101
|
Lüthje S, Möller B, Perrineau FC, Wöltje K. Plasma membrane electron pathways and oxidative stress. Antioxid Redox Signal 2013; 18:2163-83. [PMID: 23265437 DOI: 10.1089/ars.2012.5130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Several redox compounds, including respiratory burst oxidase homologs (Rboh) and iron chelate reductases have been identified in animal and plant plasma membrane (PM). Studies using molecular biological, biochemical, and proteomic approaches suggest that PM redox systems of plants are involved in signal transduction, nutrient uptake, transport, and cell wall-related processes. Function of PM-bound redox systems in oxidative stress will be discussed. RECENT ADVANCES Present knowledge about the properties, structures, and functions of these systems are summarized. Judging from the currently available data, it is likely that electrons are transferred from cytosolic NAD(P)H to the apoplast via quinone reductases, vitamin K, and a cytochrome b561. In tandem with these electrons, protons might be transported to the apoplastic space. CRITICAL ISSUES Recent studies suggest localization of PM-bound redox systems in microdomains (so-called lipid or membrane rafts), but also organization of these compounds in putative and high molecular mass protein complexes. Although the plant flavocytochrome b family is well characterized with respect to its function, the molecular mechanism of an electron transfer reaction by these compounds has to be verified. Localization of Rboh in other compartments needs elucidation. FUTURE DIRECTIONS Plant members of the flavodoxin and flavodoxin-like protein family and the cytochrome b561 protein family have been characterized on the biochemical level, postulated localization, and functions of these redox compounds need verification. Compositions of single microdomains and interaction partners of PM redox systems have to be elucidated. Finally, the hypothesis of an electron transfer chain in the PM needs further proof.
Collapse
Affiliation(s)
- Sabine Lüthje
- Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany.
| | | | | | | |
Collapse
|
102
|
Schoberer J, Liebminger E, Botchway SW, Strasser R, Hawes C. Time-resolved fluorescence imaging reveals differential interactions of N-glycan processing enzymes across the Golgi stack in planta. PLANT PHYSIOLOGY 2013; 161:1737-54. [PMID: 23400704 PMCID: PMC3613452 DOI: 10.1104/pp.112.210757] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/10/2013] [Indexed: 05/18/2023]
Abstract
N-Glycan processing is one of the most important cellular protein modifications in plants and as such is essential for plant development and defense mechanisms. The accuracy of Golgi-located processing steps is governed by the strict intra-Golgi localization of sequentially acting glycosidases and glycosyltransferases. Their differential distribution goes hand in hand with the compartmentalization of the Golgi stack into cis-, medial-, and trans-cisternae, which separate early from late processing steps. The mechanisms that direct differential enzyme concentration are still unknown, but the formation of multienzyme complexes is considered a feasible Golgi protein localization strategy. In this study, we used two-photon excitation-Förster resonance energy transfer-fluorescence lifetime imaging microscopy to determine the interaction of N-glycan processing enzymes with differential intra-Golgi locations. Following the coexpression of fluorescent protein-tagged amino-terminal Golgi-targeting sequences (cytoplasmic-transmembrane-stem [CTS] region) of enzyme pairs in leaves of tobacco (Nicotiana spp.), we observed that all tested cis- and medial-Golgi enzymes, namely Arabidopsis (Arabidopsis thaliana) Golgi α-mannosidase I, Nicotiana tabacum β1,2-N-acetylglucosaminyltransferase I, Arabidopsis Golgi α-mannosidase II (GMII), and Arabidopsis β1,2-xylosyltransferase, form homodimers and heterodimers, whereas among the late-acting enzymes Arabidopsis β1,3-galactosyltransferase1 (GALT1), Arabidopsis α1,4-fucosyltransferase, and Rattus norvegicus α2,6-sialyltransferase (a nonplant Golgi marker), only GALT1 and medial-Golgi GMII were found to form a heterodimer. Furthermore, the efficiency of energy transfer indicating the formation of interactions decreased considerably in a cis-to-trans fashion. The comparative fluorescence lifetime imaging of several full-length cis- and medial-Golgi enzymes and their respective catalytic domain-deleted CTS clones further suggested that the formation of protein-protein interactions can occur through their amino-terminal CTS region.
Collapse
Affiliation(s)
| | - Eva Liebminger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Stanley W. Botchway
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| | - Chris Hawes
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria (J.S., E.L., R.S.)
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, United Kingdom (J.S., C.H.); and
- Research Complex at Harwell, Central Laser Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell-Oxford, Didcot OX11 0QX, United Kingdom (S.W.B.)
| |
Collapse
|
103
|
Langenbach C, Campe R, Schaffrath U, Goellner K, Conrath U. UDP-glucosyltransferase UGT84A2/BRT1 is required for Arabidopsis nonhost resistance to the Asian soybean rust pathogen Phakopsora pachyrhizi. THE NEW PHYTOLOGIST 2013; 198:536-545. [PMID: 23356583 DOI: 10.1111/nph.12155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/21/2012] [Indexed: 05/19/2023]
Abstract
Nonhost resistance (NHR) of plants to fungal pathogens comprises different defense layers. Epidermal penetration resistance of Arabidopsis to Phakopsora pachyrhizi requires functional PEN1, PEN2 and PEN3 genes, whereas post-invasion resistance in the mesophyll depends on the combined functionality of PEN2, PAD4 and SAG101. Other genetic components of Arabidopsis post-invasion mesophyll resistance remain elusive. We performed comparative transcriptional profiling of wild-type, pen2 and pen2 pad4 sag101 mutants after inoculation with P. pachyrhizi to identify a novel trait for mesophyll NHR. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) analysis and microscopic analysis confirmed the essential role of the candidate gene in mesophyll NHR. UDP-glucosyltransferase UGT84A2/bright trichomes 1 (BRT1) is a novel component of Arabidopsis mesophyll NHR to P. pachyrhizi. BRT1 is a putative cytoplasmic enzyme in phenylpropanoid metabolism. BRT1 is specifically induced in pen2 with post-invasion resistance to P. pachyrhizi. Silencing or mutation of BRT1 increased haustoria formation in pen2 mesophyll. Yet, the brt1 mutation did not affect NHR to P. pachyrhizi in wild-type plants. We assign a novel function to BRT1, which is important for post-invasion NHR of Arabidopsis to P. pachyrhizi. BRT1 might serve to confer durable resistance against P. pachyrhizi to soybean.
