [3H]pitavastatin, dual substrates of OATP1B1 and OATP1B3, in HEK293-OATP1B1/1B3 cells and/or human SCH. Compared with vehicle control treatment, bortezomib pretreatment significantly decreased the maximal transport velocity (Vmax) of OATP1B3-mediated transport of CCK-8 (92.25 ± 14.2 vs. 133.95 ± 15.5 pmol/mg protein/min) without affecting the affinity constant (Km) values. Treatment with other proteasome inhibitors MG132, epoxomicin, and carfilzomib also significantly decreased OATP1B3-mediated [3H]CCK-8 transport. In summary, the current studies for the first time report ubiquitination of OATP1B1 and OATP1B3 and the apparent substrate-dependent inhibitory effect of bortezomib on OATP1B3-mediated transport. The data suggest that bortezomib has a low risk of causing OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
106
|
Chiney MS, Menon RM, Bueno OF, Tong B, Salem AH. Clinical evaluation of P-glycoprotein inhibition by venetoclax: a drug interaction study with digoxin. Xenobiotica 2017; 48:904-910. [PMID: 29027832 DOI: 10.1080/00498254.2017.1381779] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
1. Venetoclax is a novel, small molecule B-cell lymphoma-2 (BCL-2) inhibitor that has demonstrated clinical efficacy in a variety of haematological malignancies. Since venetoclax is an inhibitor of P glycoprotein (P-gp) transporter, a study was conducted in healthy, female volunteers to evaluate the effect of venetoclax on the pharmacokinetics of digoxin, a P-gp probe substrate. 2. Volunteers received a single oral dose of digoxin (0.5 mg) with or without a single oral dose of venetoclax (100 mg). Serial blood samples were obtained for pharmacokinetic assessments of digoxin and venetoclax and serial urine samples were obtained for measurement of digoxin concentrations. Safety was assessed throughout the study. 3. Coadministration of digoxin and venetoclax increased digoxin maximum observed plasma concentration (Cmax) by 35% and area under the plasma-concentration time curve (AUC0-∞) by 9%. Digoxin half-life, renal clearance and the fraction excreted unchanged in urine remained relatively similar. The results of this study indicate that venetoclax can increase the concentrations of P-gp substrates. Narrow therapeutic index P-gp substrates should be administered six hours prior to venetoclax to minimise the potential interaction.
Collapse
Affiliation(s)
| | | | | | - Bo Tong
- a AbbVie, Inc. , North Chicago, IL , USA
| | | |
Collapse
|
107
|
Park JE, Ryoo G, Lee W. Alternative Splicing: Expanding Diversity in Major ABC and SLC Drug Transporters. AAPS JOURNAL 2017; 19:1643-1655. [DOI: 10.1208/s12248-017-0150-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 01/18/2023]
|
108
|
Sortica VA, Lindenau JD, Cunha MG, O Ohnishi MD, R Ventura AM, Ribeiro-dos-Santos ÂKC, Santos SEB, Guimarães LSP, Hutz MH. SLCO1A2, SLCO1B1 and SLCO2B1 polymorphisms influences chloroquine and primaquine treatment in Plasmodium vivax malaria. Pharmacogenomics 2017; 18:1393-1400. [PMID: 28975866 PMCID: PMC7099631 DOI: 10.2217/pgs-2017-0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022] Open
Abstract
AIM The association of transporters gene polymorphisms with chloroquine/primaquine malaria treatment response was investigated in a Brazilian population. PATIENTS & METHODS Totally, 164 Plasmodium vivax malaria infected patients were included. Generalized estimating equations were performed to determine gene influences on parasitemia and/or gametocytemia clearance over treatment time. RESULTS Significant interaction between SLCO2B1 genotypes and treatment over time for parasitemia clearance rate on day 2 were observed (p FDR = 0.002). SLCO1A2 and SLCO1B1 gene treatment over time interactions were associated with gametocytemia clearance rate (p FDR = 0.018 and p FDR = 0.024). ABCB1, ABCC4 and SLCO1B3 were not associated with treatment response. CONCLUSION The present work presents the first pharmacogenetic report of an association between chloroquine/primaquine responses with OATP transporters.
Collapse
Affiliation(s)
- Vinicius A Sortica
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Juliana D Lindenau
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maristela G Cunha
- Laboratório de Microbiologia e Imunologia, Universidade Federal do Para, Belém, PA, Brazil
| | - Maria Deise O Ohnishi
- Programa de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Sistema de Vigilância Sanitária, Ministério da Saúde, Ananindeua, PA, Brazil
| | - Ana Maria R Ventura
- Programa de Ensaios Clínicos em Malária, Instituto Evandro Chagas, Sistema de Vigilância Sanitária, Ministério da Saúde, Ananindeua, PA, Brazil
| | | | - Sidney EB Santos
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belém, PA, Brazil
| | - Luciano SP Guimarães
- Unidade de Bioestatística, Grupo de Pesquisa e Pós Graduação, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mara H Hutz
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
109
|
Keiser M, Kaltheuner L, Wildberg C, Müller J, Grube M, Partecke LI, Heidecke CD, Oswald S. The Organic Anion–Transporting Peptide 2B1 Is Localized in the Basolateral Membrane of the Human Jejunum and Caco-2 Monolayers. J Pharm Sci 2017; 106:2657-2663. [DOI: 10.1016/j.xphs.2017.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023]
|
110
|
Geyer J, Bakhaus K, Bernhardt R, Blaschka C, Dezhkam Y, Fietz D, Grosser G, Hartmann K, Hartmann MF, Neunzig J, Papadopoulos D, Sánchez-Guijo A, Scheiner-Bobis G, Schuler G, Shihan M, Wrenzycki C, Wudy SA, Bergmann M. The role of sulfated steroid hormones in reproductive processes. J Steroid Biochem Mol Biol 2017; 172:207-221. [PMID: 27392637 DOI: 10.1016/j.jsbmb.2016.07.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
Sulfated steroid hormones, such as dehydroepiandrosterone sulfate or estrone-3-sulfate, have long been regarded as inactive metabolites as they cannot activate classical steroid receptors. Some of them are present in the blood circulation at quite high concentrations, but generally sulfated steroids exhibit low membrane permeation due to their hydrophilic properties. However, sulfated steroid hormones can actively be imported into specific target cells via uptake carriers, such as the sodium-dependent organic anion transporter SOAT, and, after hydrolysis by the steroid sulfatase (so-called sulfatase pathway), contribute to the overall regulation of steroid responsive organs. To investigate the biological significance of sulfated steroid hormones for reproductive processes in humans and animals, the research group "Sulfated Steroids in Reproduction" was established by the German Research Foundation DFG (FOR1369). Projects of this group deal with transport of sulfated steroids, sulfation of free steroids, desulfation by the steroid sulfatase, effects of sulfated steroids on steroid biosynthesis and membrane receptors as well as MS-based profiling of sulfated steroids in biological samples. This review and concept paper presents key findings from all these projects and provides a broad overview over the current research on sulfated steroid hormones in the field of reproduction.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany.
