101
|
Song Z, Gong Q, Guo J. Pyroptosis: Mechanisms and Links with Fibrosis. Cells 2021; 10:cells10123509. [PMID: 34944017 PMCID: PMC8700428 DOI: 10.3390/cells10123509] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is responsible for approximately 45% of deaths in the industrialized world and has been a major global healthcare burden. Excessive fibrosis is the primary cause of organ failure. However, there are currently no approved drugs available for the prevention or treatment of fibrosis-related diseases. It has become evident that fibrosis is characterized by inflammation. In a large number of studies of various organs in mice and humans, pyroptosis has been found to play a significant role in fibrosis. Pyroptosis is a form of programmed cell death mediated by the N-terminal fragment of cysteinyl aspartate-specific proteinase (caspase)-1-cleaved gasdermin D (GSDMD, producing GSDMD-N) that gives rise to inflammation via the release of some proinflammatory cytokines, including IL-1β, IL-18 and HMGB1. These cytokines can initiate the activation of fibroblasts. Inflammasomes, an important factor upstream of GSDMD, can activate caspase-1 to trigger the maturation of IL-1β and IL-18. Moreover, the inhibition of inflammasomes, proinflammatory cytokines and GSDMD can prevent the progression of fibrosis. This review summarizes the growing evidence indicating that pyroptosis triggers fibrosis, and highlights potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Zihao Song
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou 434023, China;
- Correspondence: (Q.G.); (J.G.)
| | - Jiawei Guo
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Correspondence: (Q.G.); (J.G.)
| |
Collapse
|
102
|
Peñaloza HF, van der Geest R, Ybe JA, Standiford TJ, Lee JS. Interleukin-36 Cytokines in Infectious and Non-Infectious Lung Diseases. Front Immunol 2021; 12:754702. [PMID: 34887860 PMCID: PMC8651476 DOI: 10.3389/fimmu.2021.754702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
103
|
Abstract
Intestinal fibrosis is one of the most common intestinal complications observed in inflammatory bowel disease, especially Crohn’s disease (CD). Intestinal fibrosis in CD is associated with chronic inflammation resulting from immunologic abnormalities and occurs as a form of tissue repair during the anti-inflammatory process. Various types of immune cells and mesenchymal cells, including myofibroblasts, are intricately involved in causing intestinal fibrosis. It is often difficult to treat intestinal fibrosis as intestinal stricture may develop despite treatment aimed at controlling inflammation. Detailed analysis of the pathogenesis of intestinal fibrosis is critical towards advancing the development of future therapeutic applications.
Collapse
|
104
|
Gordon IO, Abushamma S, Kurowski JA, Holubar SD, Kou L, Lyu R, Rieder F. Paediatric Ulcerative Colitis Is a Fibrotic Disease and Is Linked with Chronicity of Inflammation. J Crohns Colitis 2021; 16:804-821. [PMID: 34849664 PMCID: PMC9228908 DOI: 10.1093/ecco-jcc/jjab216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Intestinal fibrosis has recently been characterised in adult ulcerative colitis and may affect motility, diarrhoea, and the symptom of urgency. We aimed to charactersze the presence of fibrosis in paediatric patients with ulcerative colitis, and its link to severity and chronicity of mucosal inflammation, as well as clinical factors of severity. METHODS We performed a single-centre cross-sectional study in children ages 1-18 years with ulcerative colitis, undergoing colectomy or proctocolectomy. Tissue cross-sections were derived from proximal, mid, and distal colon and rectum, and inflammation and fibrosis were graded based on previously developed scores. Clinical data were collected prospectively. RESULTS From 62 patients, 205 intestinal sections were evaluated. Median age at diagnosis was 13 years, 100% had extensive colitis, and all resections were done for refractory disease. The presence, chronicity, and degree of inflammation were linked with the presence of fibrosis. Thickness of the muscularis mucosa was also linked with presence and chronicity of inflammation. The overall submucosal fibrosis burden was associated with prior anti-tumour necrosis factor use. CONCLUSIONS Paediatric patients with ulcerative colitis exhibit colorectal submucosal fibrosis and muscularis mucosa thickening, which correlate with the presence, chronicity, and degree of mucosal inflammation. Fibrosis should be recognised as a complication of paediatric ulcerative colitis, and ulcerative colitis should be considered a progressive disease.
Collapse
Affiliation(s)
- Ilyssa O Gordon
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Suha Abushamma
- Department of Gastroenterology, Washington University School of Medicine, Barnes Jewish Hospital, St Louis, MO,USA
| | - Jacob A Kurowski
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Lei Kou
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ruishen Lyu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Corresponding author: Florian Rieder, MD, Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, 9500 Euclid Avenue – A3, Cleveland, OH, 44195, USA. Tel.: +1 [216] 445 4916; fax: +1 [216] 636 0104;
| |
Collapse
|
105
|
Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021; 9:biomedicines9121747. [PMID: 34944564 PMCID: PMC8698841 DOI: 10.3390/biomedicines9121747] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.
Collapse
|
106
|
Ünsal P, Çerçi P, Açıkgöz ŞA, Keskin G, Ölmez Ü. Serum Levels of Interleukin-36 Alpha and Interleukin-36 Receptor
Antagonist In Behcet’s Syndrome. AKTUEL RHEUMATOL 2021. [DOI: 10.1055/a-1550-2069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
Background Behcet’s syndrome (BS) is a systemic vasculitic
disorder. This study aimed to investigate the levels of serum IL-36α and
IL-36Ra in patients with BS.
Material and Methods A total of 80 subjects (60 BS patients and 20 healthy
controls [HC]) were included.
Results The median IL-36α level was 0.11 ng/ml in
the BS group and 0.09 ng/ml in the HC group (p=0.058).
The mean IL-36Ra level was 13.62 pg/ml in the BS group and
13.26 pg/ml in the HC group (p=0.348). Serum IL-36Ra
levels of the active group were significantly higher (p=0.037). Patients
with oral ulcers and central nervous system involvement had higher serum IL36Ra
levels. In the BS group, a positive correlation was found between serum IL-36Ra
and CRP. In a multivariate analysis, the IL-36Ra level (OR=1.067;
95% CI=1.001–1.137; p=0.045) was independently
associated with disease activity.
Conclusion According to these findings, it is not clear whether such a
slight difference is clinically significant, but they suggest that the IL-36
cytokine family may play a role in the course of the disease.
Collapse
Affiliation(s)
- Pelin Ünsal
- Department of Internal Medicine, Ankara University Faculty of Medicine,
Ankara, Turkey
| | - Pamir Çerçi
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Şükrü Alper Açıkgöz
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Göksal Keskin
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ümit Ölmez
- Department of Internal Medicine, Division of Immunology and Allergy,
Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
107
|
Wang P, Yang W, Guo H, Dong H, Guo Y, Gan H, Wang Z, Cheng Y, Deng Y, Xie S, Yang X, Lin D, Zhong B. IL-36γ and IL-36Ra Reciprocally Regulate NSCLC Progression by Modulating GSH Homeostasis and Oxidative Stress-Induced Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101501. [PMID: 34369094 PMCID: PMC8498882 DOI: 10.1002/advs.202101501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Indexed: 05/05/2023]
Abstract
The balance between antioxidants and reactive oxygen species (ROS) critically regulates tumor initiation and progression. However, whether and how the tumor-favoring redox status is controlled by cytokine networks remain poorly defined. Here, it is shown that IL-36γ and IL-36Ra reciprocally regulate the progression of non-small cell lung cancer (NSCLC) by modulating glutathione metabolism and ROS resolution. Knockout, inhibition, or neutralization of IL-36γ significantly inhibits NSCLC progression and prolongs survival of the KrasLSL-G12D/+ Tp53fl/fl and KrasLSL-G12D/+ Lkb1fl/fl mice after tumor induction, whereas knockout of IL-36Ra exacerbates tumorigenesis in these NSCLC mouse models and accelerates death of mice. Mechanistically, IL-36γ directly upregulates an array of genes involved in glutathione homeostasis to reduce ROS and prevent oxidative stress-induced cell death, which is mitigated by IL-36Ra or IL-36γ neutralizing antibody. Consistently, IL-36γ staining is positively and negatively correlated with glutathione biosynthesis and ROS in human NSCLC tumor biopsies, respectively. These findings highlight essential roles of cytokine networks in redox for tumorigenesis and provide potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Wei Yang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hong‐Peng Dong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Yu‐Yao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hu Gan
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Zou Wang
- Wuhan Biobank Co., Ltd, WuhanWuhan430075China
| | | | - Yu Deng
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shizhe Xie
- CAS Key Laboratory of Special PathogensWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinglou Yang
- CAS Key Laboratory of Special PathogensWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| |
Collapse
|
108
|
Lin SN, Mao R, Qian C, Bettenworth D, Wang J, Li J, Bruining D, Jairath V, Feagan B, Chen M, Rieder F. Development of Anti-fibrotic Therapy in Stricturing Crohn's Disease: Lessons from Randomized Trials in Other Fibrotic Diseases. Physiol Rev 2021; 102:605-652. [PMID: 34569264 DOI: 10.1152/physrev.00005.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is considered an inevitable complication of Crohn's disease (CD) that results in symptoms of obstruction and stricture formation. Endoscopic or surgical treatment is required to treat the majority of patients. Progress in the management of stricturing CD is hampered by the lack of effective anti-fibrotic therapy; however, this situation is likely to change because of recent advances in other fibrotic diseases of the lung, liver and skin. In this review, we summarized data from randomized controlled trials (RCT) of anti-fibrotic therapies in these conditions. Multiple compounds have been tested for the anti-fibrotic effects in other organs. According to their mechanisms, they were categorized into growth factor modulators, inflammation modulators, 5-hydroxy-3-methylgultaryl-coenzyme A (HMG-CoA) reductase inhibitors, intracellular enzymes and kinases, renin-angiotensin system (RAS) modulators and others. From our review of the results from the clinical trials and discussion of their implications in the gastrointestinal tract, we have identified several molecular candidates that could serve as potential therapies for intestinal fibrosis in CD.
