101
|
Spisni E, Turroni S, Alvisi P, Spigarelli R, Azzinnari D, Ayala D, Imbesi V, Valerii MC. Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions. Front Pharmacol 2022; 13:841782. [PMID: 35370685 PMCID: PMC8971809 DOI: 10.3389/fphar.2022.841782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pharmaceutical interest in the human intestinal microbiota has increased considerably, because of the increasing number of studies linking the human intestinal microbial ecology to an increasing number of non-communicable diseases. Many efforts at modulating the gut microbiota have been made using probiotics, prebiotics and recently postbiotics. However, there are other, still little-explored opportunities from a pharmaceutical point of view, which appear promising to obtain modifications of the microbiota structure and functions. This review summarizes all in vitro, in vivo and clinical studies demonstrating the possibility to positively modulate the intestinal microbiota by using probiotics, prebiotics, postbiotics, essential oils, fungus and officinal plants. For the future, clinical studies investigating the ability to impact the intestinal microbiota especially by using fungus, officinal and aromatic plants or their extracts are required. This knowledge could lead to effective microbiome modulations that might support the pharmacological therapy of most non-communicable diseases in a near future.
Collapse
Affiliation(s)
- Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- *Correspondence: Enzo Spisni,
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Alvisi
- Pediatric Gastroenterology Unit, Maggiore Hospital, Bologna, Italy
| | - Renato Spigarelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Demetrio Azzinnari
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Veronica Imbesi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Chiara Valerii
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
102
|
Fowler S, Hoedt EC, Talley NJ, Keely S, Burns GL. Circadian Rhythms and Melatonin Metabolism in Patients With Disorders of Gut-Brain Interactions. Front Neurosci 2022; 16:825246. [PMID: 35356051 PMCID: PMC8959415 DOI: 10.3389/fnins.2022.825246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Circadian rhythms are cyclic patterns of physiological, behavioural and molecular events that occur over a 24-h period. They are controlled by the suprachiasmatic nucleus (SCN), the brain’s master pacemaker which governs peripheral clocks and melatonin release. While circadian systems are endogenous, there are external factors that synchronise the SCN to the ambient environment including light/dark cycles, fasting/fed state, temperature and physical activity. Circadian rhythms also provide internal temporal organisation which ensures that any internal changes that take place are centrally coordinated. Melatonin synchronises peripheral clocks to the external time and circadian rhythms are regulated by gene expression to control physiological function. Synchronisation of the circadian system with the external environment is vital for the health and survival of an organism and as circadian rhythms play a pivotal role in regulating GI physiology, disruption may lead to gastrointestinal (GI) dysfunction. Disorders of gut-brain interactions (DGBIs), also known as functional gastrointestinal disorders (FGIDs), are a group of diseases where patients experience reoccurring gastrointestinal symptoms which cannot be explained by obvious structural abnormalities and include functional dyspepsia (FD) and irritable bowel syndrome (IBS). Food timing impacts on the production of melatonin and given the correlation between food intake and symptom onset reported by patients with DGBIs, chronodisruption may be a feature of these conditions. Recent advances in immunology implicate circadian rhythms in the regulation of immune responses, and DGBI patients report fatigue and disordered sleep, suggesting circadian disruption. Further, melatonin treatment has been demonstrated to improve symptom burden in IBS patients, however, the mechanisms underlying this efficacy are unclear. Given the influence of circadian rhythms on gastrointestinal physiology and the immune system, modulation of these rhythms may be a potential therapeutic option for reducing symptom burden in these patients.
Collapse
Affiliation(s)
- Sophie Fowler
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Emily C. Hoedt
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas J. Talley
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Grace L. Burns
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Newcastle, NSW, Australia
- NHMRC Centre of Research Excellence in Digestive Health, The University of Newcastle, Newcastle, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Grace L. Burns,
| |
Collapse
|
103
|
Dargenio VN, Cristofori F, Dargenio C, Giordano P, Indrio F, Celano G, Francavilla R. Use of Limosilactobacillus reuteri DSM 17938 in paediatric gastrointestinal disorders: an updated review. Benef Microbes 2022; 13:221-242. [PMID: 35212258 DOI: 10.3920/bm2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Strains of lactobacilli are the most widely used probiotics and can be found in a large variety of food products and food supplements throughout the world. In this study, the evidence on Limosilactobacillus reuteri DSM 17938 (LR DSM 17938) has been reviewed. This species secretes reuterin and other substances singularly or in microvesicles, inhibiting pathogen growth and interacting with the intestinal microbiota and mucosa, restoring homeostasis. The use of LR DSM 17938 has been exploited in several pathological conditions. Preclinical research has shown that this probiotic can ameliorate dysbiosis and, by interacting with intestinal mucosal cells, can raise the pain threshold and promote gastrointestinal motility. These aspects are amongst the significant components in functional gastrointestinal disorders, such as colic and regurgitation in infants, functional abdominal pain and functional constipation in children and adolescents. This strain can decrease the duration of acute diarrhoea and hospitalization for acute gastroenteritis but does not seem to prevent nosocomial diarrhoea and antibiotic-associated diarrhoea. Because of its ability to survive in the gastric environment, it has been tested in Helicobacter pylori infection, showing a significant decrease of antibiotic-associated side effects and a tendency to increase the eradication rate. Finally, all these studies have shown the excellent safety of LR DSM 17938 even at higher dosages. In conclusion data from various clinical trials here reviewed can guide the clinician to find the correct dose, frequency of administration, and therapy duration.
Collapse
Affiliation(s)
- V N Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Cristofori
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - C Dargenio
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - P Giordano
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| | - F Indrio
- Department of Paediatrics, University of Foggia, Via Pinto 1, 71100 Foggia, Italy
| | - G Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola 265/a, 70126 Bari, Italy
| | - R Francavilla
- Interdisciplinary Department of Medicine, Paediatric Section. University of Bari Aldo Moro, Children's Hospital 'Giovanni XXIII', Via Amendola 207, 70126 Bari, Italy
| |
Collapse
|
104
|
Liu H, Liu H, Liu C, Shang M, Wei T, Yin P. Gut Microbiome and the Role of Metabolites in the Study of Graves’ Disease. Front Mol Biosci 2022; 9:841223. [PMID: 35252357 PMCID: PMC8889015 DOI: 10.3389/fmolb.2022.841223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune thyroid disease (AITD), which is one of the most common organ-specific autoimmune disorders with an increasing prevalence worldwide. But the etiology of GD is still unclear. A growing number of studies show correlations between gut microbiota and GD. The dysbiosis of gut microbiota may be the reason for the development of GD by modulating the immune system. Metabolites act as mediators or modulators between gut microbiota and thyroid. The purpose of this review is to summarize the correlations between gut microbiota, microbial metabolites and GD. Challenges in the future study are also discussed. The combination of microbiome and metabolome may provide new insight for the study and put forward the diagnosis, treatment, prevention of GD in the future.
Collapse
Affiliation(s)
- Haihua Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Huiying Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Chang Liu
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mengxue Shang
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Tianfu Wei
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Peiyuan Yin
- Clinical Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Peiyuan Yin, ,
| |
Collapse
|
105
|
Song JG, Yu MS, Lee B, Lee J, Hwang SH, Na D, Kim HW. Analysis methods for the gut microbiome in neuropsychiatric and neurodegenerative disorders. Comput Struct Biotechnol J 2022; 20:1097-1110. [PMID: 35317228 PMCID: PMC8902474 DOI: 10.1016/j.csbj.2022.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
For a long time, the central nervous system was believed to be the only regulator of cognitive functions. However, accumulating evidence suggests that the composition of the microbiome is strongly associated with brain functions and diseases. Indeed, the gut microbiome is involved in neuropsychiatric diseases (e.g., depression, autism spectrum disorder, and anxiety) and neurodegenerative diseases (e.g., Parkinson’s disease and Alzheimer’s disease). In this review, we provide an overview of the link between the gut microbiome and neuropsychiatric or neurodegenerative disorders. We also introduce analytical methods used to assess the connection between the gut microbiome and the brain. The limitations of the methods used at present are also discussed. The accurate translation of the microbiome information to brain disorder could promote better understanding of neuronal diseases and aid in finding alternative and novel therapies.
Collapse
Affiliation(s)
- Jae Gwang Song
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Bomi Lee
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
| | - Jingyu Lee
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
- Corresponding authors.
| | - Hyung Wook Kim
- Department of Bio-integrated Science and Technology, College of Life Sciences, Sejong University, Seoul 05006, Republic of Korea
- Corresponding authors.
| |
Collapse
|
106
|
Changes in the stool and oropharyngeal microbiome in obsessive-compulsive disorder. Sci Rep 2022; 12:1448. [PMID: 35087123 PMCID: PMC8795436 DOI: 10.1038/s41598-022-05480-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Although the etiology of obsessive–compulsive disorder (OCD) is largely unknown, it is accepted that OCD is a complex disorder. There is a known bi-directional interaction between the gut microbiome and brain activity. Several authors have reported associations between changes in gut microbiota and neuropsychiatric disorders, including depression or autism. Furthermore, a pediatric-onset neuropsychiatric OCD-related syndrome occurs after streptococcal infection, which might indicate that exposure to certain microbes could be involved in OCD susceptibility. However, only one study has investigated the microbiome of OCD patients to date. We performed 16S ribosomal RNA gene-based metagenomic sequencing to analyze the stool and oropharyngeal microbiome composition of 32 OCD cases and 32 age and gender matched controls. We estimated different α- and β-diversity measures and performed LEfSe and Wilcoxon tests to assess differences in bacterial distribution. OCD stool samples showed a trend towards lower bacterial α-diversity, as well as an increase of the relative abundance of Rikenellaceae, particularly of the genus Alistipes, and lower relative abundance of Prevotellaceae, and two genera within the Lachnospiraceae: Agathobacer and Coprococcus. However, we did not observe a different Bacteroidetes to Firmicutes ratio between OCD cases and controls. Analysis of the oropharyngeal microbiome composition showed a lower Fusobacteria to Actinobacteria ratio in OCD cases. In conclusion, we observed an imbalance in the gut and oropharyngeal microbiomes of OCD cases, including, in stool, an increase of bacteria from the Rikenellaceae family, associated with gut inflammation, and a decrease of bacteria from the Coprococcus genus, associated with DOPAC synthesis.
Collapse
|
107
|
Zhu C, Wang X, Li J, Jiang R, Chen H, Chen T, Yang Y. Determine independent gut microbiota-diseases association by eliminating the effects of human lifestyle factors. BMC Microbiol 2022; 22:4. [PMID: 34979898 PMCID: PMC8722223 DOI: 10.1186/s12866-021-02414-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Lifestyle and physiological variables on human disease risk have been revealed to be mediated by gut microbiota. Low concordance between case-control studies for detecting disease-associated microbe existed due to limited sample size and population-wide bias in lifestyle and physiological variables. To infer gut microbiota-disease associations accurately, we propose to build machine learning models by including both human variables and gut microbiota. When the model's performance with both gut microbiota and human variables is better than the model with just human variables, the independent gut microbiota -disease associations will be confirmed. By building models on the American Gut Project dataset, we found that gut microbiota showed distinct association strengths with different diseases. Adding gut microbiota into human variables enhanced the classification performance of IBD significantly; independent associations between occurrence information of gut microbiota and irritable bowel syndrome, C. difficile infection, and unhealthy status were found; adding gut microbiota showed no improvement on models' performance for diabetes, small intestinal bacterial overgrowth, lactose intolerance, cardiovascular disease. Our results suggested that although gut microbiota was reported to be associated with many diseases, a considerable proportion of these associations may be very weak. We proposed a list of microbes as biomarkers to classify IBD and unhealthy status. Further functional investigations of these microbes will improve understanding of the molecular mechanism of human diseases.