| | - Katharina Bakhaus
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Rita Bernhardt
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Carina Blaschka
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Yaser Dezhkam
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Daniela Fietz
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Gary Grosser
- Institute of Pharmacology and Toxicology, Justus Liebig University, Giessen, Germany
| | - Katja Hartmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Jens Neunzig
- Institute of Biochemistry, Saarland University, Saarbrücken, Germany
| | - Dimitrios Papadopoulos
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Alberto Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Georgios Scheiner-Bobis
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Mazen Shihan
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University, Giessen, Germany
| | - Christine Wrenzycki
- Veterinary Clinic for Obstetrics, Gynecology and Andrology, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics, Pediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
111
|
Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Intestinal Drug Interactions Mediated by OATPs: A Systematic Review of Preclinical and Clinical Findings. J Pharm Sci 2017; 106:2312-2325. [DOI: 10.1016/j.xphs.2017.04.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
112
|
Ban MJ, Ji SH, Lee CK, Bae SB, Kim HJ, Ahn TS, Lee MS, Baek MJ, Jeong D. Solute carrier organic anion transporter family member 4A1 (SLCO4A1) as a prognosis marker of colorectal cancer. J Cancer Res Clin Oncol 2017; 143:1437-1447. [PMID: 28378090 DOI: 10.1007/s00432-017-2393-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/12/2017] [Indexed: 12/29/2022]
Abstract
PURPOSE Solute carrier organic anion transporter family member 4A1 (SLCO4A1) is involved in the transport of various compounds, including sugars, bile salts, organic acids, metal ions, amine compounds, and estrogen. SLCO4A1 is highly expressed in several cancers and a gender bias has been observed in colorectal cancer (CRC). We investigated SLCO4A1 expression, its prognostic value in patients with CRC, and its role in CRC cell proliferation and metastasis. METHODS SLCO4A1 expression was assessed by immunohistochemistry (IHC) on specimens from 84 patients with CRC. The association of SLCO4A1 expression with clinicopathological features was examined. To confirm the biological role of SLCO4A1 in CRC, four CRC cell lines expressing SLCO4A1 were used and SLCO4A1 expression was knocked down by siRNA. Cell proliferation, MTT, migration, invasion, and semisolid agar colony formation assays were performed. RESULTS SLCO4A1 was overexpressed in 32% of the CRC samples. SLCO4A1 overexpression and pathologic T stage were independent prognostic factors of decreased survival (P = 0.021). Kaplan-Meier analysis indicated a decreased cumulative survival for patients highly expressing SLCO4A1 compared to patients showing low SLCO4A1 expression (Log-rank test, P = 0.025). In cell lines, SLCO4A1 knockdown resulted in a significant decrease of viability, invasion, and migration when compared to control cells. Semisolid colony formation assay indicated that SLCO4A1-knocked down cells presented poor carcinogenic abilities compared to control cells. CONCLUSIONS SLCO4A1 may be a valuable marker of poor prognostic for CRC. Furthermore, SLCO4A1 plays an important role in CRC cell proliferation, migration, invasion, and carcinogenesis.
Collapse
Affiliation(s)
- Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
- Department of Medicine, The Graduate School of Yonsei University, Seoul, Republic of Korea
| | - Sang Hee Ji
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Chi-Kyu Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Sang Byung Bae
- Department of Oncology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Han Jo Kim
- Department of Oncology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Tae Sung Ahn
- Department of Surgery, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Moon Soo Lee
- Department of Surgery, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Moo-Jun Baek
- Department of Surgery, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea.
| | - Dongjun Jeong
- Soonchunhyang Medical Science Research Institute, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea.
- Department of Pathology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
113
|
Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, Langish R, Sidik K, Gan J, Humphreys WG, Marathe P, Lai Y. Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects. Drug Metab Dispos 2017; 45:908-919. [PMID: 28576766 DOI: 10.1124/dmd.117.075531] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Dieter M Drexler
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Vinay K Holenarsipur
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Eric E Shields
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Robert Langish
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Kurex Sidik
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Jinping Gan
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Punit Marathe
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Yurong Lai
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| |
Collapse
|
114
|
Müller J, Keiser M, Drozdzik M, Oswald S. Expression, regulation and function of intestinal drug transporters: an update. Biol Chem 2017; 398:175-192. [PMID: 27611766 DOI: 10.1515/hsz-2016-0259] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/31/2016] [Indexed: 01/05/2023]
Abstract
Although oral drug administration is currently the favorable route of administration, intestinal drug absorption is challenged by several highly variable and poorly predictable processes such as gastrointestinal motility, intestinal drug solubility and intestinal metabolism. One further determinant identified and characterized during the last two decades is the intestinal drug transport that is mediated by several transmembrane proteins such as P-gp, BCRP, PEPT1 and OATP2B1. It is well-established that intestinal transporters can affect oral absorption of many drugs in a significant manner either by facilitating their cellular uptake or by pumping them back to gut lumen, which limits their oral bioavailability. Their functional relevance becomes even more apparent in cases of unwanted drug-drug interactions when concomitantly given drugs that cause transporter induction or inhibition, which in turn leads to increased or decreased drug exposure. The longitudinal expression of several intestinal transporters is not homogeneous along the human intestine, which may have functional implications on the preferable site of intestinal drug absorption. Besides the knowledge about the expression of pharmacologically relevant transporters in human intestinal tissue, their exact localization on the apical or basolateral membrane of enterocytes is also of interest but in several cases debatable. Finally, there is obviously a coordinative interplay of intestinal transporters (apical-basolateral), intestinal enzymes and transporters as well as intestinal and hepatic transporters. This review aims to give an updated overview about the expression, localization, regulation and function of clinically relevant transporter proteins in the human intestine.
Collapse
|
115
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
116
|
Zhou F, Zhu L, Wang K, Murray M. Recent advance in the pharmacogenomics of human Solute Carrier Transporters (SLCs) in drug disposition. Adv Drug Deliv Rev 2017; 116:21-36. [PMID: 27320645 DOI: 10.1016/j.addr.2016.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Drug pharmacokinetics is influenced by the function of metabolising enzymes and influx/efflux transporters. Genetic variability of these genes is known to impact on clinical therapies. Solute Carrier Transporters (SLCs) are the primary influx transporters responsible for the cellular uptake of drug molecules, which consequently, impact on drug efficacy and toxicity. The Organic Anion Transporting Polypeptides (OATPs), Organic Anion Transporters (OATs) and Organic Cation Transporters (OCTs/OCTNs) are the most important SLCs involved in drug disposition. The information regarding the influence of SLC polymorphisms on drug pharmacokinetics is limited and remains a hot topic of pharmaceutical research. This review summarises the recent advance in the pharmacogenomics of SLCs with an emphasis on human OATPs, OATs and OCTs/OCTNs. Our current appreciation of the degree of variability in these transporters may contribute to better understanding the inter-patient variation of therapies and thus, guide the optimisation of clinical treatments.
Collapse
|
117
|
Yang Z, Kuboyama T, Tohda C. A Systematic Strategy for Discovering a Therapeutic Drug for Alzheimer's Disease and Its Target Molecule. Front Pharmacol 2017; 8:340. [PMID: 28674493 PMCID: PMC5474478 DOI: 10.3389/fphar.2017.00340] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/19/2017] [Indexed: 11/13/2022] Open
Abstract
Natural medicines are attractive sources of leading compounds that can be used as interventions for neurodegenerative disorders. The complexity of their chemical components and undetermined bio-metabolism have greatly hindered both the use of natural medicines and the identification of their active constituents. Here, we report a systematic strategy for evaluating the bioactive candidates in natural medicines used for Alzheimer's disease (AD). We found that Drynaria Rhizome could enhance memory function and ameliorate AD pathologies in 5XFAD mice. Biochemical analysis led to the identification of the bio-effective metabolites that are transferred to the brain, namely, naringenin and its glucuronides. To explore the mechanism of action, we combined the drug affinity responsive target stability with immunoprecipitation-liquid chromatography/mass spectrometry analysis, identifying the collapsin response mediator protein 2 protein as a target of naringenin. Our study indicates that biochemical analysis coupled with pharmacological methods can be used in the search for new targets for AD intervention.
