101
|
Park J, Lia Palomba M, Perica K, Devlin S, Shah G, Dahi P, Lin R, Salles G, Scordo M, Nath K, Valtis Y, Lynch A, Cathcart E, Zhang H, Schöder H, Leithner D, Liotta K, Yu A, Stocker K, Li J, Dey A, Sellner L, Singh R, Sundaresan V, Zhao F, Mansilla-Soto J, He C, Meyerson J, Hosszu K, McAvoy D, Wang X, Riviere I, Sadelain M. Calibrated CAR Signaling Enables Low-Dose Therapy in Large B-Cell Lymphoma. RESEARCH SQUARE 2024:rs.3.rs-4619285. [PMID: 39011120 PMCID: PMC11247921 DOI: 10.21203/rs.3.rs-4619285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We designed a CD19-targeted CAR comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3z and 4-1BB/CD3z CARs. Here we report the first-in-human, phase 1 clinical trial of 19(T2)28z-1XX CAR T cells in relapsed/refractory large B-cell lymphoma. We hypothesized that 1XX CAR T cells may be effective at low doses and investigated 4 doubling dose levels starting from 25×106 CAR T cells. The overall response rate (ORR) was 82% and complete response (CR) rate 71% in the entire cohort (n=28) and 88% ORR and 75% CR in 16 patients treated at 25×106. With the median follow-up of 24 months, the 1-year EFS was 61% (95% CI: 45-82%). Overall, grade ≥3 CRS and ICANS rates were low at 4% and 7%. The calibrated potency of the 1XX CAR affords excellent efficacy at low cell doses and may benefit the treatment of other hematological malignancies, solid tumors and autoimmunity.
Collapse
Affiliation(s)
- Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Alina Yu
- Memorial Sloan Kettering Cancer Center
| | | | - Jia Li
- Takeda Development Center Americas, Inc
| | | | | | | | | | - Faye Zhao
- Takeda Development Center Americas, Inc
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Hu B, Korsos V, Palomba ML. Chimeric antigen receptor T-cell therapy for aggressive B-cell lymphomas. Front Oncol 2024; 14:1394057. [PMID: 39011476 PMCID: PMC11246842 DOI: 10.3389/fonc.2024.1394057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/21/2024] [Indexed: 07/17/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary approach in the treatment of lymphoma. This review article provides an overview of the four FDA-approved CAR T-cell products for aggressive B-cell lymphoma, including diffuse large B-cell lymphoma and mantle cell lymphoma, highlighting their efficacy and toxicity as well as discussing future directions.
Collapse
Affiliation(s)
- Bei Hu
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute/Wake Forest School of Medicine, Charlotte, NC, United States
| | - Victoria Korsos
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - M. Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
103
|
Goto H, Onozawa M, Teshima T. Novel CAR T cell therapies for patients with large B cell lymphoma. Int J Hematol 2024; 120:6-14. [PMID: 38795249 DOI: 10.1007/s12185-024-03792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
Approximately 60-70% of patients with large B cell lymphoma (LBCL) achieve long-term remission or a cure after initial treatment. However, patients who relapse or are refractory to initial treatment have a poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently attracted attention for its potential to provide a cure or long-term remission even for LBCL that has relapsed or is refractory to conventional chemotherapy. Currently, three CAR T cell products are clinically available for LBCL: tisagenlecleucel (tisa-cel), axicabtagene ciloleucel (axi-cel) and lisocabtagene maraleucel (liso-cel). These CAR T cell products were initially approved as third- or later-line therapies worldwide. Recently, axi-cel and liso-cel have become feasible as second-line therapies for patients with early relapsed or refractory disease after first-line chemotherapy. Although a large body of data on CAR T cell therapy has been accumulated, the clinical question of how to choose between these three available CAR T cell products has yet to be resolved. The appropriate approach to treatment selection for patients who relapse after CAR T cell therapy also remains unclear. This review discusses treatment strategies to maximize the benefits of CAR T cell therapy.
Collapse
Affiliation(s)
- Hideki Goto
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, W7, N15, Kita-Ku, Sapporo, Hokkaido, Japan.
| | - Masahiro Onozawa
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, W7, N15, Kita-Ku, Sapporo, Hokkaido, Japan
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
104
|
Degtyarev E, Bolaños N, Brody JD, Buchbinder A, Buyse M, Fuchs M, Halabi S, Hemmings R, Masood A, Newsome S, Saxton C, Warwick L, Yateman NA, Zuber E. End points in clinical trials in diffuse large B-cell lymphoma: time for more dialogue? Future Oncol 2024; 20:1601-1615. [PMID: 38889345 PMCID: PMC11457665 DOI: 10.1080/14796694.2024.2357537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
We observed lack of clarity and consistency in end point definitions of large randomized clinical trials in diffuse large B-cell lymphoma. These inconsistencies are such that trials might, in fact, address different clinical questions. They complicate interpretation of results, including comparisons across studies. Problems arise from different ways to account for events occurring after randomization including absence of improvement in disease status, treatment discontinuation or the initiation of new therapy. We call for more dialogue between stakeholders to define with clarity the questions of interest and corresponding end points. We illustrate that assessing different end point rules across a range of plausible patient journeys can be a powerful tool to facilitate such a discussion and contribute to better understanding of patient-relevant end points.
Collapse
Affiliation(s)
| | | | - Joshua D Brody
- Hematology & Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marc Buyse
- International Drug Development Institute (IDDI), Louvain-la-Neuve, Belgium
- Interuniversity Institute for Biostatistics & Statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | | | - Susan Halabi
- Duke Clinical Research Institute, Durham, North Carolina, USA
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | | | | | | - Lorna Warwick
- Lymphoma Coalition, Management, Mississauga ON, Canada
| | | | | |
Collapse
|
105
|
D’Alò F, Bellesi S, Maiolo E, Alma E, Bellisario F, Malafronte R, Viscovo M, Campana F, Hohaus S. Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers (Basel) 2024; 16:2243. [PMID: 38927948 PMCID: PMC11201587 DOI: 10.3390/cancers16122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Since the introduction of rituximab in the late 1990s, significant progress has been made in advancing targeted therapies for B cell lymphomas, improving patients' chance of being cured and clinicians' therapeutic armamentarium. A better understanding of disease biology and pathogenic pathways, coupled with refinements in immunophenotypic and molecular diagnostics, have been instrumental in these achievements. While traditional chemotherapy remains fundamental in most cases, concerns surrounding chemorefractoriness and cumulative toxicities, particularly the depletion of the hemopoietic reserve, underscore the imperative for personalized treatment approaches. Integrating targeted agents, notably monoclonal antibodies, alongside chemotherapy has yielded heightened response rates and prolonged survival. A notable paradigm shift is underway with innovative-targeted therapies replacing cytotoxic drugs, challenging conventional salvage strategies like stem cell transplantation. This review examines the landscape of emerging targets for lymphoma cells and explores innovative therapies for diffuse large B cell lymphoma (DLBCL). From Chimeric Antigen Receptor-T cells to more potent monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, checkpoint inhibitors, and small molecules targeting intracellular pathways, each modality offers promising avenues for therapeutic advancement. This review aims to furnish insights into their potential implications for the future of DLBCL treatment strategies.
Collapse
Affiliation(s)
- Francesco D’Alò
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Silvia Bellesi
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Elena Maiolo
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Eleonora Alma
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flaminia Bellisario
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Rosalia Malafronte
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marcello Viscovo
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Fabrizia Campana
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Stefan Hohaus
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
106
|
Wu S, Rhee JW, Iukuridze A, Bosworth A, Chen S, Atencio L, Manubolu V, Bhandari R, Jamal F, Mei M, Herrera A, Rodriguez F, Forman S, Nakamura R, Wong FL, Budoff M, Armenian SH. Coronary artery calcium and cardiovascular outcomes in patients with lymphoma undergoing autologous hematopoietic cell transplantation. Cancer 2024; 130:2205-2214. [PMID: 38358333 DOI: 10.1002/cncr.35252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Patients undergoing autologous hematopoietic cell transplantation (HCT) have a >2-fold risk of developing cardiovascular disease (CVD; heart failure, myocardial infarction, and stroke), compared to the general population. Coronary artery calcium (CAC) is predictive of CVD in nononcology patients but is not as well studied in patients who underwent HCT and survivors of HCT.The objective of this study was to examine the association between CAC and CVD risk and outcomes after HCT in patients with lymphoma. METHODS This was a retrospective cohort study of 243 consecutive patients who underwent a first autologous HCT for lymphoma between 2009 and 2014. CAC (Agatston score) was determined from chest computed tomography obtained <60 days from HCT. Multivariable Cox regression analysis was used to calculate hazard ratio (HR) estimates and 95% confidence intervals (CIs), adjusted for covariates (age, conventional risk factors [e.g., hypertension and dyslipidemia], and cancer treatment). RESULTS The median age at HCT was 55.7 years (range, 18.5-75.1 years), 59% were male, and 60% were non-Hispanic White. The prevalence of CAC was 37%. The 5-year CVD incidence for the cohort was 12%, and there was an incremental increase in the incidence according to CAC score: 0 (6%), 1-100 (20%), and >100 (32%) (p = .001). CAC was significantly associated with CVD risk (HR, 3.0; 95% CI, 1.2-7.5) and worse 5-year survival (77% vs. 50%; p < .001; HR, 2.0; 95% CI, 1.1-3.4), compared to those without CAC. CONCLUSIONS CAC is independently associated with CVD and survival after HCT. This highlights the importance of integrating readily available imaging information in risk stratification and decision-making in patients undergoing HCT, which sets the stage for strategies to optimize outcomes after HCT.
Collapse
Affiliation(s)
- Stephanie Wu
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - June-Wha Rhee
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Aleksi Iukuridze
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Alysia Bosworth
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sitong Chen
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Liezl Atencio
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Venkat Manubolu
- Department of Cardiology, Lundquist Institute, Torrance, California, USA
| | - Rusha Bhandari
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Faizi Jamal
- Department of Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Matthew Mei
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Alex Herrera
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Fatima Rodriguez
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
| | - Stephen Forman
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ryotaro Nakamura
- Department of Hematology & Hematopoietic Transplantation, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - F Lennie Wong
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Matthew Budoff
- Department of Cardiology, Lundquist Institute, Torrance, California, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Department of Pediatrics, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
107
|
Hamilton MP, Sugio T, Noordenbos T, Shi S, Bulterys PL, Liu CL, Kang X, Olsen MN, Good Z, Dahiya S, Frank MJ, Sahaf B, Mackall CL, Gratzinger D, Diehn M, Alizadeh AA, Miklos DB. Risk of Second Tumors and T-Cell Lymphoma after CAR T-Cell Therapy. N Engl J Med 2024; 390:2047-2060. [PMID: 38865660 PMCID: PMC11338600 DOI: 10.1056/nejmoa2401361] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
BACKGROUND The risk of second tumors after chimeric antigen receptor (CAR) T-cell therapy, especially the risk of T-cell neoplasms related to viral vector integration, is an emerging concern. METHODS We reviewed our clinical experience with adoptive cellular CAR T-cell therapy at our institution since 2016 and ascertained the occurrence of second tumors. In one case of secondary T-cell lymphoma, a broad array of molecular, genetic, and cellular techniques were used to interrogate the tumor, the CAR T cells, and the normal hematopoietic cells in the patient. RESULTS A total of 724 patients who had received T-cell therapies at our center were included in the study. A lethal T-cell lymphoma was identified in a patient who had received axicabtagene ciloleucel therapy for diffuse large B-cell lymphoma, and both lymphomas were deeply profiled. Each lymphoma had molecularly distinct immunophenotypes and genomic profiles, but both were positive for Epstein-Barr virus and were associated with DNMT3A and TET2 mutant clonal hematopoiesis. No evidence of oncogenic retroviral integration was found with the use of multiple techniques. CONCLUSIONS Our results highlight the rarity of second tumors and provide a framework for defining clonal relationships and viral vector monitoring. (Funded by the National Cancer Institute and others.).