Collapse
Affiliation(s)
- Si-Nan Lin
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ren Mao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Chenchen Qian
- Department of Internal Medicine, UPMC Pinnacle, Harrisburg, Pennsylvania, United States
| | - Dominik Bettenworth
- Department of Medicine B, Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jiannan Li
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - David Bruining
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | - Vipul Jairath
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Brian Feagan
- Alimentiv Inc., London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Department of Biostatistics and Epidemiology, Western University, London, ON, Canada
| | - Minhu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease Institute, Cleveland Clinic, Cleveland, Ohio, United States
| |
Collapse
|
109
|
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis - bridging the gap? J Clin Invest 2021; 131:144336. [PMID: 33463541 DOI: 10.1172/jci144336] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Markus F Neurath
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
110
|
Zhang B, Su X, Xie Z, Ding H, Wang T, Xie R, Wen Z. Inositol-Requiring Kinase 1 Regulates Apoptosis via Inducing Endoplasmic Reticulum Stress in Colitis Epithelial Cells. Dig Dis Sci 2021; 66:3015-3025. [PMID: 33043405 DOI: 10.1007/s10620-020-06622-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 09/16/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endoplasmic reticulum stress (ERS) has been studied as critical factor during occurrence and development of ulcerative colitis (UC). However, the role of ERS in inflamed UC remains unclear. AIMS The purpose of this study was to analyze the role of inositol-requiring kinase 1 (IRE-1), a major regulator of ER, in regulating ERS and cell viability. METHODS In UC mucosa tissue, IRE-1, BiP, XBP-1s, CHOP caspase-12 and GADD34 mRNA were assayed by qRT-PCR. Then, human normal colon epithelial cell line (NCM-460) and colon fibroblast cell line (CCD-33Co) were cultured, and downregulated or upregulated IRE-1 expression. ERS was induced with 100 ng/mL of Interleukin 6 (IL-6). CCK8 assay was performed to analyze cell proliferation. Flow cytometry analysis was conducted to detect the apoptosis. Western blot assay was used to examine ERS markers. RESULTS IRE-1, BiP, XBP-1s, caspase-12 and CHOP mRNA were highly expressed in UC mucosa tissue, and the expression of GADD34 mRNA significantly decreased. These results show that ERS-induced unfolded protein response was enhanced in UC mucosa tissue. In cells, silencing the expression of IRE-1 could suppress cell proliferation and promote apoptosis through activating unfolded protein response, while the over-expression of IRE-1 had the opposite effect. IL-6 could induce ERS and cells apoptosis. Furthermore, we demonstrated that shRNA IRE-1 could enhance the inhibition of IL-6 on cells viability. CONCLUSIONS Inhibition of IRE-1 enhanced unfolded protein response and cells apoptosis and IL-6-induced ERS and suggested that IRE-1 might be a potential target of UC.
Collapse
Affiliation(s)
- Bei Zhang
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - XiaoYan Su
- The Department of Pathology, Second Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhengYuan Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Hao Ding
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ting Wang
- The Department of Gastroenterology, First Hospital Affiliated to Nanchang University, Nanchang, 330006, Jiangxi, People's Republic of China
| | - RuYi Xie
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - ZhiLi Wen
- The Department of Gastroenterology, Second Hospital Affiliated to Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
111
|
Wang XQ, Chen H, Gao YZ, Huang YX, Zhang RJ, Xie J, Li Y, Huang YQ, Gou LS, Yao RQ. The Potential Immunomodulatory Properties of Levornidazole Contribute to Improvement in Experimental Ulcerative Colitis. Curr Med Sci 2021; 41:746-756. [PMID: 34403100 DOI: 10.1007/s11596-021-2384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/26/2020] [Indexed: 10/20/2022]
Abstract
The use of an antibiotic with immunomodulatory properties could be fascinating in treating multifactorial inflammatory conditions such as ulcerative colitis (UC). We report our investigations into the immunomodulatory properties of levornidazole, the S-enantiomer of ornidazole, which displayed a tremendous therapeutic potential in UC induced by dextran sodium sulfate (DSS). Levornidazole administration to DSS-colitic mice attenuated the intestinal inflammatory process, with an efficacy better than that shown by 5-amino salicylic acid. This was evidenced by decreased disease activity index, ameliorated macroscopic and microscopic colon damages, and reduced expression of inflammatory cytokines. Additionally, levornidazole displayed anti-inflammatory activity through Caveolin-1-dependent reducing IL-1β and IL-18 secretion by macrophages contributing to its improvement of the intestinal inflammation, as confirmed in vitro and in vivo. In conclusion, these results pointed out that the immunomodulatory effects of levornidazole played a vital role in ameliorating the intestinal inflammatory process, which would be crucial for the translation of its use into clinical settings.
Collapse
Affiliation(s)
- Xing-Qi Wang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Hao Chen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, 221600, China
| | - Yu-Zhi Gao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China
| | - Yan-Xiu Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Rui-Juan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jun Xie
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yu-Qing Huang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, 221009, China.
| | - Rui-Qin Yao
- Department of Cell Biology, Xuzhou Medical University, Xuzhou, 221009, China.
| |
Collapse
|
112
|
Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci 2021; 78:6215-6227. [PMID: 34365521 PMCID: PMC8429149 DOI: 10.1007/s00018-021-03909-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/02/2022]
Abstract
The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.
Collapse
Affiliation(s)
- James Byrne
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Kevin Baker
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
113
|
Lindholm M, Godskesen LE, Manon-Jensen T, Kjeldsen J, Krag A, Karsdal MA, Mortensen JH. Endotrophin and C6Ma3, serological biomarkers of type VI collagen remodelling, reflect endoscopic and clinical disease activity in IBD. Sci Rep 2021; 11:14713. [PMID: 34282237 PMCID: PMC8289827 DOI: 10.1038/s41598-021-94321-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
In inflammatory bowel disease (IBD), the chronic inflammation deeply affects the intestinal extracellular matrix. The aim of this study was to investigate if remodeling of the intestinal basement membrane type VI collagen was associated with pathophysiological changes in Crohn’s disease (CD) and ulcerative colitis (UC). Serum from IBD patients (CD: n = 65; UC: n = 107; irritable bowel syndrome: n = 18; healthy subjects: n = 20) was investigated in this study. The serological biomarkers C6Ma3 (a matrix metalloproteinase (MMP) generated fragment of the type VI collagen α3 chain) and PRO-C6, also called endotrophin (the C-terminus of the released C5 domain of the type VI collagen α3 chain) were measured by ELISAs. Serum C6Ma3 was increased in CD patients with moderate to severe and mild endoscopically active disease compared to endoscopic remission (p = 0.002, p = 0.0048), respectively, and could distinguish endoscopically active disease from remission with an AUC of 1.0 (sensitivity: 100%, specificity: 100%) (p < 0.0001), which was superior to CRP. C6Ma3 was increased in CD patients with moderate to severe clinical disease compared to mild and remission (p = 0.04; p = 0.009). Serum PRO-C6, endotrophin, was increased in CD patients in clinically remission compared to mild disease (p = 0.04) and moderate to severe disease (p = 0.065). In UC, fecal calprotectin was the only marker that alone could distinguish both clinical and endoscopic active and inactive disease. Type VI collagen degradation of the α3 chain mediated by MMPs was increased in CD patients with endoscopically active disease, measured by the serological biomarker C6Ma3, which was able to distinguish endoscopically active from inactive CD.
Collapse
Affiliation(s)
- Majken Lindholm
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark. .,Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| | - Line E Godskesen
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Tina Manon-Jensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Jens Kjeldsen
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Aleksander Krag
- Department of Medical Gastroenterology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Morten A Karsdal
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Joachim H Mortensen
- Biomarkers and Research, Nordic Bioscience, Herlev Hovedgade 205-207, 2730, Herlev, Denmark.
| |
Collapse
|
114
|
Patankar JV, Müller TM, Kantham S, Acera MG, Mascia F, Scheibe K, Mahapatro M, Heichler C, Yu Y, Li W, Ruder B, Günther C, Leppkes M, Mathew MJ, Wirtz S, Neufert C, Kühl AA, Paquette J, Jacobson K, Atreya R, Zundler S, Neurath MF, Young RN, Becker C. E-type prostanoid receptor 4 drives resolution of intestinal inflammation by blocking epithelial necroptosis. Nat Cell Biol 2021; 23:796-807. [PMID: 34239062 DOI: 10.1038/s41556-021-00708-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/06/2021] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases present with elevated levels of intestinal epithelial cell (IEC) death, which compromises the gut barrier, activating immune cells and triggering more IEC death. The endogenous signals that prevent IEC death and break this vicious cycle, allowing resolution of intestinal inflammation, remain largely unknown. Here we show that prostaglandin E2 signalling via the E-type prostanoid receptor 4 (EP4) on IECs represses epithelial necroptosis and induces resolution of colitis. We found that EP4 expression correlates with an improved IBD outcome and that EP4 activation induces a transcriptional signature consistent with resolution of intestinal inflammation. We further show that dysregulated necroptosis prevents resolution, and EP4 agonism suppresses necroptosis in human and mouse IECs. Mechanistically, EP4 signalling on IECs converges on receptor-interacting protein kinase 1 to suppress tumour necrosis factor-induced activation and membrane translocation of the necroptosis effector mixed-lineage kinase domain-like pseudokinase. In summary, our study indicates that EP4 promotes the resolution of colitis by suppressing IEC necroptosis.