Collapse
Affiliation(s)
- Zhiyou Yang
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of ToyamaToyama, Japan
| | - Tomoharu Kuboyama
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of ToyamaToyama, Japan
| | - Chihiro Tohda
- Division of Neuromedical Science, Department of Bioscience, Institute of Natural Medicine, University of ToyamaToyama, Japan
| |
Collapse
|
118
|
Rižner TL, Thalhammer T, Özvegy-Laczka C. The Importance of Steroid Uptake and Intracrine Action in Endometrial and Ovarian Cancers. Front Pharmacol 2017; 8:346. [PMID: 28674494 PMCID: PMC5474471 DOI: 10.3389/fphar.2017.00346] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/22/2017] [Indexed: 01/06/2023] Open
Abstract
Endometrial and ovarian cancers predominately affect women after menopause, and are more frequently observed in developed countries. These are considered to be hormone-dependent cancers, as steroid hormones, and estrogens in particular, have roles in their onset and progression. After the production of estrogens in the ovary has ceased, estrogen synthesis occurs in peripheral tissues. This depends on the cellular uptake of estrone-sulfate and dehydroepiandrosterone-sulfate, as the most important steroid precursors in the plasma of postmenopausal women. The uptake through transporter proteins, such as those of the organic anion-transporting polypeptide (OATP) and organic anion-transporter (OAT) families, is followed by the synthesis and action of estradiol E2. Here, we provide an overview of the current understanding of this intracrine action of steroid hormones, which depends on the availability of the steroid precursors and transmembrane transporters for precursor uptake, along with the enzymes for the synthesis of E2. The data is also provided relating to the selected transmembrane transporters from the OATP, OAT, SLC51, and ABC-transporter families, and the enzymes involved in the E2-generating pathways in cancers of the endometrium and ovary. Finally, we discuss these transporters and enzymes as potential drug targets.
Collapse
Affiliation(s)
- Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of LjubljanaLjubljana, Slovenia
| | - Theresia Thalhammer
- Department of Pathophysiology and Allergy Research, Centre for Pathophysiology, Infectiology and Immunology, Medical University of ViennaVienna, Austria
| | - Csilla Özvegy-Laczka
- Momentum Membrane Protein Research Group, Research Centre for Natural Sciences, Institute of Enzymology, Hungarian Academy of SciencesBudapest, Hungary
| |
Collapse
|
119
|
Khuri N, Zur AA, Wittwer MB, Lin L, Yee SW, Sali A, Giacomini KM. Computational Discovery and Experimental Validation of Inhibitors of the Human Intestinal Transporter OATP2B1. J Chem Inf Model 2017; 57:1402-1413. [PMID: 28562037 DOI: 10.1021/acs.jcim.6b00720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human organic anion transporters (OATPs) are vital for the uptake and efflux of drugs and endogenous compounds. Current identification of inhibitors of these transporters is based on experimental screening. Virtual screening remains a challenge due to a lack of experimental three-dimensional protein structures. Here, we describe a workflow to identify inhibitors of the OATP2B1 transporter in the DrugBank library of over 5,000 drugs and druglike molecules. OATP member 2B1 transporter is highly expressed in the intestine, where it participates in oral absorption of drugs. Predictions from a Random forest classifier, prioritized by docking against multiple comparative protein structure models of OATP2B1, indicated that 33 of the 5,000 compounds were putative inhibitors of OATP2B1. Ten predicted inhibitors that are prescription drugs were tested experimentally in cells overexpressing the OATP2B1 transporter. Three of these ten were validated as potent inhibitors of estrone-3-sulfate uptake (defined as more than 50% inhibition at 20 μM) and tested in multiple concentrations to determine exact IC50. The IC50 values of bicalutamide, ticagrelor, and meloxicam suggest that they might inhibit intestinal OATP2B1 at clinically relevant concentrations and therefore modulate the absorption of other concomitantly administered drugs.
Collapse
Affiliation(s)
- Natalia Khuri
- Bioengineering Department, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | - Andrej Sali
- Department of Pharmaceutical Chemistry and California Institute of Quantitative Biosciences (QB3), University of California San Francisco , San Francisco, California 94158, United States
| | | |
Collapse
|
120
|
Takehara I, Terashima H, Nakayama T, Yoshikado T, Yoshida M, Furihata K, Watanabe N, Maeda K, Ando O, Sugiyama Y, Kusuhara H. Investigation of Glycochenodeoxycholate Sulfate and Chenodeoxycholate Glucuronide as Surrogate Endogenous Probes for Drug Interaction Studies of OATP1B1 and OATP1B3 in Healthy Japanese Volunteers. Pharm Res 2017; 34:1601-1614. [PMID: 28550384 DOI: 10.1007/s11095-017-2184-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 05/15/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE To assess the use of glycochenodeoxycholate-3-sulfate (GCDCA-S) and chenodeoxycholate 3- or 24-glucuronide (CDCA-3G or -24G) as surrogate endogenous substrates in the investigation of drug interactions involving OATP1B1 and OATP1B3. METHODS Uptake of GCDCA-S and CDCA-24G was examined in HEK293 cells transfected with cDNA for OATP1B1, OATP1B3, and NTCP and in cryopreserved human hepatocytes. Plasma concentrations of bile acids and their metabolites (GCDCA-S, CDCA-3G, and CDCA-24G) were determined by LC-MS/MS in eight healthy volunteers with or without administration of rifampicin (600 mg, po). RESULTS GCDCA-S and CDCA-24G were substrates for OATP1B1, OATP1B3, and NTCP. The uptake of [3H]atorvastatin, GCDCA-S, and CDCA-24G by human hepatocytes was significantly inhibited by both rifampicin and pioglitazone, whereas that of taurocholate was inhibited only by pioglitazone. Rifampicin elevated plasma concentrations of GCDCA-S more than those of other bile acids. The area under the plasma concentration-time curve for GCDCA-S was 20.3 times higher in rifampicin-treated samples. CDCA-24G could be detected only in plasma from the rifampicin-treatment phase, and CDCA-3G was undetectable in both phases. CONCLUSIONS We identified GCDCA-S and CDCA-24G as substrates of NTCP, OATP1B1, and OATP1B3. GCDCA-S is a surrogate endogenous probe for the assessment of drug interactions involving hepatic OATP1B1 and OATP1B3.
Collapse
Affiliation(s)
- Issey Takehara
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Biomarker Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Hanano Terashima
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeshi Nakayama
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Yoshikado
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Miwa Yoshida
- P-One Clinic, Keikokai Medical Corp, Tokyo, Japan
| | | | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osamu Ando
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
121
|
Yahata M, Chiba K, Watanabe T, Sugiyama Y. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters. J Pharm Sci 2017; 106:2345-2356. [PMID: 28501470 DOI: 10.1016/j.xphs.2017.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023]
Abstract
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro Ki values for human SERT and plasma concentrations of unbound drug (Cu,plasma), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro Ki values were compared with the means of in vivo Ki values (Ki,u,plasma) which were calculated as Cu,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro Ki values for 7 drugs were comparable to their in vivo Ki,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro Ki values and Cu,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments.