Collapse
Affiliation(s)
- Caspar Langenbach
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Ruth Campe
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Katharina Goellner
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, 52056, Germany
| |
Collapse
|
104
|
Yi C, Park S, Yun HS, Kwon C. Vesicle-associated membrane proteins 721 and 722 are required for unimpeded growth of Arabidopsis under ABA application. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:529-33. [PMID: 23218542 DOI: 10.1016/j.jplph.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 05/04/2023]
Abstract
Soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) proteins are core factors in driving vesicle fusion with target membranes, which is critical in eukaryotes having distinct subcellular organelles. Amongst them, vesicle-associated membrane proteins (VAMP) 721 and 722 are involved in plant growth/development and immunity. In the course of stress responses, plants often show retarded growth. The precise mechanism of this retardation is not fully understood. The plant stress hormone abscisic acid (ABA), which can cause growth inhibition, down-regulates VAMP721/722 protein levels but not transcript levels. Enhanced growth inhibition and early depletion of the amount of VAMP721/722 caused by ABA in haploinsufficient VAMP721(+/-)VAMP722(-/-) and VAMP721(-/-)VAMP722(+/-) plants suggest that ABA impedes plant growth in part by reducing VAMP721/722 proteins. Since VAMP721/722 are engaged in exocytosis, our data implies that ABA-induced growth retardation may result from diminished secretory activities leading to decreased transport of molecules required for plant growth in the plasma membrane and cell wall.
Collapse
Affiliation(s)
- Changhyun Yi
- Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701, Republic of Korea
| | | | | | | |
Collapse
|
105
|
Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S. The Arabidopsis Rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. PLANT PHYSIOLOGY 2013; 161:1172-88. [PMID: 23319551 PMCID: PMC3585588 DOI: 10.1104/pp.112.213165] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
How plants coordinate developmental processes and environmental stress responses is a pressing question. Here, we show that Arabidopsis (Arabidopsis thaliana) Rho of Plants6 (AtROP6) integrates developmental and pathogen response signaling. AtROP6 expression is induced by auxin and detected in the root meristem, lateral root initials, and leaf hydathodes. Plants expressing a dominant negative AtROP6 (rop6(DN)) under the regulation of its endogenous promoter are small and have multiple inflorescence stems, twisted leaves, deformed leaf epidermis pavement cells, and differentially organized cytoskeleton. Microarray analyses of rop6(DN) plants revealed that major changes in gene expression are associated with constitutive salicylic acid (SA)-mediated defense responses. In agreement, their free and total SA levels resembled those of wild-type plants inoculated with a virulent powdery mildew pathogen. The constitutive SA-associated response in rop6(DN) was suppressed in mutant backgrounds defective in SA signaling (nonexpresser of PR genes1 [npr1]) or biosynthesis (salicylic acid induction deficient2 [sid2]). However, the rop6(DN) npr1 and rop6(DN) sid2 double mutants retained the aberrant developmental phenotypes, indicating that the constitutive SA response can be uncoupled from ROP function(s) in development. rop6(DN) plants exhibited enhanced preinvasive defense responses to a host-adapted virulent powdery mildew fungus but were impaired in preinvasive defenses upon inoculation with a nonadapted powdery mildew. The host-adapted powdery mildew had a reduced reproductive fitness on rop6(DN) plants, which was retained in mutant backgrounds defective in SA biosynthesis or signaling. Our findings indicate that both the morphological aberrations and altered sensitivity to powdery mildews of rop6(DN) plants result from perturbations that are independent from the SA-associated response. These perturbations uncouple SA-dependent defense signaling from disease resistance execution.
Collapse
|
106
|
Kopischke M, Westphal L, Schneeberger K, Clark R, Ossowski S, Wewer V, Fuchs R, Landtag J, Hause G, Dörmann P, Lipka V, Weigel D, Schulze-Lefert P, Scheel D, Rosahl S. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:456-68. [PMID: 23072470 DOI: 10.1111/tpj.12046] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 05/06/2023]
Abstract
Non-host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre- and post-invasive resistance responses. Pre-invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non-host resistance to P. infestans, a genetic screen was performed by re-mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2-1 erp1-3 and pen2-1 erp1-4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T-DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen-inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non-autonomous defense responses against invasive filamentous pathogens.
Collapse
Affiliation(s)
- Michaela Kopischke
- Department of Stress and Developmental Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Takahashi D, Kawamura Y, Uemura M. Detergent-resistant plasma membrane proteome to elucidate microdomain functions in plant cells. FRONTIERS IN PLANT SCIENCE 2013; 4:27. [PMID: 23440896 PMCID: PMC3579295 DOI: 10.3389/fpls.2013.00027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
Although proteins and lipids have been assumed to be distributed homogeneously in the plasma membrane (PM), recent studies suggest that the PM is in fact non-uniform structure that includes a number of lateral domains enriched in specific components (i.e., sterols, sphingolipids, and some kind of proteins). These domains are called as microdomains and considered to be the platform of biochemical reaction center for various physiological processes. Microdomain is able to be extracted as detergent-resistant membrane (DRM) fractions, and DRM fractions isolated from some plant species have been used for proteome and other biochemical characterizations to understand microdomain functions. Profiling of sterol-dependent proteins using a putative microdomain-disrupting agent suggests specific lipid-protein interactions in the microdomain. Furthermore, DRM proteomes dynamically respond to biotic and abiotic stresses in some plant species. Taken together, these results suggest that DRM proteomic studies provide us important information to understand physiological functions of microdomains that are critical to prosecute plant's life cycle successfully in the aspect of development and stress responses.