Collapse
Affiliation(s)
- Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tanja M Müller
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Srinivas Kantham
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Fabrizio Mascia
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Kristina Scheibe
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mousumi Mahapatro
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christina Heichler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Yuqiang Yu
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, People's Republic of China
| | - Barbara Ruder
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Moritz Leppkes
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Mano J Mathew
- INSERM, Cordeliers Research Centre, Sorbonne Paris Cité, Université Paris Descartes, Université Paris Diderot, Paris, France
- Allianstic Research Laboratory, EFREI Paris, Villejuif, France
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Anja A Kühl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin and Berlin Institute of Health, iPATH.Berlin, Berlin, Germany
| | - Jay Paquette
- Centre for Drug Research and Development, Vancouver, BC, Canada
- adMare BioInnovations, Vancouver, British Columbia, Canada
| | - Kevan Jacobson
- Department of Pediatrics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Raja Atreya
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Sebastian Zundler
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Robert N Young
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
115
|
Wenxiu J, Mingyue Y, Fei H, Yuxin L, Mengyao W, Chenyang L, Jia S, Hong Z, Shih DQ, Targan SR, Xiaolan Z. Effect and Mechanism of TL1A Expression on Epithelial-Mesenchymal Transition during Chronic Colitis-Related Intestinal Fibrosis. Mediators Inflamm 2021; 2021:5927064. [PMID: 34257516 PMCID: PMC8253633 DOI: 10.1155/2021/5927064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 03/30/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND AIMS Recent evidences reveal that epithelial to mesenchymal transition (EMT) exacerbates the process of intestinal fibrosis. Tumor necrosis factor-like ligand 1A (TL1A) is a member of the tumor necrosis family (TNF), which can take part in the development of colonic inflammation and fibrosis by regulating immune response or inflammatory factors. The purpose of this study was to elucidate the possible contribution of TL1A in onset and progression of intestinal inflammation and fibrosis through EMT. METHODS Colonic specimens were obtained from patients with inflammatory bowel disease (IBD) and control individuals. The expression levels of TL1A and EMT-related markers in intestinal tissues were evaluated. Furthermore, the human colorectal adenocarcinoma cell line, HT-29, was stimulated with TL1A, anti-TL1A antibody, or BMP-7 to assess EMT process. In addition, transgenic mice expressing high levels of TL1A in lymphoid cells were used to further investigate the mechanism of TL1A in intestinal fibrosis. RESULTS High levels of TL1A expression were detected in the intestinal specimens of patients with ulcerative colitis and Crohn's disease and were negatively associated with the expression of an epithelial marker (E-cadherin), while it was positively associated with the expression of interstitial markers (FSP1 and α-SMA). Transgenic mice with high expression of TL1A were more sensitive to dextran sodium sulfate and exhibited severe intestinal inflammation and fibrosis. Additionally, the TGF-β1/Smad3 pathway may be involved in TL1A-induced EMT, and the expression of IL-13 and EMT-related transcriptional molecules (e.g., ZEB1 and Snail1) was increased in the intestinal specimens of the transgenic mice. Furthermore, TL1A-induced EMT can be influenced by anti-TL1A antibody or BMP-7 in vitro. CONCLUSIONS TL1A participates in the formation and process of EMT in intestinal fibrosis. This new knowledge enables us to better understand the pathogenesis of intestinal fibrosis and identify new therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jia Wenxiu
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Yang Mingyue
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Han Fei
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Luo Yuxin
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Wu Mengyao
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Li Chenyang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Song Jia
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - Zhang Hong
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| | - David Q. Shih
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Stephan R. Targan
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhang Xiaolan
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, No. 80 Huanghe Road, Yuhua District, Shijiazhuang, Hebei, China
| |
Collapse
|
116
|
Zhou LY, Lin SN, Rieder F, Chen MH, Zhang SH, Mao R. Noncoding RNAs as Promising Diagnostic Biomarkers and Therapeutic Targets in Intestinal Fibrosis of Crohn's Disease: The Path From Bench to Bedside. Inflamm Bowel Dis 2021; 27:971-982. [PMID: 33324986 PMCID: PMC8344842 DOI: 10.1093/ibd/izaa321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs.
Collapse
Affiliation(s)
- Long-Yuan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Si-Nan Lin
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Sheng-Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
117
|
Fermented Rice Bran Supplementation Prevents the Development of Intestinal Fibrosis Due to DSS-Induced Inflammation in Mice. Nutrients 2021; 13:nu13061869. [PMID: 34070845 PMCID: PMC8229226 DOI: 10.3390/nu13061869] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Fermented rice bran (FRB) is known to protect mice intestines against dextran sodium sulfate (DSS)-induced inflammation; however, the restoration of post-colitis intestinal homeostasis using FRB supplementation is currently undocumented. In this study, we observed the effects of dietary FRB supplementation on intestinal restoration and the development of fibrosis after DSS-induced colitis. DSS (1.5%) was introduced in the drinking water of mice for 5 days. Eight mice were sacrificed immediately after the DSS treatment ended. The remaining mice were divided into three groups, comprising the following diets: control, 10% rice bran (RB), and 10% FRB-supplemented. Diet treatment was continued for 2 weeks, after which half the population of mice from each group was sacrificed. The experiment was continued for another 3 weeks before the remaining mice were sacrificed. FRB supplementation could reduce the general observation of colitis and production of intestinal pro-inflammatory cytokines. FRB also increased intestinal mRNA levels of anti-inflammatory cytokine, tight junction, and anti-microbial proteins. Furthermore, FRB supplementation suppressed markers of intestinal fibrosis. This effect might have been achieved via the canonical Smad2/3 activation and the non-canonical pathway of Tgf-β activity. These results suggest that FRB may be an alternative therapeutic agent against inflammation-induced intestinal fibrosis.
Collapse
|
118
|
Conner KP, Pastuskovas CV, Soto M, Thomas VA, Wagner M, Rock DA. Preclinical characterization of the ADME properties of a surrogate anti-IL-36R monoclonal antibody antagonist in mouse serum and tissues. MAbs 2021; 12:1746520. [PMID: 32310023 PMCID: PMC7188401 DOI: 10.1080/19420862.2020.1746520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The decision to pursue a monoclonal antibody (mAb) as a therapeutic for disease intervention requires the assessment of many factors, such as target-biology, including the total target burden and its accessibility at the intended site of action, as well as mAb-specific properties like binding affinity and the pharmacokinetics in serum and tissue. Interleukin-36 receptor (IL-36 R) is a member of the IL-1 family cytokine receptors and an attractive target to treat numerous epithelial-mediated inflammatory conditions, including psoriatic and rheumatoid arthritis, asthma, and chronic obstructive pulmonary disease. However, information concerning the expression profile of IL-36 R at the protein level is minimal, so the feasibility of developing a therapeutic mAb against this target is uncertain. Here, we present a characterization of the properties associated with absorption, distribution, metabolism, and excretion of a high-affinity IL-36 R-targeted surrogate rat (IgG2a) mAb antagonist in preclinical mouse models. The presence of IL-36 R in the periphery was confirmed unequivocally as the driver of non-linear pharmacokinetics in blood/serum, although a predominant site of tissue accumulation was not observed based upon the kinetics of radiotracer. Additionally, the contribution of IL-36 R-mediated catabolism of mAb in kidney was tested in a 5/6 nephrectomized mouse model where minimal effects on serum pharmacokinetics were observed, although analysis of functional mAb in urine suggests that target can influence the amount of mAb excreted. Our data highlight an interesting case of target-mediated drug disposition (TMDD) where low, yet broadly expressed levels of membrane-bound target result in a cumulative effect to drive TMDD behavior typical of a large, saturable target sink. The potential differences between our mouse model and IL-36 R target profile in humans are also presented.
Collapse
Affiliation(s)
- Kip P Conner
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Cinthia V Pastuskovas
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Marcus Soto
- Department Pharmacokinetics and Drug Metabolism, Amgen, Thousand Oaks, CA, USA
| | - Veena A Thomas
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| | - Mylo Wagner
- Department Pharmacokinetics and Drug Metabolism, Amgen, Thousand Oaks, CA, USA
| | - Dan A Rock
- Department Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA, USA
| |
Collapse
|
119
|
Wang J, Lin S, Brown JM, van Wagoner D, Fiocchi C, Rieder F. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol Rev 2021; 302:211-227. [PMID: 33993489 DOI: 10.1111/imr.12974] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) worldwide has resulted in a global public health challenge. Intestinal fibrosis leading to stricture formation and bowel obstruction is a frequent complication in Crohn's disease (CD), and the lack of anti-fibrotic therapies makes elucidation of fibrosis mechanisms a priority. Progress has shown that mesenchymal cells, cytokines, microbial products, and mesenteric adipocytes are jointly implicated in the pathogenesis of intestinal fibrosis. This recent information puts prevention or reversal of intestinal strictures within reach through innovative therapies validated by reliable clinical trial endpoints. Here, we review the role of immune and non-immune components of the pathogenesis of intestinal fibrosis, including new cell clusters, cytokine networks, host-microbiome interactions, creeping fat, and their translation for endpoint development in anti-fibrotic clinical trials.
Collapse
Affiliation(s)
- Jie Wang
- Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sinan Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jonathan Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
120
|
Wang X, Yi P, Liang Y. The Role of IL-36 in Infectious Diseases: Potential Target for COVID-19? Front Immunol 2021; 12:662266. [PMID: 34054828 PMCID: PMC8155493 DOI: 10.3389/fimmu.2021.662266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
IL-36 is a member of the interleukin 1 cytokine family, which is currently experiencing a renaissance due to the growing understanding of its context-dependent roles and advances in our understanding of the inflammatory response. The immunological role of IL-36 has revealed its profound and indispensable functional roles in psoriasis, as well as in several inflammatory diseases, including inflammatory bowel disease (IBD), systemic lupus erythematosus, rheumatoid arthritis (RA) and cancer. More recently, an increasing body of evidence suggests that IL-36 plays a crucial role in viral, bacterial and fungal infections. There is a growing interest as to whether IL-36 contributes to host protective immune responses against infection as well as the potential implications of IL-36 for the development of new therapeutic strategies. In this review, we summarize the recent progress in understanding cellular expression, regulatory mechanisms and biological roles of IL-36 in infectious diseases, which suggest more specific strategies to maneuver IL-36 as a diagnostic or therapeutic target, especially in COVID-19.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Panpan Yi
- Department of Infectious Diseases, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, China
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
121
|
Molecular targets and the use of biologics in the management of small bowel fibrosis in inflammatory bowel disease. Curr Opin Gastroenterol 2021; 37:275-283. [PMID: 33769380 DOI: 10.1097/mog.0000000000000729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Small bowel fibrosis is a significant burden on Crohn's disease patients with limited effective medical treatments that then requires surgery. A better understanding of the molecular mechanisms causing fibrosis and the evidence of benefit of available biologics will potentially lighten this burden and avoid the need for surgery. RECENT FINDINGS Transforming growth factor-beta and it's associated pathways remain the central cog in the wheel of fibrosis formation. Various new enzymes, cellular pathways, interleukins and molecules have been associated with beneficial modification of the fibrotic process. Licensed biologics such as antitumour necrosis factors continue to show evidence of efficacy in the treatment of fibrostenotic small bowel disease as well as the newer biologics ustekinumab and vedolizumab. SUMMARY Fibrostenotic disease of the small bowel is a significant and common debilitating complication in Crohn's disease patients. Multiple new molecular targets have been identified that may prove to become effective therapies in future. Antitumour necrosis factors remain the treatment with the best available evidence to date in fibrostenotic Crohn's disease.