Collapse
Affiliation(s)
- Congmin Zhu
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Xin Wang
- Department of Ultrasound, Peking Union Medical College Hospital, Beijing, China
| | - Jianchu Li
- Department of Ultrasound, Peking Union Medical College Hospital, Beijing, China
| | - Rui Jiang
- Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Hui Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Ting Chen
- Institute for Artificial Intelligence and Department of Computer Science and Technology, Tsinghua University, Beijing, China.
| | - Yuqing Yang
- State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China.
| |
Collapse
|
108
|
Kordi M, Dehghan MJ, Shayesteh AA, Azizi A. The impact of artificial intelligence algorithms on management of patients with irritable bowel syndrome: A systematic review. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
109
|
Luo S, Yue T, Liu Z, Yang D, Xu M, Ding Y, Jiang W, Xu W, Yan J, Weng J, Zheng X. Gut microbiome and metabolic activity in type 1 diabetes: An analysis based on the presence of GADA. Front Endocrinol (Lausanne) 2022; 13:938358. [PMID: 36246882 PMCID: PMC9563112 DOI: 10.3389/fendo.2022.938358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) progression is affected by circulating glutamic acid decarboxylase antibody (GADA) that persist for many years. This study aimed at investigating whether and how the gut microbiome and its correlated metabolites change in T1D with the presence of GADA. METHODS We used a radiobinding assay to measure GADA titers and identify the 49 T1D patients with GADA+ and 52 T1D patients with GADA-. The fresh feces and serum were analyzed using 16S rRNA gene sequencing and GC/MS. Then gut microbiome and serum metabolites were compared between the GADA+ patients and the GADA- patients. The association between gut microbial community and metabolites was assessed using the Spearman's rank correlation. RESULTS The gut microbiome in diversity, composition, and function differed between these two groups. The abundance of genus Alistipes, Ruminococcus significantly increased in patients with GADA+ compared to that observed in the samples of GADA-. There were 54 significantly altered serum metabolites associated with tryptophan metabolism, phenylalanine, and tyrosine biosynthesis in individuals with GADA+ compared with those of GADA-For the serum metabolites, compared with those of GADA-, there were 54 significantly different metabolites with tryptophan metabolism, phenylalanine, and tyrosine and tryptophan biosynthesis decreased in individuals with GADA+. The abundance of Alistipes was positively correlated with altered metabolites involved in tryptophan metabolism. CONCLUSION We demonstrate that T1D patients with GADA+ are characterised by aberrant profiles of gut microbiota and serum metabolites. The abundance of Alistipes disturbances may participate in the development of T1D patients with GADA by modulating the host's tryptophan metabolism. These findings extend our insights into the association between the gut microbiota and tryptophan metabolism and GADA and might be targeted for preventing the development of T1D.
Collapse
Affiliation(s)
- Sihui Luo
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Yue
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ziyu Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Daizhi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Ding
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiwei Jiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Yan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianping Weng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xueying Zheng, ; Jianping Weng,
| | - Xueying Zheng
- Department of Endocrinology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xueying Zheng, ; Jianping Weng,
| |
Collapse
|
110
|
Gut Bacteria and Neuropsychiatric Disorders. Microorganisms 2021; 9:microorganisms9122583. [PMID: 34946184 PMCID: PMC8708963 DOI: 10.3390/microorganisms9122583] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022] Open
Abstract
Bacteria in the gut microbiome plays an intrinsic part in immune activation, intestinal permeability, enteric reflex, and entero-endocrine signaling. Apart from physiological and structural changes brought about by gut bacteria on entero-epithelial cells and mucus layers, a vast number of signals generated in the gastro-intestinal tract (GIT) reaches the brain via the vagus nerve. Research on the gut–brain axis (GBA) has mostly been devoted to digestive functions and satiety. Less papers have been published on the role gut microbiota play in mood, cognitive behavior and neuropsychiatric disorders such as autism, depression and schizophrenia. Whether we will be able to fully decipher the connection between gut microbiota and mental health is debatable, especially since the gut microbiome is diverse, everchanging and highly responsive to external stimuli. Nevertheless, the more we discover about the gut microbiome and the more we learn about the GBA, the greater the chance of developing novel therapeutics, probiotics and psychobiotics to treat gastro-intestinal disorders such as inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS), but also improve cognitive functions and prevent or treat mental disorders. In this review we focus on the influence gut bacteria and their metabolites have on neuropsychiatric disorders.
Collapse
|
111
|
Zhang T, Zhang S, Jin C, Lin Z, Deng T, Xie X, Deng L, Li X, Ma J, Ding X, Liu Y, Shan Y, Yu Z, Wang Y, Chen G, Li J. A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma. Front Cell Infect Microbiol 2021; 11:751795. [PMID: 34888258 PMCID: PMC8650695 DOI: 10.3389/fcimb.2021.751795] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant hepatic tumor with a poor prognosis, which needs early diagnosis urgently. The gut microbiota has been shown to play a crucial role in the progression of liver cancer. Here, we explored a gut microbiota model covering genera Burkholderia-Caballeronia-Paraburkholderia, Faecalibacterium, and Ruminococcus_1 (B-F-R) for CCA early diagnosis. A case-control study was conducted to enroll 53 CCA patients, 47 cholelithiasis patients, and 40 healthy controls. The feces samples and clinical information of participants were collected in the same period. The gut microbiota and its diversity of individuals were accessed with 16S rDNA sequencing, and the gut microbiota profile was evaluated according to microbiota diversity. Finally, four enriched genera in the CCA group (genera Bacteroides, Muribaculaceae_unclassified, Muribaculum, and Alistipes) and eight enriched genera in the cholelithiasis group (genera Bifidobacterium, Streptococcus, Agathobacter, Ruminococcus_gnavus_group, Faecalibacterium, Subdoligranulum, Collinsella, Escherichia-Shigella) constitute an overall different microbial community composition (P = 0.001). The B-F-R genera model with better diagnostic value than carbohydrate antigen 19-9 (CA19-9) was identified by random forest and Statistical Analysis of Metagenomic Profiles (STAMP) to distinguish CCA patients from healthy controls [area under the curve (AUC) = 0.973, 95% CI = 0.932–1.0]. Moreover, the correlative analysis found that genera Burkholderia-Caballeronia-Paraburkholderia were positively correlated with body mass index (BMI). The significantly different microbiomes between cholelithiasis and CCA were found via principal coordinates analysis (PCoA) and linear discriminant analysis effect size (LEfSe), and Venn diagram and LEfSe were utilized to identify four genera by comparing microbial compositions among patients with malignant obstructive jaundice (MOJ-Y) or not (MOJ-N). In brief, our findings suggest that gut microbiota vary from benign and malignant hepatobiliary diseases to healthy people and provide evidence supporting gut microbiota to be a non-invasive biomarker for the early diagnosis of CCA.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sina Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chen Jin
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Zixia Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tuo Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozai Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liming Deng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueyan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jun Ma
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Xiwei Ding
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yaming Liu
- Department of Gastroenterology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yunfeng Shan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialiang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
112
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Buckley D, Odamaki T, Xiao J, Mahony J, van Sinderen D, Bottacini F. Diversity of Human-Associated Bifidobacterial Prophage Sequences. Microorganisms 2021; 9:microorganisms9122559. [PMID: 34946160 PMCID: PMC8705816 DOI: 10.3390/microorganisms9122559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022] Open
Abstract
Members of Bifidobacterium play an important role in the development of the immature gut and are associated with positive long-term health outcomes for their human host. It has previously been shown that intestinal bacteriophages are detected within hours of birth, and that induced prophages constitute a significant source of such gut phages. The gut phageome can be vertically transmitted from mother to newborn and is believed to exert considerable selective pressure on target prokaryotic hosts affecting abundance levels, microbiota composition, and host characteristics. The objective of the current study was to investigate prophage-like elements and predicted CRISPR-Cas viral immune systems present in publicly available, human-associated Bifidobacterium genomes. Analysis of 585 fully sequenced bifidobacterial genomes identified 480 prophage-like elements with an occurrence of 0.82 prophages per genome. Interestingly, we also detected the presence of very similar bifidobacterial prophages and corresponding CRISPR spacers across different strains and species, thus providing an initial exploration of the human-associated bifidobacterial phageome. Our analyses show that closely related and likely functional prophages are commonly present across four different species of human-associated Bifidobacterium. Further comparative analysis of the CRISPR-Cas spacer arrays against the predicted prophages provided evidence of historical interactions between prophages and different strains at an intra- and inter-species level. Clear evidence of CRISPR-Cas acquired immunity against infection by bifidobacterial prophages across several bifidobacterial strains and species was obtained. Notably, a spacer representing a putative major capsid head protein was found on different genomes representing multiple strains across B. adolescentis, B. breve, and B. bifidum, suggesting that this gene is a preferred target to provide bifidobacterial phage immunity.
Collapse
Affiliation(s)
- Darren Buckley
- INFANT Research Centre, University College Cork, Cork, Ireland;
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jinzhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama 252-8583, Japan; (T.O.); (J.X.)
| | - Jennifer Mahony
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Correspondence: (D.v.S.); (F.B.)
| | - Francesca Bottacini
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland;
- Biological Sciences, Munster Technological University, Cork, Ireland
- Correspondence: (D.v.S.); (F.B.)
| |
Collapse
|
114
|
Effect of a Symbiotic Mixture on Fecal Microbiota in Pediatric Patients Suffering of Functional Abdominal Pain Disorders. Processes (Basel) 2021. [DOI: 10.3390/pr9122157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Functional abdominal pain disorders (FAPDs) represent one of the main etiologies of chronic abdominal pain in the pediatric population. A wide spectrum of probiotic or prebiotic mixtures has been evaluated in trials regarding benefits in patients with FAPDs, mainly in the adult population. (2) Methods: This study was interested in evaluating the effect of oral supplementation with a symbiotic mixture on intestinal microbiota in children with functional dyspepsia (FD), irritable bowel syndrome with diarrhea (IBS-D), and irritable bowel syndrome with constipation (IBS-C). A combination of six bacterial strains (Lactobacillus rhamnosus R0011, Lactibacillus casei R0215, Bifidobacterium lactis BI-04, Lactobacillus acidophilus La-14, Bifidobacterium longum BB536, Lactobacillus plantarum R1012) and 210 mg of fructo-oligosaccharides-inulin were administered orally, daily, for 12 weeks and patients were scored for severity of symptoms and fecal microbiota before and after the treatment. (3) Results: The proportion of patients with adequate symptom relief was higher in the IBS-D than in the IBS-C group; however, the difference was not statistically significant (74.4% vs. 61.9%, p = 0.230). There was an increasing proportion of bacterial genera associated with health benefits, for both IBS-C and IBS-D (IBS-C: 31.1 ± 16.7% vs. 47.7 ± 13.5%, p = 0.01; IBS-D: 35.8 ± 16.2% vs. 44.1 ± 15.1%, p = 0.01). (4) Conclusions: Administration of a symbiotic preparation resulted in significant changes to the microbiota and gastrointestinal symptoms in patients with FAPDs.