Collapse
Affiliation(s)
- Daisuke Takahashi
- United Graduate School of Agricultural Sciences, Iwate UniversityMorioka, Japan
| | - Yukio Kawamura
- United Graduate School of Agricultural Sciences, Iwate UniversityMorioka, Japan
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate UniversityMorioka, Japan
| | - Matsuo Uemura
- United Graduate School of Agricultural Sciences, Iwate UniversityMorioka, Japan
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate UniversityMorioka, Japan
- *Correspondence: Matsuo Uemura, Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan. e-mail:
| |
Collapse
|
108
|
Yi M, Valent B. Communication between filamentous pathogens and plants at the biotrophic interface. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:587-611. [PMID: 23750888 DOI: 10.1146/annurev-phyto-081211-172916] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Fungi and oomycetes that colonize living plant tissue form extensive interfaces with plant cells in which the cytoplasm of the microorganism is closely aligned with the host cytoplasm for an extended distance. In all cases, specialized biotrophic hyphae function to hijack host cellular processes across an interfacial zone consisting of a hyphal plasma membrane, a specialized interfacial matrix, and a plant-derived membrane. The interface is the site of active secretion by both players. This cross talk at the interface determines the winner in adversarial relationships and establishes the partnership in mutualistic relationships. Fungi and oomycetes secrete many specialized effector proteins for controlling the host, and they can stimulate remarkable cellular reorganization even in distant plant cells. Breakthroughs in live-cell imaging of fungal and oomycete encounter sites, including live-cell imaging of pathogens secreting fluorescently labeled effector proteins, have led to recent progress in understanding communication across the interface.
Collapse
Affiliation(s)
- Mihwa Yi
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506-5502, USA.
| | | |
Collapse
|
109
|
Shaw SL, Ehrhardt DW. Smaller, faster, brighter: advances in optical imaging of living plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:351-75. [PMID: 23506334 DOI: 10.1146/annurev-arplant-042110-103843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The advent of fluorescent proteins and access to modern imaging technologies have dramatically accelerated the pace of discovery in plant cell biology. Remarkable new insights into such diverse areas as plant pathogenesis, cytoskeletal dynamics, sugar transport, cell wall synthesis, secretory control, and hormone signaling have come from careful examination of living cells using advanced optical probes. New technologies, both commercially available and on the horizon, promise a continued march toward more quantitative methods for imaging and for extending the optical exploration of biological structure and activity to molecular scales. In this review, we lay out fundamental issues in imaging plant specimens and look ahead to several technological innovations in molecular tools, instrumentation, imaging methods, and specimen handling that show promise for shaping the coming era of plant cell biology.
Collapse
Affiliation(s)
- Sidney L Shaw
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
110
|
Gruner K, Griebel T, Návarová H, Attaran E, Zeier J. Reprogramming of plants during systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2013; 4:252. [PMID: 23874348 PMCID: PMC3711057 DOI: 10.3389/fpls.2013.00252] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/21/2013] [Indexed: 05/18/2023]
Abstract
Genome-wide microarray analyses revealed that during biological activation of systemic acquired resistance (SAR) in Arabidopsis, the transcript levels of several hundred plant genes were consistently up- (SAR(+) genes) or down-regulated (SAR(-) genes) in systemic, non-inoculated leaf tissue. This transcriptional reprogramming fully depended on the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1). Functional gene categorization showed that genes associated with salicylic acid (SA)-associated defenses, signal transduction, transport, and the secretory machinery are overrepresented in the group of SAR(+) genes, and that the group of SAR(-) genes is enriched in genes activated via the jasmonate (JA)/ethylene (ET)-defense pathway, as well as in genes associated with cell wall remodeling and biosynthesis of constitutively produced secondary metabolites. This suggests that SAR-induced plants reallocate part of their physiological activity from vegetative growth towards SA-related defense activation. Alignment of the SAR expression data with other microarray information allowed us to define three clusters of SAR(+) genes. Cluster I consists of genes tightly regulated by SA. Cluster II genes can be expressed independently of SA, and this group is moderately enriched in H2O2- and abscisic acid (ABA)-responsive genes. The expression of the cluster III SAR(+) genes is partly SA-dependent. We propose that SA-independent signaling events in early stages of SAR activation enable the biosynthesis of SA and thus initiate SA-dependent SAR signaling. Both SA-independent and SA-dependent events tightly co-operate to realize SAR. SAR(+) genes function in the establishment of diverse resistance layers, in the direct execution of resistance against different (hemi-)biotrophic pathogen types, in suppression of the JA- and ABA-signaling pathways, in redox homeostasis, and in the containment of defense response activation. Our data further indicated that SAR-associated defense priming can be realized by partial pre-activation of particular defense pathways.
Collapse
Affiliation(s)
- Katrin Gruner
- Department of Biology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Hana Návarová
- Department of Biology, Heinrich Heine UniversityDüsseldorf, Germany
| | - Elham Attaran
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine UniversityDüsseldorf, Germany
- *Correspondence: Jürgen Zeier, Department of Biology, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany e-mail:
| |
Collapse
|
111
|
Malinsky J, Opekarová M, Grossmann G, Tanner W. Membrane microdomains, rafts, and detergent-resistant membranes in plants and fungi. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:501-29. [PMID: 23638827 DOI: 10.1146/annurev-arplant-050312-120103] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The existence of specialized microdomains in plasma membranes, postulated for almost 25 years, has been popularized by the concept of lipid or membrane rafts. The idea that detergent-resistant membranes are equivalent to lipid rafts, which was generally abandoned after a decade of vigorous data accumulation, contributed to intense discussions about the validity of the raft concept. The existence of membrane microdomains, meanwhile, has been verified by unequivocal independent evidence. This review summarizes the current state of research in plants and fungi with respect to common aspects of both kingdoms. In these organisms, principally immobile microdomains large enough for microscopic detection have been visualized. These microdomains are found in the context of cell-cell interactions (plant symbionts and pathogens), membrane transport, stress, and polarized growth, and the data corroborate at least three mechanisms of formation. As documented in this review, modern methods of visualization of lateral membrane compartments are also able to uncover the functional relevance of membrane microdomains.
