101
|
Gong L, Zhang Y, Yang Y, Yan Q, Ren J, Luo J, Tiu YC, Fang X, Liu B, Lam RHW, Lam K, Lee AW, Guan X. Inhibition of lysyl oxidase-like 2 overcomes adhesion-dependent drug resistance in the collagen-enriched liver cancer microenvironment. Hepatol Commun 2022; 6:3194-3211. [PMID: 35894804 PMCID: PMC9592791 DOI: 10.1002/hep4.1966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 02/27/2022] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) is considered to be one of the vital mediators of tumor progression. Extracellular matrix (ECM), infiltrating immune cells, and stromal cells collectively constitute the complex ecosystem with varied biochemical and biophysical properties. The development of liver cancer is strongly tied with fibrosis and cirrhosis that alters the microenvironmental landscape, especially ECM composition. Enhanced deposition and cross-linking of type I collagen are frequently detected in patients with liver cancer and have been shown to facilitate tumor growth and metastasis by epithelial-to-mesenchymal transition. However, information on the effect of collagen enrichment on drug resistance is lacking. Thus, the present study has comprehensively illustrated phenotypical and mechanistic changes in an in vitro mimicry of collagen-enriched TME and revealed that collagen enrichment could induce 5-fluorouracil (5FU) and sorafenib resistance in liver cancer cells through hypoxia-induced up-regulation of lysyl oxidase-like 2 (LOXL2). LOXL2, an enzyme that facilitates collagen cross-linking, enhances cell adhesion-mediated drug resistance by activating the integrin alpha 5 (ITGA5)/focal adhesion kinase (FAK)/phosphoinositide 3-kinase (PI3K)/rho-associated kinase 1 (ROCK1) signaling axis. Conclusion: We demonstrated that inhibition of LOXL2 in a collagen-enriched microenvironment synergistically promotes the efficacy of sorafenib and 5FU through deterioration of focal adhesion signaling. These findings have clinical implications for developing LOXL2-targeted strategies in patients with chemoresistant liver cancer and especially for those patients with advanced fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Lanqi Gong
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu Zhang
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- Department of Pediatric OncologySun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yuma Yang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Qian Yan
- Department of Colorectal SurgeryGuangdong Institute Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Jifeng Ren
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Jie Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Yuen Chak Tiu
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Xiaona Fang
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Beilei Liu
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Raymond Hiu Wai Lam
- Department of Biomedical EngineeringCity University of Hong KongHong KongChina
| | - Ka‐On Lam
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
| | - Anne Wing‐Mui Lee
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineHong KongChina
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
- State Key Laboratory of Oncology in Southern ChinaSun Yat‐sen University Cancer CenterGuangzhouChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
102
|
Pavlović N, Heindryckx F. Targeting ER stress in the hepatic tumor microenvironment. FEBS J 2022; 289:7163-7176. [PMID: 34331743 DOI: 10.1111/febs.16145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/30/2021] [Indexed: 01/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. It currently ranks as one of the most aggressive and deadly cancers worldwide, with an increasing mortality rate and limited treatment options. An important hallmark of liver pathologies, such as liver fibrosis and HCC, is the accumulation of misfolded and unfolded proteins in the lumen of the endoplasmic reticulum (ER), which induces ER stress and leads to the activation of the unfolded protein response (UPR). Upon accumulation of misfolded proteins, ER stress is sensed through three transmembrane proteins, IRE1α, PERK, and ATF6, which trigger the UPR to either alleviate ER stress or induce apoptosis. Increased expression of ER stress markers has been widely shown to correlate with fibrosis, inflammation, drug resistance, and overall HCC aggressiveness, as well as poor patient prognosis. While preclinical in vivo cancer models and in vitro approaches have shown promising results by pharmacologically targeting ER stress mediators, the major challenge of this therapeutic strategy lies in specifically and effectively targeting ER stress in HCC. Furthermore, both ER stress inducers and inhibitors have been shown to ameliorate HCC progression, adding to the complexity of targeting ER stress players as an anticancer strategy. More studies are needed to better understand the dual role and molecular background of ER stress in HCC, as well as its therapeutic potential for patients with liver cancer.
Collapse
Affiliation(s)
- Nataša Pavlović
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
103
|
Li M, Zhao YY, Cui JF. Matrix stiffness in regulation of tumor angiogenesis. Shijie Huaren Xiaohua Zazhi 2022; 30:871-878. [DOI: 10.11569/wcjd.v30.i20.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis is one of the most common malignant features of solid tumors such as liver cancer, pancreatic cancer, and gastrointestinal tumors, which is the basis of tumor growth, invasion, and metastasis. It is also an important target of anti-tumor therapy. Tumor angiogenesis is usually triggered by biochemical, hypoxic, and biomechanical factors in the microenvironment. The regulation of biochemical signals and hypoxic microenvironment in tumor angiogenesis have been widely documented, but the role of biomechanical signals in tumor angiogenesis has gradually begun to be uncovered in recent years. The vasculature system is naturally sensitive to mechanical stimuli. Recent studies have highlighted the important regulatory effects of biomechanical stimuli, such as matrix stiffness, fluid shear stress, and vascular lumen pressure, on the phenotype and functions of tumor blood vessels. In this paper, we summarize the new progress and internal mechanisms of matrix stiffness-mediated effects on tumor angiogenesis.
Collapse
Affiliation(s)
- Miao Li
- Department of Hepatic Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jie-Feng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
104
|
Lin ZH, Zhang J, Zhuang LK, Xin YN, Xuan SY. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Bioinformatics and the Role of NR6A1 in the Progression of HCC. J Clin Transl Hepatol 2022; 10:901-912. [PMID: 36304495 PMCID: PMC9547269 DOI: 10.14218/jcth.2022.00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Generally acceptable prognostic models for hepatocellular carcinoma (HCC) are not available. This study aimed to establish a prognostic model for HCC by identifying immune-related differentially expressed genes (IR-DEGs) and to investigate the potential role of NR6A1 in the progression of HCC. METHODS Bioinformatics analysis using The Cancer Genome Atlas and ImmPort databases was used to identify IR-DEGs. Lasso Cox regression and multivariate Cox regression analysis were used to establish a prognostic model of HCC. Kaplan-Meier analysis and the receiver operating characteristic (ROC) curves were used to evaluate the performance of the prognostic model, which was further verified in the International Cancer Genome Consortium (ICGC) database. Gene set enrichment analysis was used to explore the potential pathways of NR6A1. Cell counting kit 8, colony formation, wound healing, and Transwell migration assays using Huh7 cells, and tumor formation models in nude mice were conducted. RESULTS A prognostic model established based on ten identified IR-DEGs including HSPA4, FABP6, MAPT, NDRG1, APLN, IL17D, LHB, SPP1, GLP1R, and NR6A1, effectively predicted the prognosis of HCC patients, was confirmed by the ROC curves and verified in ICGC database. NR6A1 expression was significantly up-regulated in HCC patients, and NR6A1 was significantly associated with a low survival rate. Gene set enrichment analysis showed the enrichment of cell cycle, mTOR, WNT, and ERBB signaling pathways in patients with high NR6A1 expression. NR6A1 promoted cell proliferation, invasiveness, migration, and malignant tumor formation and growth in vitro and in vivo. CONCLUSIONS An effective prognostic model for HCC, based on a novel signature of 10 immune-related genes, was established. NR6A1 was up-regulated in HCC and was associated with a poor prognosis of HCC. NR6A1 promoted cell proliferation, migration, and growth of HCC, most likely through the cell cycle, mTOR, WNT, and ERBB signaling pathways.
Collapse
Affiliation(s)
- Zhong-Hua Lin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Jie Zhang
- Medical College, Qingdao University, Qingdao, Shandong, China
| | - Li-Kun Zhuang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Yong-Ning Xin
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| | - Shi-Ying Xuan
- College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, Shandong, China
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Correspondence to: Yong-Ning Xin, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. ORCID: https://orcid.org/0000-0002-3692-7655. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail: ; Shi-Ying Xuan, College of Medicine and Pharmaceutics, Ocean University of China, Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, Shandong, China. Tel: +86-532-82789463, Fax: +86-532-85968434, E-mail:
| |
Collapse
|
105
|
Yan LJ, Yao SY, Li HC, Meng GX, Liu KX, Ding ZN, Hong JG, Chen ZQ, Dong ZR, Li T. Efficacy and Safety of Aspirin for Prevention of Hepatocellular Carcinoma: An Updated Meta-analysis. J Clin Transl Hepatol 2022; 10:835-846. [PMID: 36304506 PMCID: PMC9547262 DOI: 10.14218/jcth.2021.00257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Previous meta-analyses have shown that aspirin use may reduce the risk of hepatocellular carcinoma (HCC). However, the optimal dose, frequency, and duration of aspirin use or the safety and efficacy of aspirin in target populations for HCC prevention remain unclear. The study aim was to investigate the efficacy and safety of aspirin for prevention of HCC. METHODS Publications were retrieved by a comprehensive literature research of several databases. Based on a random-effects model, hazard ratios (HRs) and the corresponding 95% confidence intervals (CIs) were used to assess the pooled risk. The dose-response relationship between aspirin use and HCC risk was assessed with a restricted cubic spline model. RESULTS Twenty-two studies were included in the meta-analysis. Aspirin use was associated with a reduced risk of HCC (HR=0.64, 95% CI: 0.56-0.75). The effect was robust across sex and age; however, women and the non-elderly had the greatest benefit from aspirin use. The preventive effect was well reproduced in those with comorbidities. Daily use and long-term use of aspirin appeared to offer greater benefits. Aspirin 100 mg/d was associated with maximum reduction of HCC risk. Aspirin use did slightly increase the risk of bleeding (HR=1.14, 95% CI: 1.02-1.27). CONCLUSIONS Our meta-analysis confirmed that use of aspirin significantly reduced the incident risk of HCC. Regular and long-term aspirin use offers a greater advantage. Aspirin use was associated with an increased risk of bleeding. We recommend 100 mg/d aspirin as a feasible dose for further research on primary prevention of HCC in a broad at-risk population.
Collapse
Affiliation(s)
- Lun-Jie Yan
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Sheng-Yu Yao
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Hai-Chao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Guang-Xiao Meng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Kai-Xuan Liu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zi-Niu Ding
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jian-Guo Hong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhi-Qiang Chen
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhao-Ru Dong
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Tao Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, The second Hospital of Shandong University, Jinan, Shandong, China
- Correspondence to: Tao Li, Department of General Surgery, Qilu Hospital, Shandong University 107 West Wen Hua Road, Jinan, Shandong 250012, China. ORCID: https://orcid.org/0000-0002-5108-1774. Tel/Fax: +86-531-82166341, E-mail: mailto:
| |
Collapse
|
106
|
Feng H, Zhuo Y, Zhang X, Li Y, Li Y, Duan X, Shi J, Xu C, Gao Y, Yu Z. Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. J Hepatocell Carcinoma 2022; 9:1109-1125. [PMID: 36320666 PMCID: PMC9618253 DOI: 10.2147/jhc.s381764] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a serious medical therapeutic challenge as conventional curative avenues such as surgery and chemotherapy only benefit for few patients with limited tumor burden. Immunotherapy achieves clinical progress in the treatment of this prevalent malignant disease by virtue of the development of tumor immunology; however, most patients have experienced minimal or no clinical benefit in terms of overall survival. The complexity and diversity of tumor microenvironment (TME) built by immune and stromal cell subsets has been considered to be responsible for the insufficiency of immunotherapy. The advance of bioanalytical technology boosts the exploration of the composition and differentiation of these infiltrated cells, which reflect the immune state of the TME and impact the efficacy of the antitumor immune response. Targeting these cells to remodel the TME is one of the important immunotherapeutic approaches to improve HCC treatment. In this review, we focused on the role of these non-cancerous cells in the tumor progression, and elaborated their function on cancer immunotherapy when manipulating them as potential targets.