Collapse
|
115
|
Florfenicol Enhances Colonization of a Salmonella enterica Serovar Enteritidis floR Mutant with Major Alterations to the Intestinal Microbiota and Metabolome in Neonatal Chickens. Appl Environ Microbiol 2021; 87:e0168121. [PMID: 34613752 DOI: 10.1128/aem.01681-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Florfenicol is an important antibiotic commonly used in poultry production to prevent and treat Salmonella infection. However, oral administration of florfenicol may alter the animals' natural microbiota and metabolome, thereby reducing intestinal colonization resistance and increasing susceptibility to Salmonella infection. In this study, we determined the effect of florfenicol (30 mg/kg of body weight) on gut colonization of neonatal chickens challenged with Salmonella enterica subsp. enterica serovar Enteritidis. We then analyzed the microbial community structure and metabolic profiles of cecal contents using microbial 16S amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics, respectively. We also screened the marker metabolites using a multi-omics technique and assessed the effect of these markers on intestinal colonization by S. Enteritidis. Florfenicol administration significantly increased the loads of S. Enteritidis in cecal contents, spleen, and liver and prolonged the residence of S. Enteritidis. Moreover, florfenicol significantly affected cecal colony structures, with reduced abundances of Lactobacillus and Bacteroidetes and increased levels of Clostridia, Clostridium, and Dorea. The metabolome was greatly influenced by florfenicol administration, and perturbation in metabolic pathways related to linoleic acid metabolism (linoleic acid, conjugated linoleic acid [CLA], 12,13-EpOME, and 12,13-diHOME) was most prominently detected. We screened CLA and 12,13-diHOME as marker metabolites, which were highly associated with Lactobacillus, Clostridium, and Dorea. Supplementation with CLA maintained intestinal integrity, reduced intestinal inflammation, and accelerated Salmonella clearance from the gut and remission of enteropathy, whereas treatment with 12,13-diHOME promoted intestinal inflammation and disrupted intestinal barrier function to sustain Salmonella infection. Thus, these results highlight that florfenicol alters the intestinal microbiota and metabolism of neonatal chickens and promotes Salmonella infection mainly by affecting linoleic acid metabolism. IMPORTANCE Florfenicol is a broad-spectrum fluorine derivative of chloramphenicol frequently used in poultry to prevent/treat Salmonella. However, oral administration of florfenicol may lead to alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to Salmonella infection, and the possible mechanisms linking antibiotics and Salmonella colonization in poultry have not yet been fully elucidated. In the current study, we show that increased colonization by S. Enteritidis in chickens administered florfenicol is associated with large shifts in the gut microbiota and metabolic profiles. The most influential linoleic acid metabolism is highly associated with the abundances of Lactobacillus, Clostridium, and Dorea in the intestine. The screened target metabolites in linoleic acid metabolism affect S. Enteritidis colonization, intestinal inflammation, and intestinal barrier function. Our findings provide a better understanding of the susceptibility of animal species to Salmonella after antibiotic intervention, which may help to elucidate infection mechanisms that are important for both animal and human health.
Collapse
|
116
|
Yang J, Xiong P, Bai L, Zhang Z, Zhou Y, Chen C, Xie Z, Xu Y, Chen M, Wang H, Zhu M, Yu J, Wang K. The Association of Altered Gut Microbiota and Intestinal Mucosal Barrier Integrity in Mice With Heroin Dependence. Front Nutr 2021; 8:765414. [PMID: 34805249 PMCID: PMC8600332 DOI: 10.3389/fnut.2021.765414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is believed to play a significant role in psychological and gastrointestinal symptoms in heroin addicts. However, the underlying mechanism remains largely unknown. We show here that heroin addicts had a decrease in body mass index (BMI) and abnormal serum D-lactic acid (DLA), endotoxin (ET) and diamine oxidase (DAO) levels during their withdrawal stage, suggesting a potential intestinal injury. The gut microbial profiles in the mouse model with heroin dependence showed slightly decreased alpha diversity, as well as higher levels of Bifidobacterium and Sutterella and a decrease in Akkermansia at genus level compared to the control group. Fecal microbiota transplantation (FMT) further confirmed that the microbiota altered by heroin dependence was sufficient to impair body weight and intestinal mucosal barrier integrity in recipient mice. Moreover, short-chain fatty acids (SCFAs) profiling revealed that microbiota-derived propionic acid significantly decreased in heroin dependent mice compared to controls. Overall, our study shows that heroin dependence significantly altered gut microbiota and impaired intestinal mucosal barrier integrity in mice, highlighting the role of the gut microbiota in substance use disorders and the pathophysiology of withdrawal symptoms.
Collapse
Affiliation(s)
- Jiqing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China.,National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pu Xiong
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Bai
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Zunyue Zhang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yong Zhou
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhenrong Xie
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu Xu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Minghui Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,Medical School, Kunming University of Science and Technology, Kunming, China
| | - Huawei Wang
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Zhu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Centre for Experimental Studies and Research, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.,National Health Commission (NHC) Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Administrative Affairs, Yunnan University, Kunming, China
| |
Collapse
|
117
|
Valverde AP, Camargo A, Rodrigues ALS. Agmatine as a novel candidate for rapid-onset antidepressant response. World J Psychiatry 2021; 11:981-996. [PMID: 34888168 PMCID: PMC8613765 DOI: 10.5498/wjp.v11.i11.981] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is a disabling and highly prevalent mood disorder as well as a common cause of suicide. Chronic stress, inflammation, and intestinal dysbiosis have all been shown to play crucial roles in the pathophysiology of MDD. Although conventional antidepressants are widely used in the clinic, they can take weeks to months to produce therapeutic effects. The discovery that ketamine promotes fast and sustaining antidepressant responses is one of the most important breakthroughs in the pharmacotherapy of MDD. However, the adverse psychomimetic/dissociative and neurotoxic effects of ketamine discourage its chronic use. Therefore, agmatine, an endogenous glutamatergic modulator, has been postulated to elicit fast behavioral and synaptogenic effects by stimulating the mechanistic target of rapamycin complex 1 signaling pathway, similar to ketamine. However, recent evidence has demonstrated that the modulation of the NLR family pyrin domain containing 3 inflammasome and gut microbiota, which have been shown to play a crucial role in the pathophysiology of MDD, may also participate in the antidepressant-like effects of both ketamine and agmatine. This review seeks to provide evidence about the mechanisms that may underlie the fast antidepressant-like responses of agmatine in preclinical studies. Considering the anti-inflammatory properties of agmatine, it may also be further investigated as a useful compound for the management of MDD associated with a pro-inflammatory state. Moreover, the fast antidepressant-like response of agmatine noted in animal models should be investigated in clinical studies.
Collapse
Affiliation(s)
- Ana Paula Valverde
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Anderson Camargo
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Campus Universitário, Center for Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC 88040900, Brazil
| |
Collapse
|
118
|
Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, Zhang D. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. MICROBIOME 2021; 9:226. [PMID: 34784980 PMCID: PMC8597301 DOI: 10.1186/s40168-021-01107-9] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Xiu-qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Gen Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing, 100050 China
| |
Collapse
|
119
|
Zhang H, Xia P, Feng L, Jia M, Su Y. Feeding Frequency Modulates the Intestinal Transcriptome Without Affecting the Gut Microbiota in Pigs With the Same Daily Feed Intake. Front Nutr 2021; 8:743343. [PMID: 34778338 PMCID: PMC8589026 DOI: 10.3389/fnut.2021.743343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
The objective of this study was to elucidate the impacts of irregular eating patterns on gut microbiota and transcriptomic responses in a pig model with different feeding regimens. The experiment involved 24 growing pigs (Duroc × Landrace × Large White, 48 days of age) which were randomly allocated to one of three feeding patterns: one-meal (M1), three-meals (M3), or five-meals (M5) per day with the same daily feed intake. The results showed that different feeding frequencies had no significant effects on the microbial composition of ileal digesta, colonic digesta, colon mucosa, as well as the concentration of SCFAs in colonic digesta. Mucosa transcriptomic profiling data showed the pathways related to vitamin metabolism were enriched in the ileum and colon of pigs in the pairwise comparison between M3 and M1 groups. On the other hand, the pathways related to lipid metabolism were enriched in the ileum and colon of pigs in the pairwise comparison between M5 and M1 groups. Lastly, the pathways related to protein metabolism were enriched in the colon in the pairwise comparison between M3 and M1 groups, M5 and M1 groups, M5 and M3 groups, while the ileum was not enriched. Differentially expressed genes (DEG) related to metabolism showed that carbohydrate transport was suppressed in the ileum and enhanced in the colon in M5 and M3 groups compared with the M1 group. Compared with the M3 group, carbohydrate transport in the ileum was enhanced in the M5 group, while in the colon was inhibited. With the increase of feeding frequency, the catabolism, biosynthesis, and transport of lipid in the ileum were suppressed, while those in the colon were enhanced. Compared with the M1 group, amino acid transport in the ileum and colon in the M3 group was enhanced. Amino acid catabolism in the ileum in the M5 group was enhanced compared with M1 and M3 groups. In summary, different feeding frequencies affected the transport of carbohydrate, lipid, and amino acid in the ileum and colon, and affected the catabolism and biosynthesis of lipid in the ileum and colon with a low impact on intestinal microbiota.