Collapse
|
122
|
Sleiman J, Ouali SE, Qazi T, Cohen B, Steele SR, Baker ME, Rieder F. Prevention and Treatment of Stricturing Crohn's Disease - Perspectives and Challenges. Expert Rev Gastroenterol Hepatol 2021; 15:401-411. [PMID: 33225766 PMCID: PMC8026566 DOI: 10.1080/17474124.2021.1854732] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Fibrostenosis is a hallmark of Crohn's disease (CD), remains a challenge in today's clinical management of inflammatory bowel disease patients and represents a key event in the disease course necessitating improved preventative strategies and a multidisciplinary approach to diagnosis and management. With the advent of anti-fibrotic therapies and well-defined clinical endpoints for stricturing CD, there is promise to impact the natural history of disease.Areas covered: This review summarizes current evidence in the natural history of stricturing Crohn's disease, discusses management approaches as well as future perspectives on intestinal fibrosis.Expert opinion: Currently, there are no specific therapies to prevent progression to fibrosis or to treat it after it becomes clinically apparent. In addition to the international effort by the Stenosis Therapy and Anti-Fibrotic Research (STAR) consortium to standardize definitions and propose endpoints in the management of stricturing CD, further research to improve our understanding of mechanisms of intestinal fibrosis will help pave the way for the development of future anti-fibrotic therapies.
Collapse
Affiliation(s)
- Joseph Sleiman
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Sara El Ouali
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Digestive Diseases Institute, Cleveland Clinic Abu Dhabi, United Arab Emirates
| | - Taha Qazi
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Benjamin Cohen
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Scott R. Steele
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mark E. Baker
- Section Abdominal Imaging, Imaging Institute, Digestive Diseases and Surgery Institute, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA,Corresponding author: Florian Rieder, Address: Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, 9500 Euclid Avenue – NC22, Cleveland, OH, 44195,
| |
Collapse
|
123
|
Han X, Ding S, Jiang H, Liu G. Roles of Macrophages in the Development and Treatment of Gut Inflammation. Front Cell Dev Biol 2021; 9:625423. [PMID: 33738283 PMCID: PMC7960654 DOI: 10.3389/fcell.2021.625423] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Macrophages, which are functional plasticity cells, have the ability to phagocytize and digest foreign substances and acquire pro-(M1-like) or anti-inflammatory (M2-like) phenotypes according to their microenvironment. The large number of macrophages in the intestinal tract, play a significant role in maintaining the homeostasis of microorganisms on the surface of the intestinal mucosa and in the continuous renewal of intestinal epithelial cells. They are not only responsible for innate immunity, but also participate in the development of intestinal inflammation. A clear understanding of the function of macrophages, as well as their role in pathogens and inflammatory response, will delineate the next steps in the treatment of intestinal inflammatory diseases. In this review, we discuss the origin and development of macrophages and their role in the intestinal inflammatory response or infection. In addition, the effects of macrophages in the occurrence and development of inflammatory bowel disease (IBD), and their role in inducing fibrosis, activating T cells, reducing colitis, and treating intestinal inflammation were also reviewed in this paper.
Collapse
Affiliation(s)
- Xuebing Han
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Hongmei Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, China
| |
Collapse
|
124
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel disease (IBD) is associated with bone loss leading to osteoporosis and increased fracture risk. Bone loss is the result of changes in the balanced process of bone remodeling. Immune cells and cytokines play an important role in the process of bone remodeling and it is therefore not surprising that cytokines as observed in IBD are involved in bone pathology. This review discusses the role of cytokines in IBD-associated bone loss, including the consequences for treatment. RECENT FINDINGS Many studies have been conducted that showed the effect of a single cytokine on bone cells in vitro, including interleukin (IL)-1β, IL-6, IL-8, IL-12/IL-23, IL-17, IL-18, IL-32 and interferon-γ. Recently new members of the IL-1 family (IL-1F) have been related to IBD but the consequences for bone health remain uncertain. SUMMARY Overall, patients have to deal with a cocktail of cytokines, present in their serum. The combination of cytokines can affect bone cells differently compared to the effects of a single cytokine. This implicates that treatment, focused on reducing the inflammation could work best for bone health as well. Vitamin D might also play a role in this.
Collapse
|
125
|
Ngo VL, Kuczma M, Maxim E, Denning TL. IL-36 cytokines and gut immunity. Immunology 2021; 163:145-154. [PMID: 33501638 DOI: 10.1111/imm.13310] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin 36 (IL-36) constitutes a group of cytokines that belong to the IL-1 superfamily. Emerging evidence has suggested a role of IL-36 in the pathogenesis of many inflammatory disorders. Intriguingly, in the gastrointestinal tract, IL-36 has a rather complex function. IL-36 receptor ligands are overexpressed in both animal colitis models and human IBD patients and may play both pathogenic and protective roles, depending on the context. IL-36 cytokines comprise three receptor agonists: IL-36α, IL-36β and IL-36γ, and two receptor antagonists: IL-36Ra and IL-38. All IL-36 receptor agonists bind to the IL-36R complex and exert pleiotropic effects during inflammatory settings. Here, we first briefly review the processing and secretion of IL-36 cytokines. We then focus on the current understanding of the immunology effects of IL-36 in gut immunity. In addition, we also discuss the ongoing trials that aim to blockage IL-36R signalling for treating chronic intestinal inflammation and present some unexplored questions regarding IL-36 research.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Estera Maxim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
126
|
Leon G, Hussey S, Walsh PT. The Diverse Roles of the IL-36 Family in Gastrointestinal Inflammation and Resolution. Inflamm Bowel Dis 2021; 27:440-450. [PMID: 32860042 DOI: 10.1093/ibd/izaa232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The interleukin (IL)-36 family is a member of the IL-1 superfamily of cytokines and, in common with other IL-1 family members, has been shown to exhibit pleiotropic effects in homeostasis and inflammation. Although the important role these cytokines play in the skin has been widely reported, recent evidence suggests that IL-36 family members are expressed and can also exert significant influence at the intestinal mucosa. In this review, we summarize current knowledge surrounding the role of the IL-36 in the intestines. In particular, we examine its likely dichotomous role as a mediator of both inflammation and resolution, highlighting its overlapping roles in innate and adaptive inflammation at the mucosa and its contribution to pathophysiology of inflammatory bowel disease. We also summarize the complexities of targeting this cytokine family in a clinical setting.
Collapse
Affiliation(s)
- Gemma Leon
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Seamus Hussey
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
127
|
Koss CK, Wohnhaas CT, Baker JR, Tilp C, Przibilla M, Lerner C, Frey S, Keck M, Williams CMM, Peter D, Ramanujam M, Fine J, Gantner F, Thomas M, Barnes PJ, Donnelly LE, El Kasmi KC. IL36 is a critical upstream amplifier of neutrophilic lung inflammation in mice. Commun Biol 2021; 4:172. [PMID: 33558616 PMCID: PMC7870940 DOI: 10.1038/s42003-021-01703-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023] Open
Abstract
IL-36, which belongs to the IL-1 superfamily, is increasingly linked to neutrophilic inflammation. Here, we combined in vivo and in vitro approaches using primary mouse and human cells, as well as, acute and chronic mouse models of lung inflammation to provide mechanistic insight into the intercellular signaling pathways and mechanisms through which IL-36 promotes lung inflammation. IL-36 receptor deficient mice exposed to cigarette smoke or cigarette smoke and H1N1 influenza virus had attenuated lung inflammation compared with wild-type controls. We identified neutrophils as a source of IL-36 and show that IL-36 is a key upstream amplifier of lung inflammation by promoting activation of neutrophils, macrophages and fibroblasts through cooperation with GM-CSF and the viral mimic poly(I:C). Our data implicate IL-36, independent of other IL-1 family members, as a key upstream amplifier of neutrophilic lung inflammation, providing a rationale for targeting IL-36 to improve treatment of a variety of neutrophilic lung diseases.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Cigarette Smoking
- Disease Models, Animal
- Female
- Fibroblasts/immunology
- Fibroblasts/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Interleukin-1/genetics
- Interleukin-1/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Macrophage Activation
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophil Activation
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/virology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/metabolism
- Orthomyxoviridae Infections/virology
- Pneumonia, Viral/genetics
- Pneumonia, Viral/immunology
- Pneumonia, Viral/metabolism
- Pneumonia, Viral/virology
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Carolin K Koss
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christian T Wohnhaas
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Jonathan R Baker
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Cornelia Tilp
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | | | - Carmen Lerner
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Silvia Frey
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Martina Keck
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Cara M M Williams
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- WRDM, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA, USA
| | - Daniel Peter
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Meera Ramanujam
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Jay Fine
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Florian Gantner
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Matthew Thomas
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Peter J Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Louise E Donnelly
- Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
128
|
Xu D, Li S, Wang L, Jiang J, Zhao L, Huang X, Sun Z, Li C, Sun L, Li X, Jiang Z, Zhang L. TAK1 inhibition improves myoblast differentiation and alleviates fibrosis in a mouse model of Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2021; 12:192-208. [PMID: 33236534 PMCID: PMC7890152 DOI: 10.1002/jcsm.12650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Transforming growth factor-β-activated kinase 1 (TAK1) plays a key role in regulating fibroblast and myoblast proliferation and differentiation. However, the TAK1 changes associated with Duchenne muscular dystrophy (DMD) are poorly understood, and it remains unclear how TAK1 regulation could be exploited to aid the treatment of this disease. METHODS Muscle biopsies were obtained from control donors or DMD patients for diagnosis (n = 6 per group, male, 2-3 years, respectively). Protein expression of phosphorylated TAK1 was measured by western blot and immunofluorescence analysis. In vivo overexpression of TAK1 was performed in skeletal muscle to assess whether TAK1 is sufficient to induce or aggravate atrophy and fibrosis. To explore whether TAK1 inhibition protects against muscle damage, mdx (loss of dystrophin) mice were treated with adeno-associated virus (AAV)-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). Serum analysis, skeletal muscle performance and histology, muscle contractile function, and gene and protein expression were performed. RESULTS We found that TAK1 was activated in the dystrophic muscles of DMD patients (n = 6, +72.2%, P < 0.001), resulting in fibrosis ( +65.9% for fibronectin expression, P < 0.001) and loss of muscle fibres (-32.5%, P < 0.01). Moreover, TAK1 was activated by interleukin-1β, tumour necrosis factor-α, and transforming growth factor-β1 (P < 0.01). Overexpression of TAK1 by AAV vectors further aggravated fibrosis (n = 8, +39.6% for hydroxyproline content, P < 0.01) and exacerbated muscle wasting (-31.6%, P < 0.01) in mdx mice; however, these effects were reversed in mdx mice by treatment with AAV-short hairpin TAK1 (shTAK1) or NG25 (a TAK1 inhibitor). The molecular mechanism underlying these effects may be related to the prevention of TAK1-mediated transdifferentiation of myoblasts into fibroblasts, thereby reducing fibrosis and increasing myoblast differentiation. CONCLUSIONS Our findings show that TAK1 activation exacerbated fibrosis and muscle degeneration and that TAK1 inhibition can improve whole-body muscle quality and the function of dystrophic skeletal muscle. Thus, TAK1 inhibition may constitute a novel therapy for DMD.