Collapse
MESH Headings
- Female
- Humans
- Middle Aged
- Biological Products/adverse effects
- Biological Products/therapeutic use
- Clonal Hematopoiesis
- Herpesvirus 4, Human/immunology
- Herpesvirus 4, Human/genetics
- Immunotherapy, Adoptive/adverse effects
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/immunology
- Lymphoma, T-Cell/therapy
- Neoplasms, Second Primary/genetics
- Neoplasms, Second Primary/etiology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/therapeutic use
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Virus Integration
Collapse
Affiliation(s)
- Mark P. Hamilton
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Takeshi Sugio
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Troy Noordenbos
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Shuyu Shi
- Department of Bioengineering, Stanford University Schools of Medicine and Engineering, Stanford, CA94305, USA
| | - Philip L. Bulterys
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chih Long Liu
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Xiaoman Kang
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mari N. Olsen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| | - Zinaida Good
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Saurabh Dahiya
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew J. Frank
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bita Sahaf
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Crystal L. Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dita Gratzinger
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, 94305, USA
| | - David B. Miklos
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
108
|
Korell F, Olson M, Salas-Benito D, Leick MB, Larson RC, Bouffard A, Silva H, Gasparetto A, Berger TR, Kann MC, Mergen M, Kienka T, Wehrli M, Haradhvala NJ, Bailey SR, Letai A, Maus MV. Comparative analysis of Bcl-2 family protein overexpression in CAR T cells alone and in combination with BH3 mimetics. Sci Transl Med 2024; 16:eadk7640. [PMID: 38838132 PMCID: PMC11737343 DOI: 10.1126/scitranslmed.adk7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
Approximately 50% of patients with hematologic malignancies relapse after chimeric antigen receptor (CAR) T cell treatment; mechanisms of failure include loss of CAR T persistence and tumor resistance to apoptosis. We hypothesized that both of these challenges could potentially be overcome by overexpressing one or more of the Bcl-2 family proteins in CAR T cells to reduce their susceptibility to apoptosis, both alone and in the presence of BH3 mimetics, which can be used to activate apoptotic machinery in malignant cells. We comprehensively investigated overexpression of different Bcl-2 family proteins in CAR T cells with different signaling domains as well as in different tumor types. We found that Bcl-xL and Bcl-2 overexpression in CAR T cells bearing a 4-1BB costimulatory domain resulted in increased expansion and antitumor activity, reduced exhaustion, and decreased apoptotic priming. In addition, CAR T cells expressing either Bcl-xL or a venetoclax-resistant Bcl-2 variant led to enhanced antitumor efficacy and survival in murine xenograft models of lymphoma and leukemia in the presence or absence of the BH3 mimetic venetoclax, a clinically approved BH3 mimetic. In this setting, Bcl-xL overexpression had stronger effects than overexpression of Bcl-2 or the Bcl-2(G101V) variant. These findings suggest that CAR T cells could be optimally engineered by overexpressing Bcl-xL to enhance their persistence while opening a therapeutic window for combination with BH3 mimetics to prime tumors for apoptosis.
Collapse
Affiliation(s)
- Felix Korell
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Michael Olson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Diego Salas-Benito
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Mark B. Leick
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Rebecca C. Larson
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Amanda Bouffard
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Alessandro Gasparetto
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Trisha R. Berger
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Michael C. Kann
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Markus Mergen
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
| | - Tamina Kienka
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Marc Wehrli
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Nicholas J. Haradhvala
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| | - Stefanie R. Bailey
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
| | - Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Marcela V. Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center, Charlestown, USA
- Harvard Medical School, Boston, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
109
|
Patel K, Ivanov A, Jocelyn T, Hantel A, Garcia JS, Abel GA. Patient-Reported Outcomes in Phase 3 Clinical Trials for Blood Cancers: A Systematic Review. JAMA Netw Open 2024; 7:e2414425. [PMID: 38829615 PMCID: PMC11148691 DOI: 10.1001/jamanetworkopen.2024.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
Importance Published research suggests that patient-reported outcomes (PROs) are neither commonly collected nor reported in randomized clinical trials (RCTs) for solid tumors. Little is known about these practices in RCTs for hematological malignant neoplasms. Objective To evaluate the prevalence of PROs as prespecified end points in RCTs of hematological malignant neoplasms, and to assess reporting of PROs in associated trial publications. Evidence Review All issues of 8 journals known for publishing high-impact RCTs (NEJM, Lancet, Lancet Hematology, Lancet Oncology, Journal of Clinical Oncology, Blood, JAMA, and JAMA Oncology) between January 1, 2018, and December 13, 2022, were searched for primary publications of therapeutic phase 3 trials for adults with hematological malignant neoplasms. Studies that evaluated pretransplant conditioning regimens, graft-vs-host disease treatment, or radiotherapy as experimental treatment were excluded. Data regarding trial characteristics and PROs were extracted from manuscripts and trial protocols. Univariable analyses assessed associations between trial characteristics and PRO collection or reporting. Findings Ninety RCTs were eligible for analysis. PROs were an end point in 66 (73%) trials: in 1 trial (1%) as a primary end point, in 50 (56%) as a secondary end point, and in 15 (17%) as an exploratory end point. PRO data were reported in 26 of 66 primary publications (39%): outcomes were unchanged in 18 and improved in 8, with none reporting worse PROs with experimental treatment. Trials sponsored by for-profit entities were more likely to include PROs as an end point (49 of 55 [89%] vs 17 of 35 [49%]; P < .001) but were not significantly more likely to report PRO data (20 of 49 [41%] vs 6 of 17 [35%]; P = .69). Compared with trials involving lymphoma (18 of 29 [62%]) or leukemia or myelodysplastic syndrome (18 of 28 [64%]), those involving plasma cell disorders or multiple myeloma (27 of 30 [90%]) or myeloproliferative neoplasms (3 of 3 [100%]) were more likely to include PROs as an end point (P = .03). Similarly, compared with trials involving lymphoma (3 of 18 [17%]) or leukemia or myelodysplastic syndrome (5 of 18 [28%]), those involving plasma cell disorders or multiple myeloma (16 of 27 [59%]) or myeloproliferative neoplasms (2 of 3 [67%]) were more likely to report PROs in the primary publication (P = .01). Conclusions and Relevance In this systematic review, almost 3 of every 4 therapeutic RCTs for blood cancers collected PRO data; however, only 1 RCT included PROs as a primary end point. Moreover, most did not report resulting PRO data in the primary publication and when reported, PROs were either better or unchanged, raising concern for publication bias. This analysis suggests a critical gap in dissemination of data on the lived experiences of patients enrolled in RCTs for hematological malignant neoplasms.
Collapse
Affiliation(s)
- Kishan Patel
- Department of Internal Medicine, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Alexandra Ivanov
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tajmah Jocelyn
- Center for Clinical Investigation, Brigham & Women’s Hospital, Boston, Massachusetts
| | - Andrew Hantel
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jacqueline S. Garcia
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gregory A. Abel
- Division of Population Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
110
|
Little JS, Kampouri E, Friedman DZ, McCarty T, Thompson GR, Kontoyiannis DP, Vazquez J, Baddley JW, Hammond SP. The Burden of Invasive Fungal Disease Following Chimeric Antigen Receptor T-Cell Therapy and Strategies for Prevention. Open Forum Infect Dis 2024; 11:ofae133. [PMID: 38887472 PMCID: PMC11181190 DOI: 10.1093/ofid/ofae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 06/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a novel immunotherapy approved for the treatment of hematologic malignancies. This therapy leads to a variety of immunologic deficits that could place patients at risk for invasive fungal disease (IFD). Studies assessing IFD in this setting are limited by inconsistent definitions and heterogeneity in prophylaxis use, although the incidence of IFD after CAR T-cell therapy, particularly for lymphoma and myeloma, appears to be low. This review evaluates the incidence of IFD after CAR T-cell therapy, and discusses optimal approaches to prevention, highlighting areas that require further study as well as future applications of cellular therapy that may impact IFD risk. As the use of CAR T-cell therapy continues to expand for hematologic malignancies, solid tumors, and most recently to include non-oncologic diseases, understanding the risk for IFD in this uniquely immunosuppressed population is imperative to prevent morbidity and mortality.
Collapse
Affiliation(s)
- Jessica S Little
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Z Friedman
- Section of Infectious Diseases and Global Health, The University of Chicago, Chicago, Illinois, USA
| | - Todd McCarty
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - George R Thompson
- Division of Infectious Diseases, University of California-Davis, Sacramento, California, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jose Vazquez
- Division of Infectious Diseases, Medical College of Georgia/Augusta University, Augusta, Georgia, USA
| | - John W Baddley
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sarah P Hammond
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medical Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
111
|
Lewis KL, Cheah CY. The value of bispecific antibodies in relapsed and refractory DLBCL. Leuk Lymphoma 2024; 65:720-735. [PMID: 38454535 DOI: 10.1080/10428194.2024.2323085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) may be cured with anti-CD20 based chemoimmunotherapy in the majority of cases, however, relapsed/refractory disease occurs in 30-40% patients, and despite significant recent therapeutic advances, continues to represent an unmet clinical need. Bispecific antibodies represent a novel class of therapy currently in development for relapsed/refractory B-cell lymphoma. This review discusses the background clinical need, mechanism of action, and clinical data including efficacy and toxicity for bispecific antibodies in DLBCL, focusing on the most advanced class in development; CD20 targeting T-cell engaging antibodies. Emerging possibilities for future use of bispecific antibodies is also discussed, including novel and cytotoxic combination regimens in relapsed and first-line settings.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/mortality
- Neoplasm Recurrence, Local/pathology
- Drug Resistance, Neoplasm/immunology
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Antigens, CD20/immunology
- Antigens, CD20/metabolism
- CD3 Complex/antagonists & inhibitors
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Progression-Free Survival
- Humans
Collapse
Affiliation(s)
- Katharine Louise Lewis
- Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Australia
- Linear Clinical Research, Nedlands, Australia
- Medical School, Division of Internal Medicine, University of Western Australia, Nedlands, Australia
| | - Chan Yoon Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Nedlands, Australia
- Linear Clinical Research, Nedlands, Australia
- Medical School, Division of Internal Medicine, University of Western Australia, Nedlands, Australia
- Department of Haematology, Pathwest, QEII, Nedlands, Australia
| |
Collapse
|
112
|
Gagelmann N, Bishop M, Ayuk F, Bethge W, Glass B, Sureda A, Pasquini MC, Kröger N. Axicabtagene Ciloleucel versus Tisagenlecleucel for Relapsed or Refractory Large B Cell Lymphoma: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2024; 30:584.e1-584.e13. [PMID: 38281590 PMCID: PMC11771143 DOI: 10.1016/j.jtct.2024.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) are CD19-directed chimeric antigen receptor T cell (CAR-T) therapies approved for relapsed/refractory aggressive large B cell lymphoma (LBCL). Significant costs and complex manufacturing underscore the importance of evidence-based counseling regarding the outcomes of these treatments. With the aim of examining the efficacy and safety of axi-cel versus tisa-cel in patients with relapsed/refractory aggressive LBCL, we performed a systematic literature search of comparative studies evaluating outcomes in relapsed/refractory aggressive LBCL after treatment with axi-cel or tisa-cel. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) for response, progression-free survival (PFS), overall survival (OS), cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and hematotoxicity. Meta-analysis and meta-regression were used to generate summary statistics. A total of 2372 participants were included in the 8 studies in our analysis. The dropout rate between apheresis and infusion was 13% for axi-cel versus 18% for tisa-cel, and the median time from apheresis to infusion was 32 days versus 45 days. Axi-cel showed higher odds for a complete response (OR, 1.65; P < .001) and was associated with higher odds for PFS at 1 year after infusion (OR, .60; P < .001). OS appeared to be improved with axi-cel (OR, .84; 95% CI, .68 to 1.02; P = .08), whereas the cumulative incidence of nonrelapse mortality (NRM) was 11.5% for axi-cel versus 3.7% for tisa-cel (P = .002). The main predictors for survival were lactate dehydrogenase level, Eastern Cooperative Oncology Group Performance Status, and response to bridging, and axi-cel maintained superior efficacy even in elderly patients. In terms of safety, axi-cel was associated with significantly higher odds of any-grade CRS (OR, 3.23; P < .001), but not of grade ≥3 CRS (P = .92). Axi-cel was associated with significantly higher odds of severe ICANS grade ≥3 (OR, 4.03; P < .001). In terms of hematotoxicity, axi-cel was significantly associated with higher odds of severe neutropenia at 1 month after infusion (OR, 2.06; P = .003). As a result, axi-cel was associated with significantly greater resource utilization, including prolonged hospital stay, more frequent intensive care admission, and use of agents such as tocilizumab for toxicity management. We provide strong evidence of the greater efficacy of axi-cel versus tisa-cel in relapsed/refractory aggressive LBCL. The higher toxicity and NRM seen with axi-cel might not counterbalance the overall results, highlighting the need for timely intervention and careful selection of patients, balancing resource utilization and clinical benefit.