Collapse
Affiliation(s)
- Masahiro Yahata
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan.
| | - Koji Chiba
- Laboratory of Clinical Pharmacology, Yokohama University of Pharmacy, Yokohama, Japan
| | - Takao Watanabe
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma Company, Ltd., Osaka, Japan
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, Research Cluster for Innovation, RIKEN, Yokohama, Japan
| |
Collapse
|
122
|
Kim M, Deacon P, Tirona RG, Kim RB, Pin CL, Meyer zu Schwabedissen HE, Wang R, Schwarz UI. Characterization of OATP1B3 and OATP2B1 transporter expression in the islet of the adult human pancreas. Histochem Cell Biol 2017; 148:345-357. [DOI: 10.1007/s00418-017-1580-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/19/2022]
|
123
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
124
|
Uraki M, Kawase A, Sayama H, Matsushima Y, Iwaki M. Effects of Adjuvant-Induced Inflammation on Disposition of Diclofenac and Its Metabolites in Perfused Rat Liver. J Pharm Sci 2017; 106:1175-1182. [DOI: 10.1016/j.xphs.2016.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
125
|
Wang L, Zhou MT, Chen CY, Yin W, Wen DX, Cheung CW, Yang LQ, Yu WF. Increased Renal Clearance of Rocuronium Compensates for Chronic Loss of Bile Excretion, via upregulation of Oatp2. Sci Rep 2017; 7:40438. [PMID: 28084414 PMCID: PMC5233986 DOI: 10.1038/srep40438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 11/24/2016] [Indexed: 11/23/2022] Open
Abstract
Requirement for rocuronium upon surgery changes only minimally in patients with end-stage liver diseases. Our study consisted of both human and rat studies to explore the reason. The reduction rate of rocuronium infusion required to maintain neuromuscular blockade during the anhepatic phase (relative to paleohepatic phase) was examined in 16 children with congenital biliary atresia receiving orthotopic liver transplantation. Pharmacodynamics and pharmacokinetics of rocuronium were studied based on BDL rats. The role of increased Oatp2 and decrease Oatp1 expressions in renal compensation were explored. The reduction of rocuronium requirements significantly decreased in obstructively jaundiced children (24 ± 9 vs. 39 ± 11%). TOF50 in BDL rats was increased by functional removal of the kidneys but not the liver, and the percentage of rocuronium excretion through urine increased (20.3 ± 6.9 vs. 8.6 ± 1.8%), while that decreased through bile in 28d-BDL compared with control group. However, this enhanced renal secretion for rocuronium was eliminated by Oatp2 knock-down, rather than Oatp1 overexpression (28-d BDL vs. Oatp1-ShRNA or Oatp2-ShRNA, 20.3 ± 6.9 vs. 17.0 ± 6.6 or 9.3 ± 3.2%). Upon chronic/sub-chronic loss of bile excretion, rocuronium clearance via the kidneys is enhanced, by Oatp2 up-regulation.
Collapse
Affiliation(s)
- Long Wang
- Department of Anaesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China
| | - Mai-Tao Zhou
- Department of Anaesthesiology, 101th Hospital of Chinese People's Liberation Army, 101 North Xingyuan Road, Wuxi, Jiangsu, China
| | - Cai-Yang Chen
- Department of Anaesthesiology, 101th Hospital of Chinese People's Liberation Army, 101 North Xingyuan Road, Wuxi, Jiangsu, China
| | - Wen Yin
- Department of Anaesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China
| | - Da-Xiang Wen
- Department of Anaesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Queen Mary Hospital, The University of Hong Kong, 102 Pokfulam Road, Hong Kong, China
| | - Li-Qun Yang
- Department of Anaesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China
| | - Wei-Feng Yu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgery Hospital, the Second Military Medical University, 225 Changhai Road, Shanghai, China.,Department of Anaesthesiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pudian Road, Shanghai, China
| |
Collapse
|
126
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
127
|
Lee HH, Leake BF, Kim RB, Ho RH. Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance. Mol Pharmacol 2017; 91:14-24. [PMID: 27777271 PMCID: PMC5198512 DOI: 10.1124/mol.116.105544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b-/- versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2-/- mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Collapse
Affiliation(s)
- Hannah H Lee
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Brenda F Leake
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard B Kim
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard H Ho
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| |
Collapse
|
128
|
Kovacsics D, Patik I, Özvegy-Laczka C. The role of organic anion transporting polypeptides in drug absorption, distribution, excretion and drug-drug interactions. Expert Opin Drug Metab Toxicol 2016; 13:409-424. [PMID: 27783531 DOI: 10.1080/17425255.2017.1253679] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The in vivo fate and effectiveness of a drug depends highly on its absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Organic anion transporting polypeptides (OATPs) are membrane proteins involved in the cellular uptake of various organic compounds, including clinically used drugs. Since OATPs are significant players in drug absorption and distribution, modulation of OATP function via pharmacotherapy with OATP substrates/inhibitors, or modulation of their expression, affects drug pharmacokinetics. Given their cancer-specific expression, OATPs may also be considered anticancer drug targets. Areas covered: We describe the human OATP family, discussing clinically relevant consequences of altered OATP function. We offer a critical analysis of published data on the role of OATPs in ADME and in drug-drug interactions, especially focusing on OATP1A2, 1B1, 1B3 and 2B1. Expert opinion: Four members of the OATP family, 1A2, 1B1, 1B3 and 2B1, have been characterized in detail. As biochemical and pharmacological knowledge on the other OATPs is lacking, it seems timely to direct research efforts towards developing the experimental framework needed to investigate the transport mechanism and substrate specificity of the poorly described OATPs. In addition, elucidating the role of OATPs in tumor development and therapy response are critical avenues for further research.
Collapse
Affiliation(s)
- Daniella Kovacsics
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Izabel Patik
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Csilla Özvegy-Laczka
- a Membrane protein research group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
129
|
Ge S, Tu Y, Hu M. Challenges and Opportunities with Predicting in Vivo Phase II Metabolism via Glucuronidation from in Vitro Data. ACTA ACUST UNITED AC 2016; 2:326-338. [PMID: 28966903 DOI: 10.1007/s40495-016-0076-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glucuronidation is the most important phase II metabolic pathway which is responsible for the clearance of many endogenous and exogenous compounds. To better understand the elimination process for compounds undergoing glucuronidation and identify compounds with desirable in vivo pharmacokinetic properties, many efforts have been made to predict in vivo glucuronidation using in vitro data. In this article, we reviewed typical approaches used in previous predictions. The problems and challenges in prediction of glucuronidation were discussed. Besides that different incubation conditions can affect the prediction accuracy, other factors including efflux / uptake transporters, enterohepatic recycling, and deglucuronidation reactions also contribute to the disposition of glucuronides and make the prediction more difficult. PBPK modeling, which can describe more complicated process in vivo, is a promising prediction strategy which may greatly improve the prediction of glucuronidation and potential DDIs involving glucuronidation. Based on previous studies, we proposed a transport-glucuronidation classification system, which was built based on the kinetics of both glucuronidation and transport of the glucuronide. This system could be a very useful tool to achieve better in vivo predictions.