Collapse
Affiliation(s)
- Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunhui Zhuo
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuyao Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yue Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangjuan Duan
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Shi
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chengbin Xu
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yueqiu Gao
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Yueqiu Gao, Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Zhuo Yu, Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| |
Collapse
|
107
|
Single-cell transcriptomics reveals the role of Macrophage-Naïve CD4 + T cell interaction in the immunosuppressive microenvironment of primary liver carcinoma. J Transl Med 2022; 20:466. [PMID: 36221095 PMCID: PMC9552358 DOI: 10.1186/s12967-022-03675-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Abstract
Background Liver carcinoma generally presents as an immunosuppressive microenvironment that promotes tumor evasion. The intercellular crosstalk of immune cells significantly influences the construction of an immunosuppressive microenvironment. This study aimed to investigate the important interactions between immune cells and their targeting drugs in liver carcinoma, by using single-cell and bulk transcriptomic data. Methods Single-cell and bulk transcriptomic data were retrieved from Gene Expression Omnibus (GSE159977, GSE136103, and GSE125449) and The Cancer Genome Atlas (TGCA-LIHC), respectively. Quality control, dimension reduction, clustering, and annotation were performed according to the Scanpy workflow based on Python. Cell–cell interactions were explored using the CellPhone database and CellChat. Trajectory analysis was executed using a partition-based graph abstraction method. The transcriptomic factors (TFs) were predicted using single-cell regulatory network inference and clustering (SCENIC). The target genes from TFs were used to establish a related score based on the TCGA cohort; this score was subsequently validated by survival, gene set enrichment, and immune cell infiltration analyses. Drug prediction was performed based on the Cancer Therapeutics Response Portal and PRISM Repurposing datasets. Results Thirty-one patients at four different states, including health, hepatitis, cirrhosis, and cancer, were enrolled in this study. After dimension reduction and clustering, twenty-two clusters were identified. Cell–cell interaction analyses indicated that macrophage-naive CD4 + T cell interaction significantly affect cancerous state. In brief, macrophages interact with naive CD4 + T cells via different pathways in different states. The results of SCENIC indicated that macrophages present in cancer cells were similar to those present during cirrhosis. A macrophage-naive CD4 + T cell (MNT) score was generated by the SCENIC-derived target genes. Based on the MNT score, five relevant drugs (inhibitor of polo-like kinase 1, inhibitor of kinesin family member 11, dabrafenib, ispinesib, and epothilone-b) were predicted. Conclusions This study reveals the crucial role of macrophage-naive CD4 + T cell interaction in the immunosuppressive microenvironment of liver carcinoma. Tumor-associated macrophages may be derived from cirrhosis and can initiate liver carcinoma. Predictive drugs that target the macrophage-naive CD4 + T cell interaction may help to improve the immunosuppressive microenvironment and prevent immune evasion. The relevant mechanisms need to be further validated in experiments and cohort studies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03675-2.
Collapse
|
108
|
Makino Y, Hikita H, Kato S, Sugiyama M, Shigekawa M, Sakamoto T, Sasaki Y, Murai K, Sakane S, Kodama T, Sakamori R, Kobayashi S, Eguchi H, Takemura N, Kokudo N, Yokoi H, Mukoyama M, Tatsumi T, Takehara T. STAT3 is Activated by CTGF-mediated Tumor-stroma Cross Talk to Promote HCC Progression. Cell Mol Gastroenterol Hepatol 2022; 15:99-119. [PMID: 36210625 PMCID: PMC9672888 DOI: 10.1016/j.jcmgh.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Signal transducer and activator of transcription 3 (STAT3) is known as a pro-oncogenic transcription factor. Regarding liver carcinogenesis, however, it remains controversial whether activated STAT3 is pro- or anti-tumorigenic. This study aimed to clarify the significance and mechanism of STAT3 activation in hepatocellular carcinoma (HCC). METHODS Hepatocyte-specific Kras-mutant mice (Alb-Cre KrasLSL-G12D/+; KrasG12D mice) were used as a liver cancer model. Cell lines of hepatoma and stromal cells including stellate cells, macrophages, T cells, and endothelial cells were used for culture. Surgically resected 12 HCCs were used for human analysis. RESULTS Tumors in KrasG12D mice showed up-regulation of phosphorylated STAT3 (p-STAT3), together with interleukin (IL)-6 family cytokines, STAT3 target genes, and connective tissue growth factor (CTGF). Hepatocyte-specific STAT3 knockout (Alb-Cre KrasLSL-G12D/+ STAT3fl/fl) downregulated p-STAT3 and CTGF and suppressed tumor progression. In coculture with stromal cells, proliferation, and expression of p-STAT3 and CTGF, were enhanced in hepatoma cells via gp130/STAT3 signaling. Meanwhile, hepatoma cells produced CTGF to stimulate integrin/nuclear factor kappa B signaling and up-regulate IL-6 family cytokines from stromal cells, which could in turn activate gp130/STAT3 signaling in hepatoma cells. In KrasG12D mice, hepatocyte-specific CTGF knockout (Alb-Cre KrasLSL-G12D/+ CTGFfl/fl) downregulated p-STAT3, CTGF, and IL-6 family cytokines, and suppressed tumor progression. In human HCC, single cell RNA sequence showed CTGF and IL-6 family cytokine expression in tumor cells and stromal cells, respectively. CTGF expression was positively correlated with that of IL-6 family cytokines and STAT3 target genes in The Cancer Genome Atlas. CONCLUSIONS STAT3 is activated by CTGF-mediated tumor-stroma crosstalk to promote HCC progression. STAT3-CTGF positive feedback loop could be a therapeutic target.
Collapse
Affiliation(s)
- Yuki Makino
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiya Kato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaya Sugiyama
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Minoru Shigekawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Sakamoto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoichi Sasaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuhiro Murai
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sadatsugu Sakane
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuyuki Takemura
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norihiro Kokudo
- Department of Surgery, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
109
|
He J, Zhou C, Xu X, Zhou Z, Danoy M, Shinohara M, Xiao W, Zhu D, Zhao X, Feng X, Mao Y, Sun W, Sakai Y, Yang H, Pang Y. Scalable Formation of Highly Viable and Functional Hepatocellular Carcinoma Spheroids in an Oxygen-Permeable Microwell Device for Anti-Tumor Drug Evaluation. Adv Healthc Mater 2022; 11:e2200863. [PMID: 35841538 DOI: 10.1002/adhm.202200863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/30/2022] [Indexed: 01/27/2023]
Abstract
For high-throughput anti-cancer drug screening, microwell arrays may serve as an effective tool to generate uniform and scalable tumor spheroids. However, microwell arrays are commonly anchored in non-oxygen-permeable culture plates, leading to limited oxygen supply for avascular spheroids. Herein, a polydimethylsiloxane (PDMS)-based oxygen-permeable microwell device is introduced for generating highly viable and functional hepatocellular carcinoma (HCC) spheroids. The PDMS sheets at the bottom of the microwell device provide a high flux of oxygen like in vivo neighboring hepatic sinusoids. Owing to the better oxygen supply, the generated HepG2 spheroids are larger in size and exhibit higher viability and proliferation with less cell apoptosis and necrosis. These spheroids also exhibit lower levels of anaerobic cellular respiration and express higher levels of liver-related functions. In anti-cancer drug testing, spheroids cultured in PDMS plates show a significantly stronger resistance against doxorubicin because of the stronger stem-cell and multidrug resistance phenotype. Moreover, higher expression of vascular endothelial growth factor-A produces a stronger angiogenesis capability of the spheroids. Overall, compared to the spheroids cultured in conventional non-oxygen-permeable plates, these spheroids can be used as a more favorable model for early-stage HCCs and be applied in high-throughput anti-cancer drug screening.
Collapse
Affiliation(s)
- Jianyu He
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Chang Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Xiaolei Xu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China.,Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Zhenzhen Zhou
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-033, Japan
| | - Marie Shinohara
- Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Wenjin Xiao
- Centre de Recherche des Cordeliers, INSERM UMR-S1138, CNRS SNC5014, University of Paris, Paris, 75006, France
| | - Dong Zhu
- Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Xiuying Zhao
- Clinical Laboratory, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Xiaobin Feng
- Department of Hepatobiliary Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Changping District, Beijing, 102218, P. R. China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Dongcheng District, Beijing, 100005, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China.,Department of Mechanical Engineering and Mechanics, College of Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo, 113-033, Japan
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Dongcheng District, Beijing, 100005, P. R. China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Haidian District, Beijing, 100084, P. R. China.,Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Tsinghua University, Beijing, 100084, P. R. China.,Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, P. R. China
| |
Collapse
|
110
|
Choi TW, Joo I, Kim HC. Association of dysmorphic intratumoral vessel with high lung shunt fraction in patients with hepatocellular carcinoma. Sci Rep 2022; 12:14248. [PMID: 35989374 PMCID: PMC9393166 DOI: 10.1038/s41598-022-18697-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractTo evaluate the role of dysmorphic intratumoral vessels as imaging marker for the prediction of high lung shunt fraction (LSF) in patients with hepatocellular carcinoma (HCC). This retrospective study included 403 patients with HCC who underwent a planning arteriography for transarterial radioembolization with administration of 99mTc-macroaggregated albumin to calculate LSF. The LSF was measured by using planar body scans. Two radiologists evaluated the pre-treatment contrast-enhanced CT findings, including tumor number, size, margin, distribution, tumor burden, portal and hepatic vein invasion, early hepatic vein enhancement, and dysmorphic intratumoral vessels. The logistic regression analysis was performed to determine significant predictors for high LSF > 20%. Using the identified predictors, diagnostic criteria for high LSF were proposed. Among 403 patients, 52 (13%) patients had high LSF > 20%, and dysmorphic tumor vessels were present in 115 (28.5%) patients. Predictors for LSF > 20% were tumor size > 11 cm, hepatic vein invasion, early hepatic vein enhancement, and dysmorphic intratumoral vessel. If the patient had three or more of the four predictors for LSF > 20% on imaging, the accuracy and specificity for diagnosing LSF > 20% were 88.8% and 96.3% respectively. Dysmorphic intratumoral vessel in HCC is an imaging marker suggesting a high LSF, which may be applicable to treatment modification or patient exclusion for radioembolization with combined interpretation of tumor size and hepatic vein abnormality.
Collapse
|
111
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
112
|
Ashour H, Farghaly ME, Khowailed AA, Aboulhoda BE, Rashed LA, Elsebaie MM, Gaber SS. Modulation of miR-192/NF-κB/ TGF-β/ E-cadherin by thymoquinone protects against diethylnitrosamine /carbon tetrachloride hepatotoxicity. Physiol Int 2022. [PMID: 36001412 DOI: 10.1556/2060.2022.00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/26/2022] [Accepted: 05/16/2022] [Indexed: 02/18/2024]
Abstract
Scientific efforts have been made for a better understanding of the pathogenesis of hepatocellular carcinoma (HCC). We investigated the possible role of miR-192/nuclear factor-κB (NF-κB)/transforming growth factor-β (TGF-β)/E-cadherin in hepatic tumorigenesis. We expected a modulatory impact of thymoquinone. Thirty adult male rats were assigned into 3 groups (n = 10); (1) Control group. Group (2): Experimental HCC induced by intraperitoneal injection of diethylnitrosamine (DENA) followed by carbon tetrachloride (CCl4). Group (3): Thymoquinone 20 mg kg-1/oral supplementation starting from the model induction to the end of the 8th week. The HCC (DENA-CCL4) model was confirmed by elevated serum levels of alpha-fetoprotein and transaminases (ALT, AST) and by histopathological examination which denoted marked cellular atypia and features of neoplasia. Suppressed hepatic miR-192 and E-cadherin expression were detected in the HCC (DENA-CCL4) group accompanied by elevated tumor necrosis factor (TNF-α), interleukin (IL6)/NF-κB & TGF-β1. Thymoquinone treatment protected the rat livers from hepatic tumorigenesis. Thymoquinone diminished (P < 0.001) alpha-fetoprotein and improved ALT, AST. It preserved hepatic miR-192 and normal E-cadherin expression. Thymoquinone-treated rats showed abrogated TNF-α, IL6/NF-κB/TGF-β. Thymoquinone increased cell apoptosis markers Bax/Bcl2 and diminished cellular atypia. Pearson's correlations revealed positive association between miR-192 expression and E-cadherin and Bax/Bcl2 as well, and it was negatively correlated to alpha-fetoprotein, NF-κB and TGF-β and the cellular atypia score. In conclusion, thymoquinone protected the liver tissues through preserving miR-192 and E-cadherin and aborting NF-κB & TGF-β signaling. The current results highlight a new role for thymoquinone in preventing hepatic tumorigenesis.