Collapse
Affiliation(s)
- Nico Gagelmann
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michael Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, Illinois
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Bethge
- Department of Hematology and Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Bertram Glass
- Department of Hematology and Cell Therapy, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Anna Sureda
- Bellvitge Institute for Biomedical Research, Universitat de Barcelona, Hematology Department, Institut Català d'Oncologia-Hospitalet, Barcelona, Spain
| | - Marcelo C Pasquini
- Department of Medicine, Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
113
|
Yamshon S, Gribbin C, Alhomoud M, Chokr N, Chen Z, Demetres M, Pasciolla M, Leonard J, Shore T, Martin P. Safety and Toxicity Profiles of CAR T Cell Therapy in Non-Hodgkin Lymphoma: A Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:e235-e256.e2. [PMID: 38582666 DOI: 10.1016/j.clml.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 04/08/2024]
Abstract
BACKGROUND The application of CD19-directed chimeric antigen receptor T (CAR T) cell therapy has improved outcomes for thousands of patients with non-Hodgkin B cell lymphoma (NHL). The toxicities associated with various CAR T cell products, however, can be severe and difficult to anticipate. METHODS In this systematic review and meta-analysis, we set out to determine whether there are measurable differences in common toxicities, including cytokine release syndrome (CRS), immune effector cell associated neurotoxicity syndrome (ICANS), cytopenias, and infections, between CAR T products that are commercially available for the treatment of NHL. RESULTS After a stringent study selection process, we used a cohort of 1364 patients enrolled in 15 prospective clinical trials investigating the use of axicabtagene ciloleucel (axi-cel), lisocabtagene maraleucel (liso-cel), and tisagenlecleucel (tisa-cel). We found that the rates of CRS and ICANS were significantly higher with axi-cel as compared to both liso-cel and tisa-cel. Conversely, we demonstrated that rates of all-grade and severe neutropenia were significantly greater with liso-cel. Febrile neutropenia and all-grade infection rates did not differ significantly between products though rates of severe infection were increased with axi-cel. CONCLUSIONS Overall, this study serves as the first to delineate toxicity profiles associated with various available CAR T products. By better understanding associated toxicities, it may become possible to tailor therapies towards individual patients and anticipate the development of toxicities at earlier stages.
Collapse
Affiliation(s)
- Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY.
| | - Caitlin Gribbin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Mohammad Alhomoud
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Nora Chokr
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine and New York Presbyterian Hospital, New York, NY
| | - Michelle Demetres
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medicine, New York, NY
| | - Michelle Pasciolla
- Department of Pharmacy, NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, NY
| | - John Leonard
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Tsiporah Shore
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| | - Peter Martin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
| |
Collapse
|
114
|
Lin HK, Uricoli B, Freeman RM, Hossian AKMN, He Z, Anderson JYL, Neffling M, Legier JM, Blake DA, Doxie DB, Nair R, Koff JL, Dhodapkar KM, Shanmugam M, Dreaden EC, Rafiq S. Engineering Improved CAR T Cell Products with A Multi-Cytokine Particle Platform for Hematologic and Solid Tumors. Adv Healthc Mater 2024; 13:e2302425. [PMID: 38245855 PMCID: PMC11144092 DOI: 10.1002/adhm.202302425] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Despite the remarkable clinical efficacy of chimeric antigen receptor (CAR) T cells in hematological malignancies, only a subset of patients achieves a durable complete response (dCR). DCR has been correlated with CAR T cell products enriched with T cells memory phenotypes. Therefore, reagents that consistently promote memory phenotypes during the manufacturing of CAR T cells have the potential to significantly improve clinical outcomes. A novel modular multi-cytokine particle (MCP) platform is developed that combines the signals necessary for activation, costimulation, and cytokine support into a single "all-in-one" stimulation reagent for CAR T cell manufacturing. This platform allows for the assembly and screening of compositionally diverse MCP libraries to identify formulations tailored to promote specific phenotypes with a high degree of flexibility. The approach is leveraged to identify unique MCP formulations that manufacture CAR T cell products from diffuse large B cell patients with increased proportions of memory-like phenotypes MCP-manufactured CAR T cells demonstrate superior anti-tumor efficacy in mouse models of lymphoma and ovarian cancer through enhanced persistence. These findings serve as a proof-of-principle of the powerful utility of the MCP platform to identify "all-in-one" stimulation reagents that can improve the effectiveness of cell therapy products through optimal manufacturing.
Collapse
Affiliation(s)
- Heather K. Lin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Biaggio Uricoli
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology Atlanta, GA, USA
| | - Ruby M. Freeman
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - AKM Nawshad Hossian
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhulin He
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Jonathan M. Legier
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dejah A. Blake
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Deon B. Doxie
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Remya Nair
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jean L. Koff
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Kavita M. Dhodapkar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Erik C. Dreaden
- Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Institute of Technology Atlanta, GA, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
115
|
Chabannon C, Ruggeri A, Montoto S, van Biezen A, van der Werf S, Markslag A, Sanchez-Ortega I, Camara RDL, Ljungman P, Mohty M, Kröger N, Sureda A, McGrath E, Bonini C, Kuball J. Celebrating the registration of 9.000 patients treated with CAR T cells in the EBMT registry: Collection of real-world data in the context of hematopoietic cellular therapies. Best Pract Res Clin Haematol 2024; 37:101557. [PMID: 39098799 DOI: 10.1016/j.beha.2024.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 08/06/2024]
Abstract
The European society for Blood and Marrow Transplantation (EBMT) has a long-standing interest in the evaluation of hematopoietic cell transplantation. More than three decades ago, its members established a continental registry. Today, more than 700,000 patients have been registered, and information has been gathered on more than 800,000 transplants. This huge amount of information has allowed conducting multiple retrospective studies, evaluating changes in practices over time and for different categories of diseases, benchmarking outcome across EBMT affiliated centers, and increasingly serves to build synthetic comparators to evaluate the introduction of therapeutic innovations in the field of hematology. CAR-T cells therapies draw on human and technical resources that are also used to deliver HCT; they elicit side effects that require the implementation of risk mitigation plans; they are living drugs that persist in the body of the recipient and thus deserve prolonged follow-up; the introduction of CAR-T cells in the pharmacopeia is likely to significantly impact on the practice of BMT; for all these reasons and even before the first approvals of CAR-T Cells in Europe, EBMT engaged in a project aiming at complementing the EBMT Registry with a Cellular Therapy Form, with the objective to register CAR-T cells treated patients and collect information on their short-, middle- and long-term outcome. The goal is to provide EBMT investigators with a tool for primary analyses of the collected information and to support secondary use of data transferred at the individual level to Marketing Authorization Holders and other interested parties, to fulfill their obligations to health authorities and further evaluate the actual medical values of CAR-T Cells in different contexts and indications. The EBMT Registry received a positive opinion from the European Medicines agency in 2019, and five years later contains information on more than 9.000 treated patients. This article describes the journey to start this new activity, lessons to be drawn in view of improving the collection of real-world data, and what existing information tells us in terms of patient access.
Collapse
Affiliation(s)
- Christian Chabannon
- Centre de Thérapie Cellulaire Institut Paoli-Calmettes Comprehensive Cancer Centre & Aix-Marseille Université School of Medicine & Inserm CBT-1409, Centre d'Investigations Cliniques en Biothérapies, all in Marseille, France.
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplantation Unit, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Montoto
- St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | | | | | | | | | - Per Ljungman
- Dept. of Cellular Therapy and Allogeneic Stem Cell Transplantation, Karolinska Comprehensive Cancer Center, Karolinska University Hospital Huddinge and Div. of Hematology, Dept. of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Mohamad Mohty
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France
| | | | - Ana Sureda
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Jurgen Kuball
- Department of Hematology and Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands
| |
Collapse
|
116
|
Yamasaki S. Appropriate Treatment Intensity for Diffuse Large B-Cell Lymphoma in the Older Population: A Review of the Literature. Hematol Rep 2024; 16:317-330. [PMID: 38921180 PMCID: PMC11204029 DOI: 10.3390/hematolrep16020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Most patients with diffuse large B-cell lymphoma (DLBCL) are >65 years of age, with the number of patients expected to increase in the coming years. A comprehensive geriatric assessment that carefully evaluates fitness status and comorbidities is essential for selecting the appropriate treatment intensity. Although generally healthy patients or those <80 years of age may benefit from standard immunochemotherapy, unfit/frail patients or patients >80 years old may require reduced-intensity chemotherapy or less-toxic drugs. Some new drugs are currently being tested as single or combined agents for first-line treatment, aiming to improve the outcomes of conventional chemotherapy. This review systematically collates and discusses the outcomes associated with the use of immunochemotherapy in older patients with DLBCL, as well as considering the impact of full-dose immunochemotherapy on quality of life in older and frail patients, summarizing the rationale for reduced dosing in the older population, and presenting recommendations for selecting patients likely to benefit from reduced dosing. If preliminary efficacy and safety data are confirmed in future clinical trials, non-chemotherapy-based immunotherapy approaches could become an alternative potentially curative option in frail patients and those >80 years of age with DLBCL.
Collapse
Affiliation(s)
- Satoshi Yamasaki
- Department of Hematology, St. Mary’s Hospital, 422 Tsubukuhonmachi, Kurume 830-8543, Japan; ; Tel.: +81-942-35-3322; Fax: +81-9442-34-3115
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu 874-0838, Japan
- Department of Hematology and Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka 810-0065, Japan
| |
Collapse
|
117
|
Elmarasi M, Elkonaissi I, Elsabagh AA, Elsayed E, Elsayed A, Elsayed B, Elmakaty I, Yassin M. CAR-T cell therapy: Efficacy in management of cancers, adverse effects, dose-limiting toxicities and long-term follow up. Int Immunopharmacol 2024; 135:112312. [PMID: 38788449 DOI: 10.1016/j.intimp.2024.112312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Chimeric Antigen Receptor T-cell (CAR-T) therapy has emerged as a groundbreaking and highly promising approach for the management of cancer. This paper reviews the efficacy of CAR-T therapy in the treatment of various hematological malignancies, also, with a mention of its effect on solid tumors, for which they have not received FDA approval yet. Different common and uncommon side effects are also discussed in this paper, with attention to the effect of each drug separately. By reviewing the recommendations of the FDA for CAR-T therapy research, we have extensively discussed dose-limiting toxicities. This further highlights the need for precise dosing strategies, striking a balance between therapeutic benefits and potential risks. Additionally, we reviewed the long-term follow-up of patients receiving CAR-T therapy to gain valuable insights into response durability and late-onset effects.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Islam Elkonaissi
- Department of Hematology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Ahmed Adel Elsabagh
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Engy Elsayed
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Basant Elsayed
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Medical Education, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mohamed Yassin
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), P.O. Box 3050, Doha, Qatar.
| |
Collapse
|
118
|
Strüßmann T, Marks R, Wäsch R. Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Is There Still a Role for Autologous Stem Cell Transplantation in the CAR T-Cell Era? Cancers (Basel) 2024; 16:1987. [PMID: 38893108 PMCID: PMC11171011 DOI: 10.3390/cancers16111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Recently, CD19-directed chimeric antigen receptor (CAR) T-cell therapies have revolutionized treatment strategies for diffuse large B-cell lymphoma (DLBCL). CAR T-cell therapy is increasingly used as a second-line therapy for patients with DLBCL with early relapse or refractoriness to initial chemoimmunotherapy and displaced high-dose chemotherapy, followed by autologous stem cell transplantation (ASCT) as the standard of care for these patients. However, patients with late relapse or chemosensitive disease still benefit from autologous stem cell transplantation. We will review practice-changing studies in early relapse (ZUMA-7 and TRANSFORM) under consideration of the negative BELINDA trial, with a focus on register data, comparing CAR T-cell therapy and ASCT for patients responding to salvage therapy.
Collapse
Affiliation(s)
- Tim Strüßmann
- Department of Medicine I, Faculty of Medicine, Medical Center–University of Freiburg, University of Freiburg, 79106 Freiburg, Germany; (R.M.); (R.W.)
| | | | | |
Collapse
|
119
|
Leache L, Gutiérrez Valencia M, Saiz LC, Erviti J, Rojas Reyes MX. Efficacy and safety of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies: a living systematic review (protocol). OPEN RESEARCH EUROPE 2024; 2:38. [PMID: 38827275 PMCID: PMC11140298 DOI: 10.12688/openreseurope.14390.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/04/2024]
Abstract
Objective To determine the efficacy and safety of CAR-T therapy in the treatment of patients with hematologic malignancies, in comparison with other current therapies. Design A living systematic review. Methods We will include randomized trials evaluating the effect of CAR-T therapy versus other active treatments, hematopoietic stem cell transplantation, best supportive care or any other intervention in patients with hematologic malignancies. Non-randomized primary studies will be searched in case we found no direct evidence from randomized controlled trials. Two reviewers will independently screen each study for eligibility, extract data, and assess the risk of bias. Efficacy measures will include overall survival rate, overall response rate, complete response/remission (CR) rate, partial response/remission (PR) rate, relapse from CR, progression-free survival, and time from CAR-T infusion to transplantation. Safety measures will include serious adverse events, the incidence of cytokine release syndrome, graft-versus-host disease, neurotoxicity, and total adverse events. Quality of life will also be assessed. Meta-analyses will be carried out to summarize the results. We will apply the GRADE approach to assess the certainty of the evidence for each outcome. A living, web-based version of this review will be openly available until there is solid evidence to respond to the review objective. We will resubmit it for publication every time the conclusions change or whenever there are substantial updates.