Collapse
Affiliation(s)
- Shufan Ge
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, The University of Houston, 1441 Moursund Street, Houston, TX, 77030, USA
| |
Collapse
|
130
|
Knudsen GA, Hughes MF, Sanders JM, Hall SM, Birnbaum LS. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). Toxicol Appl Pharmacol 2016; 311:117-127. [PMID: 27732871 DOI: 10.1016/j.taap.2016.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 01/07/2023]
Abstract
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove "unabsorbed" [14C]-radioactivity after continuous exposure (24h). "Absorbed" was quantified using dermally retained [14C]-radioactivity; "penetrated" was calculated based on [14C]-radioactivity in media (in vitro) or excreta+tissues (in vivo). Human skin absorbed EH-TBB (24±1%) while 0.2±0.1% penetrated skin. Rat skin absorbed more (51±10%) and was more permeable (2±0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11±7 and 102±24pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27±5% was absorbed and 13% reached systemic circulation after 24h (maximum flux was 464±65pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (<0.01%) for rat or human skin. BEH-TEBP absorption was 12±11% for human skin and 41±3% for rat skin. In vivo, total absorption was 27±9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3±0.2 and 1±0.3pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16±7pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. <1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE 2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92g/mol logPest: 7.73-8.75 (12)) Abdallah et al., 2015a. Other published abbreviations for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate are TBB EHTeBB or EHTBB Abdallah and Harrad, 2011. bis(2-ethylhexyl) tetrabromophthalate (PubChem CID: 117291; CAS No. 26040-51-7 FW: 706.14g/mol logPest: 9.48-11.95 (12)). Other published abbreviations for bis(2-ethylhexyl)tetrabromophthalate are TeBrDEPH TBPH or BEHTBP.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - J Michael Sanders
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Samantha M Hall
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|
131
|
Hubeny A, Keiser M, Oswald S, Jedlitschky G, Kroemer HK, Siegmund W, Grube M. Expression of Organic Anion Transporting Polypeptide 1A2 in Red Blood Cells and Its Potential Impact on Antimalarial Therapy. Drug Metab Dispos 2016; 44:1562-8. [PMID: 27504015 DOI: 10.1124/dmd.116.069807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 08/04/2016] [Indexed: 02/13/2025] Open
Abstract
Important antimalarial drugs, including quinolines, act against blood schizonts by interfering with hemoglobin metabolism. To reach their site of action, these compounds have to cross the plasma membrane of red blood cells (RBCs). Organic cation transporters (OCTs) and organic anion transporting polypeptides (OATPs) are important uptake transporters and interesting candidates for local drug transport. We therefore studied their interaction with antimalarial compounds (quinine, chloroquine, mefloquine, pyrimethamine, artemisinin, and artesunate) and characterized the expression of OATP1A2 and OATP2B1 in RBCs. Competition assays using transporter-overexpressing Madin-Darby canine kidney (MDCKII) cells and the model substrate estrone-3-sulfate identified quinine and chloroquine as potent inhibitors of OATP1A2 function (IC50 quinine: 0.7 ± 1.2 µM; chloroquine: 1.0 ± 1.5 µM), but no or only moderate effects were observed for OATP2B1. Subsequently, quinine was identified as a substrate of OATP1A2 (Km 23.4 µM). The OATP1A2-mediated uptake was sensitive to the OATP1A2-specific inhibitor naringin. Both OATPs were expressed in human RBCs, and ex vivo transport studies demonstrated naringin-sensitive accumulation of quinine in these cells (60 pmol versus 38 pmol/5 × 10(5) RBCs). Additional transport studies using OCT1-3 and organic cation transporter novel type 1 (OCTN1) indicated only significant quinine uptake by OCT1, which was not detected in RBCs. In conclusion, our data demonstrate expression of OATP2B1 and OATP1A2 in RBCs as well as OATP1A2-mediated uptake of quinine. Therefore, modulation of OATP1A2 function may affect quinine uptake into erythrocytes.
Collapse
Affiliation(s)
- Andrea Hubeny
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Markus Keiser
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Stefan Oswald
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Gabriele Jedlitschky
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Heyo K Kroemer
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Werner Siegmund
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| | - Markus Grube
- Department of Pharmacology (A.H., G.J., H.K.K., M.G.) and Department of Clinical Pharmacology (M.K., S.O., W.S.) at the Center of Drug Absorption and Transport (C_DAT), University Medicine, Greifswald, Germany
| |
Collapse
|
132
|
Role of OATP transporters in steroid uptake by prostate cancer cells in vivo. Prostate Cancer Prostatic Dis 2016; 20:20-27. [PMID: 27645128 PMCID: PMC5762123 DOI: 10.1038/pcan.2016.42] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/26/2016] [Accepted: 07/25/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidemiologic and in vitro studies suggest that SLCO-encoded organic anion transporting polypeptide (OATP) transporters influence the response of prostate cancer (PCa) to androgen deprivation by altering intratumor androgens. We have previously shown that castration-resistant metastases express multiple SLCO transporters at significantly higher levels than primary PCa, suggesting that OATP-mediated steroid transport is biologically relevant in advanced disease. However, whether OATP-mediated steroid transport can actually modify prostate tumor androgen levels in vivo has never been demonstrated. METHODS We sought to determine whether OATP-mediated steroid transport can measurably alter PCa androgen levels in vivo. We evaluated the uptake of dehydroepiandrosterone (DHEAS), E1S and testosterone in LNCaP cells engineered to express OATP1B1, 1B3, 2B1 or 4A1. We measured the uptake via administration of tritiated steroids to castrate mice bearing vector control or OATP1B1-, 2B1- or 4A1-expressing xenografts. We treated tumor-bearing mice with DHEAS and testosterone at physiologically relevant levels and measured intratumor accumulation of administered steroids by mass spectrometry. RESULTS OATP1B1- and 2B-expressing xenografts each showed a threefold increase in tritiated-DHEAS uptake vs vector controls (P=0.002 and P=0.036, respectively). At circulating DHEAS levels similar to those in abiraterone-treated men (~15 μg dl-1), OATP1B1- and 2B1-expressing xenografts showed a 3.9-fold (P=0.057) and 1.9-fold (P=0.048) increase in tumor accumulation of DHEAS and a 1.6-fold (P=0.057) and 2.7-fold (P=0.095) increase in DHEA, respectively. At the substantial circulating testosterone levels found in eugonadal men, a consistent effect of OATP1B1, 2B1 or 4A1 on testosterone uptake in vivo was not detected. CONCLUSIONS OATP transporters measurably alter DHEAS uptake and intratumor androgen levels in prostate tumors in vivo, even at circulating androgen levels achieved in abiraterone-treated patients. These novel data emphasize the continued need to inhibit ligand-mediated androgen receptor signaling in PCa tumors, and support prospective evaluation of studies designed to test inhibition of OATP-mediated DHEAS uptake and utilization.
Collapse
|
133
|
Arruda MB, Campagnari F, de Almeida TB, Couto-Fernandez JC, Tanuri A, Cardoso CC. Single Nucleotide Polymorphisms in Cellular Drug Transporters Are Associated with Intolerance to Antiretroviral Therapy in Brazilian HIV-1 Positive Individuals. PLoS One 2016; 11:e0163170. [PMID: 27648838 PMCID: PMC5029869 DOI: 10.1371/journal.pone.0163170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/02/2016] [Indexed: 01/11/2023] Open
Abstract
Adverse reactions are the main cause of treatment discontinuation among HIV+ individuals. Genes related to drug absorption, distribution, metabolism and excretion (ADME) influence drug bioavailability and treatment response. We have investigated the association between single nucleotide polymorphisms (SNPs) in 29 ADME genes and intolerance to therapy in a case-control study including 764 individuals. Results showed that 15 SNPs were associated with intolerance to nucleoside and 11 to non-nucleoside reverse transcriptase inhibitors (NRTIs and NNRTIs), and 8 to protease inhibitors (PIs) containing regimens under alpha = 0.05. After Bonferroni adjustment, two associations remained statistically significant. SNP rs2712816, at SLCO2B1 was associated to intolerance to NRTIs (ORGA/AA = 2.37; p = 0.0001), while rs4148396, at ABCC2, conferred risk of intolerance to PIs containing regimens (ORCT/TT = 2.64; p = 0.00009). Accordingly, haplotypes carrying rs2712816A and rs4148396T alleles were also associated to risk of intolerance to NRTIs and PIs, respectively. Our data reinforce the role of drug transporters in response to HIV therapy and may contribute to a future development of personalized therapies.