Collapse
Affiliation(s)
- Hend Ashour
- 1 Department of Medical Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- 2 Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Maha Eid Farghaly
- 3 Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | - Basma Emad Aboulhoda
- 4 Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- 5 Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Safy Salah Gaber
- 3 Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
113
|
Protein Regulator of Cytokinesis 1 (PRC1) Upregulation Promotes Immune Suppression in Liver Hepatocellular Carcinoma. J Immunol Res 2022; 2022:7073472. [PMID: 35983074 PMCID: PMC9381293 DOI: 10.1155/2022/7073472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a malignant cancer with widespread prevalence. The suppressive immune environment causes largely refractory to current treatment. The protein regulator of cytokinesis 1 (PRC1) is an essential gene for cytokinesis and is involved in cancer pathogenesis. However, the functions of PRC1 have been barely clarified, especially in LIHC. Here, we investigated the expression, prognostic value, and functions of PRC1 in LIHC. Pan-cancer analysis revealed the overexpression of PRC1 in the Cancer Genome Atlas (TCGA) database. Four LIHC datasets from the Gene Expression Omnibus (GEO) database confirmed the PRC1 overexpression in LIHC. The mRNA and protein levels of PRC1 in LIHC cells were higher than in normal liver cells. The overexpression of PRC1 predicted progressed clinical stage and poor prognosis of LIHC. We further investigated the functions of PRC1 by performing the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and Gene Set Enrichment Analysis (GSEA) of its coexpressing genes. High PRC1 expression was associated with increased genome instability of LIHC. Moreover, PRC1 was positively correlated with the infiltration of suppressive immune cells like T regulatory cells (Tregs) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and was negatively correlated with the effector immune cells' infiltration, including B cells and CD8+ T cells. In addition, PRC1 was positively correlated with the expression of tumor immune checkpoint molecules. Taken together, PRC1 overexpression contributes to the genome instability and the suppressive immune microenvironment of LIHC. Thus, PRC1 has the potential to be a prognostic marker and therapeutic target of LIHC.
Collapse
|
114
|
Khafaga AF, Mousa SA, Aleya L, Abdel-Daim MM. Three-dimensional (3D) cell culture: a valuable step in advancing treatments for human hepatocellular carcinoma. Cancer Cell Int 2022; 22:243. [PMID: 35908054 PMCID: PMC9339175 DOI: 10.1186/s12935-022-02662-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignant cancer and the third most frequent cause of tumour-related mortality worldwide. Currently, several surgical and medical therapeutic strategies are available for HCCs; however, the interaction between neoplastic cells and non-neoplastic stromal cells within the tumour microenvironment (TME) results in strong therapeutic resistance of HCCs to conventional treatment. Therefore, the development of novel treatments is urgently needed to improve the survival of patients with HCC. The first step in developing efficient chemotherapeutic drugs is the establishment of an appropriate system for studying complex tumour culture and microenvironment interactions. Three-dimensional (3D) culture model might be a crucial bridge between in vivo and in vitro due to its ability to mimic the naturally complicated in vivo TME compared to conventional two-dimensional (2D) cultures. In this review, we shed light on various established 3D culture models of HCC and their role in the investigation of tumour-TME interactions and HCC-related therapeutic resistance.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, 12144, USA
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.,Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| |
Collapse
|
115
|
Bioinformatics Analysis for Constructing a Six-Immune-Related Long Noncoding RNA Signature as a Prognostic Model of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2093437. [PMID: 35845962 PMCID: PMC9283041 DOI: 10.1155/2022/2093437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022]
Abstract
The present study was aimed at identifying the potential prognostic biomarkers of the immune-related long noncoding RNA (IRL) signature for patients with hepatocellular carcinoma (HCC). RNA-sequencing data and clinical information about HCC were obtained from The Cancer Genome Atlas. The IRLs were determined with regard to the coexpression of immune-related genes and differentially expressed lncRNAs. The survival IRLs were obtained using the univariate Cox analysis. Subsequently, the prognosis model was constructed via the multivariate Cox analysis. Subsequently, functional annotation was conducted using Gene Set Enrichment Analysis (GSEA) and principal component analysis (PCA). In total, 341 IRLs were identified, and 6 IRLs were found to have a highly significant association with the prognosis of patients with HCC. The immune prognosis model was constructed with these 6 IRLs (AC099850.4, negative regulator of antiviral response, AL031985.3, PRRT3-antisense RNA1, AL365203.2, and long intergenic nonprotein coding RNA 1224) using the multivariate Cox regression analysis. In addition, immune-related prognosis signatures were confirmed as an independent prognostic factor. The association between prognostic signatures and immune infiltration indicated that the 6 lncRNAs could reflect the immune status of the tumor. Collectively, the present study demonstrates that six-lncRNA signatures may be potential biomarkers to predict the prognosis of patients with HCC.
Collapse
|
116
|
Carr BI, Bag HG, Akkiz H, Karaoğullarından Ü, Ince V, Isik B, Yilmaz S. Identification of 2 large size HCC phenotypes, with and without associated inflammation. CLINICAL PRACTICE (LONDON, ENGLAND) 2022; 19:1953-1958. [PMID: 37621527 PMCID: PMC10449386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Background Large HCCs can often be associated with low levels of cirrhosis. However, inflammation is also regarded as a driver of HCC growth. Objectives To compare patients with large >5 cm HCCs having high versus low serum inflammation parameters. Materials and methods A Turkish patient HCC dataset with known survivals was retrospectively analyzed after dichotomization according to several clinical inflammation markers. Results Amongst several parameters examined, only AST levels were significantly associated with elevated AFP levels and increased percent PVT and tumor multifocality. The dichotomization of the cohort according to high or low AST levels resulted in 2 subcohorts with a 5-fold difference in median survival. The 2 AST-dichotomised cohorts comprised patients with similar large-size HCCs, but which were significantly different with respect to serum AFP levels, percent PVT, and percent tumor multifocality. Conclusions Two large-sized HCC phenotypes were identified. One had more aggressive HCC characteristics, higher inflammatory indices, and worse survival. The other had the opposite. Despite inflammation being important for the growth of some large tumors, others of a similar size likely have different growth mechanisms.
Collapse
Affiliation(s)
- Brian I Carr
- Liver Transplant Institute, Inonu University Faculty of Medicine, Turkey
| | | | - Hikmet Akkiz
- Department of Gastroenterology and Hepatology, Cukurova University, Turkey
| | | | - Volkan Ince
- Liver Transplant Institute, Inonu University Faculty of Medicine, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Turkey
| | - Burak Isik
- Liver Transplant Institute, Inonu University Faculty of Medicine, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Turkey
| | - Sezai Yilmaz
- Liver Transplant Institute, Inonu University Faculty of Medicine, Turkey
- Department of Surgery, Inonu University Faculty of Medicine, Turkey
| |
Collapse
|
117
|
Quintavalle C, Meyer‐Schaller N, Roessler S, Calabrese D, Marone R, Riedl T, Picco‐Rey S, Panagiotou OA, Uzun S, Piscuoglio S, Boldanova T, Bian CB, Semela D, Jochum W, Cathomas G, Mertz KD, Diebold J, Mazzucchelli L, Koelzer VH, Weber A, Decaens T, Terracciano LM, Heikenwalder M, Hoshida Y, Andersen JB, Thorgeirsson SS, Matter MS. miR-579-3p Controls Hepatocellular Carcinoma Formation by Regulating the Phosphoinositide 3-Kinase-Protein Kinase B Pathway in Chronically Inflamed Liver. Hepatol Commun 2022; 6:1467-1481. [PMID: 35132819 PMCID: PMC9134798 DOI: 10.1002/hep4.1894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic liver inflammation causes continuous liver damage with progressive liver fibrosis and cirrhosis, which may eventually lead to hepatocellular carcinoma (HCC). Whereas the 10-year incidence for HCC in patients with cirrhosis is approximately 20%, many of these patients remain tumor free for their entire lives. Clarifying the mechanisms that define the various outcomes of chronic liver inflammation is a key aspect in HCC research. In addition to a wide variety of contributing factors, microRNAs (miRNAs) have also been shown to be engaged in promoting liver cancer. Therefore, we wanted to characterize miRNAs that are involved in the development of HCC, and we designed a longitudinal study with formalin-fixed and paraffin-embedded liver biopsy samples from several pathology institutes from Switzerland. We examined the miRNA expression by nCounterNanostring technology in matched nontumoral liver tissue from patients developing HCC (n = 23) before and after HCC formation in the same patient. Patients with cirrhosis (n = 26) remaining tumor free within a similar time frame served as a control cohort. Comparison of the two cohorts revealed that liver tissue from patients developing HCC displayed a down-regulation of miR-579-3p as an early step in HCC development, which was further confirmed in a validation cohort. Correlation with messenger RNA expression profiles further revealed that miR-579-3p directly attenuated phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) expression and consequently protein kinase B (AKT) and phosphorylated AKT. In vitro experiments and the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology confirmed that miR-579-3p controlled cell proliferation and cell migration of liver cancer cell lines. Conclusion: Liver tissues from patients developing HCC revealed changes in miRNA expression. miR-579-3p was identified as a novel tumor suppressor regulating phosphoinositide 3-kinase-AKT signaling at the early stages of HCC development.
Collapse
Affiliation(s)
- Cristina Quintavalle
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | | | | | - Diego Calabrese
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Division of Hepatology and GastroenterologyUniversity Hospital of BaselBaselSwitzerland
| | - Romina Marone
- Department of BiomedicineUniversity Hospital of Basel, University of BaselBaselSwitzerland
| | - Tobias Riedl
- Division of Chronic Inflammation and CancerGerman Cancer Research CenterHeidelbergGermany
| | - Silvia Picco‐Rey
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Orestis A. Panagiotou
- Department of Health Services, Policy and PracticeBrown University School of Public HealthProvidenceRIUSA
| | - Sarp Uzun
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Salvatore Piscuoglio
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Tuyana Boldanova
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Division of Hepatology and GastroenterologyUniversity Hospital of BaselBaselSwitzerland
| | - Chaoran B. Bian
- Department of Genetics and Genomic SciencesGraduate School of Biomedical SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - David Semela
- Division of GastroenterologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Wolfram Jochum
- Institute of PathologyKantonsspital St. GallenSt. GallenSwitzerland
| | - Gieri Cathomas
- Institute of PathologyKantonsspital BasellandLiestalSwitzerland
| | | | - Joachim Diebold
- Institute of PathologyLuzerner KantonsspitalLucerneSwitzerland
| | | | - Viktor H. Koelzer
- Department of Pathology and Molecular PathologyUniversity and University Hospital ZurichZurichSwitzerland
| | - Achim Weber
- Department of Pathology and Molecular PathologyUniversity and University Hospital ZurichZurichSwitzerland
| | - Thomas Decaens
- Institute for Advanced BiosciencesINSERM U1209/CNRS UMR 5309/Université Grenoble‐AlpesGrenobleFrance
- Université Grenoble AlpesGrenobleFrance
- Clinique Universitaire d'Hépato‐gastroentérologie, Pôle DigiduneCentre Hospitalier UniversitaireGrenobleFrance
| | - Luigi M. Terracciano
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and CancerGerman Cancer Research CenterHeidelbergGermany
| | - Yujin Hoshida
- Liver Tumor ProgramSimmons Comprehensive Cancer CenterDivision of Digestive and Liver DiseasesUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Jesper B. Andersen
- Biotech Research and Innovation CenterDepartment of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental CarcinogenesisCenter for Cancer ResearchNational Cancer Institute‐National Institutes of HealthBethesdaMDUSA
| | - Matthias S. Matter
- Institute of PathologyUniversity Hospital of BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
118
|
Huang Y, Wang T, Yang J, Wu X, Fan W, Chen J. Current Strategies for the Treatment of Hepatocellular Carcinoma by Modulating the Tumor Microenvironment via Nano-Delivery Systems: A Review. Int J Nanomedicine 2022; 17:2335-2352. [PMID: 35619893 PMCID: PMC9128750 DOI: 10.2147/ijn.s363456] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
Liver cancer remains a global health challenge with a projected incidence of over one million cases by 2025. Hepatocellular carcinoma (HCC) is a common primary liver cancer, accounting for about 90% of all liver cancer cases. The tumor microenvironment (TME) is the internal and external environment for tumor development, which plays an important role in tumorigenesis, immune escape and treatment resistance. Knowing that TME is a unique setting for HCC tumorigenesis, exploration of strategies to modulate TME has attracted increasing attention. Among them, the use of nano-delivery systems to deliver therapeutic agents to regulate TME components has shown great potential. TME-modulating nanoparticles have the advantages of protecting therapeutic agents from degradation, enhancing the ability of targeting HCC and reducing systemic toxicity. In this article, we summarize the TME components associated with HCC, including cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), endothelial cells and immune cells, discuss their impact on the HCC progression, and highlight recent studies on nano-delivery systems that modulate these components. Finally, we also discuss opportunities and challenges in this field.