Collapse
Affiliation(s)
- Leire Leache
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Marta Gutiérrez Valencia
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Luis Carlos Saiz
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Juan Erviti
- Unit of Innovation and Organization, Navarre Health Service, Pamplona, Tudela 20, 1st floor, 31003, Spain
| | - Maria Ximena Rojas Reyes
- Institut d'Recerca-Servei d'Epidemiologia Clínica i Salut Pública, Hospital de la Santa Creu i Sant Pau, Barcelona, Carrer de Sant Quintí, 08041, Spain
| |
Collapse
|
120
|
Liang J, Liu G, Wang W, Xue H. Causal relationships between gut microbiota and lymphoma: a bidirectional Mendelian randomization study. Front Cell Infect Microbiol 2024; 14:1374775. [PMID: 38803568 PMCID: PMC11128559 DOI: 10.3389/fcimb.2024.1374775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Background Multiple studies have suggested a possible connection between the gut microbiota and the development of lymphoma, though the exact nature of this relationship remains unclear. This study aimed to explore whether a causal association exists between gut microbiota and lymphoma. Methods A bidirectional two-sample Mendelian randomization (MR) approach was conducted to investigate potential causal effects between gut microbiota and various lymphoma subtypes. The primary method employed for MR analysis was inverse variance weighted (IVW), supplemented by additional methods including MR-Egger, weighted median, and weighted mode approaches. The Cochrane Q test, MR-PRESSO global test and MR-Egger intercept test were performed to assess pleiotropy and heterogeneity. Furthermore, a reverse MR analysis was performed to explore potential reverse causal effect. Results The primary MR analysis identified 36 causal relationships between genetic liabilities in gut microbiota and different lymphoma subtypes. Neither the MR-PRESSO test nor the MR-Egger regression detected any pleiotropy, and Cochran's Q test indicated no significant heterogeneity. Conclusions Our MR analysis revealed substantial causal associations between gut microbiota and lymphoma, offering new insights into lymphoma prevention and management microbiota.
Collapse
Affiliation(s)
- Jing Liang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Gengqiu Liu
- Department of Thoracic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenqing Wang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Hongman Xue
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
121
|
Grauwet K, Berger T, Kann MC, Silva H, Larson R, Leick MB, Bailey SR, Bouffard AA, Millar D, Gallagher K, Turtle CJ, Frigault MJ, Maus MV. Stealth transgenes enable CAR-T cells to evade host immune responses. J Immunother Cancer 2024; 12:e008417. [PMID: 38724463 PMCID: PMC11086422 DOI: 10.1136/jitc-2023-008417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Adoptive cell therapy, such as chimeric antigen receptor (CAR)-T cell therapy, has improved patient outcomes for hematological malignancies. Currently, four of the six FDA-approved CAR-T cell products use the FMC63-based αCD19 single-chain variable fragment, derived from a murine monoclonal antibody, as the extracellular binding domain. Clinical studies demonstrate that patients develop humoral and cellular immune responses to the non-self CAR components of autologous CAR-T cells or donor-specific antigens of allogeneic CAR-T cells, which is thought to potentially limit CAR-T cell persistence and the success of repeated dosing. METHODS In this study, we implemented a one-shot approach to prevent rejection of engineered T cells by simultaneously reducing antigen presentation and the surface expression of both Classes of the major histocompatibility complex (MHC) via expression of the viral inhibitors of transporter associated with antigen processing (TAPi) in combination with a transgene coding for shRNA targeting class II MHC transactivator (CIITA). The optimal combination was screened in vitro by flow cytometric analysis and mixed lymphocyte reaction assays and was validated in vivo in mouse models of leukemia and lymphoma. Functionality was assessed in an autologous setting using patient samples and in an allogeneic setting using an allogeneic mouse model. RESULTS The combination of the Epstein-Barr virus TAPi and an shRNA targeting CIITA was efficient and effective at reducing cell surface MHC classes I and II in αCD19 'stealth' CAR-T cells while retaining in vitro and in vivo antitumor functionality. Mixed lymphocyte reaction assays and IFNγ ELISpot assays performed with T cells from patients previously treated with autologous αCD19 CAR-T cells confirm that CAR T cells expressing the stealth transgenes evade allogeneic and autologous anti-CAR responses, which was further validated in vivo. Importantly, we noted anti-CAR-T cell responses in patients who had received multiple CAR-T cell infusions, and this response was reduced on in vitro restimulation with autologous CARs containing the stealth transgenes. CONCLUSIONS Together, these data suggest that the proposed stealth transgenes may reduce the immunogenicity of autologous and allogeneic cellular therapeutics. Moreover, patient data indicate that repeated doses of autologous FMC63-based αCD19 CAR-T cells significantly increased the anti-CAR T cell responses in these patients.
Collapse
Affiliation(s)
- Korneel Grauwet
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Trisha Berger
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Harrison Silva
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - Rebecca Larson
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
| | - David Millar
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathleen Gallagher
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Cameron J Turtle
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Krantz Family Center for Cancer Research, Massachusetts General Hosptial, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
122
|
Silkenstedt E, Salles G, Campo E, Dreyling M. B-cell non-Hodgkin lymphomas. Lancet 2024; 403:1791-1807. [PMID: 38614113 DOI: 10.1016/s0140-6736(23)02705-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/31/2023] [Accepted: 11/30/2023] [Indexed: 04/15/2024]
Abstract
B-cell lymphomas occur with an incidence of 20 new cases per 100 000 people per year in high-income countries. They can affect any organ and are characterised by heterogeneous clinical presentations and courses, varying from asymptomatic, to indolent, to very aggressive cases. Since the topic of B-cell non-Hodgkin lymphomas was last reviewed in The Lancet in 2017, a deeper understanding of the biological background of this heterogeneous group of malignancies, the availability of new diagnostic methods, and the development and implementation of new targeted and immunotherapeutic approaches have improved our ability to treat patients. This Seminar provides an overview of the pathobiology, classification, and prognostication of B-cell non-Hodgkin lymphomas and summarises the current knowledge and standard of care regarding biology and clinical management of the most common subtypes of mature B-cell non-Hodgkin lymphomas. It also highlights new findings in deciphering the molecular background of disease development and the implementation of new therapeutic approaches, particularly those targeting the immune system.
Collapse
Affiliation(s)
| | - Gilles Salles
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Elias Campo
- Department of Pathology, Hospital Clinic, Institute for Biomedical Research August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | | |
Collapse
|
123
|
Xin X, Lin L, Yang Y, Wang N, Wang J, Xu J, Wei J, Huang L, Zheng M, Xiao Y, Meng F, Cao Y, Zhu X, Zhang Y. Prognostic differences between carmustine, etoposide, cytarabine and melphalan (BEAM) and carmustine, etoposide, cytarabine, melphalan and fludarabine (BEAMF) regimens before autologous stem cell transplantation plus chimeric antigen receptor T therapy in patients with refractory/relapsed B-cell non-Hodgkin-lymphoma. Cytotherapy 2024; 26:456-465. [PMID: 38385909 DOI: 10.1016/j.jcyt.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND AIMS The combination therapy of autologous hematopoietic stem cell transplantation (ASCT) and chimeric antigen receptor T-cell (CART) therapy has been employed to improve outcomes for relapsed or refractory (R/R) B-cell non-Hodgkin-lymphoma (B-NHL). The widely used conditioning regimen before ASCT plus CART therapy reported in the literature was carmustine, etoposide, cytarabine and melphalan (BEAM). However, whether adding fludarabine to the BEAM regimen (BEAMF) can improve the survival of patients with R/R B-NHL remains unknown. METHODS In total, 39 and 19 patients with R/R B-NHL were enrolled to compare clinical outcomes in the BEAM and BEAMF regimens before ASCT plus CD19/22 CART therapy, respectively. RESULTS The objective response (OR) rates at 3 months to BEAM and BEAMF regimens before ASCT plus CD19/22 CART therapy were 71.8% and 94.7%, respectively (P = 0.093). The BEAMF regimen showed a trend towards a superior duration of response compared with the BEAM regimen (P = 0.09). After a median follow-up of 28 months (range: 0.93-51.9 months), the BEAMF regimen demonstrated superior 2-year progression-free survival (PFS) (89.5% versus 63.9%; P = 0.048) and 2-year overall survival (OS) (100% vs 77.3%; P = 0.035) compared with the BEAM regimen. In the multivariable Cox regression analysis, OR at month 3 (responders) was remarkably correlated with better OS (hazard ratio: 0.112, P = 0.005) compared with OR (non-responders). CONCLUSIONS For patients with R/R B-NHL, the BEAMF regimen before ASCT plus CD19/22 CART therapy was correlated with superior PFS and OS than the BEAM regimen, and the BEAMF regimen is a promising alternative conditioning regimen for ASCT plus CAR-T therapy.
Collapse
Affiliation(s)
- Xiangke Xin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China.
| |
Collapse
|
124
|
Shumnalieva R, Velikova T, Monov S. Expanding the role of CAR T-cell therapy: From B-cell hematological malignancies to autoimmune rheumatic diseases. Int J Rheum Dis 2024; 27:e15182. [PMID: 38742463 DOI: 10.1111/1756-185x.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a form of immunotherapy where the lymphocytes, mostly T-cells, are redirected to specifically recognize and eliminate a target antigen by coupling them with CARs. The binding of CAR and target cell surface antigens leads to vigorous T cell activation and robust anti-tumor immune responses. Areas of implication of CAR T-cell therapies include mainly hematological malignancies (i.e., advanced B-cell cancers); however, recent studies have proven the unprecedented success of the new immunotherapy also in autoimmune rheumatic diseases. We aim to review the recent advances in CAR T-cell therapies in rheumatology but also to address the limitations of their use in the real clinical practice based on the data on their efficacy and safety.
Collapse
Affiliation(s)
- Russka Shumnalieva
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University "St. Kliment Ohridski"- Sofia, Sofia, Bulgaria
| | - Simeon Monov
- Department of Rheumatology, Clinic of Rheumatology, Medical University-Sofia, Faculty of Medicine, Sofia, Bulgaria
| |
Collapse
|
125
|
Eigendorff F, Filimonova I, Scholl S, Sayer-Klink A, Rummler S, Kunert C, Pietschmann K, Wittig A, Hochhaus A, Schnetzke U. Effective bridging strategies prior to infusion with tisagenlecleucel results in high response rates and long-term remission in relapsed/refractory large B-cell lymphoma: findings from a German monocentric study. J Cancer Res Clin Oncol 2024; 150:224. [PMID: 38693452 PMCID: PMC11062962 DOI: 10.1007/s00432-024-05765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Incorporating chimeric antigen receptor (CAR)-T cell therapy into relapsed or refractory large B-cell lymphoma (rr LBCL) treatment algorithms has yielded remarkable response rates and durable remissions, yet a substantial portion of patients experience progression or relapse. Variations in outcomes across treatment centers may be attributed to different bridging strategies and remission statuses preceding CAR-T cell therapy. PATIENTS Twenty-nine consecutive adult patients receiving tisagenlecleucel (tisa-cel) for rr LBCL from December 2019 to February 2023 at Jena University Hospital were analyzed. RESULTS The median age was 63, with a median of 3 prior treatments. Twenty patients (69%) were refractory to any systemic therapy before CAR-T cell treatment. Following leukapheresis, 25 patients (86%) received bridging therapy with the majority undergoing chemotherapy (52%) or combined modality therapy (32%). Radiotherapy (RT) was part of the bridging strategy in 44%, with moderately hypofractionated involved site RT (30.0 Gy/2.5 Gy) being applied most frequently (64%). Post-CAR-T infusion, the objective response rate at 30 days was 83%, with 55% achieving complete response. Twelve-month progression-free (PFS) and overall survival (OS) were 60% and 74%, respectively, with a median follow up of 11.1 months for PFS and 17.9 months for OS. Factors significantly associated with PFS were chemotherapy sensitivity pre-leukapheresis and response to bridging. CONCLUSION The study underscores the importance of minimal tumor burden at CAR-T initiation, emphasizing the need for suitable bridging regimens. The findings advocate for clinical trials and further real-world analyses to optimize CAR-T cell therapy outcomes by identifying the most effective bridging strategies.
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Female
- Aged
- Immunotherapy, Adoptive/methods
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Adult
- Remission Induction
- Neoplasm Recurrence, Local/therapy
- Neoplasm Recurrence, Local/pathology
- Germany
- Receptors, Antigen, T-Cell/therapeutic use
- Retrospective Studies
- Combined Modality Therapy
Collapse
Affiliation(s)
- Farina Eigendorff
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Irina Filimonova
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Sebastian Scholl
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Anne Sayer-Klink
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Silke Rummler
- Institut für Transfusionsmedizin, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Christa Kunert
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Klaus Pietschmann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Andrea Wittig
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Jena, Jena, Germany
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Andreas Hochhaus
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany
| | - Ulf Schnetzke
- Klinik Für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Am Klinikum 1, 07747, Jena, Germany.