Collapse
Affiliation(s)
- Dengqiu Xu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Sijia Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lu Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Jingwei Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lei Zhao
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaofei Huang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Zeren Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Chunjie Li
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Lixin Sun
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Xihua Li
- Department of Neurology, Children's Hospital of Fudan University, Shanghai, China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
129
|
Li XH, Feng ST, Cao QH, Coffey JC, Baker ME, Huang L, Fang ZN, Qiu Y, Lu BL, Chen ZH, Li Y, Bettenworth D, Iacucci M, Sun CH, Ghosh S, Rieder F, Chen MH, Li ZP, Mao R. Degree of Creeping Fat Assessed by Computed Tomography Enterography is Associated with Intestinal Fibrotic Stricture in Patients with Crohn's Disease: A Potentially Novel Mesenteric Creeping Fat Index. J Crohns Colitis 2021; 15:1161-1173. [PMID: 33411893 PMCID: PMC8427713 DOI: 10.1093/ecco-jcc/jjab005] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Emerging evidence points to a link between creeping fat and the pathogenesis of Crohn's disease [CD]. Non-invasive assessment of the severity of creeping fat on cross-sectional imaging modality has seldom been investigated. This study aimed to develop and characterize a novel mesenteric creeping fat index [MCFI] based on computed tomography [CT] in CD patients. METHODS MCFI was developed based on vascular findings on CT in a retrospective cohort [n = 91] and validated in a prospective cohort [n = 30]. The severity of creeping fat was graded based on the extent to which mesenteric fat extended around the intestinal circumference using the vessels in the fat as a marker. The accuracy of MCFI was assessed by comparing it with the degree of creeping fat observed in surgical specimens. The relationship between MCFI and fibrostenosis was characterized by determining if these correlated. The accuracy of MCFI was compared with other radiographic indices [i.e. visceral to subcutaneous fat area ratio and fibrofatty proliferation score]. RESULTS In the retrospective cohort, MCFI had moderate accuracy in differentiating moderate-severe from mild fibrostenosis (area under the receiver operating characteristic [ROC] curve [AUC] = 0.799; p = 0.000). ROC analysis in the retrospective cohort identified a threshold MCFI of > 3 which accurately differentiated fibrostenosis severity in the prospective cohort [AUC = 0.756; p = 0.018]. An excellent correlation was shown between MCFI and the extent of fat wrapping in specimens in the prospective cohort [r = 0.840, p = 0.000]. Neither visceral to subcutaneous fat area ratio nor fibrofatty proliferation score correlated well with the degree of intestinal fibrosis. CONCLUSIONS MCFI can accurately characterize the extent of mesenteric fat wrapping in surgical specimens. It may become another non-invasive measure of CD fibrostenosis.
Collapse
Affiliation(s)
- Xue-Hua Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Qing-Hua Cao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - J Calvin Coffey
- Department of Surgery, University Hospital Group Limerick and School of Medicine, University of Limerick, Limerick, Ireland
| | - Mark E Baker
- Section of Abdominal Imaging, Imaging Institute, Digestive Disease Institute and Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhuang-Nian Fang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yun Qiu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Bao-Lan Lu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zhi-Hui Chen
- Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Yi Li
- Center for Inflammatory Bowel Diseases, Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Dominik Bettenworth
- Department of Medicine B for Gastroenterology and Hepatology, University Hospital Münster, Münster, Germany
| | - Marietta Iacucci
- NIHR Biomedical Research Institute, Institute of Translational Medicine, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
| | - Can-Hui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Subrata Ghosh
- NIHR Biomedical Research Institute, Institute of Translational Medicine, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Min-Hu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Zi-Ping Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA,Corresponding author: Ren Mao, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2nd, Guangzhou 510080, People’s Republic of China; Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA. Tel: 86-20-87755766-8471; Fax: 86-20-87615805;
| |
Collapse
|
130
|
Ho J, Camilli G, Griffiths JS, Richardson JP, Kichik N, Naglik JR. Candida albicans and candidalysin in inflammatory disorders and cancer. Immunology 2021; 162:11-16. [PMID: 32880925 PMCID: PMC7730014 DOI: 10.1111/imm.13255] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/30/2022] Open
Abstract
As our understanding of mycology progresses, the impact of fungal microbes on human health has become increasingly evident. Candida albicans is a common commensal fungus that gives rise to local and systemic infections, particularly in immunocompromised patients where it can result in mortality. However, C. albicans has also been quietly linked with a variety of inflammatory disorders, to which it has traditionally been considered incidental; recent studies may now provide new aspects of these relationships for further consideration. This review provides a novel perspective on the impact of C. albicans and its peptide toxin, candidalysin, on human health, exploring their contributions to pathology within a variety of diseases.
Collapse
Affiliation(s)
- Jemima Ho
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Giorgio Camilli
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - James S. Griffiths
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Jonathan P. Richardson
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Nessim Kichik
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| | - Julian R. Naglik
- Centre for Host‐Microbiome InteractionsFaculty of Dentistry, Oral & Craniofacial SciencesKing's College LondonLondonUK
| |
Collapse
|
131
|
Cui J, Li Y, Jiao C, Gao J, He Y, Nie B, Kong L, Guo W, Xu Q. Improvement of magnesium isoglycyrrhizinate on DSS-induced acute and chronic colitis. Int Immunopharmacol 2021; 90:107194. [PMID: 33290965 DOI: 10.1016/j.intimp.2020.107194] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a worldwide prototypical complex disease, owing to its multifactorial causes, relapsing and remitting condition and high incidence. Thus, effective therapeutic approaches need to be developed for patients with IBD. Currently, we reported the improving effect of magnesium isoglycyrrhizinate on colitis induced by dextran sulfate sodium (DSS). We found that magnesium isoglycyrrhizinate treatment significantly alleviated DSS-induced acute and chronic colitis by inhibiting the inflammatory response characterized by reduce of the infiltrations of immune cell and the level of pro-inflammatory cytokines. Besides, magnesium isoglycyrrhizinate treatment significantly inhibited the level of ROS and decreased the gut barrier destruction after DSS treatment. Furthermore, the results also showed that administration of magnesium isoglycyrrhizinate significantly reduced the colonic fibrosis. Taken together, these results revealed the potency of magnesium isoglycyrrhizinate on the intestinal inflammation, by which points to the possible use of magnesium isoglycyrrhizinate for IBD therapy in clinical applications.
Collapse
Affiliation(s)
- Jian Cui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Chenyang Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Jianhua Gao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Yingxue He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Beibei Nie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
132
|
Yu M, Wu H, Wang J, Chen X, Pan J, Liu P, Zhang J, Chen Y, Zhu W, Tang C, Jin Q, Li C, Lu C, Zeng H, Yu C, Sun J. Vitamin D receptor inhibits EMT via regulation of the epithelial mitochondrial function in intestinal fibrosis. J Biol Chem 2021; 296:100531. [PMID: 33713706 PMCID: PMC8054199 DOI: 10.1016/j.jbc.2021.100531] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/30/2023] Open
Abstract
We previously showed that the vitamin D receptor (VDR) plays a crucial role in acute inflammatory bowel disease and that intestinal fibrosis is a common complication of Crohn's disease (CD). Epithelial-mesenchymal transition (EMT) is an important hallmark of fibrogenesis through which epithelial cells lose their epithelial phenotype and transform into mesenchymal cells. It is known that the VDR plays an essential role in epithelial integrity and mitochondrial function, but its role in intestinal fibrosis remains unknown. Here, we investigated whether the VDR is involved in epithelial mitochondrial dysfunction that results in EMT in intestinal fibrosis. Using human CD samples, intestine-specific VDR-KO mice, and fibroblast cellular models, we showed that the expression of the VDR was significantly lower in intestinal stenotic areas than in nonstenotic areas in patients with chronic CD. Genetic deletion of the VDR in the intestinal epithelium exacerbated intestinal fibrosis in mice administered with dextran sulfate sodium or 2,4,6-trinitrobenzene sulfonic acid, two experimental colitis inducers. In addition, we found that vitamin D dietary intervention regulated intestinal fibrosis by modulating the intestinal expression of the VDR. Mechanistically, knocking down the VDR in both CCD-18Co cells and human primary colonic fibroblasts promoted fibroblast activation, whereas VDR overexpression or VDR agonist administration inhibited fibroblast activation. Further analysis illustrated that the VDR inhibited EMT in the HT29 cell model and that mitochondrial dysfunction mediated epithelial integrity and barrier function in VDR-deficient epithelial cells. Together, our data for the first time demonstrate that VDR activation alleviates intestinal fibrosis by inhibiting fibroblast activation and epithelial mitochondria-mediated EMT.