Collapse
Affiliation(s)
- Mônica Barcellos Arruda
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Tailah Bernardo de Almeida
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Amilcar Tanuri
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cynthia Chester Cardoso
- Laboratório de Virologia Molecular, Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
134
|
Bian J, Jin M, Yue M, Wang M, Zhang H, Gui C. Tryptophan Residue Located at the Middle of Putative Transmembrane Domain 11 Is Critical for the Function of Organic Anion Transporting Polypeptide 2B1. Mol Pharm 2016; 13:3553-3563. [DOI: 10.1021/acs.molpharmaceut.6b00648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jialin Bian
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| | - Meng Jin
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| | - Mei Yue
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| | - Meiyu Wang
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| | - Hongjian Zhang
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| | - Chunshan Gui
- Department of Pharmaceutical Analysis, College of Pharmaceutical
Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
135
|
Chang SY, Weber EJ, Ness KV, Eaton DL, Kelly EJ. Liver and Kidney on Chips: Microphysiological Models to Understand Transporter Function. Clin Pharmacol Ther 2016; 100:464-478. [PMID: 27448090 DOI: 10.1002/cpt.436] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Because of complex cellular microenvironments of both the liver and kidneys, accurate modeling of transport function has remained a challenge, leaving a dire need for models that can faithfully recapitulate both the architecture and cell-cell interactions observed in vivo. The study of hepatic and renal transport function is a fundamental component of understanding the metabolic fate of drugs and xenobiotics; however, there are few in vitro systems conducive for these types of studies. For both the hepatic and renal systems, we provide an overview of the location and function of the most significant phase I/II/III (transporter) of enzymes, and then review current in vitro systems for the suitability of a transporter function study and provide details on microphysiological systems that lead the field in these investigations. Microphysiological modeling of the liver and kidneys using "organ-on-a-chip" technologies is rapidly advancing in transport function assessment and has emerged as a promising method to evaluate drug and xenobiotic metabolism. Future directions for the field are also discussed along with technical challenges encountered in complex multiple-organs-on-chips development.
Collapse
Affiliation(s)
- S Y Chang
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - E J Weber
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - Kp Van Ness
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA
| | - D L Eaton
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington, USA
| | - E J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
136
|
Abstract
1. Biliary excretion of compounds is dependant on several transporter proteins for the active uptake of compounds from the blood into the hepatocytes. Organic anion-transporting polypeptides (OATPs) are some of the most abundant transporter proteins in the sinusoidal membrane and have been shown to have substrate specificity similar to the structural characteristics of cholephilic compounds. 2. In this study, we sought to use measures of OATP binding as predictors of biliary excretion in conjunction with molecular descriptors in a quantitative structure-activity relationship (QSAR) study. Percentage inhibitions of three subtypes of OATPs were used as surrogate indicators of OATP substrates. Several statistical modelling techniques were incorporated including classification and regression trees, boosted trees, random forest and multivariate adaptive regression splines (MARS) in order to first develop QSARs for the prediction of OATP inhibition of compounds. The predicted OATP percentage inhibition using selected models were then used as features of the QSAR models for the prediction of biliary excretion of compounds in rat. 3. The results indicated that incorporation of predicted OATP inhibition improves accuracy of biliary excretion models. The best result was obtained from a simple regression tree that used predicted OATP1B1 percentage inhibition at the root node of the tree.
Collapse
Affiliation(s)
- Mohsen Sharifi
- a Medway School of Pharmacy, Universities of Kent and Greenwich , Chatham , Kent , UK.,b Division of Systems Biology , National Center for Toxicological Research, US Food and Drug Administration , Jefferson , AR , USA , and
| | - Taravat Ghafourian
- a Medway School of Pharmacy, Universities of Kent and Greenwich , Chatham , Kent , UK.,c School of Life Sciences, University of Sussex , Falmer , Brighton , UK
| |
Collapse
|
137
|
Alam C, Whyte-Allman SK, Omeragic A, Bendayan R. Role and modulation of drug transporters in HIV-1 therapy. Adv Drug Deliv Rev 2016; 103:121-143. [PMID: 27181050 DOI: 10.1016/j.addr.2016.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/15/2022]
Abstract
Current treatment of human immunodeficiency virus type-1 (HIV-1) infection involves a combination of antiretroviral drugs (ARVs) that target different stages of the HIV-1 life cycle. This strategy is commonly referred to as highly active antiretroviral therapy (HAART) or combined antiretroviral therapy (cART). Membrane-associated drug transporters expressed ubiquitously in mammalian systems play a crucial role in modulating ARV disposition during HIV-1 infection. Members of the ATP-binding cassette (ABC) and solute carrier (SLC) transporter superfamilies have been shown to interact with ARVs, including those that are used as part of first-line treatment regimens. As a result, the functional expression of drug transporters can influence the distribution of ARVs at specific sites of infection. In addition, pathological factors related to HIV-1 infection and/or ARV therapy itself can alter transporter expression and activity, thus further contributing to changes in ARV disposition and the effectiveness of HAART. This review summarizes current knowledge on the role of drug transporters in regulating ARV transport in the context of HIV-1 infection.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Amila Omeragic
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 2S2, Canada.
| |
Collapse
|
138
|
Yang SJ, Kim BJ, Mo L, Han HK. Alteration of the intravenous and oral pharmacokinetics of valsartan via the concurrent use of gemfibrozil in rats. Biopharm Drug Dispos 2016; 37:245-51. [DOI: 10.1002/bdd.2001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/29/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Seung Jun Yang
- BK21 Plus Project Team, College of Pharmacy; Dongguk University-Seoul; Dongguk-ro-32, Ilsan-Donggu Goyang 410-820 Korea
| | - Bong Jin Kim
- BK21 Plus Project Team, College of Pharmacy; Dongguk University-Seoul; Dongguk-ro-32, Ilsan-Donggu Goyang 410-820 Korea
| | - Lingxuan Mo
- BK21 Plus Project Team, College of Pharmacy; Dongguk University-Seoul; Dongguk-ro-32, Ilsan-Donggu Goyang 410-820 Korea
| | - Hyo-Kyung Han
- BK21 Plus Project Team, College of Pharmacy; Dongguk University-Seoul; Dongguk-ro-32, Ilsan-Donggu Goyang 410-820 Korea
| |
Collapse
|
139
|
Dolberg AM, Reichl S. Expression of P-glycoprotein in excised human nasal mucosa and optimized models of RPMI 2650 cells. Int J Pharm 2016; 508:22-33. [PMID: 27155589 DOI: 10.1016/j.ijpharm.2016.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 01/30/2023]
Abstract
To assess the transmucosal drug transport in the development of medications for intranasal administration, cellular in vitro models are preferred over the use of animal tissues due to inter-species variations and ethical concerns. With regard to the distribution of active agents and multidrug resistance, the ABC transporter P-glycoprotein plays a major role in several mammalian tissues. The present study compares the expression of this efflux pump in optimized in vitro models based on the human RPMI 2650 cell line with specimens of human turbinate mucosa. The presence of the ABCB1 gene was investigated at the mRNA and protein levels using RT-PCR and Western blot analysis in differently cultured RPMI 2650 cells and excised human nasal epithelium. Furthermore, the localization and activity of P-gp was examined by immunohistochemical staining and functionality assays using different substrates in both in vitro and ex vivo models. Both mRNA and protein expression of P-gp was found in all studied models. Furthermore, transporter functionality was detected in both RPMI 2650 cell culture models and excised human mucosa. The results demonstrated a highly promising comparability between RPMI 2650 models and explants of human nasal tissue concerning the influence of MDR1 on drug disposition. The RPMI 2650 cell line might become a useful tool in preclinical trials to improve reproducibility and achieve greater applicability to humans of experimental data regarding passive diffusion and active efflux of drug candidates.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany; Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
140
|
Riley RJ, Foley SA, Barton P, Soars MG, Williamson B. Hepatic drug transporters: the journey so far. Expert Opin Drug Metab Toxicol 2016; 12:201-16. [PMID: 26670591 DOI: 10.1517/17425255.2016.1132308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The key role of transporter biology in both the manifestation and treatment of disease is now firmly established. Experiences of sub-optimal drug exposure due to drug-transporter interplay have supported incorporation of studies aimed at understanding the interactions between compounds and drug transporters much earlier in drug discovery. While drug transporters can impact the most pivotal pharmacokinetic parameter with respect to human dose and exposure projections, clearance, at a renal or hepatobiliary level, the latter will form the focus of this perspective. AREAS COVERED A synopsis of guidelines on which transporters to study together with an overview of the currently available toolkit is presented. A perspective on when to conduct studies with various hepatic transporters is also provided together with structural "alerts" which should prompt early investigation. EXPERT OPINION Great progress has been made in individual laboratories and via consortia to understand the role of drug transporters in disease, drug disposition, drug-drug interactions and toxicity. A systematic analysis of the value posed by the available approaches and an inter-lab comparison now seems warranted. The emerging ability to use physico-chemical properties to guide future screening cascades promises to revolutionise the efficiency of early drug discovery.