Collapse
Affiliation(s)
- He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Pengke Xia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Lufen Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Menglan Jia
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
120
|
Umanets A, Dinkla A, Vastenhouw S, Ravesloot L, Koets AP. Classification and prediction of Mycobacterium Avium subsp. Paratuberculosis (MAP) shedding severity in cattle based on young stock heifer faecal microbiota composition using random forest algorithms. Anim Microbiome 2021; 3:78. [PMID: 34776001 PMCID: PMC8591832 DOI: 10.1186/s42523-021-00143-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/31/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bovine paratuberculosis is a devastating infectious disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). The development of the paratuberculosis in cattle can take up to a few years and vastly differs between individuals in severity of the clinical symptoms and shedding of the pathogen. Timely identification of high shedding animals is essential for paratuberculosis control and minimization of economic losses. Widely used methods for detection and quantification of MAP, such as culturing and PCR based techniques rely on direct presence of the pathogen in a sample and have little to no predictive value concerning the disease development. In the current study, we investigated the possibility of predicting MAP shedding severity in cattle based on the faecal microbiota composition. Twenty calves were experimentally infected with MAP and faecal samples were collected biweekly up to four years of age. All collected samples were subjected to culturing on selective media to obtain data about shedding severity. Faecal microbiota was profiled in a subset of samples (n = 264). Using faecal microbiota composition and shedding intensity data a random forest classifier was built for prediction of the shedding status of the individual animals. RESULTS The results indicate that machine learning approaches applied to microbial composition can be used to classify cows into groups by severity of MAP shedding. The classification accuracy correlates with the age of the animals and use of samples from older individuals resulted in a higher classification precision. The classification model based on samples from the first 12 months of life showed an AUC between 0.78 and 0.79 (95% CI), while the model based on samples from animals older than 24 months showed an AUC between 0.91 and 0.92 (95% CI). Prediction for samples from animals between 12 and 24 month of age showed intermediate accuracy [AUC between 0.86 and 0.87 (95% CI)]. In addition, the results indicate that a limited number of microbial taxa were important for classification and could be considered as biomarkers. CONCLUSIONS The study provides evidence for the link between microbiota composition and severity of MAP infection and shedding, as well as lays ground for the development of predictive diagnostic tools based on the faecal microbiota composition.
Collapse
Affiliation(s)
- Alexander Umanets
- Department of Bacteriology, Host Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Present Address: Chair Group Youth Food and Health, Faculty of Science and Engineering, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Annemieke Dinkla
- Department of Bacteriology, Host Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Stephanie Vastenhouw
- Department of Bacteriology, Host Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Lars Ravesloot
- Department of Bacteriology, Host Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ad P. Koets
- Department of Bacteriology, Host Pathogen Interaction and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
121
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
122
|
Kittana M, Ahmadani A, Al Marzooq F, Attlee A. Dietary Fat Effect on the Gut Microbiome, and Its Role in the Modulation of Gastrointestinal Disorders in Children with Autism Spectrum Disorder. Nutrients 2021; 13:3818. [PMID: 34836074 PMCID: PMC8618510 DOI: 10.3390/nu13113818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Children with autism spectrum disorder (ASD) report a higher frequency and severity of gastrointestinal disorders (GID) than typically developing (TD) children. GID-associated discomfort increases feelings of anxiety and frustration, contributing to the severity of ASD. Emerging evidence supports the biological intersection of neurodevelopment and microbiome, indicating the integral contribution of GM in the development and function of the nervous system, and mental health, and disease balance. Dysbiotic GM could be a contributing factor in the pathogenesis of GID in children with ASD. High-fat diets may modulate GM through accelerated growth of bile-tolerant bacteria, altered bacterial ratios, and reduced bacterial diversity, which may increase the risk of GID. Notably, saturated fatty acids are considered to have a pronounced effect on the increase of bile-tolerant bacteria and reduction in microbial diversity. Additionally, omega-3 exerts a favorable impact on GM and gut health due to its anti-inflammatory properties. Despite inconsistencies in the data elaborated in the review, the dietary fat composition, as part of an overall dietary intervention, plays a role in modulating GID, specifically in ASD, due to the altered microbiome profile. This review emphasizes the need to conduct future experimental studies investigating the effect of diets with varying fatty acid compositions on GID-specific microbiome profiles in children with ASD.
Collapse
Affiliation(s)
- Monia Kittana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Asma Ahmadani
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Amita Attlee
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (M.K.); (A.A.)
| |
Collapse
|
123
|
Sultan S, El-Mowafy M, Elgaml A, Ahmed TAE, Hassan H, Mottawea W. Metabolic Influences of Gut Microbiota Dysbiosis on Inflammatory Bowel Disease. Front Physiol 2021; 12:715506. [PMID: 34646151 PMCID: PMC8502967 DOI: 10.3389/fphys.2021.715506] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic medical disorders characterized by recurrent gastrointestinal inflammation. While the etiology of IBD is still unknown, the pathogenesis of the disease results from perturbations in both gut microbiota and the host immune system. Gut microbiota dysbiosis in IBD is characterized by depleted diversity, reduced abundance of short chain fatty acids (SCFAs) producers and enriched proinflammatory microbes such as adherent/invasive E. coli and H2S producers. This dysbiosis may contribute to the inflammation through affecting either the immune system or a metabolic pathway. The immune responses to gut microbiota in IBD are extensively discussed. In this review, we highlight the main metabolic pathways that regulate the host-microbiota interaction. We also discuss the reported findings indicating that the microbial dysbiosis during IBD has a potential metabolic impact on colonocytes and this may underlie the disease progression. Moreover, we present the host metabolic defectiveness that adds to the impact of symbiont dysbiosis on the disease progression. This will raise the possibility that gut microbiota dysbiosis associated with IBD results in functional perturbations of host-microbiota interactions, and consequently modulates the disease development. Finally, we shed light on the possible therapeutic approaches of IBD through targeting gut microbiome.
Collapse
Affiliation(s)
- Salma Sultan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Abdelaziz Elgaml
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.,Department of Microbiology and Immunology, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Tamer A E Ahmed
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hebatoallah Hassan
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
124
|
Wang N, Wang S, Xu B, Liu F, Huo G, Li B. Alleviation Effects of Bifidobacterium animalis subsp. lactis XLTG11 on Dextran Sulfate Sodium-Induced Colitis in Mice. Microorganisms 2021; 9:microorganisms9102093. [PMID: 34683415 PMCID: PMC8539219 DOI: 10.3390/microorganisms9102093] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/11/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic immune-related disease, which can occur through the dysfunction of the immune system caused by the imbalance of gut microbiota. Previous studies have reported the beneficial effects of Bifidobacterium on colitis, while the related mechanisms behind these effects have not been fully elucidated. The aim of our study is to investigate the alleviation effect of Bifidobacterium animalis subsp. lactis XLTG11 (B. lactis) on dextran sulfate sodium (DSS)-induced colitis and its potential mechanism. The results showed that B. lactis XLTG11 significantly decreased weight loss, disease activity index score, colon shortening, myeloperoxide activity, spleen weight, and colon tissue damage. Additionally, B. lactis XLTG11 significantly decreased the levels of pro-inflammatory cytokines and increased the level of anti-inflammatory cytokine. Meanwhile, high doses of B. lactis XLTG11 significantly up-regulated the expression of tight junction proteins and inhibited activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MYD88)/nuclear factor-κB (NF-κB) signaling pathway. Furthermore, B. lactis XLTG11 increased the gut microbiota diversity and modulated gut microbiota composition caused by DSS. Moreover, Spearman’s correlation analysis also found that several specific gut microbiota were significantly correlated with colitis-related indicators. These results demonstrated that B. lactis XLTG11 can alleviate DSS-induced colitis by inhibiting the activation of the TLR4/MYD88/NF-κB signaling pathway, regulating inflammatory cytokines, improving intestinal barrier function, and modulating the gut microbiota.
Collapse
Affiliation(s)
- Nana Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Song Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Baofeng Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (N.W.); (S.W.); (B.X.); (F.L.); (G.H.)
- Food College, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-5519-0426
| |
Collapse
|
125
|
Takahashi K, Khwaja IG, Schreyer JR, Bulmer D, Peiris M, Terai S, Aziz Q. Post-inflammatory Abdominal Pain in Patients with Inflammatory Bowel Disease During Remission: A Comprehensive Review. CROHN'S & COLITIS 360 2021; 3:otab073. [PMID: 36777266 PMCID: PMC9802269 DOI: 10.1093/crocol/otab073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with inflammatory bowel disease often experience ongoing pain even after achieving mucosal healing (i.e., post-inflammatory pain). Factors related to the brain-gut axis, such as peripheral and central sensitization, altered sympatho-vagal balance, hypothalamic-pituitary-adrenal axis activation, and psychosocial factors, play a significant role in the development of post-inflammatory pain. A comprehensive study investigating the interaction between multiple predisposing factors, including clinical psycho-physiological phenotypes, molecular mechanisms, and multi-omics data, is still needed to fully understand the complex mechanism of post-inflammatory pain. Furthermore, current treatment options are limited and new treatments consistent with the underlying pathophysiology are needed to improve clinical outcomes.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Iman Geelani Khwaja
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jocelyn Rachel Schreyer
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Madusha Peiris
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Qasim Aziz
- Centre for Neuroscience, Surgery and Trauma, Wingate Institute of Neurogastroenterology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
126
|
Gupta VK, Cunningham KY, Hur B, Bakshi U, Huang H, Warrington KJ, Taneja V, Myasoedova E, Davis JM, Sung J. Gut microbial determinants of clinically important improvement in patients with rheumatoid arthritis. Genome Med 2021; 13:149. [PMID: 34517888 PMCID: PMC8439035 DOI: 10.1186/s13073-021-00957-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rapid advances in the past decade have shown that dysbiosis of the gut microbiome is a key hallmark of rheumatoid arthritis (RA). Yet, the relationship between the gut microbiome and clinical improvement in RA disease activity remains unclear. In this study, we explored the gut microbiome of patients with RA to identify features that are associated with, as well as predictive of, minimum clinically important improvement (MCII) in disease activity. METHODS We conducted a retrospective, observational cohort study on patients diagnosed with RA between 1988 and 2014. Whole metagenome shotgun sequencing was performed on 64 stool samples, which were collected from 32 patients with RA at two separate time-points approximately 6-12 months apart. The Clinical Disease Activity Index (CDAI) of each patient was measured at both time-points to assess achievement of MCII; depending on this clinical status, patients were distinguished into two groups: MCII+ (who achieved MCII; n = 12) and MCII- (who did not achieve MCII; n = 20). Multiple linear regression models were used to identify microbial taxa and biochemical pathways associated with MCII while controlling for potentially confounding factors. Lastly, a deep-learning neural network was trained upon gut microbiome, clinical, and demographic data at baseline to classify patients according to MCII status, thereby enabling the prediction of whether a patient will achieve MCII at follow-up. RESULTS We found age to be the largest determinant of the overall compositional variance in the gut microbiome (R2 = 7.7%, P = 0.001, PERMANOVA). Interestingly, the next factor identified to explain the most variance in the gut microbiome was MCII status (R2 = 3.8%, P = 0.005). Additionally, by looking at patients' baseline gut microbiome profiles, we observed significantly different microbiome traits between patients who eventually showed MCII and those who did not. Taxonomic features include alpha- and beta-diversity measures, as well as several microbial taxa, such as Coprococcus, Bilophila sp. 4_1_30, and Eubacterium sp. 3_1_31. Notably, patients who achieved clinical improvement had higher alpha-diversity in their gut microbiomes at both baseline and follow-up visits. Functional profiling identified fifteen biochemical pathways, most of which were involved in the biosynthesis of L-arginine, L-methionine, and tetrahydrofolate, to be differentially abundant between the MCII patient groups. Moreover, MCII+ and MCII- groups showed significantly different fold-changes (from baseline to follow-up) in eight microbial taxa and in seven biochemical pathways. These results could suggest that, depending on the clinical course, gut microbiomes not only start at different ecological states, but also are on separate trajectories. Finally, the neural network proved to be highly effective in predicting which patients will achieve MCII (balanced accuracy = 90.0%, leave-one-out cross-validation), demonstrating potential clinical utility of gut microbiome profiles. CONCLUSIONS Our findings confirm the presence of taxonomic and functional signatures of the gut microbiome associated with MCII in RA patients. Ultimately, modifying the gut microbiome to enhance clinical outcome may hold promise as a future treatment for RA.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kevin Y Cunningham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Hur
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Utpal Bakshi
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Harvey Huang
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | - Kenneth J Warrington
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Elena Myasoedova
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Health Sciences Research, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
| | - John M Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, MN, USA.