Collapse
Affiliation(s)
- Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinhai Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xueyang Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Pan
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peihao Liu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenxi Tang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Jin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chunxiao Li
- Department of Gastroenterology, Ningbo First Hospital, Ningbo, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
133
|
Hovhannisyan Z, Liu N, Khalil-Aguero S, Panea C, VanValkenburgh J, Zhang R, Lim WK, Bai Y, Fury W, Huang T, Garnova E, Fairhurst J, Kim J, Aryal S, Ajithdoss D, Oyejide A, Del Pilar Molina-Portela M, E H, Poueymirou W, Oristian NS, Brydges S, Liu X, Olson W, Yancopoulos G, Murphy AJ, Sleeman MA, Haxhinasto S. Enhanced IL-36R signaling promotes barrier impairment and inflammation in skin and intestine. Sci Immunol 2020; 5:5/54/eaax1686. [PMID: 33443029 DOI: 10.1126/sciimmunol.aax1686] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022]
Abstract
Deficiency in interleukin-36R (IL-36R) antagonist caused by loss-of-function mutations in IL-36RN leads to DITRA (deficiency of IL-36 receptor antagonist), a rare inflammatory human disease that belongs to a subgroup of generalized pustular psoriasis (GPP). We report a functional genetic mouse model of DITRA with enhanced IL-36R signaling analogous to that observed in patients with DITRA, which provides new insight into our understanding of the IL-36 family of molecules in regulating barrier integrity across multiple tissues. Humanized DITRA-like mice displayed increased skin inflammation in a preclinical model of psoriasis, and in vivo blockade of IL-36R pathway using anti-human IL-36R antibody ameliorated imiquimod-induced skin pathology as both prophylactic and therapeutic treatments. Deeper characterization of the humanized DITRA-like mice revealed that deregulated IL-36R signaling promoted tissue pathology during intestinal injury and led to impairment in mucosal restoration in the repair phase of chronic dextran sulfate sodium (DSS)-induced colitis. Blockade of IL-36R pathway significantly ameliorated DSS-induced intestinal inflammation and rescued the inability of DITRA-like mice to recover from mucosal damage in vivo. Our results indicate a central role for IL-36 in regulating proinflammatory responses in the skin and epithelial barrier function in the intestine, suggesting a new therapeutic potential for targeting the IL-36R axis in psoriasis and at the later stages of intestinal pathology in inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Nengyin Liu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Casandra Panea
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Ruoyu Zhang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Wen Fury
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | - Jee Kim
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - Smita Aryal
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Hock E
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Xia Liu
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA
| | | | | | | | | |
Collapse
|
134
|
Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol 2020; 92:e12990. [PMID: 33119150 PMCID: PMC7757243 DOI: 10.1111/sji.12990] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention. Although stricture development is associated with inflammation in the affected segment, anti‐inflammatory therapies fall far short of treating strictures. At best, current therapies might allow some patients to avoid surgery in a shorter perspective and no anti‐fibrotic therapy is yet available. This likely relates to our poor understanding of the mechanism underlying stricture development. Chronic inflammation is a prerequisite, but progression to strictures involves changes in fibroblasts, myofibroblasts and smooth muscle cells in a poorly understood interplay with immune cells and environmental cues. Much of the experimental evidence available is from animal models, cell lines or non‐strictured patient tissue. Accordingly, these limitations create the basis for many previously published reviews covering the topic. Although this information has contributed to the understanding of fibrotic mechanisms in general, in the end, data must be validated in strictured tissue from patients. As stricture formation is a serious complication of CD, we endeavoured to summarize findings exclusively performed using strictured tissue from patients. Here, we give an update of the mechanism driving this serious complication in patients, and how the strictured tissue differs from adjacent unaffected tissue and controls.
Collapse
Affiliation(s)
- Johannes Alfredsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
135
|
Cho SX, Rudloff I, Lao JC, Pang MA, Goldberg R, Bui CB, McLean CA, Stock M, Klassert TE, Slevogt H, Mangan NE, Cheng W, Fischer D, Gfroerer S, Sandhu MK, Ngo D, Bujotzek A, Lariviere L, Schumacher F, Tiefenthaler G, Beker F, Collins C, Kamlin COF, König K, Malhotra A, Tan K, Theda C, Veldman A, Ellisdon AM, Whisstock JC, Berger PJ, Nold-Petry CA, Nold MF. Characterization of the pathoimmunology of necrotizing enterocolitis reveals novel therapeutic opportunities. Nat Commun 2020; 11:5794. [PMID: 33188181 PMCID: PMC7666196 DOI: 10.1038/s41467-020-19400-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe, currently untreatable intestinal disease that predominantly affects preterm infants and is driven by poorly characterized inflammatory pathways. Here, human and murine NEC intestines exhibit an unexpected predominance of type 3/TH17 polarization. In murine NEC, pro-inflammatory type 3 NKp46−RORγt+Tbet+ innate lymphoid cells (ILC3) are 5-fold increased, whereas ILC1 and protective NKp46+RORγt+ ILC3 are obliterated. Both species exhibit dysregulation of intestinal TLR repertoires, with TLR4 and TLR8 increased, but TLR5-7 and TLR9-12 reduced. Transgenic IL-37 effectively protects mice from intestinal injury and mortality, whilst exogenous IL-37 is only modestly efficacious. Mechanistically, IL-37 favorably modulates immune homeostasis, TLR repertoires and microbial diversity. Moreover, IL-37 and its receptor IL-1R8 are reduced in human NEC epithelia, and IL-37 is lower in blood monocytes from infants with NEC and/or lower birthweight. Our results on NEC pathomechanisms thus implicate type 3 cytokines, TLRs and IL-37 as potential targets for novel NEC therapies. Necrotizing Enterocolitis (NEC) is an untreatable intestinal disease in infants. Here the authors show that human and experimental mouse NEC is associated with altered toll-like receptor expression in the intestine, enhanced Th17/type 3 polarization in adaptive immune and innate lymphoid cells, dysregulated microbiota, and reduced interleukin-37 signaling.
Collapse
Affiliation(s)
- Steven X Cho
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Immunology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ina Rudloff
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Jason C Lao
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Merrin A Pang
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Rimma Goldberg
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Christine B Bui
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Hospital, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | | | | | - Niamh E Mangan
- Department of Molecular and Translational Science, Monash University, Melbourne, VIC, Australia.,Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Wei Cheng
- Department of Surgery, Beijing United Family Hospital, Beijing, China.,Capital Institute of Pediatrics, Beijing, China
| | - Doris Fischer
- Department of Pediatrics, Goethe University Hospital, Frankfurt, Germany.,Department of Pediatrics, St. Vincenz Hospital, Limburg, Germany
| | - Stefan Gfroerer
- Department of Pediatric Surgery, Goethe University Hospital, Frankfurt, Germany.,Helios Clinic Berlin-Buch, Berlin, Germany
| | - Manjeet K Sandhu
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Gastroenterology, Monash Health, Melbourne, VIC, Australia
| | - Devi Ngo
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alexander Bujotzek
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Laurent Lariviere
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Felix Schumacher
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Georg Tiefenthaler
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Friederike Beker
- Mater Research Institute, University of Queensland, Brisbane, QLD, Australia.,Neonatal Services, Mercy Hospital for Women, Melbourne, VIC, Australia
| | - Clare Collins
- Neonatal Services, Mercy Hospital for Women, Melbourne, VIC, Australia.,Joan Kirner Women's & Children's, Sunshine Hospital, Melbourne, VIC, Australia
| | - C Omar F Kamlin
- Department of Newborn Research, Royal Women's Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Kai König
- Medicum Wesemlin, Department of Paediatrics, Lucerne, Switzerland
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Kenneth Tan
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia
| | - Christiane Theda
- Department of Newborn Research, Royal Women's Hospital, Melbourne, VIC, Australia.,University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Alex Veldman
- Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Pediatrics, St. Vincenz Hospital, Limburg, Germany.,Department of Pediatrics, Liebig University Hospital, Giessen, Germany
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia
| | - Philip J Berger
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia.,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Marcel F Nold
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia. .,Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia. .,Monash Newborn, Monash Children's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
136
|
Ngo VL, Abo H, Kuczma M, Szurek E, Moore N, Medina-Contreras O, Nusrat A, Merlin D, Gewirtz AT, Ignatowicz L, Denning TL. IL-36R signaling integrates innate and adaptive immune-mediated protection against enteropathogenic bacteria. Proc Natl Acad Sci U S A 2020; 117:27540-27548. [PMID: 33087566 PMCID: PMC7959549 DOI: 10.1073/pnas.2004484117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enteropathogenic bacterial infections are a global health issue associated with high mortality, particularly in developing countries. Efficient host protection against enteropathogenic bacterial infection is characterized by coordinated responses between immune and nonimmune cells. In response to infection in mice, innate immune cells are activated to produce interleukin (IL)-23 and IL-22, which promote antimicrobial peptide (AMP) production and bacterial clearance. IL-36 cytokines are proinflammatory IL-1 superfamily members, yet their role in enteropathogenic bacterial infection remains poorly defined. Using the enteric mouse pathogen, C.rodentium, we demonstrate that signaling via IL-36 receptor (IL-36R) orchestrates a crucial innate-adaptive immune link to control bacterial infection. IL-36R-deficient mice (Il1rl2-/- ) exhibited significant impairment in expression of IL-22 and AMPs, increased intestinal damage, and failed to contain C. rodentium compared to controls. These defects were associated with failure to induce IL-23 and IL-6, two key IL-22 inducers in the early and late phases of infection, respectively. Treatment of Il1rl2-/- mice with IL-23 during the early phase of C. rodentium infection rescued IL-22 production from group 3 innate lymphoid cells (ILCs), whereas IL-6 administration during the late phase rescued IL-22-mediated production from CD4+ T cell, and both treatments protected Il1rl2-/- mice from uncontained infection. Furthermore, IL-36R-mediated IL-22 production by CD4+ T cells was dependent upon NFκB-p65 and IL-6 expression in dendritic cells (DCs), as well as aryl hydrocarbon receptor (AhR) expression by CD4+ T cells. Collectively, these data demonstrate that the IL-36 signaling pathway integrates innate and adaptive immunity leading to host defense against enteropathogenic bacterial infection.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Hirohito Abo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Edyta Szurek
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Nora Moore
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | | | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Andrew T Gewirtz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Leszek Ignatowicz
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303;
| |
Collapse
|
137
|
An S, Hu H, Li Y, Hu Y. Pyroptosis Plays a Role in Osteoarthritis. Aging Dis 2020; 11:1146-1157. [PMID: 33014529 PMCID: PMC7505276 DOI: 10.14336/ad.2019.1127] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
Recent studies have revealed novel forms of cell death beyond the canonical types of cellular apoptosis and necrosis, and these novel forms of cell death are induced by extreme microenvironmental factors. Pyroptosis, a type of regulated cell death, occurs when pattern recognition receptors (PRRs) induce the activation of cysteine-aspartic protease 1 (caspase-1) or caspase-11, which can trigger the release of the pyrogenic cytokines interleukin-1β (IL-1β) and IL-18. Osteoarthritis (OA), the most common joint disease worldwide, is characterized by low-grade inflammation and increased levels of cytokines, including IL-1β and IL-18. Additionally, some damaged chondrocytes associated with OA exhibit morphological changes consistent with pyroptosis, suggesting that this form of regulated cell death may contribute significantly to the pathology of OA. This review summarizes the molecular mechanisms of pyroptosis and shows the critical role of NLRP3 (NLR family, pyrin domain containing 3; NLR refers to "nucleotide-binding domain, leucine-rich repeat") inflammasomes. We also provide evidence describing potential role of pyroptosis in OA, including the relationship with OA risk factors and the contribution to cartilage degradation, synovitis and OA pain.