Collapse
Affiliation(s)
| | | | - P Barton
- b School of Life Sciences , University of Nottingham , Nottingham , UK
| | - M G Soars
- c Drug Metabolism and Pharmacokinetics , Bristol-Myers Squibb , Wallingford , CT , USA
| | | |
Collapse
|
141
|
Gozalpour E, Wilmer MJ, Bilos A, Masereeuw R, Russel FGM, Koenderink JB. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays. Toxicol In Vitro 2015; 32:138-45. [PMID: 26708294 DOI: 10.1016/j.tiv.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023]
Abstract
Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay.
Collapse
Affiliation(s)
- Elnaz Gozalpour
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Martijn J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, The Netherlands.
| |
Collapse
|
142
|
Visentin M, Stieger B, Merz M, Kullak-Ublick GA. Octreotide inhibits the bilirubin carriers organic anion transporting polypeptides 1B1 and 1B3 and the multidrug resistance-associated protein 2. J Pharmacol Exp Ther 2015; 355:145-51. [PMID: 26330539 DOI: 10.1124/jpet.115.227546] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/31/2015] [Indexed: 08/30/2023] Open
Abstract
The somatostatin analog octreotide can lead to hyperbilirubinemia without evidence of liver injury. Here we investigate whether octreotide inhibits the main sinusoidal/canalicular bilirubin carriers and whether it is a transport substrate. Octreotide showed the most potent inhibitory effect toward OATP1B1-mediated transport and weaker inhibition for OATP1B3- and MRP2-mediated transport. Octreotide had no effect on OATP2B1-mediated transport. Octreotide inhibited [(3)H]estradiol-17-β-glucuronide (E17βG) influx mediated by OATP1B1, 1B3, and multidrug resistance-associated protein 2 (MRP2) in a concentration-dependent manner, and the IC50 values were computed to be 23 μM (95% confidence interval [CI] 18-29), 68 μM (95% CI 50-91), and 116.6 μM (95% CI 74.5-182.4), respectively. The interaction between octreotide and OATP1B1 was further studied. Inhibition of [(3)H]E17βG OATP1B1-mediated transport was purely competitive with no changes in maximum transport capacity (Vmax) and a twofold Km increase when the influx kinetics of [(3)H]E17βG were measured in the presence of octreotide (8.8 ± 3.1 versus 4.4 ± 1.2 μM, P = 0.03). The inhibition constant (Ki) of octreotide for the transport of [(3)H]E17βG was calculated at 33.5 ± 5.5 μM. Uptake of radiolabeled octreotide by OATP1B1-CHO cells was higher than in wild-type CHO cells and nonlabeled octreotide at the extracellular compartment was able to trans-stimulate the OATP1B1-mediated efflux of intracellular [(3)H]E17βG, suggesting that octreotide is a substrate of OATP1B1. In summary, this study shows interaction of octreotide on the human hepatocellular bilirubin transporters OATP1B1, OATP1B3, and MRP2, notably OATP1B1. These findings are in line with the clinical observation that a fraction of patients under treatment with octreotide exhibit hyperbilirubinemia.
Collapse
Affiliation(s)
- Michele Visentin
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Michael Merz
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Switzerland (M.V., B.S., G.A.K.-U.); and Discovery and Investigative Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland (M.M., G.A.K.-U.)
| |
Collapse
|
143
|
Koo SH, Lo YL, Yee JY, Lee EJD. Genetic and/or non-genetic causes for inter-individual and inter-cellular variability in transporter protein expression: implications for understanding drug efficacy and toxicity. Expert Opin Drug Metab Toxicol 2015; 11:1821-37. [DOI: 10.1517/17425255.2015.1104298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
144
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
145
|
Patik I, Kovacsics D, Német O, Gera M, Várady G, Stieger B, Hagenbuch B, Szakács G, Özvegy-Laczka C. Functional expression of the 11 human Organic Anion Transporting Polypeptides in insect cells reveals that sodium fluorescein is a general OATP substrate. Biochem Pharmacol 2015; 98:649-58. [PMID: 26415544 DOI: 10.1016/j.bcp.2015.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/17/2015] [Indexed: 11/29/2022]
Abstract
Organic Anion Transporting Polypeptides (OATPs), encoded by genes of the Solute Carrier Organic Anion (SLCO) family, are transmembrane proteins involved in the uptake of various compounds of endogenous or exogenous origin. In addition to their physiological roles, OATPs influence the pharmacokinetics and drug-drug interactions of several clinically relevant compounds. To examine the function and molecular interactions of human OATPs, including several poorly characterized family members, we expressed all 11 human OATPs at high levels in the baculovirus-Sf9 cell system. We measured the temperature- and inhibitor-sensitive cellular accumulation of sodium fluorescein and fluorescein-methotrexate, two fluorescent substrates of the OATPs, OATP1B1 and 1B3. OATP1B1 and 1B3 were functional in Sf9 cells, showing rapid uptake (t1/2(fluorescein-methotrexate) 2.64 and 4.16 min, and t1/2(fluorescein) 6.71 and 5.58 min for OATP1B1 and 1B3, respectively) and high-affinity transport (Km(fluorescein-methotrexate) 0.23 and 0.53 μM, and Km(fluorescein) 25.73 and 38.55 μM for OATP1B1 and 1B3, respectively) of both substrates. We found that sodium fluorescein is a general substrate of all human OATPs: 1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1 and 6A1, while fluorescein-methotrexate is only transported by 1B1, 1B3, 1A2 and 2B1. Acidic extracellular pH greatly facilitated fluorescein uptake by all OATPs, and new molecular interactions were detected (between OATP2B1 and Imatinib, OATP3A1, 5A1 and 6A1 and estradiol 17-β-d-glucuronide, and OATP1C1 and 4C1 and prostaglandin E2). These studies demonstrate, for the first time, that the insect cell system is suitable for the functional analysis of the entire human OATP family, and for drug-OATP interaction screening.