Collapse
Affiliation(s)
- Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic.
| | | | | | | |
Collapse
|
112
|
Kim DS, Hwang BK. The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:843-55. [PMID: 22913752 DOI: 10.1111/tpj.12003] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Loss-of-function alleles of the mildew resistance locus O (MLO) gene provide broad-spectrum powdery mildew disease resistance. Here, we identified a pepper (Capsicum annuum) MLO gene (CaMLO2) that is transcriptionally induced by Xanthomonas campestris pv. vesicatoria (Xcv) infection. Topology and subcellular localization analyses reveal that CaMLO2 is a plasma membrane-anchored and amphiphilic Ca²⁺-dependent calmodulin-binding protein. CaMLO2 expression is up-regulated by Xcv and salicylic acid, as well as abiotic stresses. Silencing of CaMLO2 in pepper plants confers enhanced resistance against virulent Xcv, but not against avirulent Xcv. This resistance is accompanied by a compromised susceptibility cell-death response and reduced bacterial growth, as well as an accelerated reactive oxygen species burst. Virulent Xcv infection drastically induces expression of the salicylic acid-dependent defense marker gene CaPR1 in CaMLO2-silenced leaves. CaMLO2 over-expression in Arabidopsis enhances susceptibility to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis. Leaves of plants over-expressing CaMLO2 exhibit a susceptibility cell-death response and high bacterial growth during virulent Pst DC3000 infection. These are accompanied by enhanced electrolyte leakage but compromised induction of some defense response genes and the reactive oxygen species. Together, our results suggest that CaMLO2 is involved in the susceptibility cell-death response and bacterial and oomycete proliferation in pepper and Arabidopsis.
Collapse
Affiliation(s)
- Dae Sung Kim
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Korea
| | | |
Collapse
|
113
|
Lindner H, Müller LM, Boisson-Dernier A, Grossniklaus U. CrRLK1L receptor-like kinases: not just another brick in the wall. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:659-69. [PMID: 22884521 DOI: 10.1016/j.pbi.2012.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 05/18/2023]
Abstract
In plants, receptor-like kinases regulate many processes during reproductive and vegetative development. The Arabidopsis subfamily of Catharanthus roseus RLK1-like kinases (CrRLK1Ls) comprises 17 members with a putative extracellular carbohydrate-binding malectin-like domain. Only little is known about the functions of these proteins, although mutant analyses revealed a role during cell elongation, polarized growth, and fertilization. However, the molecular nature of the underlying signal transduction cascades remains largely unknown. CrRLK1L proteins are also involved in biotic and abiotic stress responses. It is likely that carbohydrate-rich ligands transmit a signal, which could originate from cell wall components, an arriving pollen tube, or a pathogen attack. Thus, post-translational modifications could be crucial for CrRLK1L signal transduction and ligand binding.
Collapse
Affiliation(s)
- Heike Lindner
- Institute of Plant Biology & Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | |
Collapse
|
114
|
Nielsen ME, Thordal-Christensen H. Recycling of Arabidopsis plasma membrane PEN1 syntaxin. PLANT SIGNALING & BEHAVIOR 2012; 7:1541-3. [PMID: 23073012 PMCID: PMC3578888 DOI: 10.4161/psb.22304] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Penetration resistance against powdery mildews is one of the best-studied processes of plant innate immunity. One vital component is the plant syntaxin, PEN1, which is required for timely deposition of callose and extracellular membrane material, as well as PEN1 itself, at the attack sites. Recently, we reported that the ARF-GEF GNOM also is required for penetration resistance, mediating transport of recycled material, including PEN1, to the site of attack. The close relative of PEN1, SYP122, does not accumulate at the sites of attack nor does it affect penetration resistance. In support of this, we show here that in contrast to PEN1, SYP122 does not continuously recycle. Furthermore, by using a PEN1 transgene that is only transcribed in dividing cells, we show that papillary PEN1 accumulation is not dependent on de-novo protein synthesis. This emphasizes the involvement of recycling in penetration resistance, which possibly relates to the differences in function of the two syntaxins.
Collapse
Affiliation(s)
- Mads Eggert Nielsen
- Developmental Genetics; Center for Plant Molecular Biology; University of Tübingen; Tübingen, Germany
- Correspondence to: Mads Eggert Nielsen, and Hans Thordal-Christensen,
| | - Hans Thordal-Christensen
- Department of Agriculture and Ecology; University of Copenhagen; Frederiksberg, Denmark
- Correspondence to: Mads Eggert Nielsen, and Hans Thordal-Christensen,
| |
Collapse
|
115
|
Kaufmann H, Qiu X, Wehmeyer J, Debener T. Isolation, Molecular Characterization, and Mapping of Four Rose MLO Orthologs. FRONTIERS IN PLANT SCIENCE 2012; 3:244. [PMID: 23130018 PMCID: PMC3487107 DOI: 10.3389/fpls.2012.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/12/2012] [Indexed: 05/24/2023]
Abstract
Powdery mildew is a major disease of economic importance in cut and pot roses. As an alternative to conventional resistance breeding strategies utilizing single-dominant genes or QTLs, mildew resistance locus o (MLO)-based resistance might offer some advantages. In dicots such as Arabidopsis, pea, and tomato, loss-of-function mutations in MLO genes confer high levels of broad-spectrum resistance. Here, we report the isolation and characterization of four MLO homologs from a large rose EST collection isolated from leaves. These genes are phylogenetically closely related to other dicot MLO genes that are involved in plant powdery mildew interactions. Therefore, they are candidates for MLO genes involved in rose powdery mildew interactions. Two of the four isolated genes contain all of the sequence signatures considered to be diagnostic for MLO genes. We mapped all four genes to three linkage groups and conducted the first analysis of alternative alleles. This information is discussed in regards to a reverse genetics approach aimed at the selection of rose plants that are homozygous for loss-of-function in one or more MLO genes.