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
127
|
Abstract
Gut microbiota plays a vital role in human health. The number of microorganisms inhabiting the gastrointestinal (GI) tract has been estimated to exceed 1013. The dominant genera in the human intestine are Firmicutes (more than 180 species of Lactobacillus), Actinobacteria (among others the Bifidobacteriae), Bacteroidetes (the most important is B. fragilis) and Proteobacteria (E. coli, Salmonella, Yersinia, Shigella, Vibrio, Haemophilus, etc.), but the composition of the flora varies individually, as well as in relation to factors such as host genetics, stress, diet, antibiotics and early childhood experiences. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders (FGIDs), which has now been renamed disorders of gut-brain interaction, which affect a large number of people worldwide. It is characterized by abdominal pain and altered bowel habits in the absence of obvious anatomic or physiologic abnormalities. It poses a negative economic impact to the global health care system in addition to reducing the quality of life in patients. The pathophysiology of IBS is not fully understood. In IBS subjects gut microbiota relative to healthy controls was observed with an increase in Enterobacteriaceae, Ruminococcus, Clostridium, Dorea species and a decrease of Lactobacillus, Bifidobacterium, and Faecalibacterium species. IBS with diarrhea predominance (IBS-D) IBS with mixed bowel habits (IBS-M) share similarities in the microbial profile. Recent studies suggest that perturbations within "brain-gut-microbiota" axis may lead to IBS development. The aim of this review was to highlight the potential role of gut microbiota on pathophysiological mechanisms underlying IBS.
Collapse
Affiliation(s)
- Cristina M Sabo
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania -
| | - Dan L Dumitrascu
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
128
|
Abstract
Advances in bioinformatics have facilitated investigation of the role of gut microbiota in patients with irritable bowel syndrome (IBS). This article describes the evidence from epidemiologic and clinical observational studies highlighting the link between IBS and gut microbiome by investigating postinfection IBS, small intestinal bacterial overgrowth, and microbial dysbiosis. It highlights the effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS, including gut-brain axis, visceral hypersensitivity, motility, epithelial barrier, and immune activation. In addition, it summarizes the current evidence on microbiome-guided therapies in IBS, including probiotics, antibiotics, diet, and fecal microbiota transplant.
Collapse
Affiliation(s)
- Prashant Singh
- Division of Gastroenterology and Hepatology, University of Michigan, MSBR1, Room 6520 B, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Anthony Lembo
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Rabb/Rose 1, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
129
|
Zhao Z, Li F, Ning J, Peng R, Shang J, Liu H, Shang M, Bao XQ, Zhang D. Novel compound FLZ alleviates rotenone-induced PD mouse model by suppressing TLR4/MyD88/NF- κB pathway through microbiota-gut-brain axis. Acta Pharm Sin B 2021; 11:2859-2879. [PMID: 34589401 PMCID: PMC8463266 DOI: 10.1016/j.apsb.2021.03.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.
Collapse
Key Words
- ANOSIM, adonis and analysis of similarity
- BBB, blood–brain barrier
- CFU, colony-forming units
- CMC-Na, sodium carboxymethyl cellulose
- CNS, central nerve system
- ELISA, enzyme-linked immunosorbent assay
- FD4, FITC-dextran (MW: 4 kDa)
- FITC, fluorescein isothiocyanate
- FLZ
- GFAP, glial fibrillary acidic protein
- GI, gastrointestinal
- Gastrointestinal dysfunction
- Hp, Helicobacter pylori
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- Iba-1, ionized calcium-binding adapter molecule 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LBP, lipopolysaccharide binding protein
- LDA, linear discriminant analysis
- LPS, lipopolysaccharide
- MLNs, mesenteric lymph nodes
- Microbiota–gut–brain axis
- Neuroinflammation
- OTU, operational taxonomic unit
- PBS, phosphate-buffered saline
- PCoA, principal coordinate analysis
- PD, Parkinson's disease
- Parkinson's disease
- Rotenone mouse model
- SD, standard deviation
- SN, substantia nigra
- Systemic inflammation
- TEM, transmission electron microscopy
- TH, tyrosine hydroxylase
- TLR4, toll-like receptor 4
- TLR4/MyD88/NF-κB pathway
- TNF-α, tumor necrosis factor-α
- qPCR, quantitative polymerase chain reaction assay
- α-Syn, α-synuclein
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ran Peng
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Junmei Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
130
|
Brenner D, Cherry P, Switzer T, Butt I, Stanton C, Murphy K, McNamara B, Iohom G, O'Mahony SM, Shorten G. Pain after upper limb surgery under peripheral nerve block is associated with gut microbiome composition and diversity. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100072. [PMID: 34485761 PMCID: PMC8404729 DOI: 10.1016/j.ynpai.2021.100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 01/17/2023]
Abstract
Gut microbiota play a role in certain pain states. Hence, these microbiota also influence somatic pain. We aimed to determine if there was an association between gut microbiota (composition and diversity) and postoperative pain. Patients (n = 20) undergoing surgical fixation of distal radius fracture under axillary brachial plexus block were studied. Gut microbiota diversity and abundance were analysed for association with: (i) a verbal pain rating scale of < 4/10 throughout the first 24 h after surgery (ii) a level of pain deemed "acceptable" by the patient during the first 24 h following surgery (iii) a maximum self-reported pain score during the first 24 h postoperatively and (iv) analgesic consumption during the first postoperative week. Analgesic consumption was inversely correlated with the Shannon index of alpha diversity. There were also significant differences, at the genus level (including Lachnospira), with respect to pain being "not acceptable" at 24 h postoperatively. Porphyromonas was more abundant in the group reporting an acceptable pain level at 24 h. An inverse correlation was noted between abundance of Collinsella and maximum self-reported pain score with movement. We have demonstrated for the first time that postoperative pain is associated with gut microbiota composition and diversity. Further work on the relationship between the gut microbiome and somatic pain may offer new therapeutic targets.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Paul Cherry
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Tim Switzer
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Ihsan Butt
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork,
Ireland
| | - Brian McNamara
- Department of Clinical Neurophysiology Cork University Hospital,
Ireland
| | - Gabriella Iohom
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Ireland
- Department of Anatomy and Neuroscience University College Cork,
Ireland
| | - George Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University
Hospital and University College Cork, Ireland
| |
Collapse
|
131
|
Faraj J, Takanti V, Tavakoli HR. The Gut-Brain Axis: Literature Overview and Psychiatric Applications. Fed Pract 2021; 38:356-362. [PMID: 34733087 PMCID: PMC8560095 DOI: 10.12788/fp.0159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE Literature exploring the relationship between the intestinal microbiome and its effects on general health and well-being has grown significantly in recent years, and our knowledge of this subject continues to grow. Mounting evidence indicates that the intestinal microbiome is a potential target for therapeutic intervention in psychiatric illness and in neurodegenerative disorders such as Alzheimer disease. It is reasonable to consider modulating not just a patient's neurochemistry, behavior, or cognitive habits, but also their intestinal microbiome in an effort to improve psychiatric symptoms. OBSERVATIONS In this review paper, we show that intestinal microbiota possess the ability to directly influence both physical and mental well-being; therefore, should be included in future discussions regarding psychiatric treatment. CONCLUSIONS Clinicians are encouraged to consider patients' gut health when evaluating and treating psychiatric conditions, such as anxiety and depression. Optimization and diversification of gut flora through the use of psychobiotics-probiotics that confer mental health benefits-may soon become standard practice in conjunction with traditional psychiatric treatment modalities such as pharmacotherapy and psychotherapy.
Collapse
Affiliation(s)
- Janine Faraj
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Varun Takanti
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| | - Hamid R Tavakoli
- is a General Medical Officer at Naval Surface Forces Atlantic, Medical Readiness Division, Norfolk, Virginia. is a Resident Physician in the Department of Anesthesiology at Rush University Hospital in Chicago, Illinois. is the head of Psychiatry Consultation-Liaison Services at the Naval Medical Center, Portsmouth, Virginia
| |
Collapse
|
132
|
Hassouneh SAD, Loftus M, Yooseph S. Linking Inflammatory Bowel Disease Symptoms to Changes in the Gut Microbiome Structure and Function. Front Microbiol 2021; 12:673632. [PMID: 34349736 PMCID: PMC8326577 DOI: 10.3389/fmicb.2021.673632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract that is often characterized by abdominal pain, rectal bleeding, inflammation, and weight loss. Many studies have posited that the gut microbiome may play an integral role in the onset and exacerbation of IBD. Here, we present a novel computational analysis of a previously published IBD dataset. This dataset consists of shotgun sequence data generated from fecal samples collected from individuals with IBD and an internal control group. Utilizing multiple external controls, together with appropriate techniques to handle the compositionality aspect of sequence data, our computational framework can identify and corroborate differences in the taxonomic profiles, bacterial association networks, and functional capacity within the IBD gut microbiome. Our analysis identified 42 bacterial species that are differentially abundant between IBD and every control group (one internal control and two external controls) with at least a twofold difference. Of the 42 species, 34 were significantly elevated in IBD, relative to every other control. These 34 species were still present in the control groups and appear to play important roles, according to network centrality and degree, in all bacterial association networks. Many of the species elevated in IBD have been implicated in modulating the immune response, mucin degradation, antibiotic resistance, and inflammation. We also identified elevated relative abundances of protein families related to signal transduction, sporulation and germination, and polysaccharide degradation as well as decreased relative abundance of protein families related to menaquinone and ubiquinone biosynthesis. Finally, we identified differences in functional capacities between IBD and healthy controls, and subsequently linked the changes in the functional capacity to previously published clinical research and to symptoms that commonly occur in IBD.