- Comprehensive Cancer Center Central Germany (CCCG) Jena/Leipzig, Campus Jena, Jena, Germany.
| |
Collapse
|
126
|
Yamauchi N, Maruyama D. Current development of chimeric antigen receptor T-cell therapy for diffuse large B-cell lymphoma and high-grade B-cell lymphoma. Eur J Haematol 2024; 112:662-677. [PMID: 38168033 DOI: 10.1111/ejh.14166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has become a commercially available treatment option for relapsed or refractory (r/r) diffuse large B-cell lymphoma (DLBCL) with two or more lines of prior therapies, and recently for high-risk r/r DLBCL with one prior line of therapy. The successful development of CAR T-cell therapy for multiple relapsed DLBCL has led to a boom in subsequent trials that investigated its utility in patients with other r/r B-cell lymphoma subtypes. However, CAR T-cell therapy is a multistep process that includes leukapheresis and manipulation which take several weeks. Therefore, patients with rapidly progressing or bulky disease may not be able to complete the therapeutic regimen involving CAR T-cell products. This raises the question of the generalizability of the results of pivotal studies to the entire population. In this review, we summarize the development of CAR-T cell therapy for B-cell lymphoma and discuss strategies to further improve the clinical outcomes of this treatment.
Collapse
Affiliation(s)
- Nobuhiko Yamauchi
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Dai Maruyama
- Department of Hematology Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| |
Collapse
|
127
|
Lin H, Deng T, Jiang L, Meng F, Cao Y, Zhang Y, Ge R, Zhu X. Adverse Reactions in Relapsed/Refractory B-Cell Lymphoma Administered with Chimeric Antigen Receptor T Cell Alone or in Combination with Autologous Stem Cell Transplantation. Cancers (Basel) 2024; 16:1722. [PMID: 38730674 PMCID: PMC11083715 DOI: 10.3390/cancers16091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: The combination of CAR-T with ASCT has been observed to enhance the efficacy of CAR-T cell therapy. However, the impact of this combination on adverse reactions is still uncertain. (2) Methods: Between January 2019 and February 2023, 292 patients diagnosed with r/r B-cell lymphoma received either CAR-T therapy alone or in combination with ASCT at our institution. We evaluated the incidence of CRS and CRES and utilized a logistic regression model to identify factors contributing to severe CRS (grade 3-4) and CRES (grade 3-4). (3) Results: The overall incidence of CRS and CRES was 78.9% and 8.2% in 147 patients receiving CAR-T alone, and 95.9% and 15.2% in 145 patients receiving CAR-T combined with ASCT, respectively. The incidence of overall CRS (p < 0.0001) and mild CRS (grade 1-2) (p = 0.021) was elevated in the ASCT combined with CAR-T group. No significant difference was observed in severe CRS and CRES between the groups. Among the 26 cases of lymphoma involving the central nervous system (CNS), 96.2% (25/26) developed CRS (15.4% grade 3-4), and 34.6% (9/26) manifested CRES (7.7% grade 3-4). Female patients had a lower incidence of severe CRS but a higher incidence of severe CRES. Lymphomas with CNS involvement demonstrated a higher risk of CRES compared to those without central involvement. (4) Conclusions: The combination of ASCT with CAR-T demonstrated a preferable option in r/r B-cell lymphoma without an increased incidence of severe CRS and CRES.
Collapse
Affiliation(s)
- Haolong Lin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Ting Deng
- Department of Hematology, Chongqing Fifth People’s Hospital, Chongqing 400062, China;
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| | - Renying Ge
- Department of Hematology, Xianning Central Hospital, The First Affiliated Hospital to Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (H.L.); (L.J.); (F.M.); (Y.C.); (Y.Z.)
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan 430030, China
| |
Collapse
|
128
|
Salvino MA, Mussetti A, Peña M, Paviglianiti A, Carreira AS, Rizky D, Sureda A. CAR T-cell therapy and the onco-nephrologist. FRONTIERS IN NEPHROLOGY 2024; 4:1378250. [PMID: 38706889 PMCID: PMC11066316 DOI: 10.3389/fneph.2024.1378250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024]
Abstract
Cell therapy, specifically the revolutionary chimeric antigen receptor (CAR) T-cell therapy, has transformed the landscape of oncology, making substantial strides in practical treatment approaches. Today, established guidelines for diseases such as lymphomas, myelomas, and leukemias actively advocate the utilization of these once-unconventional therapies. The practical impact of these therapies is underscored by their unparalleled efficacy, reshaping the way we approach and implement treatments in the realm of oncology. However, CAR T-cell therapy, with its performance in anti-tumor aggression through cellular action and inflammatory response, also comes with various adverse events, one of which is kidney injury. Therefore, the management of these side effects is extremely important. The integration of knowledge between oncologists and specialized nephrologists has led to the emergence of a new sub-area of expertise for onco-nephrologists specializing in managing kidney complications from immune effector therapies.
Collapse
Affiliation(s)
- Marco Aurelio Salvino
- Programa Pos Graduacao Medicina Saude (PPGMS), Universidade Federal da Bahia, Salvador, Brazil
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Hematology Department, Instituto D´or de Pesquisa e Ensino-Bahia (IDOR Ba), Salvador, Brazil
| | | | - Marta Peña
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
| | | | | | - Daniel Rizky
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Hematology Medical Oncology, Dr. Kariadi General Hospital, Semarang, Indonesia
| | - Anna Sureda
- L’Hospitalet, Institut Català de Oncologia, Barcelona, Spain
- Institut d’Investigació Biomédica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
129
|
Xiang M, Li H, Zhan Y, Ma D, Gao Q, Fang Y. Functional CRISPR screens in T cells reveal new opportunities for cancer immunotherapies. Mol Cancer 2024; 23:73. [PMID: 38581063 PMCID: PMC10996278 DOI: 10.1186/s12943-024-01987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
T cells are fundamental components in tumour immunity and cancer immunotherapies, which have made immense strides and revolutionized cancer treatment paradigm. However, recent studies delineate the predicament of T cell dysregulation in tumour microenvironment and the compromised efficacy of cancer immunotherapies. CRISPR screens enable unbiased interrogation of gene function in T cells and have revealed functional determinators, genetic regulatory networks, and intercellular interactions in T cell life cycle, thereby providing opportunities to revamp cancer immunotherapies. In this review, we briefly described the central roles of T cells in successful cancer immunotherapies, comprehensively summarised the studies of CRISPR screens in T cells, elaborated resultant master genes that control T cell activation, proliferation, fate determination, effector function, and exhaustion, and highlighted genes (BATF, PRDM1, and TOX) and signalling cascades (JAK-STAT and NF-κB pathways) that extensively engage in multiple branches of T cell responses. In conclusion, this review bridged the gap between discovering element genes to a specific process of T cell activities and apprehending these genes in the global T cell life cycle, deepened the understanding of T cell biology in tumour immunity, and outlined CRISPR screens resources that might facilitate the development and implementation of cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Minghua Xiang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Li
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhan
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yong Fang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
130
|
Neuendorff NR, Khan A, Ullrich F, Yates S, Devarakonda S, Lin RJ, von Tresckow B, Cordoba R, Artz A, Rosko AE. Cellular therapies in older adults with hematological malignancies: A case-based, state-of-the-art review. J Geriatr Oncol 2024; 15:101734. [PMID: 38430810 DOI: 10.1016/j.jgo.2024.101734] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Cellular therapies, including autologous stem cell transplant (ASCT), allogeneic hematopoietic cell transplantation (alloHCT), and chimeric antigen receptor- (CAR-) T cell therapies are essential treatment modalities for many hematological malignancies. Although their use in older adults has substantially increased within the past decades, cellular therapies represent intensive treatment approaches that exclude a large percentage of older adults due to comorbidities and frailty. Under- and overtreatment in older adults with hematologic malignancy is a challenge and many treatment decisions are influenced by chronologic age. The advent of efficient and well-tolerated newer treatment approaches for multiple myeloma has challenged the role of ASCT. In the modern era, there are no randomized clinical trials of transplant versus non-transplant strategies for patients ≥65 years. Nonetheless, ASCT is feasible for selected older patients and does not result in long-term compromise in quality of life. AlloHCT is the only curative approach for acute myeloid leukemia of intermediate and unfavourable risk but carries a significant risk for non-relapse mortality depending on comorbidities, general fitness, and transplant-specific characteristics, such as intensity of conditioning and donor choice. However, alloHCT is feasible in appropriately-selected older adults. Early referral for evaluation is strongly encouraged as this is the most obvious barrier. CAR-T cell therapies have shown unprecedented clinical efficacy and durability in relapsed and refractory diffuse large B cell lymphoma. Its use is well tolerated in older adults, although evidence comes from limited case numbers. Whether patients who are deemed unfit for ASCT qualify for CAR-T cell therapy remains elusive, but the tolerability and efficacy of CAR-T cell therapy appears promising, especially for older patients. The evidence from randomized trials is strong in favor of using a comprehensive geriatric assessment (CGA) to reduce treatment-related toxicities and guide treatment intensity in the care for solid tumors; its use for evaluation of cellular therapies is less evidence-based. However, CGA can provide useful information on patients' fitness, resilient mechanisms, and reveal potential optimization strategies for compensating for vulnerabilities. In this narrative review, we will discuss key questions on cellular therapies in older adults based on illustrative patient cases.
Collapse
Affiliation(s)
- Nina Rosa Neuendorff
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen, Germany.
| | - Abdullah Khan
- Department of Hematology, The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Fabian Ullrich
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen, Germany
| | - Samuel Yates
- Department of Internal Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, United States of America
| | - Srinivas Devarakonda
- Department of Hematology, The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, United States of America
| | - Richard J Lin
- Adult Bone Marrow Transplantation (BMT) Service, Cellular Therapy Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Bastian von Tresckow
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, D-45147 Essen, Germany
| | - Raul Cordoba
- Lymphoma Unit, Department of Hematology, Health Research Institute IIS-FJD, Fundacion Jimenez Diaz University Hospital, Madrid, Spain
| | - Andrew Artz
- Division of Leukemia, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
| | - Ashley E Rosko
- Department of Hematology, The Ohio State University, James Comprehensive Cancer Center, Columbus, OH, United States of America
| |
Collapse
|
131
|
Voltin CA, Paccagnella A, Winkelmann M, Heger JM, Casadei B, Beckmann L, Herrmann K, Dekorsy FJ, Kutsch N, Borchmann P, Fanti S, Kunz WG, Subklewe M, Kobe C, Zinzani PL, Stelljes M, Roth KS, Drzezga A, Noppeney R, Rahbar K, Reinhardt HC, von Tresckow B, Seifert R, Albring JC, Blumenberg V, Farolfi A, Flossdorf S, Gödel P, Hanoun C. Multicenter development of a PET-based risk assessment tool for product-specific outcome prediction in large B-cell lymphoma patients undergoing CAR T-cell therapy. Eur J Nucl Med Mol Imaging 2024; 51:1361-1370. [PMID: 38114616 PMCID: PMC10957657 DOI: 10.1007/s00259-023-06554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE The emergence of chimeric antigen receptor (CAR) T-cell therapy fundamentally changed the management of individuals with relapsed and refractory large B-cell lymphoma (LBCL). However, real-world data have shown divergent outcomes for the approved products. The present study therefore set out to evaluate potential risk factors in a larger cohort. METHODS Our analysis set included 88 patients, treated in four German university hospitals and one Italian center, who had undergone 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET) before CAR T-cell therapy with tisagenlecleucel or axicabtagene ciloleucel. We first determined the predictive value of conventional risk factors, treatment lines, and response to bridging therapy for progression-free survival (PFS) through forward selection based on Cox regression. In a second step, the additive potential of two common PET parameters was assessed. Their optimal dichotomizing thresholds were calculated individually for each CAR T-cell product. RESULTS Extra-nodal involvement emerged as the most relevant of the conventional tumor and patient characteristics. Moreover, we found that inclusion of metabolic tumor volume (MTV) further improves outcome prediction. The hazard ratio for a PFS event was 1.68 per unit increase of our proposed risk score (95% confidence interval [1.20, 2.35], P = 0.003), which comprised both extra-nodal disease and lymphoma burden. While the most suitable MTV cut-off among patients receiving tisagenlecleucel was 11 mL, a markedly higher threshold of 259 mL showed optimal predictive performance in those undergoing axicabtagene ciloleucel treatment. CONCLUSION Our analysis demonstrates that the presence of more than one extra-nodal lesion and higher MTV in LBCL are associated with inferior outcome after CAR T-cell treatment. Based on an assessment tool including these two factors, patients can be assigned to one of three risk groups. Importantly, as shown by our study, metabolic tumor burden might facilitate CAR T-cell product selection and reflect the individual need for bridging therapy.