Collapse
Affiliation(s)
- Helgard Kaufmann
- Department of Molecular Breeding, Institute for Plant Genetics, Leibniz University of Hannover Hannover, Germany
| | | | | | | |
Collapse
|
116
|
Bapaume L, Reinhardt D. How membranes shape plant symbioses: signaling and transport in nodulation and arbuscular mycorrhiza. FRONTIERS IN PLANT SCIENCE 2012; 3:223. [PMID: 23060892 PMCID: PMC3464683 DOI: 10.3389/fpls.2012.00223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/14/2012] [Indexed: 05/19/2023]
Abstract
As sessile organisms that cannot evade adverse environmental conditions, plants have evolved various adaptive strategies to cope with environmental stresses. One of the most successful adaptations is the formation of symbiotic associations with beneficial microbes. In these mutualistic interactions the partners exchange essential nutrients and improve their resistance to biotic and abiotic stresses. In arbuscular mycorrhiza (AM) and in root nodule symbiosis (RNS), AM fungi and rhizobia, respectively, penetrate roots and accommodate within the cells of the plant host. In these endosymbiotic associations, both partners keep their plasma membranes intact and use them to control the bidirectional exchange of signaling molecules and nutrients. Intracellular accommodation requires the exchange of symbiotic signals and the reprogramming of both interacting partners. This involves fundamental changes at the level of gene expression and of the cytoskeleton, as well as of organelles such as plastids, endoplasmic reticulum (ER), and the central vacuole. Symbiotic cells are highly compartmentalized and have a complex membrane system specialized for the diverse functions in molecular communication and nutrient exchange. Here, we discuss the roles of the different cellular membrane systems and their symbiosis-related proteins in AM and RNS, and we review recent progress in the analysis of membrane proteins involved in endosymbiosis.
Collapse
Affiliation(s)
| | - Didier Reinhardt
- Department of Biology, University of FribourgFribourg, Switzerland
| |
Collapse
|
117
|
Perraki A, Cacas JL, Crowet JM, Lins L, Castroviejo M, German-Retana S, Mongrand S, Raffaele S. Plasma membrane localization of Solanum tuberosum remorin from group 1, homolog 3 is mediated by conformational changes in a novel C-terminal anchor and required for the restriction of potato virus X movement]. PLANT PHYSIOLOGY 2012; 160:624-37. [PMID: 22855937 PMCID: PMC3461544 DOI: 10.1104/pp.112.200519] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/31/2012] [Indexed: 05/18/2023]
Abstract
The formation of plasma membrane (PM) microdomains plays a crucial role in the regulation of membrane signaling and trafficking. Remorins are a plant-specific family of proteins organized in six phylogenetic groups, and Remorins of group 1 are among the few plant proteins known to specifically associate with membrane rafts. As such, they are valuable to understand the molecular bases for PM lateral organization in plants. However, little is known about the structural determinants underlying the specific association of group 1 Remorins with membrane rafts. We used a structure-function approach to identify a short C-terminal anchor (RemCA) indispensable and sufficient for tight direct binding of potato (Solanum tuberosum) REMORIN 1.3 (StREM1.3) to the PM. RemCA switches from unordered to α-helical structure in a nonpolar environment. Protein structure modeling indicates that RemCA folds into a tight hairpin of amphipathic helices. Consistently, mutations reducing RemCA amphipathy abolished StREM1.3 PM localization. Furthermore, RemCA directly binds to biological membranes in vitro, shows higher affinity for Detergent-Insoluble Membranes lipids, and targets yellow fluorescent protein to Detergent-Insoluble Membranes in vivo. Mutations in RemCA resulting in cytoplasmic StREM1.3 localization abolish StREM1.3 function in restricting potato virus X movement. The mechanisms described here provide new insights on the control and function of lateral segregation of plant PM.
Collapse
|
118
|
Xu G, Li S, Xie K, Zhang Q, Wang Y, Tang Y, Liu D, Hong Y, He C, Liu Y. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:57-69. [PMID: 22595145 DOI: 10.1111/j.1365-313x.2012.05053.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The hypersensitive response (HR), a form of programmed cell death (PCD), is a tightly regulated innate immune response in plants that is hypothesized to restrict pathogen growth and disease development. Although considerable efforts have been made to understand HR PCD, it remains unknown whether the retrograde pathway from the Golgi to the endoplasmic reticulum (ER) is involved. Here we provide direct genetic evidence that two Nicotiana benthamiana homologs, ERD2a and ERD2b, function as ER luminal protein receptors and participate in HR PCD. Virus-induced gene silencing (VIGS) of ERD2a and/or ERD2b caused escape of ER-resident proteins from the ER, and resulted in plants that were more sensitive to ER stress. Silencing of ERD2b delayed HR PCD induced by the non-host pathogens Xanthomonas oryzae pv. oryzae and Pseudomonas syringae pv. tomato DC3000. However, both silencing of ERD2a and co-silencing of ERD2a and ERD2b exacerbated HR PCD. Individual and combined suppression of ERD2a and ERD2b exaggerated R gene-mediated cell death. Nevertheless, silencing of ERD2a and/or ERD2b had no detectable effects on bacterial growth. Furthermore, VIGS of several putative ligands of ERD2a/2b, including the ER quality control (ERQC) component genes BiP, CRT3 and UGGT, had different effects on HR PCD induced by different pathogens. This indicates that immunity-related cell death pathways are separate with respect to the genetic requirements for these ERQC components. These results suggest that ERD2a and ERD2b function as ER luminal protein receptors to ensure ERQC and alleviate ER stress, thus affecting HR PCD during the plant innate immune response.