Collapse
Affiliation(s)
- Yongjie Huang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Tiansi Wang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Jiefen Yang
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China.,Shanghai Wei Er Lab, Shanghai, People's Republic of China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, People's Republic of China
| |
Collapse
|
119
|
Peng H, Du X, Zhang Y. RAB42 is a Potential Biomarker that Correlates With Immune Infiltration in Hepatocellular Carcinoma. Front Mol Biosci 2022; 9:898567. [PMID: 35720121 PMCID: PMC9204584 DOI: 10.3389/fmolb.2022.898567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Backgrounds: Hepatocellular carcinoma (HCC) is a malignant cancer with high mortality. Previous studies have reported that RAB42 is associated with prognosis and progression in glioma. However, the role of RAB42 in HCC is still unknown. Therefore, we aimed to elucidate the value of RAB42 in the predicting prognosis of HCC, and its relationship with immune cells infiltration. Methods: UALCAN, HCCDB, and MethSurv databases were used to examine the expression and methylation levels of RAB42 in HCC and normal samples. cBioPortal and MethSurv were used to identify genetic alterations and DNA methylation of RAB42, and their effect on prognosis. The correlations between RAB42 and the immune cells and cancer-associated fibroblasts infiltration were analyzed by TIMER, TISIDB, and GEPIA database. The LinkedOmics database was used to analyze the enriched pathways associated with genes co-expressed with RAB42. EdU assay was used to evaluate the proliferation ability of liver cancer cells, and transwell assay was used to detect the invasion and migration ability of liver cancer cells. Results: The expression levels of RAB42 were increased in HCC tissues than that in normal tissues. Highly expressed RAB42 was significantly correlated with several clinical parameters of HCC patients. Moreover, increased RAB42 expression clearly predicted poor prognosis in HCC. Furthermore, multivariate Cox regression analysis showed that RAB42 was an independent prognostic factor in HCC. The RAB42 genetic alteration rate was 5%. RAB42 DNA methylation in HCC tissues was lower than that in normal tissues. Among the 7 DNA methylation CpG sites, two were related to the prognosis of HCC. The results of gene set enrichment analysis (GSEA) showed that RAB42 was associated with various immune cells and cancer-associated fibroblasts infiltration in HCC. Meanwhile, we found RAB42 methylation was strongly correlated with immune infiltration levels, immunomodulators, and chemokines. Experiments in vitro indicated that knockdown of RAB42 inhibited the proliferation, invasion, and migration of liver cancer cells. Conclusions: Our study highlights the clinical importance of RAB42 in HCC and explores the effect of RAB42 on immune infiltration in the tumor microenvironment, and RAB42 may act as a pro-oncogene that promotes HCC progression.
Collapse
Affiliation(s)
- Hao Peng
- School of Medicine, Southeast University, Nanjing, China
| | - Xuanlong Du
- School of Medicine, Southeast University, Nanjing, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yewei Zhang,
| |
Collapse
|
120
|
Prognostic Values of Inflammation-Based Scores and Fibrosis Markers in Patients with Hepatocellular Carcinoma Treated with Transarterial Chemoembolization. Diagnostics (Basel) 2022; 12:diagnostics12051170. [PMID: 35626324 PMCID: PMC9139803 DOI: 10.3390/diagnostics12051170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Inflammation is a key feature shaping the microenvironment of hepatocellular carcinoma (HCC), and liver fibrosis is associated with the prognosis of patients with HCC. In this study, we investigated whether baseline inflammation-based scores and serum fibrosis markers can help in predicting the prognosis of HCC patients treated with transarterial chemoembolization (TACE). Methods: A total of 605 consecutive patients with HCC treated by TACE were included. The systemic immune-inflammation index (SII), neutrophil−lymphocyte ratio (NLR), platelet−lymphocyte ratio (PLR), FIB-4 index, and aspartate aminotransferase-to-platelet ratio index (APRI) were analyzed regarding their associations with disease progression and survival. Results: All tested inflammation-based scores and fibrosis markers were significantly associated with tumor progression and overall survival in the univariate analyses. In the multivariate analysis, NLR (hazard ratio [HR], 1.06; p = 0.007) and FIB-4 (HR = 1.02, p = 0.008) were independent risk factors for disease progression, along with α-fetoprotein (AFP) levels, maximum tumor size and number, and presence of vascular invasion. Furthermore, NLR (HR, 1.09; p < 0.001) and FIB-4 (HR, 1.02; p = 0.02) were independent prognostic factors for survival. Conclusions: High baseline NLR and FIB-4 levels might help the prediction of disease progression and death in patients with HCC after TACE.
Collapse
|
121
|
A New Inflammation-Related Risk Model for Predicting Hepatocellular Carcinoma Prognosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5396128. [PMID: 35572724 PMCID: PMC9098315 DOI: 10.1155/2022/5396128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is characterized by a poor prognosis. Inflammation has a vital role in the formation and development of HCC. However, the prediction of HCC prognosis using inflammation-related genes (IRGs) remains elusive. In this study, we constructed a new IRG risk model to predict the HCC prognosis. Results HCC-related RNA expression profiles and their corresponding clinical data were downloaded from TCGA and ICGC databases to explore the IRGs' predicting ability. Seven hundred thirty-seven IRGs from GeneCards were used as candidate genes to construct the model. The associations of overall survival (OS) with IRGs were evaluated using the log-rank test and univariate Cox analysis, and 32 out of 737 IRGs showed predicting the potential for HCC prognosis. These IRGs were further analyzed using the least absolute shrinkage and selection operator (LASSO) and multivariate Cox analyses. Finally, 6 IRGs were included in an IRG risk model. Based on the cut-off of the risk score calculated according to the IRG risk model, HCC samples were divided into the high-risk and the low-risk groups. The OS of patients was lower in the high-risk group than in the low-risk group (P < 0.05). The area under the receiver operating characteristic curve (AUC) of the risk score was 0.78 for 3-year survival. Univariate Cox and multivariate Cox analyses revealed that the risk score was an independent risk factor for HCC prognosis. The KEGG and GO enrichment analysis results further showed that the risk scores were closely related to inflammatory and immune pathways. In addition, the ssGSEA demonstrated that several immune cells and some immune-related pathways were negatively correlated with the risk score. Conclusions The new IRG risk score was an independent risk factor for HCC prognosis and could be used to assess the immune status of the HCC microenvironment.
Collapse
|
122
|
Zhang C, Xie Y, Lai R, Wu J, Guo Z. Nonsynonymous C1653T Mutation of Hepatitis B Virus X Gene Enhances Malignancy of Hepatocellular Carcinoma Cells. J Hepatocell Carcinoma 2022; 9:367-377. [PMID: 35535232 PMCID: PMC9078866 DOI: 10.2147/jhc.s348690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Cuifang Zhang
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Department of Oncology, The Pingshan County People’s Hospital, Shijiazhuang, People’s Republic of China
| | - Ying Xie
- Hebei Key Laboratory of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Ruixue Lai
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Jianhua Wu
- Animal Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhanjun Guo
- Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- Correspondence: Zhanjun Guo, Department of Rheumatology and Immunology, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, People’s Republic of China, Tel + 86 311 8609 5734, Fax + 86 311 8609 5237, Email
| |
Collapse
|
123
|
He C, You K. New Pyroptosis -Associated Gene Signature for Overall Survival Forecast among Patients Suffering from Hepatocellular Carcinoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6365485. [PMID: 35463655 PMCID: PMC9033384 DOI: 10.1155/2022/6365485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/24/2022]
Abstract
Due to the heterogeneity of tumors, we do not understand the given effect of pyroptosis on hepatocellular carcinoma (HCC) fully, particularly its influences on prognosis. The paper aims at exploring the prognostic value of pyroptosis-associated genes and its role in immune status in HCC. A multigene prognostic signature is set up by utilizing the least absolute shrinkage and choosing operator Cox exploration. The comparison of survival between different risk groups is made with the Kaplan-Meier exploration and Cox regression. LASSO Cox regression analysis is adopted to set up a pyroptosis-associated gene signature (CEP55 and MMP1). By comparing with the group at low risks, the high-risk group displayed greatly decreased OS. The fatidic ability of the prognostic gene signature is confirmed by the receiver-running feature curve analysis. According to multivariate Cox exploration, the risk mark is an independent predicting agent for OS. A new signature established with two pyroptosis-associated genes can be adopted for prognostic forecast and influence the immune situation in HCC.
Collapse
Affiliation(s)
- Cheng He
- Department of Hepatobiliary Surgery, Affiliated Hospital of Xiangnan University, Chenzhou 423000, China
| | - Ke You
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
124
|
Liver-specific overexpression of Gab2 accelerates hepatocellular carcinoma progression by activating immunosuppression of myeloid-derived suppressor cells. Oncogene 2022; 41:3316-3327. [DOI: 10.1038/s41388-022-02298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 12/09/2022]
|
125
|
Wu S, Li Q, Cao Y, Luo S, Wang Z, Zhang T. Mediator complex subunit 8 is a prognostic biomarker in hepatocellular carcinoma. Am J Transl Res 2022; 14:1765-1777. [PMID: 35422940 PMCID: PMC8991165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mediator complex subunit 8 (MED8) is known for its role in encoding a subunit of the mediator complex (MED), that is critical for transcription. MED8 is significantly expressed in various tumors and has been correlated with an unfavorable prognosis. Nevertheless, no relationships have been found between MED8 and the clinical characteristics of hepatocellular carcinoma (HCC). METHODS To conduct an evaluation of correlations between clinicopathologic characteristics and MED8 expression, the logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test were used. To perform analysis of factors contributing to prognosis, the Kaplan-Meier approach and the Cox regression analyses were used. A nomogram on the basis of a Cox multivariate analysis was employed to anticipate the influence of MED8 on patient prognosis. The receiver operating characteristic (ROC) curves were plotted and the areas under the curve (AUC) were calculated to assess the prognostic value of MED8. Both immune infiltration analysis and Gene Set Enrichment Analysis (GSEA) were applied to reveal significant enrichment differences among TCGA data. Quantitative RT-PCR (qRT-PCR) and western blotting were used to verify the difference in the expression of MED8 in normal and hepatocellular carcinoma cells. The immunohistochemical method was used to validate the MED8 expression in tumor and adjoining tissues of HCC patients. RESULTS A univariate analysis showed that high MED8 expression predicts poor disease-specific survival (DSS) (HR: 2.57; 95% confidence interval (CI) 1.62, 4.07; P<0.001). Multivariate regression analysis showed that high MED8 (adjusted HR: 3.032 (1.817, 5.060); P<0.001) expression and M stage (adjusted HR=4.075 (1.179-14.091) for M1 vs. M0, P=0.026) served as prognostic indicators of unfavorable overall survival in an independent manner in patients with HCC. The C-index for the nomogram was 0.732 (95% CI: 0.698, 0.766) and the AUC of MED8 was 0.817 (95% CI: 0.778, 0.857). Functional analysis showed that the cell cycle checkpoints, p53 dependent G1-DNA damage response, mitotic G1-G1-S phases, and mitotic G2-G2-M phases, were significantly enriched in DEGs associated with MED8 expression. Th2 cells were positively correlated with MED8 expression. CONCLUSIONS MED8 predicts poor prognosis in HCC, possibly through modulating the cell cycle and Th2 cells.
Collapse
Affiliation(s)
- Shuang Wu
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Qiao Li
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Yuan Cao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University (Xibei Hospital)Xi’an, Shaanxi, China
| | - Senyuan Luo
- Department of Pathology, Taihe Hospital, Hubei Medical UniversityShiyan, Hubei, China
| | - Zengguo Wang
- Clinical Laboratory, The Affiliated Children Hospital of Xi’an Jiaotong UniversityXi’an, Shaanxi, China
| | - Taoyuan Zhang
- Department of Anesthesiology, Rizhao International Heart HospitalRizhao, Shandong, China
| |
Collapse
|
126
|
Song S, Bai M, Li X, Gong S, Yang W, Lei C, Tian H, Si M, Hao X, Guo T. Early Predictive Value of Circulating Biomarkers for Sorafenib in Advanced Hepatocellular Carcinoma. Expert Rev Mol Diagn 2022; 22:361-378. [PMID: 35234564 DOI: 10.1080/14737159.2022.2049248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Sorafenib is currently the first-line therapeutic regimen for patients with advanced hepatocellular carcinoma (HCC). However, many patients did not experience any benefit and suffered extreme adverse events and heavy economic burden. Thus, the early identification of patients who are most likely to benefit from sorafenib is needed. AREAS COVERED This review focused on the clinical application of circulating biomarkers (including conventional biomarkers, immune biomarkers, genetic biomarkers, and some novel biomarkers) in advanced HCC patients treated with sorafenib. An online search on PubMed, Web of Science, Embase, and Cochrane Library was conducted from the inception to Aug 15, 2021. Studies investigating the predictive or prognostic value of these biomarkers were included. EXPERT OPINION The distinction of patients who may benefit from sorafenib treatment is of utmost importance. The predictive roles of circulating biomarkers could solve this problem. Many biomarkers can be obtained by liquid biopsy, which is a less or non-invasive approach. The short half-life of sorafenib could reflect the dynamic changes of tumor progression and monitor the treatment response. Circulating biomarkers obtained from liquid biopsy resulted as a promising assessment method in HCC, allowing for better treatment decisions in the near future.