Collapse
Affiliation(s)
- Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Andrea Paccagnella
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Michael Winkelmann
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Jan-Michel Heger
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Beatrice Casadei
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Laura Beckmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
| | - Franziska J Dekorsy
- Department of Nuclear Medicine, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Nadine Kutsch
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Peter Borchmann
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Stefano Fanti
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pier Luigi Zinzani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- 'L. e A. Seràgnoli' Institute of Hematology, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Matthias Stelljes
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Katrin S Roth
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Richard Noppeney
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - H Christian Reinhardt
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastian von Tresckow
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Nuclear Medicine, University Hospital Münster, University of Münster, Münster, Germany
| | - Jörn C Albring
- Department of Medicine A-Hematology, Oncology, and Pneumology, West German Cancer Center (WTZ) Network Partner Site, University Hospital Münster, University of Münster, Münster, Germany
| | - Viktoria Blumenberg
- Department of Medicine III, Comprehensive Cancer Center Munich (CCCM), University Hospital Munich, Ludwig Maximilian University Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, Gene Center Munich, Ludwig Maximilian University Munich, Munich, Germany
- German Cancer Consortium (DKTK) and Bavarian Center for Cancer Research (BZKF) Partner Site Munich, Munich, Germany
| | - Andrea Farolfi
- Division of Nuclear Medicine, Scientific Institute for Research, Hospitalization, and Healthcare (IRCCS) 'Azienda Ospedaliero-Universitaria Di Bologna', University of Bologna, Bologna, Italy
| | - Sarah Flossdorf
- Institute for Medical Informatics, Biometry, and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Philipp Gödel
- Department of Internal Medicine I, Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Christine Hanoun
- German Cancer Consortium (DKTK) Partner Site Essen/Düsseldorf, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
132
|
Harrysson S, Eloranta S, Ekberg S, Enblad G, Andersson PO, Sonnevi K, Ljungqvist M, Sander B, Jerkeman M, Smedby KE. Outcomes for patients with secondary CNS involvement in relapsed/refractory diffuse large B-cell lymphoma and estimation of eligibility for CAR T-cell therapy. Leuk Lymphoma 2024; 65:534-537. [PMID: 38134325 DOI: 10.1080/10428194.2023.2296361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Sara Harrysson
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Solna, Sweden
| | - Sandra Eloranta
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sara Ekberg
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Andersson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, and Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kristina Sonnevi
- Department of Hematology, Karolinska University Hospital, Solna, Sweden
| | - Maria Ljungqvist
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Solna, Sweden
| | - Birgitta Sander
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mats Jerkeman
- Department of Oncology, Lund University, Lund, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
133
|
Giraudo MF, Jackson Z, Das I, Abiona OM, Wald DN. Chimeric Antigen Receptor (CAR)-T Cell Therapy for Non-Hodgkin's Lymphoma. Pathog Immun 2024; 9:1-17. [PMID: 38550613 PMCID: PMC10972674 DOI: 10.20411/pai.v9i1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/28/2024] [Indexed: 04/15/2024] Open
Abstract
This review focuses on the use of chimeric antigen receptor (CAR)-T cell therapy to treat non-Hodgkin's lymphoma (NHL), a classification of heterogeneous malignant neoplasms of the lymphoid tissue. Despite various conventional and multidrug chemotherapies, the poor prognosis for NHL patients remains and has prompted the utilization of groundbreaking personalized therapies such as CAR-T cells. CAR-T cells are T cells engineered to express a CAR that enables T cells to specifically lyse tumor cells with extracellular expression of a tumor antigen of choice. A CAR is composed of an extracellular antibody fragment or target protein binding domain that is conjugated to activating intracellular signaling motifs common to T cells. In general, CAR-T cell therapies for NHL are designed to recognize cellular markers ubiquitously expressed on B cells such as CD19+, CD20+, and CD22+. Clinical trials using CAR-T cells such as ZUMA-7 and TRANSFORM demonstrated promising results compared to standard of care and ultimately led to FDA approval for the treatment of relapsed/refractory NHL. Despite the success of CAR-T therapy for NHL, challenges include adverse side effects as well as extrinsic and intrinsic mechanisms of tumor resistance that lead to suboptimal outcomes. Overall, CAR-T cell therapies have improved clinical outcomes in NHL patients and generated optimism around their future applications.
Collapse
Affiliation(s)
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Indrani Das
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | | | - David N. Wald
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
- Department of Pathology, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
134
|
Bellal M, Malherbe J, Damaj G, Du Cheyron D. Toxicities, intensive care management, and outcome of chimeric antigen receptor T cells in adults: an update. Crit Care 2024; 28:69. [PMID: 38444031 PMCID: PMC10916319 DOI: 10.1186/s13054-024-04851-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/27/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor T cells are a promising new immunotherapy for haematological malignancies. Six CAR-T cells products are currently available for adult patients with refractory or relapsed high-grade B cell malignancies, but they are associated with severe life-threatening toxicities and side effects that may require admission to ICU. OBJECTIVE The aim of this short pragmatic review is to synthesize for intensivists the knowledge on CAR-T cell therapy with emphasis on CAR-T cell-induced toxicities and ICU management of complications according to international recommendations, outcomes and future issues.
Collapse
Affiliation(s)
- Mathieu Bellal
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France.
- UNICAEN, INSERM UMRS U1237 PhIND, Normandie Univ, 14000, Caen, France.
| | - Jolan Malherbe
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France
| | - Gandhi Damaj
- Hematology Institute, Caen University Hospital, 14000, Caen, France
| | - Damien Du Cheyron
- Department of Medical Intensive Care, Caen University Hospital, Avenue de la côte de nacre, 14000, Caen, France
| |
Collapse
|
135
|
Gordon LI, Liu FF, Braverman J, Hoda D, Ghosh N, Hamadani M, Hildebrandt GC, Peng L, Guo S, Shi L, Sehgal A. Lisocabtagene maraleucel for second-line relapsed or refractory large B-cell lymphoma: patient-reported outcomes from the PILOT study. Haematologica 2024; 109:857-866. [PMID: 37646670 PMCID: PMC10905070 DOI: 10.3324/haematol.2023.283162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
In the single-arm, open-label, multicenter, phase II PILOT study, second-line treatment with the chimeric antigen receptor (CAR) T-cell therapy lisocabtagene maraleucel (liso-cel) in patients with relapsed or refractory (R/R) large B-cell lymphoma (LBCL) for whom hematopoietic stem cell transplantation (HSCT) was not intended resulted in high response rates, durable responses, and a safety profile consistent with previous reports. Here, we analyzed changes in health-related quality of life (HRQOL) in patients who received liso-cel in PILOT. Patients received liso-cel, an autologous, CD19-directed, 4-1BB CAR T-cell product administered at equal target doses of CD8+ and CD4+ CAR+ T cells, for a total target dose of 100×10⁶ CAR+ T cells. HRQOL, a secondary endpoint of PILOT, was assessed as prespecified using three patient-reported outcome instruments (EORTC QLQ-C30; FACT-LymS; EQ-5D-5L). Evaluable datasets for the EORTC QLQ-C30, FACT-LymS, and EQ-5D-5L health utility index, and visual analog scale (EQ-VAS) included 56 (92%), 49 (80%), 55 (90%), and 54 (89%) patients, respectively. Clinically meaningful improvement was achieved across most post-treatment visits for EORTC QLQ-C30 fatigue and FACT-LymS. Overall mean changes from baseline through day 545 showed significant improvements in EORTC QLQ-C30 fatigue, pain, and appetite loss, FACT-LymS, and EQ VAS. In within-patient analyses, clinically meaningful improvements or maintenance in scores were observed in most patients at days 90, 180, 270, and 365. HRQOL was maintained or improved in patients who received liso-cel as second-line therapy in PILOT. These findings support liso-cel as a preferred second-line treatment in patients with R/R LBCL not intended for HSCT (clinicaltrials gov. Identifier: NCT03483103).
Collapse
Affiliation(s)
- Leo I Gordon
- Northwestern University, Feinberg School of Medicine, Robert H. Lurie Comprehensive Cancer Center, Chicago, IL.
| | | | | | - Daanish Hoda
- Intermountain Healthcare, Loveland Clinic for Blood Cancer Therapy, Salt Lake City, UT
| | | | - Mehdi Hamadani
- BMT and Cellular Therapy Program, Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | - Alison Sehgal
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
136
|
Al-Mashhadi AL, Jakobsen LH, Brown P, Gang AO, Thorsteinsson AL, Rasoul K, Haissman JM, Tøstesen MB, Christoffersen MN, Jelicic J, Jørgensen JB, Thomsen T, Dessau-Arp A, Andersen APH, Frederiksen M, Pedersen PT, Clausen MR, Jørgensen JM, Poulsen CB, El-Galaly TC, Larsen TS. Real-world outcomes following third or subsequent lines of therapy: A Danish population-based study on 189 patients with relapsed/refractory large B-cell lymphomas. Br J Haematol 2024; 204:839-848. [PMID: 38009548 DOI: 10.1111/bjh.19201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Outcome data of patients with relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) beyond the second line are scarce outside of clinical trials. Novel therapies in the R/R setting have been approved based on single-arm trials, but results need to be contextualized by real-world outcomes. Medical records from 3753 Danish adults diagnosed with DLBCL were reviewed. Patients previously treated with rituximab and anthracycline-based chemotherapy who received the third or later line (3 L+) of treatment after 1 January 2015, were included. Only 189 patients with a median age of 71 years were eligible. The median time since the last line of therapy was 6 months. Patients were treated with either best supportive care (22%), platinum-based salvage therapy (13%), low-intensity chemotherapy (22%), in clinical trial (14%) or various combination treatments (32%). The 2-year OS-/PFS estimates were 25% and 12% for all patients and 49% and 17% for those treated with platinum-based salvage therapy. Age ≥70, CNS involvement, elevated LDH and ECOG ≥2 predicted poor outcomes, and patients with 0-1 of these risk factors had a 2-year OS estimate of 65%. Only a very small fraction of DLBCL patients received third-line treatment and were eligible for inclusion. Outcomes were generally poor, but better in intensively treated, fit young patients with limited disease.
Collapse
Affiliation(s)
- Ahmed Ludvigsen Al-Mashhadi
- Department of Haematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Haematology, Aarhus University Hospital, Aarhus, Denmark
| | - Lasse Hjort Jakobsen
- Department of Haematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Peter Brown
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Ortved Gang
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Luise Thorsteinsson
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kaziwa Rasoul
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Judith Melchior Haissman
- Department of Haematology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | | | - Mette Niemann Christoffersen
- Department of Haematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jelena Jelicic
- Department of Haematology, Vejle Hospital, Vejle, Denmark
| | | | - Troels Thomsen
- Department of Internal Medicine, Haematology Section, Goedstrup Hospital, Herning, Denmark
| | | | | | - Mikael Frederiksen
- Department of Hematology, Hospital of Southern Jutland, Sønderborg, Denmark
| | | | | | | | - Christian Bjørn Poulsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Haematology, Zealand University Hospital, Roskilde, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Haematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Thomas Stauffer Larsen
- Department of Haematology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
137
|
Kato K, Sugio T, Ikeda T, Yoshitsugu K, Miyazaki K, Suzumiya J, Yamamoto G, Kim SW, Ikegame K, Uehara Y, Mori Y, Ishikawa J, Hiramoto N, Eto T, Nakazawa H, Kobayashi H, Serizawa K, Onizuka M, Fukuda T, Atsuta Y, Suzuki R. Outcomes of allogeneic hematopoietic stem cell transplantation for relapsed or refractory diffuse large B-cell lymphoma. Bone Marrow Transplant 2024; 59:306-314. [PMID: 38102209 DOI: 10.1038/s41409-023-02156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a currative treatment modality for diffuse large B-cell lymphoma (DLBCL) because of the intrinsic graft-versus-lymphoma effect. However, limited information is available regarding which patients with relapsed or refractory DLBCL are likely to benefit from allo-HSCT. We retrospectively analyzed data from 1268 DLBCL patients who received allo-HSCT. The overall survival and progression-free survival (PFS) rates were 30.3% and 21.6% at 3 years, respectively. Multivariate analysis revealed that stable or progressive disease at transplantation, male patient, poorer performance status at transplantation, and shorter intervals from previous transplantation were associated independently with a lower PFS. Four prognostic factors were used to construct a prognostic index for PFS, predicting 3-year PFS of 55.4%, 43.7%, 20.4% and 6.6%, respectively. The prognostic model predicted relapse rates following allo-HSCT accordingly (P < 0.0001), whereas did not predict transplantation-related mortality (P = 0.249). The prognostic index can identify a subgroup of DLBCL patients who benefit from allo-HSCT and it is worthwhile to evaluate whether this model is also applicable to patients undergoing allo-HSCT in cases of relapse after chimeric antigen receptor engineered T-cell therapy, although the application of allo-HSCT has been declining with the increase of novel immunotherapies.