Collapse
Affiliation(s)
- Senbo An
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huiyu Hu
- 2Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yusheng Li
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,3National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yihe Hu
- 1Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
138
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
139
|
Kobayashi T, Siegmund B, Le Berre C, Wei SC, Ferrante M, Shen B, Bernstein CN, Danese S, Peyrin-Biroulet L, Hibi T. Ulcerative colitis. Nat Rev Dis Primers 2020; 6:74. [PMID: 32913180 DOI: 10.1038/s41572-020-0205-x] [Citation(s) in RCA: 935] [Impact Index Per Article: 187.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/21/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown aetiology affecting the colon and rectum. Multiple factors, such as genetic background, environmental and luminal factors, and mucosal immune dysregulation, have been suggested to contribute to UC pathogenesis. UC has evolved into a global burden given its high incidence in developed countries and the substantial increase in incidence in developing countries. An improved understanding of the mechanisms underlying UC has led to the emergence of new treatments. Since the early 2000s, anti-tumour necrosis factor (TNF) treatment has significantly improved treatment outcomes. Advances in medical treatments have enabled a paradigm shift in treatment goals from symptomatic relief to endoscopic and histological healing to achieve better long-term outcomes and, consequently, diagnostic modalities have also been improved to monitor disease activity more tightly. Despite these improvements in patient care, a substantial proportion of patients, for example, those who are refractory to medical treatment or those who develop colitis-associated colorectal dysplasia or cancer, still require restorative proctocolectomy. The development of novel drugs and improvement of the treatment strategy by implementing personalized medicine are warranted to achieve optimal disease control. However, delineating the aetiology of UC is necessary to ultimately achieve disease cure.
Collapse
Affiliation(s)
- Taku Kobayashi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Charite-Universitatsmedizin, Berlin, Germany
| | - Catherine Le Berre
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Shu Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Marc Ferrante
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Bo Shen
- Center for Inflammatory Bowel Diseases, Columbia University Irving Medical Center-New York Presbyterian Hospital, New York, NY, USA
| | - Charles N Bernstein
- University of Manitoba IBD Clinical and Research Centre and Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Silvio Danese
- Humanitas Clinical and Research Center - IRCCS - and Humanitas University, Department of Biomedical Sciences, Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, Inserm U1256 NGERE, Lorraine University, Lorraine, France
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato University Kitasato Institute Hospital, Tokyo, Japan.
| |
Collapse
|
140
|
Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A. IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 2020; 75:109773. [PMID: 32898612 DOI: 10.1016/j.cellsig.2020.109773] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
The IL-1 family of cytokines and receptors are critical regulators of inflammation. Within the IL-1 family and in contrast to its IL-1 and IL-18 subfamilies, the IL-36 subfamily is still poorly characterized. Three pro-inflammatory agonists IL-36α, IL-36β, IL-36γ, one IL-36 receptor (IL-1R6) antagonist, IL-36RA, and one putative IL-1R6 antagonist, IL-38, have been grouped into the IL-36 cytokine subfamily. IL-36 agonists signal through a common receptor complex to serve as early triggers of inflammatory responses by activating and cross-regulating a number of inflammatory pathways including NF-κB, MAPK and IFN signaling. IL-36RA binds to IL-1R6 to limit inflammatory signaling, while IL-38 may be an antagonist of more than one IL-1 family receptor. Expression patterns of IL-36 family cytokines, being most prominently expressed in epithelial barrier tissues such as the skin and intestines as well as in immune cells, suggest a role in protecting these barriers from infection. Dysregulation of IL-36 family cytokine signaling at physiological barriers, most prominently the skin, induces autoimmune inflammation. However, transferring the potential of IL-36 to induce tissue damage to tumors might benefit cancer patients. Here we summarize signaling pathways regulated by IL-36 family cytokines, including IL-38, and the consequences for physiological protective and pathophysiological destructive inflammation. Moreover, we discuss the limits of current knowledge on IL-36 family function to open potential avenues for research in the future.
Collapse
Affiliation(s)
- Yingying Han
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Special Key Laboratory of Oral Diseases Research, Higher Education Institutions of Guizhou Province, Zunyi Medical University, Zunyi 563006, Guizhou, China; School of Stomatology, Zunyi Medical University, Zunyi 563006, Guizhou, China
| | - Arnaud Huard
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany
| | - Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Faculty of Microbiology, University of Costa Rica, San José 2060, Costa Rica
| | - Priscila da Silva
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Translational Medicine and Pharmacology (TMP), Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt 60590, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt 60596, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
| |
Collapse
|
141
|
Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis. Int J Mol Sci 2020; 21:ijms21186458. [PMID: 32899668 PMCID: PMC7556029 DOI: 10.3390/ijms21186458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue fibrosis is a major unresolved medical problem, which impairs the function of various systems. The molecular mechanisms involved are poorly understood, which hinders the development of effective therapeutic strategies. Emerging evidence from recent studies indicates that interleukin 36 (IL-36) and the corresponding receptor (IL-36R), a newly-characterized cytokine/receptor signaling complex involved in immune-inflammation, play an important role in the pathogenesis of fibrosis in multiple tissues. This review focuses on recent experimental findings, which implicate IL-36R and its associated cytokines in different forms of organ fibrosis. Specifically, it outlines the molecular basis and biological function of IL-36R in normal cells and sums up the pathological role in the development of fibrosis in the lung, kidney, heart, intestine, and pancreas. We also summarize the new progress in the IL-36/IL-36R-related mechanisms involved in tissue fibrosis and enclose the potential of IL-36R inhibition as a therapeutic strategy to combat pro-fibrotic pathologies. Given its high association with disease, gaining new insight into the immuno-mechanisms that contribute to tissue fibrosis could have a significant impact on human health.
Collapse
|
142
|
Fuenzalida Werner JP, Huang Y, Mishra K, Janowski R, Vetschera P, Heichler C, Chmyrov A, Neufert C, Niessing D, Ntziachristos V, Stiel AC. Challenging a Preconception: Optoacoustic Spectrum Differs from the Optical Absorption Spectrum of Proteins and Dyes for Molecular Imaging. Anal Chem 2020; 92:10717-10724. [PMID: 32640156 DOI: 10.1021/acs.analchem.0c01902] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Optoacoustic (photoacoustic) imaging has seen marked advances in detection and data analysis, but there is less progress in understanding the photophysics of common optoacoustic contrast agents. This gap blocks the development of novel agents and the accurate analysis and interpretation of multispectral optoacoustic images. To close it, we developed a multimodal laser spectrometer (MLS) to enable the simultaneous measurement of optoacoustic, absorbance, and fluorescence spectra. Herein, we employ MLS to analyze contrast agents (methylene blue, rhodamine 800, Alexa Fluor 750, IRDye 800CW, and indocyanine green) and proteins (sfGFP, mCherry, mKate, HcRed, iRFP720, and smURFP). We found that the optical absorption spectrum does not correlate with the optoacoustic spectrum for the majority of the analytes. We determined that for dyes, the transition underlying an aggregation state has more optoacoustic signal generation efficiency than the monomer transition. For proteins we found a favored optoacoustic relaxation that stems from the neutral or zwitterionic chromophores and unreported photoswitching behavior of tdTomato and HcRed. We then crystalized HcRed in its photoswitch optoacoustic state, confirming structurally the change in isomerization with respect to HcReds' fluorescence state. Finally, on the example of the widely used label tdTomato and the dye indocyanine green, we show the importance of correct photophysical (e.g., spectral and kinetic) information as a prerequisite for spectral-unmixing for in vivo imaging.
Collapse
Affiliation(s)
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Chair of Biological Imaging, Technische Universitat München, D-81675 Munich, Germany
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Chair of Biological Imaging, Technische Universitat München, D-81675 Munich, Germany
| | - Robert Janowski
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Paul Vetschera
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Chair of Biological Imaging, Technische Universitat München, D-81675 Munich, Germany
| | - Christina Heichler
- First Department of Medicine, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, D-89081 Erlangen, Germany
| | - Andriy Chmyrov
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Chair of Biological Imaging, Technische Universitat München, D-81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Technische Universitat München, D-81675 Munich, Germany
| | - Clemens Neufert
- First Department of Medicine, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, D-89081 Erlangen, Germany
| | - Dierk Niessing
- Intracellular Transport and RNA Biology Group, Institute of Structural Biology, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Chair of Biological Imaging, Technische Universitat München, D-81675 Munich, Germany.,Center for Translational Cancer Research (TranslaTUM), Technische Universitat München, D-81675 Munich, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| |
Collapse
|
143
|
Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, Thoma OM, Kramer V, Waldner MJ, Büttner C, Farin HF, Pešić M, Knieling F, Merkel S, Grüneboom A, Gunzer M, Grützmann R, Rose-John S, Koralov SB, Kollias G, Vieth M, Hartmann A, Greten FR, Neurath MF, Neufert C. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut 2020; 69:1269-1282. [PMID: 31685519 DOI: 10.1136/gutjnl-2019-319200] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/22/2019] [Accepted: 10/08/2019] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Cancer-associated fibroblasts (CAFs) influence the tumour microenvironment and tumour growth. However, the role of CAFs in colorectal cancer (CRC) development is incompletely understood. DESIGN We quantified phosphorylation of STAT3 (pSTAT3) expression in CAFs of human colon cancer tissue using a tissue microarray (TMA) of 375 patients, immunofluorescence staining and digital pathology. To investigate the functional role of CAFs in CRC, we took advantage of two murine models of colorectal neoplasia and advanced imaging technologies. In loss-of-function and gain-of-function experiments, using genetically modified mice with collagen type VI (COLVI)-specific signal transducer and activator of transcription 3 (STAT3) targeting, we evaluated STAT3 signalling in fibroblasts during colorectal tumour development. We performed a comparative gene expression profiling by whole genome RNA-sequencing of fibroblast subpopulations (COLVI+ vs COLVI-) on STAT3 activation (IL-6 vs IL-11). RESULTS The analysis of pSTAT3 expression in CAFs of human TMAs revealed a negative correlation of increased stromal pSTAT3 expression with the survival of colon cancer patients. In the loss-of-function and gain-of-function approach, we found a critical role of STAT3 activation in fibroblasts in driving colorectal tumourigenesis in vivo. With different imaging technologies, we detected an expansion of activated fibroblasts in colorectal neoplasias. Comparative gene expression profiling of fibroblast subpopulations on STAT3 activation revealed the regulation of transcriptional patterns associated with angiogenesis. Finally, the blockade of proangiogenic signalling significantly reduced colorectal tumour growth in mice with constitutive STAT3 activation in COLVI+ fibroblasts. CONCLUSION Altogether our work demonstrates a critical role of STAT3 activation in CAFs in CRC development.