Collapse
Affiliation(s)
- Shaoming Song
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Mingzhen Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaofei Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Shiyi Gong
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Wenwen Yang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Caining Lei
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,School of Basic Medical Sciences, Evidence-Based Medicine Center, Lanzhou University, Lanzhou, China
| | - Hongwei Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Moubo Si
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Xiangyong Hao
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| | - Tiankang Guo
- The First Clinical Medical College of Lanzhou University, Lanzhou, China.,Key Laboratory of Molecular Diagnostics, and Precision Medicine of Surgical Oncology in Gansu Province, Lanzhou, China
| |
Collapse
|
127
|
Comprehensive Analysis of HOX Family Members as Novel Diagnostic and Prognostic Markers for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:5758601. [PMID: 35251173 PMCID: PMC8890896 DOI: 10.1155/2022/5758601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/17/2022]
Abstract
Background. The homeobox (HOX) gene family has been found to be involved in human cancers. However, its involvement in hepatocellular carcinoma (HCC) has not been well documented. Here, we comprehensively evaluated the role of HOXs in HCC. Methods. RNA sequencing profile of TCGA-LIHC and LIRI-JP were obtained from the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), respectively. Data of TCGA-LIHC methylation were downloaded from UCSC Xena. Genetic alteration data for the TCGA samples was obtained from cBioPortal and GSCA. The diagnostic efficiency was assessed using ROC curves. The prognostic significance was evaluated by the Kaplan–Meier method and Cox regression analysis. Subsequent functional analysis was performed through the clusterProfiler package. ssGSEA, ESTIMATE, and TIDE algorithms were employed to explore the relationship between HOXs and the HCC microenvironment. Finally, pRRophetic package and NCI-60 cancerous cell lines were applied to estimate anticancer drug sensitivity. Results. The mRNA levels of HOXs in HCC tissues were higher than those of noncancerous tissues and were correlated with poor overall survival (OS). HOXA6, C6, D9, D10, and D13 could serve as independent risk factors for OS. Further functional analysis revealed that these five HOXs regulate the cell proliferation, cell cycle, immune response, and microenvironment composition of HCC. In addition, the aberrant expression and methylation of HOXs is of great value in the diagnosis of HCC. Conclusion. HOXs play crucial roles in HCC and could serve as potential markers for HCC diagnosis and prognosis.
Collapse
|
128
|
Haworth JJ, Pitcher CK, Ferrandino G, Hobson AR, Pappan KL, Lawson JLD. Breathing new life into clinical testing and diagnostics: perspectives on volatile biomarkers from breath. Crit Rev Clin Lab Sci 2022; 59:353-372. [PMID: 35188863 DOI: 10.1080/10408363.2022.2038075] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human breath offers several benefits for diagnostic applications, including simple, noninvasive collection. Breath is a rich source of clinically-relevant biological information; this includes a volatile fraction, where greater than 1,000 volatile organic compounds (VOCs) have been described so far, and breath aerosols that carry nucleic acids, proteins, signaling molecules, and pathogens. Many of these factors, especially VOCs, are delivered to the lung by the systemic circulation, and diffusion of candidate biomarkers from blood into breath allows systematic profiling of organismal health. Biomarkers on breath offer the capability to advance early detection and precision medicine in areas of global clinical need. Breath tests are noninvasive and can be performed at home or in a primary care setting, which makes them well-suited for the kind of public screening program that could dramatically improve the early detection of conditions such as lung cancer. Since measurements of VOCs on breath largely report on metabolic changes, this too aids in the early detection of a broader range of illnesses and can be used to detect metabolic shifts that could be targeted through precision medicine. Furthermore, the ability to perform frequent sampling has envisioned applications in monitoring treatment responses. Breath has been investigated in respiratory, liver, gut, and neurological diseases and in contexts as diverse as infectious diseases and cancer. Preclinical research studies using breath have been ongoing for some time, yet only a few breath-based diagnostics tests are currently available and in widespread clinical use. Most recently, tests assessing the gut microbiome using hydrogen and methane on breath, in addition to tests using urea to detect Helicobacter pylori infections have been released, yet there are many more applications of breath tests still to be realized. Here, we discuss the strengths of breath as a clinical sampling matrix and the technical challenges to be addressed in developing it for clinical use. Historically, a lack of standardized methodologies has delayed the discovery and validation of biomarker candidates, resulting in a proliferation of early-stage pilot studies. We will explore how advancements in breath collection and analysis are in the process of driving renewed progress in the field, particularly in the context of gastrointestinal and chronic liver disease. Finally, we will provide a forward-looking outlook for developing the next generation of clinically relevant breath tests and how they may emerge into clinical practice.
Collapse
|
129
|
Pan C, Gao Q, Kim BS, Han Y, Gao G. The Biofabrication of Diseased Artery In Vitro Models. MICROMACHINES 2022; 13:mi13020326. [PMID: 35208450 PMCID: PMC8874977 DOI: 10.3390/mi13020326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022]
Abstract
As the leading causes of global death, cardiovascular diseases are generally initiated by artery-related disorders such as atherosclerosis, thrombosis, and aneurysm. Although clinical treatments have been developed to rescue patients suffering from artery-related disorders, the underlying pathologies of these arterial abnormalities are not fully understood. Biofabrication techniques pave the way to constructing diseased artery in vitro models using human vascular cells, biomaterials, and biomolecules, which are capable of recapitulating arterial pathophysiology with superior performance compared with conventional planar cell culture and experimental animal models. This review discusses the critical elements in the arterial microenvironment which are important considerations for recreating biomimetic human arteries with the desired disorders in vitro. Afterward, conventionally biofabricated platforms for the investigation of arterial diseases are summarized, along with their merits and shortcomings, followed by a comprehensive review of advanced biofabrication techniques and the progress of their applications in establishing diseased artery models.
Collapse
Affiliation(s)
- Chen Pan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Qiqi Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 626841, Korea
- Correspondence: (B.-S.K.); (G.G.)
| | - Yafeng Han
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;
| | - Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (C.P.); (Q.G.)
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Correspondence: (B.-S.K.); (G.G.)
| |
Collapse
|
130
|
Modulation of the tumour microenvironment in hepatocellular carcinoma by tyrosine kinase inhibitors: from modulation to combination therapy targeting the microenvironment. Cancer Cell Int 2022; 22:73. [PMID: 35148789 PMCID: PMC8840552 DOI: 10.1186/s12935-021-02435-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Tyrosine kinase inhibitors (TKIs) remain the backbone of systematic therapy for advanced hepatocellular carcinoma. Sorafenib and lenvatinib are currently approved as first-line therapeutic drugs, and regorafenib and cabozantinib are applied as second-line treatments. With inhibition of angiogenesis as the main target, TKIs exert a profound effect on the tumour microenvironment (TME). The TME is a complex mixture of cellular and noncellular components surrounding the tumour mass, and is associated with tumour progression partially through the epithelial-mesenchymal transition. Specifically, the TME of HCC is characterized by profound extracellular matrix remodelling and an immunosuppressive microenvironment. The purpose of this review is to provide a summary of TME remodelling mediated by four Food and Drug Administration approved TKIs in HCC and thus summarize the rationale and potential targets for combination therapy. The modulatory effect of TKIs on the TME of HCC was reported to enhance the antitumour effect of TKIs through pyroptosis of macrophages and subsequent natural killer cell activation, T cell activation, regulatory T cell reduction in HCC. Meanwhile, TKIs also induce drug resistance via M2 polarization and accumulation, recruitment of tumour-associated neutrophils, and induction of the epithelial-mesenchymal transition. In conclusion, the effect of TKIs on TME can enhance its antitumour effect, but might also partially contribute to the drug resistance that hinders the progression of TKIs as treatment for HCC. Additionally, the effect of TKIs also provides the rationale for combination therapy, including combining TKIs with immune checkpoint inhibitors, to facilitate increased drug efficacy of TKIs.
Collapse
|
131
|
Hsu CH, Huang YH, Lin SM, Hsu C. AXL and MET in Hepatocellular Carcinoma: A Systematic Literature Review. Liver Cancer 2022; 11:94-112. [PMID: 35634427 PMCID: PMC9109073 DOI: 10.1159/000520501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/26/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Multikinase inhibitors (MKIs) have been shown to improve survival in patients with hepatocellular carcinoma (HCC) compared with placebo. Distinct from other MKIs, cabozantinib has inhibitory activity for both AXL and MET. This review considers the literature elucidating the role of AXL and MET in HCC progression, treatment resistance, and immunomodulation. A systematic search of the PubMed database was conducted on November 16, 2020, and identified a total of 174 search results. A further 36 potentially relevant articles were identified based on the authors' knowledge. After initial screening by title/abstract, 159 underwent full-text screening and we identified 69 original research articles reporting empirical data from in vitro or in vivo models of HCC evaluating the effects of manipulating AXL or MET signaling on tumorigenic behavior. SUMMARY AXL expression is highly correlated with HCC progression and outcomes and has been reported to be involved in transforming growth factor-β and the regulation of PI3K/AKT, ERK/MAPK, and CCN proteins. MET protein expression is increased in HCC with the highest histological grade and has been reported to be involved in the regulation of PI3K/AKT, PLCγ/DAG/PKC, and MAPK/ERK signaling. Both AXL and MET are key regulators of sorafenib resistance in HCC. In terms of immunomodulation, there are data to indicate that AXL and MET interact with the immune components of the tumor microenvironment and promote tumorigenesis and treatment resistance. In addition, AXL was found to play a potential role in the development of a protumorigenic neutrophil phenotype in HCC. Combined inhibition of MET and programmed cell death protein resulted in additive reduction of HCC cell growth. KEY MESSAGES AXL and MET play key roles in HCC progression, treatment resistance, and immunomodulation. Continued development of drugs that target these receptor tyrosine kinases appears likely to represent a useful strategy to improve outcomes for patients with HCC.
Collapse
Affiliation(s)
- Chih-Hung Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan,Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan,**Chiun Hsu,
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan,Division of Gastroenterology and Hepatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shi-Ming Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, Taiwan,*Shi-Ming Lin, lsmpaicyto @ gmail.com
| | - Chiun Hsu
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan,National Taiwan University Cancer Center, Taipei, Taiwan
| |
Collapse
|
132
|
Meng Q, Duan X, Yang Q, Xue D, Liu Z, Li Y, Jin Q, Guo F, Jia S, Wang Z, Yan W, Chang X, Sun P. SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization. Oncol Lett 2022; 23:83. [PMID: 35126725 PMCID: PMC8805185 DOI: 10.3892/ol.2022.13203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are capable of worsening hepatocellular carcinoma (HCC) prognosis by accelerating tumor growth and progression. Signaling lymphocyte activation molecule family member 6 (SLAMF6; Ly108 in mice) is an immune regulator that is involved in numerous diseases. However, whether SLAMF6 might affect macrophage function in HCC has not yet been reported. Therefore, the present study aimed to determine the relationship between SLAMF6 expression on macrophages and HCC progression. In the present study, the expression of SLAMF6 in human blood samples and mice was analyzed by flow cytometry. Furthermore, macrophage-related polarization markers were detected via reverse transcription quantitative PCR. Clonogenic formation and Transwell assay were performed to determine the proliferation, migration and invasion of HCC cells. In addition, a murine HCC model was established to detect the function of SLAMF6 in vivo. The results demonstrated that SLAMF6 expression was increased in CD14+ cells obtained from patients with HCC. It was also determined that this increase was associated with a positive hepatitis B virus DNA status and high levels of α-fetoprotein. Polarized TAMs from THP-1 cells, murine peritoneal macrophages and murine bone marrow-derived macrophages all exhibited higher levels of SLAMF6 compared with M1 cells. Furthermore, an increased expression of Ly108 was detected in macrophages obtained from mice tumor tissues, indicating that the tumor microenvironment may promote Ly108 expression and macrophage M2 polarization. Ly108 small interfering RNA was applied to macrophages, which resulted in the suppression of M2 polarization. Ly108-silenced macrophages attenuated HCC cell migration and invasion and prevented tumor growth by inhibiting the nuclear factor-κB pathway. Altogether, the results from the present study suggested that SLAMF6/Ly108 was upregulated in TAMs, which may in turn accelerate the development of HCC.