Collapse
Affiliation(s)
- Koji Kato
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Takeshi Sugio
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ikeda
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kanako Yoshitsugu
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kana Miyazaki
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Junji Suzumiya
- Department of Hematology, Koga Community Hospital, Yaizu, Japan
| | - Go Yamamoto
- Department of Hematology, Federation of National Public Service Personnel Mutual Aid Associations Toranomon Hospital, Tokyo, Japan
| | - Sung-Won Kim
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Japan
| | - Yasufumi Uehara
- Department of Hematology, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jun Ishikawa
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Nobuhiro Hiramoto
- Department of Hematology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Tetsuya Eto
- Department of Hematology, Hamanomachi Hospital, Fukuoka, Japan
| | - Hideyuki Nakazawa
- Department of Hematology and Medical Oncology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hikaru Kobayashi
- Department of Hematology, Nagano Red Cross Hospital, Nagano, Japan
| | - Kentaro Serizawa
- Division of Hematology and Rheumatology, Department of Internal Medicine, Kindai University Hospital, Osaka, Japan
| | - Makoto Onizuka
- Department of Hematology/Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Takahiro Fukuda
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiko Atsuta
- Japanese Data Center for Hematopoietic Cell Transplantation, Nagakute, Japan
- Department of Registry Science for Transplant and Cellular Therapy, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ritsuro Suzuki
- Department of Hematology and Oncology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
138
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
MESH Headings
- Humans
- Doxorubicin/therapeutic use
- Doxorubicin/pharmacology
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Drug Resistance, Neoplasm/genetics
- Female
- Male
- SAM Domain and HD Domain-Containing Protein 1/genetics
- SAM Domain and HD Domain-Containing Protein 1/metabolism
- Middle Aged
- Aged
- Prognosis
- Adult
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Kaplan-Meier Estimate
- Aged, 80 and over
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
139
|
Bibas M. Plasmablastic Lymphoma. A State-of-the-Art Review: Part 2-Focus on Therapy. Mediterr J Hematol Infect Dis 2024; 16:e2024015. [PMID: 38468838 PMCID: PMC10927196 DOI: 10.4084/mjhid.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
The objective of this two-part review is to present a current and comprehensive understanding of the diagnosis and management of plasmablastic lymphoma. The first part, which was published previously, focused on the study of epidemiology, etiology, clinicopathological characteristics, differential diagnosis, prognostic variables, and the impact of plasmablastic lymphoma on specific populations. This second part addresses the difficult topic of the treatment of plasmablastic lymphoma, specifically examining both the conventional, consolidated approach and the novel therapeutic strategy.
Collapse
Affiliation(s)
- Michele Bibas
- Department of Clinical Research, Hematology. National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.S.S. Via Portuense 292 00148 Rome Italy
| |
Collapse
|
140
|
Haslam A, Hoeg TB, Prasad V. Estimation of eligibility for and response to CAR-T therapy in the United States. Blood Adv 2024; 8:1032-1036. [PMID: 38039516 PMCID: PMC10920105 DOI: 10.1182/bloodadvances.2023011184] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Affiliation(s)
- Alyson Haslam
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Tracy Beth Hoeg
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| |
Collapse
|
141
|
Trabolsi A, Arumov A, Schatz JH. Bispecific antibodies and CAR-T cells: dueling immunotherapies for large B-cell lymphomas. Blood Cancer J 2024; 14:27. [PMID: 38331870 PMCID: PMC10853226 DOI: 10.1038/s41408-024-00997-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Despite recent advances in frontline therapy for diffuse large B-cell lymphoma (DLBCL), at least a third of those diagnosed still will require second or further lines for relapsed or refractory (rel/ref) disease. A small minority of these can be cured with standard chemoimmunotherapy/stem-cell transplant salvage approaches. CD19-directed chimeric antigen receptor T-cell (CAR-19) therapies are increasingly altering the prognostic landscape for rel/ref patients with DLBCL and related aggressive B-cell non-Hodgkin lymphomas. Long-term follow up data show ongoing disease-free outcomes consistent with cure in 30-40% after CAR-19, including high-risk patients primary refractory to or relapsing within 1 year of frontline treatment. This has made CAR-19 a preferred option for these difficult-to-treat populations. Widespread adoption, however, remains challenged by logistical and patient-related hurdles, including a requirement for certified tertiary care centers concentrated in urban centers, production times of at least 3-4 weeks, and high per-patients costs similar to allogeneic bone-marrow transplantation. Bispecific antibodies (BsAbs) are molecular biotherapies designed to bind and activate effector T-cells and drive them to B-cell antigens, leading to a similar cellular-dependent cytotoxicity as CAR-19. May and June of 2023 saw initial approvals of next-generation BsAbs glofitamab and epcoritamab in DLBCL as third or higher-line therapy, or for patients ineligible for CAR-19. BsAbs have similar spectrum but generally reduced severity of immune related side effects as CAR-19 and can be administered in community settings without need to manufacture patient-specific cellular products. To date and in contrast to CAR-19, however, there is no convincing evidence of cure after BsAbs monotherapy, though follow up is limited. The role of BsAbs in DLBCL treatment is rapidly evolving with trials investigating use in both relapsed and frontline curative-intent combinations. The future of DLBCL treatment is bound increasingly to include effector cell mediated immunotherapies, but further optimization of both cellular and BsAb approaches is needed.
Collapse
Affiliation(s)
- Asaad Trabolsi
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Fl, USA
- Hematology-Oncology Fellowship Program, Jackson Memorial Health System/ University of Miami, Miami, Fl, USA
| | - Artavazd Arumov
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Fl, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Fl, USA.
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Fl, USA.
| |
Collapse
|
142
|
Wang T, Liu P, Xu L, Gao L, Ni X, Tang G, Chen L, Chen J, Wang L, Wang Y, Fu W, Yue W, Liu N, Li R, Lu G, Luo Y, Yang J. CEAC (oral semustine, etoposide, cytarabine and cyclophosphamide) vs BEAM (carmustine, etoposide, cytarabine, and melphalan) conditioning regimen of autologous stem cell transplantation for diffuse large B-cell lymphoma: a post-hoc, propensity score-matched, cohort study in Chinese patients. Ann Hematol 2024; 103:575-582. [PMID: 37932468 DOI: 10.1007/s00277-023-05513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/14/2023] [Indexed: 11/08/2023]
Abstract
Autologous stem cell transplantation (ASCT) is a salvage therapy for relapsed or refractory diffuse large B-cell lymphoma (DLBCL). We have developed a novel conditioning regimen called CEAC (oral semustine 250 mg/m2 d-6, etoposide 300 mg/m2 d-5 ~ d-2, cytarabine 500 mg/m2 d-5 ~ d-2, and cyclophosphamide 1200 mg/m2 d-5 ~ d-2) In lymphoma patients in China. Here, we conducted a study to compare the conventional BEAM regimen with the CEAC regimen in 110 DLBCL patients. Propensity-score matching was performed in a 1:4 ratio (22 patients received BEAM and 88 received CEAC). Our results showed no significant difference in the overall response rate (95% vs 97%, P = 1.000) and complete response rate (66% vs 73%, P = 0.580) between the two cohorts. The 5-year progression-free survival (PFS), 5-year overall survival (OS), and 5-year cumulative incidence of relapse (CIR) for all patients were 72% (95% CI 62%-82%), 92% (95% CI 86%-97%), and 29% (95% CI 17%-38%), respectively. There was no significant difference in the 5-year PFS (80% vs 70%, P = 0.637), 5-year OS (95% vs 91%, P = 0.496), and 5-year CIR (20% vs 30%, P = 0.733) between cohorts. In terms of safety, the CEAC cohort had a lower incidence rate of grade 1-2 gastrointestinal hemorrhage (P = 0.023) and severe nausea (P = 0.007) compared with the BEAM cohort. In conclusion, the CEAC regimen seems to be a suitable alternative to the BEAM regimen for ASCT in DLBCL patients.
Collapse
Affiliation(s)
- Tao Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ping Liu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lili Xu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Lei Gao
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Li Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Chen
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Libing Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yang Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weijia Fu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wenqin Yue
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Na Liu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ruobing Li
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guihua Lu
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Yanrong Luo
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
143
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
144
|
Abrisqueta P, González-Barca E, Panizo C, Pérez JMA, Miall F, Bastos-Oreiro M, Triguero A, Banerjee L, McMillan A, Seymour E, Hirata J, de Guzman J, Sharma S, Jin HY, Musick L, Diefenbach C. Polatuzumab vedotin plus rituximab and lenalidomide in patients with relapsed or refractory diffuse large B-cell lymphoma: a cohort of a multicentre, single-arm, phase 1b/2 study. Lancet Haematol 2024; 11:e136-e146. [PMID: 38190832 DOI: 10.1016/s2352-3026(23)00345-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Diffuse large B-cell lymphoma comprises nearly 30% of non-Hodgkin lymphoma cases and patients with relapsed or refractory diffuse large B-cell lymphoma who are ineligible for stem-cell transplantation have few treatment options and poor prognoses. We aimed to determine whether the novel combination of polatuzumab vedotin in combination with rituximab and lenalidomide (Pola+R+Len) would provide a tolerable treatment option with enhanced antitumour response in patients with relapsed or refractory diffuse large B-cell lymphoma. METHODS This completed phase 1b/2, open-label, multicentre, single-arm study (GO29834) evaluated the safety and efficacy of Pola+R+Len in patients with relapsed or refractory diffuse large B-cell lymphoma at 19 sites in three countries (USA, Spain, and UK). Patients (≥18 years old) were eligible for inclusion if they had histologically documented CD20-positive relapsed or refractory diffuse large B-cell lymphoma and Eastern Cooperative Oncology Group performance status of 2 or lower, had received at least one previous line of chemoimmunotherapy, including an anti-CD20 agent, and were ineligible for stem-cell transplantation. The dose-escalation phase (1b) used escalating doses of lenalidomide to find the recommended phase 2 dose. Patients received six 28-day cycles of induction treatment with intravenous rituximab 375 mg/m2 and intravenous polatuzumab vedotin 1·8 mg/kg (all cohorts) plus oral lenalidomide at the following doses: 10 mg (cohort A); 15 mg (cohort B); and 20 mg (cohort C). Rituximab and polatuzumab vedotin were administered on day 1 and lenalidomide on days 1-21 of each 28-day cycle. During the dose-expansion phase (2), patients received six 28-day cycles of Pola+R+Len at the recommended phase 2 dose established during dose escalation. In both phases, patients with a complete response or partial response at the end of induction were eligible for post-induction therapy with rituximab 375 mg/m2 on day 1 and lenalidomide 10 mg/day on days 1-21 of each 28-day cycle for a maximum of 6 cycles. The primary safety objective of the dose-escalation phase was identification of the maximum tolerated dose through incidence of dose-limiting toxic effects. The primary efficacy outcome of the dose-expansion phase was Independent Review Committee-assessed complete response rate at end of induction, based on PET-CT. Analyses were conducted in the safety population, which included all patients who received at least one dose of any study drug, and the efficacy population, which included all patients who received at least one dose of any study drug at the recommended phase 2 dose. This study is registered with ClinicalTrials.gov, number NCT02600897. FINDINGS Between July 11, 2017 and Feb 3, 2020, 57 patients were enrolled (median age 71 years [IQR 60-75]; 38 [67%] were male and 19 (33%) were female; 47 [82%] were not Hispanic or Latino; and the median previous lines of therapy was 2 [IQR 1-3]). 18 participants were included in phase 1b and 39 were included in phase 2. Phase 1b confirmed a 20 mg recommended phase 2 dose for lenalidomide. After a median follow-up of 11·8 months (IQR 4·7-25·8), the complete response rate, as assessed by the Independent Review Committee, was 31% (90% CI 20-43). The most common grade 3-4 adverse events were neutropenia (35 [61%] of 57) and thrombocytopenia (eight [14%] of 57). Serious adverse events were reported in 23 (40%) of 57 patients and one patient died due to a treatment-related adverse event (neutropenic sepsis). INTERPRETATION Although the combination of Pola+R+Len did not meet the prespecified activity threshold, some patients derived clinical benefit and the regimen had a tolerable safety profile in patients with relapsed or refractory diffuse large B-cell lymphoma. FUNDING Genentech/F Hoffmann-La Roche.
Collapse
Affiliation(s)
| | - Eva González-Barca
- Insitut Català d'Oncologia, Hospital Duran I Reynals and IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Panizo
- Hospital Universitario Donostia, San Sebastián, Spain
| | | | - Fiona Miall
- Department of Haematology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Mariana Bastos-Oreiro
- Hospital General Universitario Gregorio Marañón and Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Ana Triguero
- Department of Haematology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lalita Banerjee
- Oncology Centre, Maidstone and Tunbridge Wells NHS Trust, Kent, UK
| | - Andrew McMillan
- Centre for Clinical Haematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Erlene Seymour
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
145
|
Shahzad M, Khalid MF, Amin MK, Basharat A, Ammad-Ud-Din M, Park R, Anwar I, Faisal MS, Jaglal M. Geographic and Racial Disparities in Chimeric Antigen Receptor-T Cells and Bispecific Antibodies Trials Access for Diffuse Large B-Cell Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00034-X. [PMID: 38342727 DOI: 10.1016/j.clml.2024.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND We investigate the geographical and racial disparities in accessing CAR-T and bispecific antibodies trials for DLBCL. MATERIALS AND METHODS ClinicalTrials.gov was searched, and 75 trials with at least 1 open site in the US were included. 2020 US Census Bureau data was used to obtain data on race and ethnicity. SPSS version 26 was used for analysis. RESULTS There were 62 CAR-T and 13 bispecific antibodies trials with 6221 enrolled or expected to enroll patients. Eighty-five percent of the clinical trials were only open in the US, and the majority 64% were pharmaceutical-funded. There were 126 unique study sites distributed over 31 states with 11 (0-51) mean number of trials per state and 4.5 (1-26) and 4.4 (1-24) mean number of CAR-T and bispecific antibodies trials per site, respectively. Southern states had the most number of trials 31%, followed by Midwestern 25%, Northeastern 24%, and Western 20%. The highest number of study locations were in California 13, New York 9, and Pennsylvania 9, while the highest number of open studies were in California 51, Texas 32, and New York 23. Twenty states had no open CAR-T or bispecific antibodies trials. Only 33% of African Americans (AA) lived in a county with a trial, and 7 out of 10 states with the highest proportion of AA residents (18.6%-41.4%) have no or less than 4 trial sites. Of the 62 counties analyzed, 92% were White predominant, while only 8% were AA predominant (P = .009). CONCLUSIONS Strategies should be framed to address the observed disparities and to improve access.