Collapse
Affiliation(s)
- Izabel Patik
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Daniella Kovacsics
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Orsolya Német
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Melinda Gera
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - György Várady
- Laboratory of Molecular Cell Biology, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KA 66160, USA
| | - Gergely Szakács
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Momentum Membrane Protein Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
146
|
Knudsen GA, Hughes MF, McIntosh KL, Sanders JM, Birnbaum LS. Estimation of tetrabromobisphenol A (TBBPA) percutaneous uptake in humans using the parallelogram method. Toxicol Appl Pharmacol 2015; 289:323-9. [PMID: 26387765 DOI: 10.1016/j.taap.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is currently the world's highest production volume brominated flame retardant. Humans are frequently exposed to TBBPA by the dermal route. In the present study, a parallelogram approach was used to make predictions of internal dose in exposed humans. Human and rat skin samples received 100 nmol of TBBPA/cm(2) skin and absorption and penetrance were determined using a flow-through in vitro system. TBBPA-derived [(14)C]-radioactivity was determined at 6h intervals in the media and at 24h post-dosing in the skin. The human skin and media contained an average of 3.4% and 0.2% of the total dose at the terminal time point, respectively, while the rat skin and media contained 9.3% and 3.5%, respectively. In the intact rat, 14% of a dermally-administered dose of ~100 nmol/cm(2) remained in the skin at the dosing site, with an additional 8% reaching systemic circulation by 24h post-dosing. Relative absorption and penetrance were less (10% total) at 24h following dermal administration of a ten-fold higher dose (~1000 nmol/cm(2)) to rats. However, by 72 h, 70% of this dose was either absorbed into the dosing-site skin or had reached systemic circulation. It is clear from these results that TBBPA can be absorbed by the skin and dermal contact with TBBPA may represent a small but important route of exposure. Together, these in vitro data in human and rat skin and in vivo data from rats may be used to predict TBBPA absorption in humans following dermal exposure. Based on this parallelogram calculation, up to 6% of dermally applied TBBPA may be bioavailable to humans exposed to TBBPA.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | - J Michael Sanders
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI at NIEHS, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|
147
|
Okadaic acid is taken-up into the cells mediated by human hepatocytes transporter OATP1B3. Food Chem Toxicol 2015; 83:229-36. [DOI: 10.1016/j.fct.2015.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/18/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
|
148
|
Torres FM, Sáfár Z, Vázquez-Sánchez MA, Kurunczi A, Kis E, Magnan R, Jani M, Nicolás O, Krajcsi P. Pre-Plated Cell Lines for ADMETox Applications in the Pharmaceutical Industry. ACTA ACUST UNITED AC 2015; 65:23.8.1-23.8.23. [PMID: 26250397 DOI: 10.1002/0471140856.tx2308s65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane transporters significantly modulate membrane permeability of endobiotics and xenobiotics, such as bile acids and drugs, respectively. Various in vitro methods have been established for both ATP-binding cassette (ABC) transporters to examine cellular efflux and uptake, and for solute carriers (SLC) to examine cellular uptake of substrates. Cell-based systems are the models of choice to test drug-transporter interactions as well as drug-drug interactions for research and regulatory purposes, albeit, for low passive permeability substrates of ABC transporters, vesicular uptake assays are also recommended. Commercially available pre-plated cells (e.g., immortalized or transfected) offer a useful alternative to in-house cell culture. Three main methods are known to manufacture pre-plated cultures: regular culture medium with vacuum seal, cryopreserved delivery, and the solid shipping media technology. The regular culture medium and the solid shipping media technologies provide ready-to-use models for end users. Models expressing a broad selection of transporters are available in pre-plated formats for absorption, distribution, metabolism, excretion, and toxicity (ADMETox) studies. Conversely, the application and utility of pre-plated cultures coupled with personal experiences have not been extensively covered in published research papers or reviews, despite availability and significant use of pre-plated products in the pharmaceutical industry. In this overview, we will briefly describe: 1) in vitro tools commonly used for ADMETox testing; 2) methods employed in manufacturing, shipment and preparation of pre-plated cell lines; 3) cell-membrane barrier models currently available in pre-plated format to reproduce passage restriction of physiological barriers to certain compounds; and 4) recommended pre-plated cell lines overexpressing uptake transporters for ADMETox applications.
Collapse
Affiliation(s)
| | - Zsolt Sáfár
- Solvo Biotechnology, Budaörs, Hungary.,shared first authorship
| | | | | | - Emese Kis
- Solvo Biotechnology, Budaörs, Hungary
| | | | | | - Oriol Nicolás
- ReadyCell S. L., Barcelona, Spain.,shared senior authorship
| | - Péter Krajcsi
- Solvo Biotechnology, Budaörs, Hungary.,shared senior authorship
| |
Collapse
|
149
|
An G, Mukker JK, Derendorf H, Frye RF. Enzyme- and transporter-mediated beverage-drug interactions: An update on fruit juices and green tea. J Clin Pharmacol 2015; 55:1313-31. [DOI: 10.1002/jcph.563] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/03/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Guohua An
- Department of Pharmaceutical Sciences and Experimental Therapeutics; College of Pharmacy; University of Iowa; Iowa City IA USA
| | - Jatinder Kaur Mukker
- Department of Pharmaceutics; College of Pharmacy; University of Florida; Gainesville FL USA
| | - Hartmut Derendorf
- Department of Pharmaceutics; College of Pharmacy; University of Florida; Gainesville FL USA
| | - Reginald F. Frye
- Department of Pharmacotherapy and Translational Research; College of Pharmacy; University of Florida; Gainesville FL USA
| |
Collapse
|
150
|
Abstract
Many of the compounds taken up by the liver are organic anions that circulate tightly bound to protein carriers such as albumin. The fenestrated sinusoidal endothelium of the liver permits these compounds to have access to hepatocytes. Studies to characterize hepatic uptake of organic anions through kinetic analyses, suggested that it was carrier-mediated. Attempts to identify specific transporters by biochemical approaches were largely unsuccessful and were replaced by studies that utilized expression cloning. These studies led to identification of the organic anion transport proteins (oatps), a family of 12 transmembrane domain glycoproteins that have broad and often overlapping substrate specificities. The oatps mediate Na(+)-independent organic anion uptake. Other studies identified a seven transmembrane domain glycoprotein, Na(+)/taurocholate transporting protein (ntcp) as mediating Na(+)-dependent uptake of bile acids as well as other organic anions. Although mutations or deficiencies of specific members of the oatp family have been associated with transport abnormalities, there have been no such reports for ntcp, and its physiologic role remains to be determined, although expression of ntcp in vitro recapitulates the characteristics of Na(+)-dependent bile acid transport that is seen in vivo. Both ntcp and oatps traffic between the cell surface and intracellular vesicular pools. These vesicles move through the cell on microtubules, using the microtubule based motors dynein and kinesins. Factors that regulate this motility are under study and may provide a unique mechanism that can alter the plasma membrane content of these transporters and consequently their accessibility to circulating ligands.
Collapse
Affiliation(s)
- Allan W Wolkoff
- The Herman Lopata Chair in Liver Disease Research, Professor of Medicine and Anatomy and Structural Biology, Associate Chair of Medicine for Research, Chief, Division of Gastroenterology and Liver Diseases, Director, Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY
| |
Collapse
|