Collapse
Affiliation(s)
- Qi Meng
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Xiuyun Duan
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Qingchao Yang
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Dewen Xue
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zihao Liu
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yuanyuan Li
- Head and Neck Radiation Oncology Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Qingyan Jin
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fang Guo
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Shijie Jia
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhaofeng Wang
- Surgical Department, Jinan Jiyang District Hospital of Traditional Chinese Medicine, Jinan, Shandong 251499, P.R. China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xu Chang
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
133
|
Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. A hypoxia-linked gene signature for prognosis prediction and evaluating the immune microenvironment in patients with hepatocellular carcinoma. Transl Cancer Res 2022; 10:3979-3992. [PMID: 35116696 PMCID: PMC8798548 DOI: 10.21037/tcr-21-741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022]
Abstract
Background Previous research indicates that hypoxia critically affects the initiation and progression of hepatocellular carcinoma (HCC). Nevertheless, the molecular mechanisms responsible for HCC development are poorly understood. Herein, we purposed to build a prognostic model using hypoxia-linked genes to predict patient prognosis and investigate the relationship of hypoxia with immune status in the tumor microenvironment (TME). Methods The training cohort included transcriptome along with clinical data abstracted from The Cancer Genome Atlas (TCGA). The validation cohort was abstracted from Gene Expression Omnibus (GEO). Univariate along with multivariate Cox regression were adopted to create the prediction model. We divided all patients into low- and high-risk groups using median risk scores. The estimation power of the prediction model was determined with bioinformatic tools. Results Six hypoxia-linked genes, HMOX1, TKTL1, TPI1, ENO2, LDHA, and SLC2A1, were employed to create an estimation model. Kaplan-Meier, ROC curve, and risk plot analyses demonstrated that the estimation potential of the risk model was satisfactory. Univariate along with multivariate regression data illustrated that the risk model could independently predict the overall survival (OS). A nomogram integrating the risk signature and clinicopathological characteristics showed a good potential to estimate HCC prognosis. Gene set enrichment analysis (GSEA) revealed that genes associated with cell proliferation and metabolism cascades were abundant in high-risk group. Furthermore, the signature showed a strong ability to distinguish the two groups in terms of immune status. Conclusions A prediction model for predicting HCC prognosis using six hypoxia-linked genes was designed in this study, facilitating the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linzhong Zhu
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
134
|
Cannito S, Bincoletto V, Turato C, Pontisso P, Scupoli MT, Ailuno G, Andreana I, Stella B, Arpicco S, Bocca C. Hyaluronated and PEGylated Liposomes as a Potential Drug-Delivery Strategy to Specifically Target Liver Cancer and Inflammatory Cells. Molecules 2022; 27:molecules27031062. [PMID: 35164326 PMCID: PMC8840578 DOI: 10.3390/molecules27031062] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and is characterized by poor clinical outcomes, with the majority of patients not being eligible for curative therapy and treatments only being applicable for early-stage tumors. CD44 is a receptor for hyaluronic acid (HA) and is involved in HCC progression. The aim of this work is to propose HA- and PEGylated-liposomes as promising approaches for the treatment of HCC. It has been found, in this work, that CD44 transcripts are up-regulated in HCC patients, as well as in a murine model of NAFLD/NASH-related hepatocarcinogenesis. Cell culture experiments indicate that HA-liposomes are more rapidly and significantly internalized by Huh7 cells that over-express CD44, compared with HepG2 cells that express low levels of the receptor, in which the uptake seems due to endocytic events. By contrast, human and murine macrophage cell lines (THP-1, RAW264.7) show improved and rapid uptake of PEG-modified liposomes without the involvement of the CD44. Moreover, the internalization of PEG-modified liposomes seems to induce polarization of THP1 towards the M1 phenotype. In conclusion, data reported in this study indicate that this strategy can be proposed as an alternative for drug delivery and one that dually and specifically targets liver cancer cells and infiltrating tumor macrophages in order to counteract two crucial aspect of HCC progression.
Collapse
Affiliation(s)
- Stefania Cannito
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (S.C.); (C.B.)
| | - Valeria Bincoletto
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (V.B.); (I.A.); (B.S.)
| | - Cristian Turato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | | | - Maria Teresa Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, 16148 Genova, Italy;
| | - Ilaria Andreana
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (V.B.); (I.A.); (B.S.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (V.B.); (I.A.); (B.S.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (V.B.); (I.A.); (B.S.)
- Correspondence: ; Tel.: +39-011-670-6668
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy; (S.C.); (C.B.)
| |
Collapse
|
135
|
El-Far YM, Khodir AE, Emarah ZA, Ebrahim MA, Al-Gayyar MMH. Chemopreventive and hepatoprotective effects of genistein via inhibition of oxidative stress and the versican/PDGF/PKC signaling pathway in experimentally induced hepatocellular carcinoma in rats by thioacetamide. Redox Rep 2022; 27:9-20. [PMID: 35080474 PMCID: PMC8794077 DOI: 10.1080/13510002.2022.2031515] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Objective Genistein is a recognized isoflavone present in soybeans with antioxidant, anti-inflammatory, antiangiogenic and antitumor activities. This study aimed to test ability of genistein in modulating versican/platelet derived growth factor (PDGF) axis in HCC. Methods HCC was experimentally induced in male Sprague-Dawley rats then treated with 25 or 75 mg/kg genistein. Antioxidant activities of genistein was assessed by measuring the gene expression of Nrf2 and the hepatic levels of malondialdehyde (MDA), superoxide dismutase (SOD) and reduced glutathione. Expression of versican, PDGF, protein kinase C (PKC) and ERK-1 protein was assessed by Western blotting and immunostaining. Results HCC induced an elevation in oxidative stress, PDGF, versican, PKC and ERK protein expression levels. Genistein significantly reduced an HCC-induced increase in oxidative stress. Moreover, genistein dose-dependently reduced HCC-induced elevation of PDGF, versican, PKC and ERK protein expression levels. Moreover, genistein helped retain a normal hepatocyte structure and reduced fibrous tissue deposition, especially in high dose. Conclusions Genistein exerted antitumor and antioxidant effects and therefore suppress HCC development via inhibition of the PDGF/versican bidirectional axis, suppressing both ERK1 and PKC as downstream regulators. Therefore, genistein is a potential novel therapeutic candidate for improving the outcome of patients with HCC.
Collapse
Affiliation(s)
- Yousra M. El-Far
- Faculty of Pharmacy, Department of Biochemistry, Mansoura University, Mansoura, Egypt
| | - Ahmed E. Khodir
- Faculty of Pharmacy, Department of Pharmacology, Horus University in Egypt, New Damietta, Egypt
| | - Ziad A. Emarah
- Faculty of Medicine, Department of Internal Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Ebrahim
- Department of Medical Oncology, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Mohammed M. H. Al-Gayyar
- Faculty of Pharmacy, Department of Biochemistry, Mansoura University, Mansoura, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
136
|
Zhang Y, Tong GH, Wei XX, Chen HY, Liang T, Tang HP, Wu CA, Wen GM, Yang WK, Liang L, Shen H. Identification of Five Cytotoxicity-Related Genes Involved in the Progression of Triple-Negative Breast Cancer. Front Genet 2022; 12:723477. [PMID: 35046993 PMCID: PMC8762060 DOI: 10.3389/fgene.2021.723477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the deadly tumors in women, and its incidence continues to increase. This study aimed to identify novel therapeutic molecules using RNA sequencing (RNA-seq) data of breast cancer from our hospital. Methods: 30 pairs of human breast cancer tissue and matched normal tissue were collected and RNA sequenced in our hospital. Differentially expressed genes (DEGs) were calculated with raw data by the R package "edgeR", and functionally annotated using R package "clusterProfiler". Tumor-infiltrating immune cells (TIICs) were estimated using a website tool TIMER 2.0. Effects of key genes on therapeutic efficacy were analyzed using RNA-seq data and drug sensitivity data from two databases: the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Therapeutics Response Portal (CTRP). Results: There were 2,953 DEGs between cancerous and matched normal tissue, as well as 975 DEGs between primary breast cancer and metastatic breast cancer. These genes were primarily enriched in PI3K-Akt signaling pathway, calcium signaling pathway, cAMP signaling pathway, and cell cycle. Notably, CD8+ T cell, M0 macrophage, M1 macrophage, regulatory T cell and follicular helper T cell were significantly elevated in cancerous tissue as compared with matched normal tissue. Eventually, we found five genes (GALNTL5, MLIP, HMCN2, LRRN4CL, and DUOX2) were markedly corelated with CD8+ T cell infiltration and cytotoxicity, and associated with therapeutic response. Conclusion: We found five key genes associated with tumor progression, CD8+ T cell and therapeutic efficacy. The findings would provide potential molecular targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China.,Department of Pathology, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Gui-Hui Tong
- Department of Pathology,The first Affiliated Hospital,Guangzhou Medical University, Guangzhou, China
| | - Xu-Xuan Wei
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Hai-Yang Chen
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Tian Liang
- Department of Pathology, The First Affiliated Hospital of Guangdong University Of Pharmacy, Guangzhou, China
| | - Hong-Ping Tang
- Department of Pathology, Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Chuan-An Wu
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Guo-Ming Wen
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Wei-Kang Yang
- Department of Prevention and Health Care, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University/Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
137
|
Yu Z, Guo J, Liu Y, Wang M, Liu Z, Gao Y, Huang L. Nano delivery of simvastatin targets liver sinusoidal endothelial cells to remodel tumor microenvironment for hepatocellular carcinoma. J Nanobiotechnology 2022; 20:9. [PMID: 34983554 PMCID: PMC8725360 DOI: 10.1186/s12951-021-01205-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) developed in fibrotic liver does not respond well to immunotherapy, mainly due to the stromal microenvironment and the fibrosis-related immunosuppressive factors. The characteristic of liver sinusoidal endothelial cells (LSECs) in contributing to fibrosis and orchestrating immune response is responsible for the refractory to targeted therapy or immunotherapy of HCC. We aim to seek a new strategy for HCC treatment based on an old drug simvastatin which shows protecting effect on LSEC. METHOD The features of LSECs in mouse fibrotic HCC model and human HCC patients were identified by immunofluorescence and scanning electron microscopy. The effect of simvastatin on LSECs and hepatic stellate cells (HSCs) was examined by immunoblotting, quantitative RT-PCR and RNA-seq. LSEC-targeted delivery of simvastatin was designed using nanotechnology. The anti-HCC effect and toxicity of the nano-drug was evaluated in both intra-hepatic and hemi-splenic inoculated mouse fibrotic HCC model. RESULTS LSEC capillarization is associated with fibrotic HCC progression and poor survival in both murine HCC model and HCC patients. We further found simvastatin restores the quiescence of activated hepatic stellate cells (aHSCs) via stimulation of KLF2-NO signaling in LSECs, and up-regulates the expression of CXCL16 in LSECs. In intrahepatic inoculated fibrotic HCC mouse model, LSEC-targeted nano-delivery of simvastatin not only alleviates LSEC capillarization to regress the stromal microenvironment, but also recruits natural killer T (NKT) cells through CXCL16 to suppress tumor progression. Together with anti-programmed death-1-ligand-1 (anti-PD-L1) antibody, targeted-delivery of simvastatin achieves an improved therapeutic effect in hemi-splenic inoculated advanced-stage HCC model. CONCLUSIONS These findings reveal an immune-based therapeutic mechanism of simvastatin for remodeling immunosuppressive tumor microenvironment, therefore providing a novel strategy in treating HCC.