Collapse
Affiliation(s)
- Moazzam Shahzad
- H. Lee Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL.
| | | | | | | | | | - Robin Park
- H. Lee Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL
| | - Iqra Anwar
- Kansas University Medical Center, Kansas City, KS
| | | | | |
Collapse
|
146
|
Mamo T, Dreyzin A, Stroncek D, McKenna DH. Emerging Biomarkers for Monitoring Chimeric Antigen Receptor T-Cell Therapy. Clin Chem 2024; 70:116-127. [PMID: 38175598 DOI: 10.1093/clinchem/hvad179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of hematologic malignancies and holds promise for solid tumors. While responses to CAR T-cell therapy have surpassed other available options for patients with refractory malignancies, not all patients respond the same way. The reason for this variability is not currently understood. Therefore, there is a strong need to identify characteristics of patients as well as cellular products that lead to an effective response to CAR T-cell therapy. CONTENT In this review, we discuss potential biomarkers that may predict clinical outcomes of CAR T-cell therapy. Based on correlative findings from clinical trials of both commercially available and early-phase products, we classify biomarkers into categories of pre- and post-infusion as well as patient and product-related markers. Among the biomarkers that have been explored, measures of disease burden both pre- and post-infusion, as well as CAR T-cell persistence post-infusion, are repeatedly identified as predictors of disease response. Higher proportions of early memory T cells at infusion appear to be favorable, and tracking T-cell subsets throughout treatment will likely be critical. SUMMARY There are a growing number of promising biomarkers of CAR T-cell efficacy described in the research setting, however, none of these have been validated for clinical use. Some potentially important predictors of response may be difficult to obtain routinely under the current CAR T-cell therapy workflow. A collaborative approach is needed to select biomarkers that can be validated in large cohorts and incorporated into clinical practice.
Collapse
Affiliation(s)
- Theodros Mamo
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis/St. Paul, MN, United States
| | - Alexandra Dreyzin
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, United States
- Center for Cell Engineering, Department of Transfusion Medicine, National Institute of Health, Bethesda, MD, United States
| | - David Stroncek
- Center for Cell Engineering, Department of Transfusion Medicine, National Institute of Health, Bethesda, MD, United States
| | - David H McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis/St. Paul, MN, United States
| |
Collapse
|
147
|
Saifi O, Lester SC, Breen WG, Rule WG, Lin Y, Bennani NN, Rosenthal A, Munoz J, Murthy HS, Kharfan-Dabaja MA, Peterson JL, Hoppe BS. Incorporating radiation with anti-CD19 chimeric antigen receptor T-cell therapy for relapsed/refractory non-Hodgkin lymphoma: A multicenter consensus approach. Am J Hematol 2024; 99:124-134. [PMID: 37950857 DOI: 10.1002/ajh.27155] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/13/2023]
Abstract
Anti-CD19 chimeric antigen receptor T-cell therapy (CART) has revolutionized the outcomes of relapsed and/or refractory B-cell non-Hodgkin lymphoma. However, CART is still limited by its availability, toxicity, and response durability. Not all patients make it to the CART infusion phase due to disease progression. Among those who receive CART, a significant number of patients experience life-threatening cytokine release syndrome toxicity, and less than half maintain a durable response with the majority relapsing in pre-existing sites of disease present pre-CART. Radiation therapy stands as a promising peri-CART and salvage treatment that can improve the outcomes of these patients. Evidence suggests that bridging radiotherapy prior to CART controls the disease during the manufacturing period, augments response rates and local control, cytoreduces/debulks the disease and decreases the severity of cytokine release syndrome, and may prolong disease-free intervals and survival especially in patients with bulky disease. Consolidative radiotherapy for residual post-CART disease alters the pattern of relapse and improves local recurrence-free and progression-free survivals. Salvage radiotherapy for relapsed post-CART disease has favorable survival outcomes when delivered comprehensively for patients with limited relapsed disease and palliates symptoms for patients with diffuse relapsed disease. The biology of the disease during the peri-CART period is poorly understood, and further studies investigating the optimal timing and dosing of radiation therapy (RT) are needed. In this review, we tackle the most significant challenges of CART, review and propose how RT can help mitigate these challenges, and provide The Mayo Clinic experts' approach on incorporating RT with CART.
Collapse
Affiliation(s)
- Omran Saifi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - William G Rule
- Department of Radiation Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - Yi Lin
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Experimental Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - N Nora Bennani
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Javier Munoz
- Division of Hematology, Mayo Clinic, Phoenix, Arizona, USA
| | - Hemant S Murthy
- Division of Hematology, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Bradford S Hoppe
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
148
|
Ong MZ, Kimberly SA, Lee WH, Ling M, Lee M, Tan KW, Foo JB, Yow HY, Sellappans R, Hamzah S. FDA-approved CAR T-cell Therapy: A Decade of Progress and Challenges. Curr Pharm Biotechnol 2024; 25:1377-1393. [PMID: 39034731 DOI: 10.2174/0113892010257212231001082741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 07/23/2024]
Abstract
CAR T-cell therapy is a promising approach for cancer treatment, utilizing a patient's own T-cells (autologous cell) or T-cells from a healthy donor (allogeneic cell) to target and destroy cancer cells. Over the last decade, significant advancements have been made in this field, including the development of novel CAR constructs, improved understanding of biology and mechanisms of action, and expanded clinical applications for treating a wider range of cancers. In this review, we provide an overview of the steps involved in the production of CAR T-cells and their mechanism of action. We also introduce different CAR T-cell therapies available, including their implementation, dosage, administration, treatment cost, efficacy, and resistance. Common side effects of CAR T-cell therapy are also discussed. The CAR T-cell products highlighted in this review are FDA-approved products, which include Kymriah® (tisagenlecleucel), Tecartus® (brexucabtagene autoleucel), Abecma® (Idecabtagene vicleucel), Breyanzi® (lisocabtagene maraleucel), and Yescarta® (axicabtagene ciloleucel). In conclusion, CAR T-cell therapy has made tremendous progress over the past decade and has the potential to revolutionize cancer treatment. This review paper provides insights into the progress, challenges, and future directions of CAR T-cell therapy, offering valuable information for researchers, clinicians, and patients.
Collapse
Affiliation(s)
- Melissa Z Ong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharon A Kimberly
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Wen-Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Marcus Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Michael Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Ke-Wei Tan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Jhi-Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Hui-Yin Yow
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Renukha Sellappans
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
149
|
Brooks TR, Caimi PF. A paradox of choice: Sequencing therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Rev 2024; 63:101140. [PMID: 37949705 DOI: 10.1016/j.blre.2023.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The available treatments for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have experienced a dramatic change since 2017. Incremental advances in basic and translational science over several decades have led to innovations in immune-oncology. These innovations have culminated in eight separate approvals by the US Food and Drug Administration for the treatment of patients with R/R DLBCL over the last 10 years. High-dose therapy and autologous stem cell transplant (HDT-ASCT) remains the standard of care for transplant-eligible patients who relapse after an initial remission. For transplant-ineligible patients or for those who relapse following HDT-ASCT, multiple options exist. Monoclonal antibodies targeting CD19, antibody-drug conjugates, bispecific antibodies, immune effector cell products, and other agents with novel mechanisms of action are now available for patients with R/R DLBCL. There is increasing use of chimeric antigen receptor (CAR) T-cells as second-line therapy for patients with early relapse of DLBCL or those who are refractory to initial chemoimmunotherapy. The clinical benefits of these strategies vary and are influenced by patient and disease characteristics, as well as the type of prior therapy administered. Therefore, there are multiple clinical scenarios that clinicians might encounter when treating R/R DLBCL. An optimal sequence of drugs has not been established, and there is no evidence-based consensus on how to best order these agents. This abundance of choices introduces a paradox: proliferating treatment options are initially a boon to patients and providers, but as choices grow further they no longer liberate. Rather, more choices make the management of R/R DLBCL more challenging due to lack of direct comparisons among agents and a desire to maximize patient outcomes. Here, we provide a review of recently-approved second- and subsequent-line agents, summarize real-world data detailing the use of these medicines, and provide a framework for sequencing therapy in R/R DLBCL.
Collapse
Affiliation(s)
- Taylor R Brooks
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America; Case Comprehensive Cancer Center, Cleveland, OH, United States of America.
| |
Collapse
|
150
|
Yamshon S, Gribbin C, Chen Z, Demetres M, Pasciolla M, Alhomoud M, Martin P, Shore T. Efficacy and Toxicity of CD19 Chimeric Antigen Receptor T Cell Therapy for Lymphoma in Solid Organ Transplant Recipients: A Systematic Review and Meta-Analysis. Transplant Cell Ther 2024; 30:73.e1-73.e12. [PMID: 37279856 DOI: 10.1016/j.jtct.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
The safety and efficacy of chimeric antigen receptor (CAR) T cell therapy in solid organ transplant recipients is poorly understood, given the paucity of available data in this patient population. There is a theoretical risk of compromising transplanted organ function with CAR T cell therapy; conversely, organ transplantation-related immunosuppression can alter the function of CAR T cells. Given the prevalence of post-transplantation lymphoproliferative disease, which often can be difficult to treat with conventional chemoimmunotherapy, understanding the risks and benefits of delivering lymphoma-directed CAR T cell therapy in solid organ transplant recipients is of utmost importance. We sought to determine the efficacy of CAR T cell therapy in solid organ transplant recipients as well as the associated adverse effects, including cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and compromised solid organ transplant function. We conducted a systematic review and meta-analysis of adult recipients of solid organ transplant who received CAR T cell therapy for non-Hodgkin lymphoma. Primary outcomes included efficacy, defined as overall response (OR), complete response (CR), progression-free survival, and overall survival, as well as rates of CRS and ICANS. Secondary outcomes included rates of transplanted organ loss, compromised organ function, and alterations to immunosuppressant regimens. After a systematic literature review and 2-reviewer screening process, we identified 10 studies suitable for descriptive analysis and 4 studies suitable for meta-analysis. Among all patients, 69% (24 of 35) achieved a response to CAR T cell therapy, and 52% (18 of 35) achieved a CR. CRS of any grade occurred in 83% (29 of 35), and CRS grade ≥3 occurred in 9% (3 of 35). Sixty percent of the patients (21 of 35) developed ICANS, and 34% (12 of 35) developed ICANS grade ≥3. The incidence of any grade 5 toxicity among all patients was 11% (4 of 35). Fourteen percent of the patients (5 of 35) experienced loss of the transplanted organ. Immunosuppressant therapy was held in 22 patients but eventually restarted in 68% of them (15 of 22). Among the studies included in the meta-analysis, the pooled OR rate was 70% (95% confidence interval [CI], 29.2% to 100%; I2 = 71%) and the pooled CR rate was 46% (95% CI, 25.4% to 67.8%; I2 = 29%). The rates of any grade CRS and grade ≥3 CRS were 88% (95% CI, 69% to 99%; I2 = 0%) and 5% (95% CI, 0% to 21%; I2 = 0%), respectively. The rates of any grade ICANS and ICANS grade ≥3 were 54% (95% CI, 9% to 96%; I2 = 68%) and 40% (95% CI, 3% to 85%; I2 = 63%), respectively. The efficacy of CAR T cell therapy in solid organ transplant recipients is comparable to that in the general population as reported in prior investigational studies, with an acceptable toxicity profile in terms of CRS, ICANS, and transplanted organ compromise. Further studies are needed to determine long-term effects on organ function, sustained response rates, and best practices peri-CAR T infusion period in this patient population.
Collapse
Affiliation(s)
- Samuel Yamshon
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York.
| | - Caitlin Gribbin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Zhengming Chen
- Division of Biostatistics and Epidemiology, Weill Cornell Medicine and New York Presbyterian Hospital, New York, New York
| | - Michelle Demetres
- Samuel J. Wood Library & CV Starr Biomedical Information Center, Weill Cornell Medicine, New York, New York
| | - Michelle Pasciolla
- Department of Pharmacy, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York
| | - Mohammad Alhomoud
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Peter Martin
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| | - Tsiporah Shore
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York
| |
Collapse
|