Collapse
Affiliation(s)
- Sayf Al-Deen Hassouneh
- Burnett School of Biomedical Sciences, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, United States
| | - Mark Loftus
- Burnett School of Biomedical Sciences, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, United States
| | - Shibu Yooseph
- Department of Computer Science, Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
133
|
Zhou H, Sun J, Yu B, Liu Z, Chen H, He J, Mao X, Zheng P, Yu J, Luo J, Luo Y, Yan H, Ge L, Chen D. Gut microbiota absence and transplantation affect growth and intestinal functions: An investigation in a germ-free pig model. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:295-304. [PMID: 34258417 PMCID: PMC8245803 DOI: 10.1016/j.aninu.2020.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
This study was conducted to investigate host–microbiota interactions and explore the effects of maternal gut microbiota transplantation on the growth and intestinal functions of newborns in a germ-free (GF) pig model. Twelve hysterectomy-derived GF Bama piglets were reared in 6 sterile isolators. Among them, 6 were considered as the GF group, and the other 6 were orally inoculated with healthy sow fecal suspension as fecal microbiota transplanted (FMT) group. Another 6 piglets from natural birth were regarded as the conventional (CV) group. The GF and FMT groups were hand-fed with Co60-γ-irradiated sterile milk powder, while the CV group was reared by lactating Bama sows. All groups were fed for 21 days. Then, all piglets and then were switched to sterile feed for another 21 days. Results showed that the growth performance, nutrient digestibility, and concentrations of short-chain fatty acids in the GF group decreased (P < 0.05). Meanwhile, the serum urea nitrogen concentration and digesta pH values in the GF group increased compared with those in the FMT and CV groups (P < 0.05). Compared with the CV group, the GF group demonstrated upregulation in the mRNA expression levels of intestinal barrier function-related genes in the small intestine (P < 0.05). In addition, the mRNA abundances of intestinal development and absorption-related genes in the small intestine and colon were higher in the GF group than in the CV and FMT groups (P < 0.05). The FMT group exhibited greater growth performance, lipase activity, and nutrient digestibility (P < 0.05), higher mRNA expression levels of intestinal development and barrier-related genes in the small intestine (P < 0.05), and lower mRNA abundances of pro-inflammatory factor in the colon and jejunum (P < 0.05) than the CV group. In conclusion, the absence of gut microbes impaired the growth and nutrient digestibility, and healthy sow gut microbiota transplantation increased the growth and nutrient digestibility and improved the intestinal development and barrier function of newborn piglets, indicating the importance of intestinal microbes for intestinal development and functions.
Collapse
Affiliation(s)
- Hua Zhou
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jing Sun
- Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing 402460, China.,Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Zuohua Liu
- Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing 402460, China.,Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liangpeng Ge
- Key Laboratory of Pig Industry Sciences, Rongchang, Chongqing 402460, China.,Chongqing Academy of Animal Sciences, Rongchang, Chongqing 402460, China
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition, Chengdu, Sichuan 611130, China.,Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| |
Collapse
|
134
|
Ferreira RDS, Mendonça LABM, dos Santos C, Hiane PA, Matias R, Franco OL, de Oliveira AKM, do Nascimento VA, Pott A, Carvalho CME, Guimarães RDCA. Do Bioactive Food Compound with Avena sativa L., Linum usitatissimum L. and Glycine max L. Supplementation with Moringa oleifera Lam. Have a Role against Nutritional Disorders? An Overview of the In Vitro and In Vivo Evidence. Nutrients 2021; 13:2294. [PMID: 34371804 PMCID: PMC8308451 DOI: 10.3390/nu13072294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
Functional clinical nutrition is an integrative science; it uses dietary strategies, functional foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition to being included in the prevention and treatment of diseases. Some functional food effects from Avena sativa L. (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and soy for dyslipidemia and obesity. In this review, we discuss the effects of BFC in other nutritional disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption of M. oleifera preparations can allow associations with other formulations, such as BFC. These nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads, cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not. These formulations can be low-cost and easy-to-use. The association of bioactive food substances in dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions presented in this study. This can be extended to the general population. However, an investigation through clinical studies is needed to prove applicability in humans.
Collapse
Affiliation(s)
- Rosângela dos Santos Ferreira
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Lígia Aurélio Bezerra Maranhão Mendonça
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Cristiane dos Santos
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Rosemary Matias
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Octávio Luiz Franco
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
- Graduate Program in Genomic Sciences and Biotechnology, Center of Proteomic and Biochemical Analysis, Catholic University of Brazilia, Brasília 70790-160, DF, Brazil
| | - Ademir Kleber Morbeck de Oliveira
- Graduate Program in Environment and Regional Development, University Anhanguera Uniderp, Campo Grande 79035-470, MS, Brazil; (R.M.); (A.K.M.d.O.)
| | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- Graduate Program in Biotechnology, S-Inova Biotech, Catholic University Dom Bosco-UCDB, Campo Grande 79117-010, MS, Brazil; (R.d.S.F.); (L.A.B.M.M.); (C.d.S.); (O.L.F.); (C.M.E.C.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, MS, Brazil; (P.A.H.); (V.A.d.N.)
| |
Collapse
|
135
|
Liu Y, Li W, Yang H, Zhang X, Wang W, Jia S, Xiang B, Wang Y, Miao L, Zhang H, Wang L, Wang Y, Song J, Sun Y, Chai L, Tian X. Leveraging 16S rRNA Microbiome Sequencing Data to Identify Bacterial Signatures for Irritable Bowel Syndrome. Front Cell Infect Microbiol 2021; 11:645951. [PMID: 34178718 PMCID: PMC8231010 DOI: 10.3389/fcimb.2021.645951] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain or discomfort. Previous studies have illustrated that the gut microbiota might play a critical role in IBS, but the conclusions of these studies, based on various methods, were almost impossible to compare, and reproducible microorganism signatures were still in question. To cope with this problem, previously published 16S rRNA gene sequencing data from 439 fecal samples, including 253 IBS samples and 186 control samples, were collected and processed with a uniform bioinformatic pipeline. Although we found no significant differences in community structures between IBS and healthy controls at the amplicon sequence variants (ASV) level, machine learning (ML) approaches enabled us to discriminate IBS from healthy controls at genus level. Linear discriminant analysis effect size (LEfSe) analysis was subsequently used to seek out 97 biomarkers across all studies. Then, we quantified the standardized mean difference (SMDs) for all significant genera identified by LEfSe and ML approaches. Pooled results showed that the SMDs of nine genera had statistical significance, in which the abundance of Lachnoclostridium, Dorea, Erysipelatoclostridium, Prevotella 9, and Clostridium sensu stricto 1 in IBS were higher, while the dominant abundance genera of healthy controls were Ruminococcaceae UCG-005, Holdemanella, Coprococcus 2, and Eubacterium coprostanoligenes group. In summary, based on six published studies, this study identified nine new microbiome biomarkers of IBS, which might be a basis for understanding the key gut microbes associated with IBS, and could be used as potential targets for microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yuxia Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenhui Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxia Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenxiu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sitong Jia
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beibei Xiang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of Traditional Chinese Medical Formulae Co-Constructed by the Province-Ministry, Tianjin University of TCM, Tianjin, China
| | - Lin Wang
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Yujing Wang
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Jixiang Song
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Yingjie Sun
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd. Le Ren Tang Pharmaceutical Factory, Tianjin, China
| | - Lijuan Chai
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Laboratory of Pharmacology of Traditional Chinese Medical Formulae Co-Constructed by the Province-Ministry, Tianjin University of TCM, Tianjin, China
| | - Xiaoxuan Tian
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
136
|
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr 2021; 8:685317. [PMID: 34150830 PMCID: PMC8211732 DOI: 10.3389/fnut.2021.685317] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.
Collapse
Affiliation(s)
| | - Karine Cavalcanti Maurício Sena-Evangelista
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eduardo Pereira de Azevedo
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Francisco Irochima Pinheiro
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Ricardo Ney Cobucci
- Graduate Program of Biotechnology, Laureate International Universities - Universidade Potiguar, Natal, Brazil.,Medical School, Laureate International Universities - Universidade Potiguar, Natal, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
137
|
Fang Z, Li L, Lu W, Zhao J, Zhang H, Lee YK, Chen W. Bifidobacterium affected the correlation between gut microbial composition, SCFA metabolism, and immunity in mice with DNFB-induced atopic dermatitis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
138
|
Jansen J, Shulman R, Ward TM, Levy R, Self MM. Sleep disturbances in children with functional gastrointestinal disorders: demographic and clinical characteristics. J Clin Sleep Med 2021; 17:1193-1200. [PMID: 33590819 PMCID: PMC8314671 DOI: 10.5664/jcsm.9166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVES Research indicates a deleterious effect of sleep disturbances on pain and illness-related functioning across pediatric populations. Sleep problems in youth with functional gastrointestinal disorders (FGIDs) are understudied, despite studies in adult FGIDs indicating sleep disruptions increase pain and symptom severity. This study sought to better characterize sleep problems in school-age children with FGIDs and to assess relationships with demographic characteristics and gastrointestinal symptoms. METHODS Sixty-seven children with FGIDs (pediatric Rome IV criteria) and 59 parents completed questionnaires assessing sleep problems, and children completed a 2-week pain/stooling diary. Sleep problems in this sample were compared with published normative samples, and children above and below the clinical cutoff were compared on demographics and FGID symptoms. RESULTS Of the sample, 61% were above the clinical cutoff for sleep disturbances, with significantly greater bedtime resistance, sleep onset delay, sleep duration, and daytime sleepiness than the comparison group. Children above the clinical cutoff reported greater mean abdominal pain severity and pain interference. Relative to White participants, Black/African-American participants were more likely to be above the clinical cutoff and indicated more frequent night wakening and symptoms of sleep-disordered breathing, but lower maximum and overall mean abdominal pain severity. CONCLUSIONS Sleep problems in children with FGIDs are common and related to greater day-to-day abdominal pain severity and pain interference. Results suggest sleep-pain relationships may differ across racial/ethnic groups. Assessing sleep in children with FGIDs is important, and further research is needed to assess underlying mechanisms and evaluate sleep as a potential treatment target in this population.
Collapse
Affiliation(s)
- Jennifer Jansen
- Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Robert Shulman
- Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | | | - Rona Levy
- University of Washington, Seattle, Washington
| | - Mariella M. Self
- Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
139
|
Stein K, Warne N, Heron J, Zucker N, Bould H. Do children with recurrent abdominal pain grow up to become adolescents who control their weight by fasting? Results from a UK population-based cohort. Int J Eat Disord 2021; 54:915-924. [PMID: 33939186 PMCID: PMC8344098 DOI: 10.1002/eat.23513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gastrointestinal (GI) problems are common in eating disorders, but it is unclear whether these problems predate the onset of disordered eating. Recurrent abdominal pain (RAP) is the most prevalent GI problem of childhood, and this study aimed to explore longitudinal associations between persistent RAP (at ages 7 and 9) and fasting for weight control at 16. METHOD The Avon Longitudinal Study of Parents and Children (ALSPAC) is a UK population cohort of children. Childhood RAP was reported by mothers and defined as RAP 5+ (5 pain episodes in the past year) in our primary analysis, and RAP 3+ (3 pain episodes) in our sensitivity analysis. Fasting for weight control was reported by adolescents at 16. We used logistic regression models to examine associations, with adjustments for potential confounders. RESULTS After adjustments, we found no association between childhood RAP 5+ and adolescent fasting for weight control at 16 (OR 1.30 (95% Confidence Intervals [CI] 0.87, 1.94) p = .197). However, we did find an association between RAP 3+ and later fasting, in the fully adjusted model (OR 1.50 [95% CI 1.16, 1.94] p = .002), and after excluding those with pre-existing anxiety (OR 1.52 [95% CI 1.17, 1.97] p = .002). DISCUSSION Our findings suggest a possible independent contribution of RAP to later risk of fasting for weight control, and RAP should be enquired about in the assessment of eating disorders. However, frequency of childhood abdominal pain (as captured by ALSPAC) may be less important to long-term outcomes than functional impairment.