Collapse
Affiliation(s)
- Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Liver Disease, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhengsheng Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
138
|
Fathi F, Saidi RF, Banafshe HR, Arbabi M, Lotfinia M, Motedayyen H. Changes in immune profile affect disease progression in hepatocellular carcinoma. Int J Immunopathol Pharmacol 2022; 36:3946320221078476. [PMID: 35226515 PMCID: PMC8891922 DOI: 10.1177/03946320221078476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) as a chronic liver condition is largely associated with immune responses. Previous studies have revealed that different subsets of lymphocytes play fundamental roles in controlling or improving the development and outcome of solid tumors like HCC. Hence, this study aimed to investigate whether immune system changes were related to disease development in HCC patients. Methods: Peripheral blood mononuclear cells were isolated from 30 HCC patients and 30 healthy volunteers using Ficoll density centrifugation. The isolated cells were stained with different primary antibodies and percentages of different immune cells were determined by flow cytometry. Results: HCC patients indicated significant reductions in the numbers of CD4+ cells, Tbet+IFNγ+cells, and GATA+IL-4+cells in peripheral blood in comparison with healthy individuals (p < 0.05). There was no significant change in IL-17+RORγt+cells between patient and healthy groups. In contrast, Foxp3+CD127lowcell frequency was significantly higher in patients than healthy subjects (p < 0.0001). The numbers of Th1, Th2, and Th17 cells were significantly lower in HCC patients than healthy control (p < 0.0001), although the reduction in Th2 cell numbers was not statistically significant. On the contrary, Treg percentage showed a significant increase in patients compared to healthy subjects (p < 0.0001). Other data revealed that Th1, Th2, and Th17 cell frequencies were significantly higher in healthy individuals than patients with different TNM stages of HCC, with the exception of Th2 in patients with stage II HCC (p < 0.01-0.05). Treg percentage was significantly increased in patients with different TNM stages (p < 0.0001). Among all CD4+ T cells, the frequency of Th2 cell was significantly associated with TNM stages of HCC (p < 0.05). Conclusion: Our data provide further evidence to show that immune changes may participate in determining HCC progression and disease outcome. However, it should be mentioned that more investigations are needed to clarify our results and explain possible impacts of other immune cells on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Farshid Fathi
- Department of Immunology, School of Medicine, 48455Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza F Saidi
- Division of Transplant Services, Department of Surgery, 12302SUNY Upstate Medical University Syracuse, Syracuse, NY, USA
| | - Hamid Reza Banafshe
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Arbabi
- Department of Medical Parasitology, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Lotfinia
- Physiology Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, 48462Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
139
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
140
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
141
|
Cell Death in Hepatocellular Carcinoma: Pathogenesis and Therapeutic Opportunities. Cancers (Basel) 2021; 14:cancers14010048. [PMID: 35008212 PMCID: PMC8750350 DOI: 10.3390/cancers14010048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The progression of liver tumors is highly influenced by the interactions between cancer cells and the surrounding environment, and, consequently, can determine whether the primary tumor regresses, metastasizes, or establishes micrometastases. In the context of liver cancer, cell death is a double-edged sword. On one hand, cell death promotes inflammation, fibrosis, and angiogenesis, which are tightly orchestrated by a variety of resident and infiltrating host cells. On the other hand, targeting cell death in advanced hepatocellular carcinoma could represent an attractive therapeutic approach for limiting tumor growth. Further studies are needed to investigate therapeutic strategies combining current chemotherapies with novel drugs targeting either cell death or the tumor microenvironment. Abstract Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the third leading cause of cancer death worldwide. Closely associated with liver inflammation and fibrosis, hepatocyte cell death is a common trigger for acute and chronic liver disease arising from different etiologies, including viral hepatitis, alcohol abuse, and fatty liver. In this review, we discuss the contribution of different types of cell death, including apoptosis, necroptosis, pyroptosis, or autophagy, to the progression of liver disease and the development of HCC. Interestingly, inflammasomes have recently emerged as pivotal innate sensors with a highly pathogenic role in various liver diseases. In this regard, an increased inflammatory response would act as a key element promoting a pro-oncogenic microenvironment that may result not only in tumor growth, but also in the formation of a premetastatic niche. Importantly, nonparenchymal hepatic cells, such as liver sinusoidal endothelial cells, hepatic stellate cells, and hepatic macrophages, play an important role in establishing the tumor microenvironment, stimulating tumorigenesis by paracrine communication through cytokines and/or angiocrine factors. Finally, we update the potential therapeutic options to inhibit tumorigenesis, and we propose different mechanisms to consider in the tumor microenvironment field for HCC resolution.
Collapse
|
142
|
Pocino K, Napodano C, Marino M, Di Santo R, Miele L, De Matthaeis N, Gulli F, Saporito R, Rapaccini GL, Ciasca G, Basile U. A Comparative Study of Serum Angiogenic Biomarkers in Cirrhosis and Hepatocellular Carcinoma. Cancers (Basel) 2021; 14:cancers14010011. [PMID: 35008171 PMCID: PMC8750498 DOI: 10.3390/cancers14010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary The progression of liver disease is accompanied by pathological angiogenesis, a prerequisite for the development of HCC. In this paper, we analyzed the clinical significance of serum angiogenic markers VEGF, Ang-1, Ang-2, angiopoietin receptor Tie1/2, HGF, and PECAM-1 in 62 patients with liver disease, out of which 33 were diagnosed with HCC and 29 with liver cirrhosis without signs of neoplasia. Biomarkers levels were investigated as a function of “Model for End-Stage Liver Disease” (MELD) score and Fibrosis Index (FI). HCC patients showed higher HGF levels than ones with cirrhosis, while high Ang-1 levels appeared to have a protective role in HCC as well as prognostic significance; we also found a strong correlation between HGF levels, Ang-2, and VEGF levels, further supporting their role in tumor angiogenesis. Due to the complexity of angiogenesis and the small size of the study group, further investigations are widely desired especially in the era of immunotherapy and HCC-targeted anti-angiogenic drugs. Abstract Background: Hepatocellular carcinoma (HCC) is a global health problem associated with chronic liver disease. Its pathogenesis varies according to the underlying etiological factors, although in most cases it develops from liver cirrhosis. The disease progression is accompanied by pathological angiogenesis, which is a prerequisite that favors the development of HCC. Aims: This study aims at contributing to our understanding of the role of angiogenic factors in the progression of liver disease. For this purpose, we evaluate the clinical significance of serum angiogenic markers (VEGF, Ang-1, Ang-2, the angiopoietin receptor Tie1/2, HGF, and PECAM-1) first in cirrhotic and HCC patients separately, and then comparing cirrhotic patients with and without HCC. Materials and Methods: We enrolled 62 patients, out of whom 33 were diagnosed with HCC and 29 with liver cirrhosis without signs of neoplasia. Patients underwent venous blood sampling before and after receiving treatments for the diagnosed disease. Serum markers were evaluated using ELISA assays for Tie1 and the Bio-Plex Multiplex system for the remaining ones. Biomarker levels were investigated as a function of clinical scores for disease staging (MELD and Fibrosis Index, FI). Results: In cirrhotic patients, Ang-1 and Ang-2 correlate with MELD (ρAng-1 = −0.73, p = 2E−5) and FI (ρAng-1 = −0.52, p = 7E−3, ρAng-2 = 0.53, p = 3E−3). A reduction of Ang-2 levels (p = 0.047) and of the Ang-2/Ang-1 ratio (p = 0.031) is observed in cirrhotic patients diagnosed with viral hepatitis after antiviral treatments. In HCC patients, Ang-1 negatively correlates with FI (ρ = −0.63, p = 1E−4), and PECAM-1 positively correlates with MELD (ρ = 0.44, p = 0.01). A significant Ang-1 reduction was observed in deceased patients during the study compared to ones who survived (p = 0.01). In HCC patients, VEGF levels were increased after tumor treatment (p = 0.037). Notably, HGF levels in cirrhotic patients with HCC are significantly raised (p = 0.017) compared to that in those without HCC. Conclusions: Our results suggest that serum angiogenic markers, with emphasis on Ang-1/2, can contribute to the development of quantitative tools for liver disease staging and therapy monitoring. The comparison between cirrhotic patients with and without HCC suggests that HGF levels are potentially useful for monitoring the insurgence of HCC after a cirrhosis diagnosis. High Ang-1 levels in HCC patients appear to have a protective role as well as prognostic significance.
Collapse
Affiliation(s)
- Krizia Pocino
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (R.S.)
| | | | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Patologia Generale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| | - Riccardo Di Santo
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.D.S.); (G.C.)
| | - Luca Miele
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Medicina Interna, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.M.); (N.D.M.); (G.L.R.)
| | - Nicoletta De Matthaeis
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Medicina Interna, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.M.); (N.D.M.); (G.L.R.)
| | - Francesca Gulli
- Laboratorio di Patologia Clinica, Ospedale Madre Giuseppina Vannini, 00177 Rome, Italy;
| | - Raffaele Saporito
- Unità Operativa Complessa di Patologia Clinica, Ospedale Generale di Zona San Pietro Fatebenefratelli, 00189 Rome, Italy; (K.P.); (R.S.)
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Sezione di Medicina Interna, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (L.M.); (N.D.M.); (G.L.R.)
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.D.S.); (G.C.)
| | - Umberto Basile
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
- Correspondence: (M.M.); (U.B.)
| |
Collapse
|
143
|
Yan Z, He M, He L, Wei L, Zhang Y. Identification and Validation of a Novel Six-Gene Expression Signature for Predicting Hepatocellular Carcinoma Prognosis. Front Immunol 2021; 12:723271. [PMID: 34925311 PMCID: PMC8671815 DOI: 10.3389/fimmu.2021.723271] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a highly lethal disease. Effective prognostic tools to guide clinical decision-making for HCC patients are lacking. Objective We aimed to establish a robust prognostic model based on differentially expressed genes (DEGs) in HCC. Methods Using datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Genome Consortium (ICGC), DEGs between HCC tissues and adjacent normal tissues were identified. Using TCGA dataset as the training cohort, we applied the least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analyses to identify a multi-gene expression signature. Proportional hazard assumptions and multicollinearity among covariates were evaluated while building the model. The ICGC cohort was used for validation. The Pearson test was used to evaluate the correlation between tumor mutational burden and risk score. Through single-sample gene set enrichment analysis, we investigated the role of signature genes in the HCC microenvironment. Results A total of 274 DEGs were identified, and a six-DEG prognostic model was developed. Patients were stratified into low- or high-risk groups based on risk scoring by the model. Kaplan-Meier analysis revealed significant differences in overall survival and progression-free interval. Through univariate and multivariate Cox analyses, the model proved to be an independent prognostic factor compared to other clinic-pathological parameters. Time-dependent receiver operating characteristic curve analysis revealed satisfactory prediction of overall survival, but not progression-free interval. Functional enrichment analysis showed that cancer-related pathways were enriched, while immune infiltration analyses differed between the two risk groups. The risk score did not correlate with levels of PD-1, PD-L1, CTLA4, or tumor mutational burden. Conclusions We propose a six-gene expression signature that could help to determine HCC patient prognosis. These genes may serve as biomarkers in HCC and support personalized disease management.