Collapse
Affiliation(s)
- Guoyong Xu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Valencia-Morales MDP, Camas-Reyes JA, Cabrera-Ponce JL, Alvarez-Venegas R. The Arabidopsis thaliana SET-domain-containing protein ASHH1/SDG26 interacts with itself and with distinct histone lysine methyltransferases. JOURNAL OF PLANT RESEARCH 2012; 125:679-692. [PMID: 22438063 DOI: 10.1007/s10265-012-0485-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
Polycomb group (PcG) and trithorax group (trxG) proteins are key regulators of homeotic genes and have central roles in cell proliferation, growth and development. In animals, PcG and trxG proteins form higher order protein complexes that contain SET domain proteins with histone methyltransferase activity, and are responsible for the different types of lysine methylation at the N-terminal tails of the core histone proteins. However, whether H3K4 methyltransferase complexes exist in Arabidopsis thaliana remains unknown. Here, we make use of the yeast two-hybrid system and the bimolecular fluorescence complementation assay to provide evidence for the self-association of the Arabidopsis thaliana SET-domain-containing protein SET DOMAIN GROUP 26 (SDG26), also known as ABSENT, SMALL, OR HOMEOTIC DISCS 1 HOMOLOG 1 (ASHH1). In addition, we show that the ASHH1 protein associates with SET-domain-containing sequences from two distinct histone lysine methyltransferases, the ARABIDOPSIS HOMOLOG OF TRITHORAX-1 (ATX1) and ASHH2 proteins. Furthermore, after screening a cDNA library we found that ASHH1 interacts with two proteins from the heat shock protein 40 kDa (Hsp40/DnaJ) superfamily, thus connecting the epigenetic network with a system sensing external cues. Our findings suggest that trxG complexes in Arabidopsis thaliana could involve different sets of histone lysine methyltransferases, and that these complexes may be engaged in multiple developmental processes in Arabidopsis.
Collapse
Affiliation(s)
- María del Pilar Valencia-Morales
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Km. 9.6 Libramiento Norte, Carretera Irapuato-León, C.P. 36821, Irapuato, Guanajuato, Mexico
| | | | | | | |
Collapse
|
120
|
Besserer A, Burnotte E, Bienert GP, Chevalier AS, Errachid A, Grefen C, Blatt MR, Chaumont F. Selective regulation of maize plasma membrane aquaporin trafficking and activity by the SNARE SYP121. THE PLANT CELL 2012; 24:3463-81. [PMID: 22942383 PMCID: PMC3462644 DOI: 10.1105/tpc.112.101758] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are aquaporins facilitating the diffusion of water through the cell membrane. We previously showed that the traffic of the maize (Zea mays) PIP2;5 to the plasma membrane is dependent on the endoplasmic reticulum diacidic export motif. Here, we report that the post-Golgi traffic and water channel activity of PIP2;5 are regulated by the SNARE (for soluble N-ethylmaleimide-sensitive factor protein attachment protein receptor) SYP121, a plasma membrane resident syntaxin involved in vesicle traffic, signaling, and regulation of K(+) channels. We demonstrate that the expression of the dominant-negative SYP121-Sp2 fragment in maize mesophyll protoplasts or epidermal cells leads to a decrease in the delivery of PIP2;5 to the plasma membrane. Protoplast and oocyte swelling assays showed that PIP2;5 water channel activity is negatively affected by SYP121-Sp2. A combination of in vitro (copurification assays) and in vivo (bimolecular fluorescence complementation, Förster resonance energy transfer, and yeast split-ubiquitin) approaches allowed us to demonstrate that SYP121 and PIP2;5 physically interact. Together with previous data demonstrating the role of SYP121 in regulating K(+) channel trafficking and activity, these results suggest that SYP121 SNARE contributes to the regulation of the cell osmotic homeostasis.
Collapse
Affiliation(s)
- Arnaud Besserer
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Emeline Burnotte
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Adrien S. Chevalier
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Abdelmounaim Errachid
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Michael R. Blatt
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell, and Systems Biology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - François Chaumont
- Institut des Sciences de la Vie, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Address correspondence to
| |
Collapse
|
121
|
Kim B, Kim G, Fujioka S, Takatsuto S, Choe S. Overexpression of 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases causes growth defects possibly due to abnormal auxin transport in Arabidopsis. Mol Cells 2012; 34:77-84. [PMID: 22673766 PMCID: PMC3887785 DOI: 10.1007/s10059-012-0102-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/25/2012] [Accepted: 04/25/2012] [Indexed: 12/29/2022] Open
Abstract
Sterols play crucial roles as membrane components and precursors of steroid hormones (e.g., brassinosteroids, BR). Within membranes, sterols regulate membrane permeability and fluidity by interacting with other lipids and proteins. Sterols are frequently enriched in detergent-insoluble membranes (DIMs), which organize molecules involved in specialized signaling processes, including auxin transporters. To be fully functional, the two methyl groups at the C-4 position of cycloartenol, a precursor of plant sterols, must be removed by bifunctional 3β-hydroxysteroid dehydrogenases/C-4 decarboxylases (3βHSD/D). To understand the role of 3βHSD/D in Arabidopsis development, we analyzed the phenotypes of knock-out mutants and overexpression lines of two 3βHSD/D genes (At1g47290 and At2g26260). Neither single nor double knock-out mutants displayed a noticeable phenotype; however, overexpression consistently resulted in plants with wrinkled leaves and short inflorescence internodes. Interestingly, the internode growth defects were opportunistic; even within a plant, some stems were more severely affected than others. Endogenous levels of BRs were not altered in the overexpression lines, suggesting that the growth defect is not primarily due to a flaw in BR biosynthesis. To determine if overexpression of the sterol biosynthetic genes affects the functions of membrane-localized auxin transporters, we subjected plants to the auxin efflux carrier inhibitor, 1-N-naphthylphthalamic acid (NPA). Where-as the gravity vectors of wild-type roots became randomly scattered in response to NPA treatment, those of the overexpression lines continued to grow in the direction of gravity. Overexpression of the two Arabidopsis 3βHSD/D genes thus appears to affect auxin transporter activity, possibly by altering sterol composition in the membranes.