Collapse
Affiliation(s)
- Christina Heichler
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kristina Scheibe
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anabel Schmied
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Carol I Geppert
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Center, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oana-Maria Thoma
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Erlangen Graduate School of Advanced Optical Technologies (SAOT), Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Viktoria Kramer
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maximilian J Waldner
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Henner F Farin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marina Pešić
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Ferdinand Knieling
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen Kinder- und Jugendklinik, Erlangen, Germany
| | - Susanne Merkel
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Anika Grüneboom
- Third Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Matthias Gunzer
- Institute of Experimental Immunology and Imaging, University Duisburg-Essen and University Hospital Essen, Essen, Germany
| | - Robert Grützmann
- Chirurgische Klinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, New York, USA
| | - George Kollias
- Biomedical Sciences Research Center Alexander Fleming, Vari, Greece
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Arndt Hartmann
- Department of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Markus F Neurath
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
144
|
Yang B, Zhang G, Elias M, Zhu Y, Wang J. The role of cytokine and immune responses in intestinal fibrosis. J Dig Dis 2020; 21:308-314. [PMID: 32410365 DOI: 10.1111/1751-2980.12879] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
The rapidly increasing incidence of inflammatory bowel disease (IBD) in South America, eastern Europe, Asia, and Africa has resulted in a global public health challenge. Intestinal fibrosis is a common complication in patients with long-term IBD, which may develop into stenosis and subsequent obstruction. Hitherto, the origin of IBD is unclear and several factors may be involved, including genetic, immune, environmental and microbial influences. Little is known about how the recurrent inflammation in patients with IBD develops into intestinal fibrosis and currently, there is no suitable treatment to reverse intestinal fibrosis in these patients. Here, we review the role of immune components in the pathogenesis of IBD and intestinal fibrosis, including cytokine networks, host-microbiome interactions, and immune cell trafficking.
Collapse
Affiliation(s)
- Bo Yang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ge Zhang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Yijun Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.,Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jie Wang
- School of Laboratory Medicine, Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
145
|
Leppkes M, Neurath MF. Cytokines in inflammatory bowel diseases - Update 2020. Pharmacol Res 2020; 158:104835. [PMID: 32416212 DOI: 10.1016/j.phrs.2020.104835] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Diseases (IBD), namely Crohn's Disease and Ulcerative Colitis, cause a significant disease burden in modern civilization. Ever since the introduction of anti-TNF-directed therapies 20 years ago, cytokines have attracted a lot of research attention and several cytokine-directed therapies have been implemented in the clinical treatment of these diseases. The research progress in these past years has underlined the importance of both myeloid and lymphoid elements of the immune system in the pathogenesis of IBD and their cytokine-mediated interplay. The conceptual framework of the mucosal cytokine network has shifted during these years from a T helper (Th) dichotomy (Th1/Th2) to the effector/regulatory T cell balance, while nowadays, the importance of myeloid cell instruction of lymphocytes, namely by IL-12 and IL-23, is increasingly recognized. Anti-IL-12p40 agents, like ustekinumab, groundbreakingly changed patient care, and anti-IL23p19-directed approaches are on the verge of grand success. In this review we present a modular approach to understand the cytokine network and put it into the context of the pathogenesis of IBD with a special focus on publications since 2014.
Collapse
Affiliation(s)
- M Leppkes
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany.
| | - M F Neurath
- Department of Medicine, University of Erlangen-Nuremberg, Kussmaul Campus for Medical Research, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
146
|
Yoo JH, Holubar S, Rieder F. Fibrostenotic strictures in Crohn's disease. Intest Res 2020; 18:379-401. [PMID: 32259917 PMCID: PMC7609387 DOI: 10.5217/ir.2019.09148] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/26/2020] [Indexed: 12/15/2022] Open
Abstract
The use of biologic agents including anti-tumor necrosis factor monoclonal antibodies followed by anti-integrins and anti-interleukins has drastically changed the treatment paradigm of Crohn’s disease (CD) by improving clinical symptoms and mucosal healing. However, up to 70% of CD patients still eventually undergo surgery mainly due to fibrostenotic strictures. There are no specific anti-fibrotic drugs yet. This review comprehensively addresses the mechanism, prediction, diagnosis and treatment of the fibrostenotic strictures in CD. We also introduce promising anti-fibrotic agents which may be available in the near future and summarize challenges in developing novel therapies to treat fibrostenotic strictures in CD.
Collapse
Affiliation(s)
- Jun Hwan Yoo
- Digestive Disease Center, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Stefan Holubar
- Department of Colorectal Surgery, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
147
|
Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020; 11:410. [PMID: 32256490 PMCID: PMC7093381 DOI: 10.3389/fimmu.2020.00410] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex immune-mediated disease of the gastrointestinal tract that increases morbidity and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs) have a crucial role in maintaining epithelial barrier integrity while controlling pathogen invasion by activating an appropriate immune response. However, in genetically predisposed individuals, uncontrolled immune activation to intestinal flora is thought to underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs are involved in fine-tuning mucosal immune system responsiveness and have a critical role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include monocytes, macrophages and dendritic cells, which are functionally diverse but highly complementary. Despite their crucial role in maintaining intestinal homeostasis, specific functions of human MNP subsets are poorly understood, especially during diseases such as IBD. Here we review the current understanding of MNP ontogeny, as well as the recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
148
|
Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature 2020; 578:527-539. [PMID: 32103191 PMCID: PMC7871366 DOI: 10.1038/s41586-020-2025-2] [Citation(s) in RCA: 451] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex genetic disease that is instigated and amplified by the confluence of multiple genetic and environmental variables that perturb the immune-microbiome axis. The challenge of dissecting pathological mechanisms underlying IBD has led to the development of transformative approaches in human genetics and functional genomics. Here we describe IBD as a model disease in the context of leveraging human genetics to dissect interactions in cellular and molecular pathways that regulate homeostasis of the mucosal immune system. Finally, we synthesize emerging insights from multiple experimental approaches into pathway paradigms and discuss future prospects for disease-subtype classification and therapeutic intervention.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, MA, USA.
| |
Collapse
|
149
|
El Ouali S, Click B, Holubar SD, Rieder F. Natural history, diagnosis and treatment approach to fibrostenosing Crohn's disease. United European Gastroenterol J 2020; 8:263-270. [PMID: 32213020 DOI: 10.1177/2050640620901960] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stricturing Crohn's disease (CD) is a significant clinical problem. The presence of a stricture may be suggested by clinical symptoms. Cross-sectional imaging using computed tomography or magnetic resonance enterography is essential in diagnosing strictures as it allows further characterization and evaluation for complications such as abscess, fistulizing disease or malignancy. Managing small bowel stricturing CD should be approached in a multidisciplinary fashion. Medical therapy can be considered in strictures which are not associated with complications, with most of the data supporting anti-TNF strategies in this setting. If the disease is refractory to medical therapy, endoscopic therapy or surgery should be performed. Endoscopic balloon dilation (EBD) is an option for short, uncomplicated and straight strictures that are within reach of a colonoscope. Although EBD has good short-term outcomes, repeat dilation is often required. Surgical options mainly include resection and strictureplasty. Strictures refractory to medical therapy, not amenable or refractory to EBD, or associated with complications or malignancy should be managed surgically. However, surgery may also be considered at an earlier stage depending on disease characteristics and patient preference. Postoperative recurrence is common, highlighting the importance of careful monitoring of the patient postoperatively and optimization of medical management accordingly. There is a pressing need to develop anti-fibrotics for the treatment of stricturing CD. This requires the development of standardized diagnostic criteria, patient-reported outcome measures and validation of endpoints in fibrostenotic CD. The STAR consortium is pioneering this effort in order to allow development and testing of anti-fibrotics in future clinical trials.
Collapse
Affiliation(s)
- Sara El Ouali
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Benjamin Click
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Stefan D Holubar
- Department of Colorectal Surgery, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Florian Rieder
- Department of Gastroenterology, Hepatology & Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
150
|
Burn-Induced Impairment of Ileal Muscle Contractility Is Associated with Increased Extracellular Matrix Components. J Gastrointest Surg 2020; 24:188-197. [PMID: 31637625 PMCID: PMC8634548 DOI: 10.1007/s11605-019-04400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Severe burns lead to marked impairment of gastrointestinal motility, such as delayed gastric emptying and small and large intestinal ileus. However, the cellular mechanism of these pathologic changes remains largely unknown. METHODS Male Sprague Dawley rats approximately 3 months old and weighing 300-350 g were randomized to either a 60% total body surface area full-thickness scald burn or sham procedure and were sacrificed 24 h after the procedure. Gastric emptying, gastric antrum contractility ileal smooth muscle contractility, and colonic contractility were measured. Muscularis externa was isolated from the ileal segment to prepare smooth muscle protein extracts for Western blot analysis. RESULTS Compared with sham controls, the baseline rhythmic contractile activities of the antral, ileal, and colonic smooth muscle strips were impaired in the burned rats. Simultaneously, our data showed that ileal muscularis ECM proteins fibronectin and laminin were significantly up-regulated in burned rats compared with sham rats. TGF-β signaling is an important stimulating factor for ECM protein expression. Our results revealed that TGF-β signaling was activated in the ileal muscle of burned rats evidenced by the activation of Smad2/3 expression and phosphorylation. In addition, the total and phosphorylated AKT, which is an important downstream factor of ECM signaling in smooth muscle cells, was also up-regulated in burned rats' ileal muscle. Notably, these changes were not seen in the colonic or gastric tissues. CONCLUSION Deposition of fibrosis-related proteins after severe burn is contributors to decreased small intestinal motility.
Collapse
|