Collapse
Affiliation(s)
- Zongcai Yan
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Meiling He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lifeng He
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liuxia Wei
- Department of Oncology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Yumei Zhang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
144
|
Malakoti F, Targhazeh N, Karimzadeh H, Mohammadi E, Asadi M, Asemi Z, Alemi F. The Multiple Function of lncRNA MALAT1 in Cancer Occurrence and Progression. Chem Biol Drug Des 2021; 101:1113-1137. [PMID: 34918470 DOI: 10.1111/cbdd.14006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
Long non-coding RNAs (lncRNAs) have received particular attention in the last decade due to its engaging in carcinogenesis and tumorigenesis. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a lncRNA that plays physiological and pathological roles in many aspects of genome function as well as biological processes involved in cell development, differentiation, proliferation, invasion, and migration. In this article, we will review the effects of lncRNA MALAT1 on the progression of six prevalent human cancers by focusing on MALAT1 ability to regulate post-transcriptional modification and signaling pathways.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Targhazeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniye Karimzadeh
- Department of Clinical Biochemistry, School of Pharmacy & Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Mohammadi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Drugs Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
145
|
Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 2021; 23:77-90. [PMID: 34914889 DOI: 10.1016/s1470-2045(21)00604-5] [Citation(s) in RCA: 670] [Impact Index Per Article: 167.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Single-agent nivolumab showed durable responses, manageable safety, and promising survival in patients with advanced hepatocellular carcinoma in the phase 1-2 CheckMate 040 study. We aimed to investigate nivolumab monotherapy compared with sorafenib monotherapy in the first-line setting for patients with advanced hepatocellular carcinoma. METHODS In this randomised, open-label, phase 3 trial done at medical centres across 22 countries and territories in Asia, Australasia, Europe, and North America, patients at least 18 years old with histologically confirmed advanced hepatocellular carcinoma not eligible for, or whose disease had progressed after, surgery or locoregional treatment; with no previous systemic therapy for hepatocellular carcinoma, with Child-Pugh class A and Eastern Cooperative Oncology Group performance status score of 0 or 1, and regardless of viral hepatitis status were randomly assigned (1:1) via an interactive voice response system to receive nivolumab (240 mg intravenously every 2 weeks) or sorafenib (400 mg orally twice daily) until disease progression or unacceptable toxicity. The primary endpoint was overall survival assessed in the intention-to-treat population. Safety was assessed in all patients who received at least one dose of study drug. This completed trial is registered with ClinicalTrials.gov, NCT02576509. FINDINGS Between Jan 11, 2016, and May 24, 2017, 743 patients were randomly assigned to treatment (nivolumab, n=371; sorafenib, n=372). At the primary analysis, the median follow-up for overall survival was 15·2 months (IQR 5·7-28·0) for the nivolumab group and 13·4 months (5·7-25·9) in the sorafenib group. Median overall survival was 16·4 months (95% CI 13·9-18·4) with nivolumab and 14·7 months (11·9-17·2) with sorafenib (hazard ratio 0·85 [95% CI 0·72-1·02]; p=0·075; minimum follow-up 22·8 months); the protocol-defined significance level of p=0·0419 was not reached. The most common grade 3 or worse treatment-related adverse events were palmar-plantar erythrodysaesthesia (1 [<1%] of 367 patients in the nivolumab group vs 52 [14%] of patients in the sorafenib group), aspartate aminotransferase increase (22 [6%] vs 13 [4%]), and hypertension (0 vs 26 [7%]). Serious treatment-related adverse events were reported in 43 (12%) patients receiving nivolumab and 39 (11%) patients receiving sorafenib. Four deaths in the nivolumab group and one death in the sorafenib group were assessed as treatment related. INTERPRETATION First-line nivolumab treatment did not significantly improve overall survival compared with sorafenib, but clinical activity and a favourable safety profile were observed in patients with advanced hepatocellular carcinoma. Thus, nivolumab might be considered a therapeutic option for patients in whom tyrosine kinase inhibitors and antiangiogenic drugs are contraindicated or have substantial risks. FUNDING Bristol Myers Squibb in collaboration with Ono Pharmaceutical.
Collapse
|
146
|
Lei D, Chen Y, Zhou Y, Hu G, Luo F. A Starvation-Based 9-mRNA Signature Correlates With Prognosis in Patients With Hepatocellular Carcinoma. Front Oncol 2021; 11:716757. [PMID: 34900672 PMCID: PMC8663092 DOI: 10.3389/fonc.2021.716757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the world’s most prevalent and lethal cancers. Notably, the microenvironment of tumor starvation is closely related to cancer malignancy. Our study constructed a signature of starvation-related genes to predict the prognosis of liver cancer patients. Methods The mRNA expression matrix and corresponding clinical information of HCC patients were obtained from the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). Gene set enrichment analysis (GSEA) was used to distinguish different genes in the hunger metabolism gene in liver cancer and adjacent tissues. Gene Set Enrichment Analysis (GSEA) was used to identify biological differences between high- and low-risk samples. Univariate and multivariate analyses were used to construct prognostic models for hunger-related genes. Kaplan-Meier (KM) and receiver-operating characteristic (ROC) were used to assess the model accuracy. The model and relevant clinical information were used to construct a nomogram, protein expression was detected by western blot (WB), and transwell assay was used to evaluate the invasive and metastatic ability of cells. Results First, we used univariate analysis to identify 35 prognostic genes, which were further demonstrated to be associated with starvation metabolism through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). We then used multivariate analysis to build a model with nine genes. Finally, we divided the sample into low- and high-risk groups according to the median of the risk score. KM can be used to conclude that the prognosis of high- and low-risk samples is significantly different, and the prognosis of high-risk samples is worse. The prognostic accuracy of the 9-mRNA signature was also tested in the validation data set. GSEA was used to identify typical pathways and biological processes related to 9-mRNA, cell cycle, hypoxia, p53 pathway, and PI3K/AKT/mTOR pathway, as well as biological processes related to the model. As evidenced by WB, EIF2S1 expression was increased after starvation. Overall, EIF2S1 plays an important role in the invasion and metastasis of liver cancer. Conclusions The 9-mRNA model can serve as an accurate signature to predict the prognosis of liver cancer patients. However, its mechanism of action warrants further investigation.
Collapse
Affiliation(s)
- Dengliang Lei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Chen
- Central Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gangli Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
147
|
Liu H, Wang M, Jin Z, Sun D, Zhu T, Liu X, Tan X, Shi G. FNDC5 induces M2 macrophage polarization and promotes hepatocellular carcinoma cell growth by affecting the PPARγ/NF-κB/NLRP3 pathway. Biochem Biophys Res Commun 2021; 582:77-85. [PMID: 34695754 DOI: 10.1016/j.bbrc.2021.10.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effect of FNDC5 expression levels in hepatocellular carcinoma on the phenotypic changes of macrophages in tumor tissues. METHODS In this study, we established an in vitro co-culture system of hepatocellular carcinoma cells and macrophages. Then we performed overexpression or knockdown of FNDC5 gene in hepatocellular carcinoma cells to observe the effect of changes in FNDC5 expression level on the phenotypic changes of THP-1 macrophages. And the conclusions obtained in the in vitro assay were further validated by a subcutaneous tumorigenic nude mice model. RESULTS Our findings suggest that elevated FNDC5 expression in hepatocellular carcinoma cells lead to an increased M2 phenotype and decreased M1 phenotype in macrophages. This effect may be achieved by elevating PPARγ levels in macrophages while decreasing NF-κB and NLRP3 levels. These changes could be reversed by using PPARγ inhibitors. CONCLUSION We preliminarily demonstrated that FNDC5 in hepatocellular carcinoma cells promotes the polarization of M2 macrophages by affecting the PPARγ/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Huayuan Liu
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, China
| | - Mengya Wang
- Department of Physiology, School of Basic Medicine, Qingdao University, China
| | - Zhipeng Jin
- Graduate School of Dalian Medical University, China
| | - Dongxu Sun
- Graduate School of Dalian Medical University, China
| | - Ting Zhu
- Department of Gynecology, The Affiliated Qingdao Municipal Hospital of Qingdao University, China
| | - Xinyue Liu
- Graduate School of Dalian Medical University, China
| | - Xueying Tan
- Department of Laboratory, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China.
| | - Guangjun Shi
- Department of Hepatobiliary Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, China.
| |
Collapse
|
148
|
Zhang W, Wang Y, Dong X, Yang B, Zhou H, Chen L, Zhang Z, Zhang Q, Cao G, Han Z, Li H, Cui Y, Wu Q, Zhang T, Song T, Li Q. Elevated serum CA19-9 indicates severe liver inflammation and worse survival after curative resection in hepatitis B-related hepatocellular carcinoma. Biosci Trends 2021; 15:397-405. [PMID: 34880159 DOI: 10.5582/bst.2021.01517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We explored the prognostic value of preoperative CA19-9 in α-fetoprotein (AFP)-positive and -negative HCC with hepatitis B virus (HBV) background (HBV-HCC), and explored the underlying mechanism. Recurrence-free survival (RFS) and overall survival (OS) were assessed in HBV-HCC patients who underwent curative resection (Cohort 1). Immunohistochemical staining of CA19-9 in HCC and liver parenchyma were quantified in another cohort of 216 patients with resected HCC (Cohort 2). Immunohistochemical staining of CA19-9 and serum CA19-9 level was also compared between patients with HCC and intrahepatic cholangiocarcinoma (ICC) (Cohort 3). In Cohort 1, CA19-9 ≥ 39 U/mL was an independent risk factor for RFS (HR = 1.507, 95% CI = 1.087-2.091, p = 0.014) and OS (HR = 1.646, 95% CI = 1.146-2.366, p = 0.007). CA19-9 ≥ 39 U/mL was also associated with significantly higher incidence of macrovascular invasion (MaVI) compared with CA19-9 < 39 U/mL (23.0% vs. 7.2%, p = 0.002), and elevated aminotransferase and aspartate aminotransferase to platelet ratio index (APRI), and lower albumin. Immunohistochemical staining of CA19-9 revealed that CA19-9 expression was found exclusively in the background liver but not in HCC tumor cells. In contrast, tumor tissue was the main source of CA19-9 in ICC patients. CA19-9 ≥ 39 U/mL was associated with worse OS and RFS in both AFP-positive and negative HCC patients. CA19-9 indicated more severe inflammation and cirrhosis in the liver of HCC patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingying Wang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiang Dong
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Department of General Surgery, Hebei Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou City, Hebei Province, China
| | - Bo Yang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongyuan Zhou
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lu Chen
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zewu Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qin Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Guangtai Cao
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Huikai Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Wu
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ti Zhang
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tianqiang Song
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital; Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
149
|
Ozer M, George A, Goksu SY, George T, Sahin I. The Role of Immune Checkpoint Blockade in the Hepatocellular Carcinoma: A Review of Clinical Trials. Front Oncol 2021; 11:801379. [PMID: 34956912 PMCID: PMC8692256 DOI: 10.3389/fonc.2021.801379] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence of primary liver cancer is rapidly rising all around the world. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Unfortunately, the traditional treatment methods to cure HCC showed poor efficacy in patients who are not candidates for liver transplantation. Until recently, tyrosine kinase inhibitors (TKIs) were the front-line treatment for unresectable liver cancer. However, rapidly emerging new data has drastically changed the landscape of HCC treatment. The combination treatment of atezolizumab plus bevacizumab (immunotherapy plus anti-VEGF) was shown to provide superior outcomes and has become the new standard first-line treatment for unresectable or metastatic HCC. Currently, ongoing clinical trials with immune checkpoint blockade (ICB) have focused on assessing the benefit of antibodies against programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- associated antigen 4 (CTLA-4) as monotherapies or combination therapies in patients with HCC. In this review, we briefly discuss the mechanisms underlying various novel immune checkpoint blockade therapies and combination modalities along with recent/ongoing clinical trials which may generate innovative new treatment approaches with potential new FDA approvals for HCC treatment in the near future.
Collapse
Affiliation(s)
- Muhammet Ozer
- Department of Internal Medicine, Capital Health Medical Center, Trenton, NJ, United States
| | - Andrew George
- Department of Chemistry, Brown University, Providence, RI, United States
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, United States
| | - Suleyman Yasin Goksu
- Division of Hematology/Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas J. George
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, United States
- Division of Hematology/Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, United States
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, United States
- Division of Hematology/Oncology, Department of Medicine, University of Florida Health Cancer Center, Gainesville, FL, United States
| |
Collapse
|
150
|
Espejo-Cruz ML, González-Rubio S, Zamora-Olaya J, Amado-Torres V, Alejandre R, Sánchez-Frías M, Ciria R, De la Mata M, Rodríguez-Perálvarez M, Ferrín G. Circulating Tumor Cells in Hepatocellular Carcinoma: A Comprehensive Review and Critical Appraisal. Int J Mol Sci 2021; 22:ijms222313073. [PMID: 34884878 PMCID: PMC8657934 DOI: 10.3390/ijms222313073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm and a major cause of cancer-related death worldwide. There is no ideal biomarker allowing early diagnosis of HCC and tumor surveillance in patients receiving therapy. Liquid biopsy, and particularly circulating tumor cells (CTCs), have emerged as a useful tool for diagnosis and monitoring therapeutic responses in different tumors. In the present manuscript, we evaluate the current evidence supporting the quantitative and qualitative assessment of CTCs as potential biomarkers of HCC, as well as technical aspects related to isolation, identification, and classification of CTCs. Although the dynamic assessment of CTCs in patients with HCC may aid the decision-making process, there are still many uncertainties and technical caveats to be solved before this methodology has a true impact on clinical practice guidelines. More studies are needed to identify the optimal combination of surface markers, to increase the efficiency of ex-vivo expansion of CTCs, or even to target CTCs as a potential therapeutic strategy to prevent HCC recurrence after surgery or to hamper tumor progression and extrahepatic spreading.
Collapse
Affiliation(s)
- María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Javier Zamora-Olaya
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Víctor Amado-Torres
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rafael Alejandre
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|