Collapse
Affiliation(s)
- K. Stein
- Academic Clinical Fellow in Child and Adolescent Psychiatry, University of Oxford; Warneford Hospital, Oxford OX3 7JX
| | - N. Warne
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN
| | - J. Heron
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN
| | - N. Zucker
- Associate Professor of Clinical Psychology, Department of Psychology and Neuroscience, Duke University, Durham, North Carolina
| | - H. Bould
- Centre for Academic Mental Health, Population Health Sciences, Bristol Medical School University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN & Gloucestershire Health and Care NHS Foundation Trust, Gloucester, UK
| |
Collapse
|
140
|
Thapa S, Venkatachalam A, Khan N, Naqvi M, Balderas M, Runge JK, Haag A, Hoch KM, Glaze DG, Luna RA, Motil KJ. Assessment of the gut bacterial microbiome and metabolome of girls and women with Rett Syndrome. PLoS One 2021; 16:e0251231. [PMID: 33956889 PMCID: PMC8101921 DOI: 10.1371/journal.pone.0251231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/22/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gastrointestinal problems affect the health and quality of life of individuals with Rett syndrome (RTT) and pose a medical hardship for their caregivers. We hypothesized that the variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome and metabolome in RTT, predisposing these individuals to gastrointestinal dysfunction. OBJECTIVES We characterized the gut bacterial microbiome and metabolome in girls and young women with RTT (n = 44) and unaffected controls (n = 21), and examined the relation between the composition of the microbiome and variations in the RTT phenotype. METHODS Demographics and clinical information, including growth and anthropometric measurements, pubertal status, symptoms, clinical severity score, bowel movement, medication use, and dietary intakes were collected from the participants. Fecal samples were collected for analysis of the gut microbiome using Illumina MiSeq-based next-generation sequencing of the 16S rRNA gene followed by bioinformatics analysis of microbial composition, diversity, and community structure. Selected end-products of microbial protein metabolism were characterized by liquid chromatography-mass spectrometry. RESULTS The gut bacterial microbiome differed within the RTT cohort based on pubertal status (p<0.02) and clinical severity scores (p<0.02) of the individuals and the type of diet (p<0.01) consumed. Although the composition of the gut microbiome did not differ between RTT and unaffected individuals, concentrations of protein end-products of the gut bacterial metabolome, including γ-aminobutyric acid (GABA) (p<0.001), tyrosine (p<0.02), and glutamate (p<0.06), were lower in the RTT cohort. Differences in the microbiome within RTT groups, based on symptomatic anxiety, hyperventilation, abdominal distention, or changes in stool frequency and consistency, were not detected. CONCLUSIONS Although variability in the RTT phenotype contributes to the dysbiosis of the gut microbiome, we presently cannot infer causality between gut bacterial dysbiosis and gastrointestinal dysfunction. Nevertheless, alterations in the gut metabolome may provide clues to the pathophysiology of gastrointestinal problems in RTT.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alamelu Venkatachalam
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nabeel Khan
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mohammed Naqvi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Miriam Balderas
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jessica K. Runge
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony Haag
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Kathleen M. Hoch
- Department of Pathology, Metabolomics and Proteomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
| | - Daniel G. Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ruth Ann Luna
- Department of Pathology, Medical Metagenomics Laboratory, Texas Children’s Microbiome Center, Texas Children’s Hospital, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathleen J. Motil
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
141
|
Wang R, Li S, Jia H, Si X, Lei Y, Lyu J, Dai Z, Wu Z. Protective Effects of Cinnamaldehyde on the Inflammatory Response, Oxidative Stress, and Apoptosis in Liver of Salmonella typhimurium-Challenged Mice. Molecules 2021; 26:molecules26082309. [PMID: 33923441 PMCID: PMC8073330 DOI: 10.3390/molecules26082309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022] Open
Abstract
Salmonella typhimurium infection is associated with gastrointestinal disorder and cellular injury in the liver of both humans and animals. Cinnamaldehyde, the main component of essential oil from cinnamon, has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects. However, it remains unknown whether cinnamaldehyde can alleviate Salmonella typhimurium infection-induced liver injury in mice. In the present study, we found that cinnamaldehyde attenuated Salmonella typhimurium-induced body weight loss, the increase of organ (liver and spleen) indexes, hepatocyte apoptosis, and the mortality rate in mice. Further study showed that cinnamaldehyde significantly alleviated Salmonella typhimurium-induced liver injury as shown by activities of alanine transaminase, aspartate transaminase, and myeloperoxidase, as well as malondialdehyde. The increased mRNA level of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α, and IFN-γ) and chemokines (CCL2 and CCL3) induced by Salmonella typhimurium were significantly abolished by cinnamaldehyde supplementation. These alterations were associated with a regulatory effect of cinnamaldehyde on TLR2, TLR4, and MyD88. 16S rDNA sequence analysis showed that Salmonella typhimurium infection led to upregulation of the abundances of genera Akkermansia, Bacteroides, Alistipes, Muribaculum, and Prevotellaceae UCG-001, and downregulation of the abundances of genera Lactobacillus, Enterorhabdus, and Eggerthellaceae (unclassified). These alterations were reversed by cinnamaldehyde supplementation. In conclusion, cinnamaldehyde attenuated the inflammatory response, oxidative stress, and apoptosis in the liver of Salmonella typhimurium-infected mice. Supplementation of cinnamaldehyde might be a preventive strategy to alleviate liver injury caused by Salmonella typhimurium infection in humans and animals.
Collapse
Affiliation(s)
- Renjie Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Yan Lei
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Jirong Lyu
- DadHank Biotechnology Corporation, Chengdu 611130, China; (Y.L.); (J.L.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (R.W.); (S.L.); (H.J.); (X.S.); (Z.D.)
- Correspondence: ; Tel.: +86-10-6273-1003
| |
Collapse
|
142
|
Zhao Y, Federico A, Faits T, Manimaran S, Segrè D, Monti S, Johnson WE. animalcules: interactive microbiome analytics and visualization in R. MICROBIOME 2021; 9:76. [PMID: 33775256 PMCID: PMC8006385 DOI: 10.1186/s40168-021-01013-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/02/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Microbial communities that live in and on the human body play a vital role in health and disease. Recent advances in sequencing technologies have enabled the study of microbial communities at unprecedented resolution. However, these advances in data generation have presented novel challenges to researchers attempting to analyze and visualize these data. RESULTS To address some of these challenges, we have developed animalcules, an easy-to-use interactive microbiome analysis toolkit for 16S rRNA sequencing data, shotgun DNA metagenomics data, and RNA-based metatranscriptomics profiling data. This toolkit combines novel and existing analytics, visualization methods, and machine learning models. For example, the toolkit features traditional microbiome analyses such as alpha/beta diversity and differential abundance analysis, combined with new methods for biomarker identification are. In addition, animalcules provides interactive and dynamic figures that enable users to understand their data and discover new insights. animalcules can be used as a standalone command-line R package or users can explore their data with the accompanying interactive R Shiny interface. CONCLUSIONS We present animalcules, an R package for interactive microbiome analysis through either an interactive interface facilitated by R Shiny or various command-line functions. It is the first microbiome analysis toolkit that supports the analysis of all 16S rRNA, DNA-based shotgun metagenomics, and RNA-sequencing based metatranscriptomics datasets. animalcules can be freely downloaded from GitHub at https://github.com/compbiomed/animalcules or installed through Bioconductor at https://www.bioconductor.org/packages/release/bioc/html/animalcules.html . Video abstract.
Collapse
Affiliation(s)
- Yue Zhao
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
| | - Anthony Federico
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
| | - Tyler Faits
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
| | - Solaiappan Manimaran
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| | - Daniel Segrè
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
- Departments of Biology, Biomedical Engineering, and Physics, Boston University, Boston, MA USA
| | - Stefano Monti
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
| | - W. Evan Johnson
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
- Bioinformatics Program, College of Engineering, Boston University, Boston, MA USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA USA
| |
Collapse
|
143
|
|
144
|
Chen Y, Sun H, Sun M, Shi C, Sun H, Shi X, Ji B, Cui J. Finding Colon Cancer- and Colorectal Cancer-Related Microbes Based on Microbe-Disease Association Prediction. Front Microbiol 2021; 12:650056. [PMID: 33796094 PMCID: PMC8007907 DOI: 10.3389/fmicb.2021.650056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes are closely associated with the formation and development of diseases. The identification of the potential associations between microbes and diseases can boost the understanding of various complex diseases. Wet experiments applied to microbe-disease association (MDA) identification are costly and time-consuming. In this manuscript, we developed a novel computational model, NLLMDA, to find unobserved MDAs, especially for colon cancer and colorectal carcinoma. NLLMDA integrated negative MDA selection, linear neighborhood similarity, label propagation, information integration, and known biological data. The Gaussian association profile (GAP) similarity of microbes and GAPs similarity and symptom similarity of diseases were firstly computed. Secondly, linear neighborhood method was then applied to the above computed similarity matrices to obtain more stable performance. Thirdly, negative MDA samples were selected, and the label propagation algorithm was used to score for microbe-disease pairs. The final association probabilities can be computed based on the information integration method. NLLMDA was compared with the other five classical MDA methods and obtained the highest area under the curve (AUC) value of 0.9031 and 0.9335 on cross-validations of diseases and microbe-disease pairs. The results suggest that NLLMDA was an effective prediction method. More importantly, we found that Acidobacteriaceae may have a close link with colon cancer and Tannerella may densely associate with colorectal carcinoma.
Collapse
Affiliation(s)
- Yu Chen
- The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Hongjian Sun
- Oncological Surgery, The Central Hospital of Jia Mu Si, Jiamusi, China
| | - Mengzhe Sun
- Oncological Surgery, The Central Hospital of Jia Mu Si, Jiamusi, China
| | - Changguo Shi
- Department of Thoracic Surgery, The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Hongmei Sun
- Medical Oncology, The Cancer Hospital of Jia Mu Si, Jiamusi, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Jinpeng Cui
- Department of Laboratory Medicine, Yantaishan Hospital of Yantai City, Yantai, China
| |
Collapse
|
145
|
Lee SM, Kim N, Yoon H, Kim YS, Choi SI, Park JH, Lee DH. Compositional and Functional Changes in the Gut Microbiota in Irritable Bowel Syndrome Patients. Gut Liver 2021; 15:253-261. [PMID: 32457278 PMCID: PMC7960967 DOI: 10.5009/gnl19379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/29/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background/Aims This study aimed to characterize the changes in the gut microbiota of irritable bowel syndrome (IBS) patients and to investigate the consequent alterations in bacterial functions. Methods We performed 16S rRNA metagenomic sequencing and a phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) analyses using fecal samples from control (n=12) and diarrhea-dominant IBS patients (n=7). Results The samples were clustered by the principal coordinates analysis depending on the presence of IBS (p=0.003). In the IBS patients, the abundances of Acidaminococcaceae, Sutterellaceae, and Desulfovibrionaceae were significantly increased, while those of Enterococcaceae, Leuconostocaceae, Clostridiaceae, Peptostreptococcaceae, and Lachnospiraceae were significantly decreased. The PICRUSt results indicated that two orthologues involved in secondary bile acid biosynthesis were significantly decreased in IBS patients. Modules involved in multidrug resistance, lipopolysaccharide biosynthesis, the reductive citrate cycle, and the citrate cycle were significantly increased in the IBS patients. In contrast, modules involved in cationic antimicrobial peptide resistance, and some transport systems were more abundant in controls than in IBS patients. Conclusions Changes in the gut microbiota composition in IBS patients lead to alterations in bacterial functions, such as bile acid transformation and the induction of inflammation, which is a known pathophysiological mechanism of IBS.