Collapse
Affiliation(s)
- Bokyung Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Gyusik Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Shozo Fujioka
- RIKEN Advanced Science Institute, Wako-shi, Saitama 351-0198,
Japan
| | - Suguru Takatsuto
- Department of Chemistry, Joetsu University of Education, Niigata 943-8512,
Japan
| | - Sunghwa Choe
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|
122
|
Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci U S A 2012; 109:11443-8. [PMID: 22733775 DOI: 10.1073/pnas.1117596109] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Penetration resistance to powdery mildew fungi, conferred by localized cell wall appositions (papillae), is one of the best-studied processes in plant innate immunity. The syntaxin PENETRATION (PEN)1 is required for timely appearance of papillae, which contain callose and extracellular membrane material, as well as PEN1 itself. Appearance of membrane material in papillae suggests secretion of exosomes. These are potentially derived from multivesicular bodies (MVBs), supported by our observation that ARA6-labeled organelles assemble at the fungal attack site. However, the trafficking components that mediate delivery of extracellular membrane material are unknown. Here, we show that the delivery is independent of PEN1 function. Instead, we find that application of brefeldin (BF)A blocks the papillary accumulation of GFP-PEN1-labeled extracellular membrane and callose, while impeding penetration resistance. We subsequently provide evidence indicating that the responsible BFA-sensitive ADP ribosylation factor-GTP exchange factor (ARF-GEF) is GNOM. Firstly, analysis of the transheterozygote gnom(B4049/emb30-1) (gnom(B)(/E)) mutant revealed a delay in papilla formation and reduced penetration resistance. Furthermore, a BFA-resistant version of GNOM restored the BFA-sensitive papillary accumulation of GFP-PEN1 and callose. Our data, therefore, provide a link between GNOM and disease resistance. We suggest that papilla formation requires rapid reorganization of material from the plasma membrane mediated by GNOM. The papilla material is subsequently presumed to be sorted into MVBs and directed to the site of fungal attack, rendering the epidermal plant cell inaccessible for the invading powdery mildew fungus.
Collapse
|
123
|
Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. THE PLANT CELL 2012; 24:2105-22. [PMID: 22589463 PMCID: PMC3442590 DOI: 10.1105/tpc.112.095695] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/07/2012] [Accepted: 04/20/2012] [Indexed: 05/18/2023]
Abstract
Endocytosis is essential for the maintenance of protein and lipid compositions in the plasma membrane and for the acquisition of materials from the extracellular space. Clathrin-dependent and -independent endocytic processes are well established in yeast and animals; however, endocytic pathways involved in cargo internalization and intracellular trafficking remain to be fully elucidated for plants. Here, we used transgenic green fluorescent protein-flotillin1 (GFP-Flot1) Arabidopsis thaliana plants in combination with confocal microscopy analysis and transmission electron microscopy immunogold labeling to study the spatial and dynamic aspects of GFP-Flot1-positive vesicle formation. Vesicle size, as outlined by the gold particles, was ∼100 nm, which is larger than the 30-nm size of clathrin-coated vesicles. GFP-Flot1 also did not colocalize with clathrin light chain-mOrange. Variable-angle total internal reflection fluorescence microscopy also revealed that the dynamic behavior of GFP-Flot1-positive puncta was different from that of clathrin light chain-mOrange puncta. Furthermore, disruption of membrane microdomains caused a significant alteration in the dynamics of Flot1-positive puncta. Analysis of artificial microRNA Flot1 transgenic Arabidopsis lines established that a reduction in Flot1 transcript levels gave rise to a reduction in shoot and root meristem size plus retardation in seedling growth. Taken together, these findings support the hypothesis that, in plant cells, Flot1 is involved in a clathrin-independent endocytic pathway and functions in seedling development.
Collapse
Affiliation(s)
- Ruili Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China
| | - Yinglang Wan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qinli Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ursula Mettbach
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, D-53115 Bonn, Germany
| | - František Baluška
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University Bonn, Department of Plant Cell Biology, D-53115 Bonn, Germany
| | - Jozef Šamaj
- Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, 78301 Olomouc, Czech Republic
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructures and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - William J. Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
124
|
Lu YJ, Schornack S, Spallek T, Geldner N, Chory J, Schellmann S, Schumacher K, Kamoun S, Robatzek S. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell Microbiol 2012; 14:682-97. [PMID: 22233428 PMCID: PMC4854193 DOI: 10.1111/j.1462-5822.2012.01751.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.