Collapse
Affiliation(s)
- Sun Min Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Sung Kim
- Digestive Disease Research Institute, Wonkwang University, Iksan, Korea.,DCNbio, Seongnam, Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hyun Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
146
|
Rahman MA, Rangwala H. IDMIL: an alignment-free Interpretable Deep Multiple Instance Learning (MIL) for predicting disease from whole-metagenomic data. Bioinformatics 2021; 36:i39-i47. [PMID: 32657370 PMCID: PMC7355246 DOI: 10.1093/bioinformatics/btaa477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Motivation The human body hosts more microbial organisms than human cells. Analysis of this microbial diversity provides key insight into the role played by these microorganisms on human health. Metagenomics is the collective DNA sequencing of coexisting microbial organisms in an environmental sample or a host. This has several applications in precision medicine, agriculture, environmental science and forensics. State-of-the-art predictive models for phenotype predictions from metagenomic data rely on alignments, assembly, extensive pruning, taxonomic profiling and reference sequence databases. These processes are time consuming and they do not consider novel microbial sequences when aligned with the reference genome, limiting the potential of whole metagenomics. We formulate the problem of predicting human disease from whole-metagenomic data using Multiple Instance Learning (MIL), a popular supervised learning paradigm. Our proposed alignment-free approach provides higher accuracy in prediction by harnessing the capability of deep convolutional neural network (CNN) within a MIL framework and provides interpretability via neural attention mechanism. Results The MIL formulation combined with the hierarchical feature extraction capability of deep-CNN provides significantly better predictive performance compared to popular existing approaches. The attention mechanism allows for the identification of groups of sequences that are likely to be correlated to diseases providing the much-needed interpretation. Our proposed approach does not rely on alignment, assembly and reference sequence databases; making it fast and scalable for large-scale metagenomic data. We evaluate our method on well-known large-scale metagenomic studies and show that our proposed approach outperforms comparative state-of-the-art methods for disease prediction. Availability and implementation https://github.com/mrahma23/IDMIL.
Collapse
Affiliation(s)
| | - Huzefa Rangwala
- Department of Computer Science, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
147
|
Atyeo C, Alter G. The multifaceted roles of breast milk antibodies. Cell 2021; 184:1486-1499. [PMID: 33740451 DOI: 10.1016/j.cell.2021.02.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Neonates are born with an immature immune system and rely on the transfer of immunity from their mothers. Maternal antibodies are transferred via the placenta and breast milk. Although the role of placentally transferred immunoglobulin G (IgG) is established, less is known about the selection of antibodies transferred via breast milk and the mechanisms by which they provide protection against neonatal disease. Evidence suggests that breast milk antibodies play multifaceted roles, preventing infection and supporting the selection of commensals and tolerizing immunity during infancy. Here, we discuss emerging data related to the importance of breast milk antibodies in neonatal immunity and development.
Collapse
Affiliation(s)
- Caroline Atyeo
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
148
|
Nilsen M, Lokmic A, Angell IL, Lødrup Carlsen KC, Carlsen KH, Haugen G, Hedlin G, Jonassen CM, Marsland BJ, Nordlund B, Rehbinder EM, Saunders CM, Skjerven HO, Snipen L, Staff AC, Söderhäll C, Vettukattil R, Rudi K. Fecal Microbiota Nutrient Utilization Potential Suggests Mucins as Drivers for Initial Gut Colonization of Mother-Child-Shared Bacteria. Appl Environ Microbiol 2021; 87:e02201-20. [PMID: 33452029 PMCID: PMC8105027 DOI: 10.1128/aem.02201-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
The nutritional drivers for mother-child sharing of bacteria and the corresponding longitudinal trajectory of the infant gut microbiota development are not yet completely settled. We therefore aimed to characterize the mother-child sharing and the inferred nutritional utilization potential for the gut microbiota from a large unselected cohort. We analyzed in depth gut microbiota in 100 mother-child pairs enrolled antenatally from the general population-based Preventing Atopic Dermatitis and Allergies in Children (PreventADALL) cohort. Fecal samples collected at gestational week 18 for mothers and at birth (meconium), 3, 6, and 12 months for infants were analyzed by reduced metagenome sequencing to determine metagenome size and taxonomic composition. The nutrient utilization potential was determined based on the Virtual Metabolic Human (VMH, www.vmh.life) database. The estimated median metagenome size was ∼150 million base pairs (bp) for mothers and ∼20 million bp at birth for the children. Longitudinal analyses revealed mother-child sharing (P < 0.05, chi-square test) from birth up to 6 months for 3 prevalent Bacteroides species (prevalence, >25% for all age groups). In a multivariate analysis of variance (ANOVA), the mother-child-shared Bacteroides were associated with vaginal delivery (1.7% explained variance, P = 0.0001). Both vaginal delivery and mother-child sharing were associated with host-derived mucins as nutrient sources. The age-related increase in metagenome size corresponded to an increased diversity in nutrient utilization, with dietary polysaccharides as the main age-related factor. Our results support host-derived mucins as potential selection means for mother-child sharing of initial colonizers, while the age-related increase in diversity was associated with dietary polysaccharides.IMPORTANCE The initial bacterial colonization of human infants is crucial for lifelong health. Understanding the factors driving this colonization will therefore be of great importance. Here, we used a novel high-taxonomic-resolution approach to deduce the nutrient utilization potential of the infant gut microbiota in a large longitudinal mother-child cohort. We found mucins as potential selection means for the initial colonization of mother-child-shared bacteria, while the transition to a more adult-like microbiota was associated with dietary polysaccharide utilization potential. This knowledge will be important for a future understanding of the importance of diet in shaping the gut microbiota composition and development during infancy.
Collapse
Affiliation(s)
- Morten Nilsen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Asima Lokmic
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Inga Leena Angell
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karin C Lødrup Carlsen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Guttorm Haugen
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Gunilla Hedlin
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Christine Monceyron Jonassen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Genetic Unit, Centre for Laboratory Medicine, Østfold Hospital Trust, Kalnes, Norway
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Björn Nordlund
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Eva Maria Rehbinder
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Carina Madelen Saunders
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Håvard O Skjerven
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Anne Cathrine Staff
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
- Division of Obstetrics and Gynaecology, Oslo University Hospital, Oslo, Norway
| | - Cilla Söderhäll
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Riyas Vettukattil
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
149
|
Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K, Klammsteiner T, Kolev M, Lahti L, Lopes MB, Moreno V, Naskinova I, Org E, Paciência I, Papoutsoglou G, Shigdel R, Stres B, Vilne B, Yousef M, Zdravevski E, Tsamardinos I, Carrillo de Santa Pau E, Claesson MJ, Moreno-Indias I, Truu J. Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front Microbiol 2021; 12:634511. [PMID: 33737920 PMCID: PMC7962872 DOI: 10.3389/fmicb.2021.634511] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
Collapse
Affiliation(s)
- Laura Judith Marcos-Zambrano
- Computational Biology Group, Precision Nutrition and Cancer Research Program, IMDEA Food Institute, Madrid, Spain
| | | | | | - Piotr Przymus
- Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland
| | - Vladimir Trajkovik
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Oliver Aasmets
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Magali Berland
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Aleksandra Gruca
- Department of Computer Networks and Systems, Silesian University of Technology, Gliwice, Poland
| | - Jasminka Hasic
- University Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Karel Hron
- Department of Mathematical Analysis and Applications of Mathematics, Palacký University, Olomouc, Czechia
| | | | - Mikhail Kolev
- South West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Marta B. Lopes
- NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), FCT, UNL, Caparica, Portugal
- Centro de Matemática e Aplicações (CMA), FCT, UNL, Caparica, Portugal
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO)Barcelona, Spain
- Colorectal Cancer Group, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Irina Naskinova
- South West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Elin Org
- Institute of Genomics, Estonian Genome Centre, University of Tartu, Tartu, Estonia
| | - Inês Paciência
- EPIUnit – Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal
| | | | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Blaz Stres
- Group for Microbiology and Microbial Biotechnology, Department of Animal Science, University of Ljubljana, Ljubljana, Slovenia
| | - Baiba Vilne
- Bioinformatics Research Unit, Riga Stradins University, Riga, Latvia
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| | - Eftim Zdravevski
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | | | | | - Marcus J. Claesson
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Isabel Moreno-Indias
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jaak Truu
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
150
|
Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Transl Psychiatry 2021; 11:131. [PMID: 33602895 PMCID: PMC7892574 DOI: 10.1038/s41398-021-01254-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Antidepressant medications are known to modulate the central nervous system, and gut microbiota can play a role in depression via microbiota-gut-brain axis. But the impact of antidepressants on gut microbiota function and composition remains poorly understood. Thus this study assessed the effect of serotonin reuptake inhibitor antidepressant fluoxetine (Flu) and tricyclic antidepressant amitriptyline (Ami) administration on gut microbiota composition, diversity, and species abundance, along with microbial function in a chronic unpredictable mild stress (CUMS)-induced depression rat model. Oral administration of Ami and Flu significantly altered the overall gut microbiota profile of CUMS-induced rats, as assessed using the permutational multivariate analysis of variance test. At the phylum level, 6-week of antidepressant treatment led to a decreased Firmicutes/Bacteroidetes ratio due to an enhanced Bacteroidetes and reduced Firmicutes relative abundance. Flu was more potent than Ami at altering the Firmicutes and Bacteroidetes levels in the CUMS rats. At the family level, both antidepressants significantly increased the abundance of Porphyromonadaceae. However, an increased Bacteroidaceae level was significantly associated with Ami, not Flu treatment. Furthermore, at the genus level, an increase in the relative abundance of Parabacteroides, Butyricimonas, and Alistipes was observed following Ami and Flu treatment. Subsequent metagenomics and bioinformatics analysis further indicated that Ami and Flu likely also modulated metabolic pathways, such as those involved in carbohydrate metabolism, membrane transport, and signal transduction. Additionally, both antidepressants affected antibiotic resistome, such as for aminoglycoside (aph3iiiA), multidrug (mdtK, mdtP, mdtH, mdtG, acrA), and tetracycline (tetM) resistance in CUMS rats. These data clearly illustrated the direct impact of oral administration of Flu and Ami on the gut microbiome, thus set up the foundation to reveal more insights on the therapeutic function of the antidepressants and their overall contribution to host health.
Collapse
|