Collapse
Affiliation(s)
- Yi-Ju Lu
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Thomas Spallek
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Joanne Chory
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Swen Schellmann
- Botanical Institute, Biocenter Cologne, Zülpicher Strasse 47b, Cologne, Germany
| | - Karin Schumacher
- Plant Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - Silke Robatzek
- Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
125
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Berkey R, Bendigeri D, Xiao S. Sphingolipids and plant defense/disease: the "death" connection and beyond. FRONTIERS IN PLANT SCIENCE 2012; 3:68. [PMID: 22639658 PMCID: PMC3355615 DOI: 10.3389/fpls.2012.00068] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/22/2012] [Indexed: 05/19/2023]
Abstract
Sphingolipids comprise a major class of structural materials and lipid signaling molecules in all eukaryotic cells. Over the past two decades, there has been a phenomenal growth in the study of sphingolipids (i.e., sphingobiology) at an average rate of ∼1000 research articles per year. Sphingolipid studies in plants, though accounting for only a small fraction (∼6%) of the total number of publications, have also enjoyed proportionally rapid growth in the past decade. Concomitant with the growth of sphingobiology, there has also been tremendous progress in our understanding of the molecular mechanisms of plant innate immunity. In this review, we (i) cross examine and analyze the major findings that establish and strengthen the intimate connections between sphingolipid metabolism and plant programmed cell death (PCD) associated with plant defense or disease; (ii) highlight and compare key bioactive sphingolipids involved in the regulation of plant PCD and possibly defense; (iii) discuss the potential role of sphingolipids in polarized membrane/protein trafficking and formation of lipid rafts as subdomains of cell membranes in relation to plant defense; and (iv) where possible, attempt to identify potential parallels for immunity-related mechanisms involving sphingolipids across kingdoms.
Collapse
Affiliation(s)
- Robert Berkey
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Dipti Bendigeri
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of MarylandRockville, MD, USA
- Department of Plant Sciences and Landscape Architecture, University of MarylandCollege Park, MD, USA
| |
Collapse
|
127
|
Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. PLANT PHYSIOLOGY 2012; 158:1847-59. [PMID: 22345509 PMCID: PMC3320190 DOI: 10.1104/pp.111.192310] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/15/2012] [Indexed: 05/18/2023]
Abstract
Plant defense responses are tightly controlled by many positive and negative regulators to cope with attacks from various pathogens. Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE2 (EDR2) is a negative regulator of powdery mildew resistance, and edr2 mutants display enhanced resistance to powdery mildew (Golovinomyces cichoracearum). To identify components acting in the EDR2 pathway, we screened for edr2 suppressors and identified a gain-of-function mutation in SIGNAL RESPONSIVE1 (SR1), which encodes a calmodulin-binding transcription activator. The sr1-4D gain-of-function mutation suppresses all edr2-associated phenotypes, including powdery mildew resistance, mildew-induced cell death, and ethylene-induced senescence. The sr1-4D single mutant is more susceptible to a Pseudomonas syringae pv tomato DC3000 virulent strain and to avirulent strains carrying avrRpt2 or avrRPS4 than the wild type. We show that SR1 directly binds to the promoter region of NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a key component in RESISTANCE TO PSEUDOMONAS SYRINGAE2-mediated plant immunity. Also, the ndr1 mutation suppresses the sr1-1 null allele, which shows enhanced resistance to both P. syringae pv tomato DC3000 avrRpt2 and G. cichoracearum. In addition, we show that SR1 regulates ethylene-induced senescence by directly binding to the ETHYLENE INSENSITIVE3 (EIN3) promoter region in vivo. Enhanced ethylene-induced senescence in sr1-1 is suppressed by ein3. Our data indicate that SR1 plays an important role in plant immunity and ethylene signaling by directly regulating NDR1 and EIN3.
Collapse
|
128
|
Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjær MF. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. MOLECULAR PLANT PATHOLOGY 2012; 13:135-47. [PMID: 21819533 PMCID: PMC6638725 DOI: 10.1111/j.1364-3703.2011.00736.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The receptor-like protein kinases (RLKs) constitute a large and diverse group of proteins controlling numerous plant physiological processes, including development, hormone perception and stress responses. The cysteine-rich RLKs (CRKs) represent a prominent subfamily of transmembrane-anchored RLKs. We have identified a putative barley (Hordeum vulgare) CRK gene family member, designated HvCRK1. The mature putative protein comprises 645 amino acids, and includes a putative receptor domain containing two characteristic 'domain 26 of unknown function' (duf26) domains in the N-terminal region, followed by a rather short 17-amino-acid transmembrane domain, which includes an AAA motif, two features characteristic of endoplasmic reticulum (ER)-targeted proteins and, finally, a characteristic putative protein kinase domain in the C-terminus. The HvCRK1 transcript was isolated from leaves inoculated with the biotrophic fungal pathogen Blumeria graminis f.sp. hordei (Bgh). HvCRK1 transcripts were observed to accumulate transiently following Bgh inoculation of susceptible barley. Transient silencing of HvCRK1 expression in bombarded epidermal cells led to enhanced resistance to Bgh, but did not affect R-gene-mediated resistance. Silencing of HvCRK1 phenocopied the effective penetration resistance found in mlo-resistant barley plants, and the possible link between HvCRK1 and MLO was substantiated by the fact that HvCRK1 induction on Bgh inoculation was dependent on Mlo. Finally, using both experimental and in silico approaches, we demonstrated that HvCRK1 localizes to the ER of barley cells. The negative effect on basal resistance against Bgh and the functional aspects of MLO- and ER-localized HvCRK1 signalling on Bgh inoculation are discussed.
Collapse
Affiliation(s)
- Cbgowda Rayapuram
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the "understanding of plant growth" as one of the big challenges for society and part of a new era which they termed "new biology." The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon.
Collapse
|
130
|
Takahashi D, Kawamura Y, Yamashita T, Uemura M. Detergent-resistant plasma membrane proteome in oat and rye: similarities and dissimilarities between two monocotyledonous plants. J Proteome Res 2012; 11:1654-65. [PMID: 22191623 DOI: 10.1021/pr200849v] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The plasma membrane (PM) is involved in important cellular processes that determine the growth, development, differentiation, and environmental signal responses of plant cells. Some of these dynamic reactions occur in specific domains in the PM. In this study, we performed comparable nano-LC-MS/MS-based large-scale proteomic analysis of detergent-resistant membrane (DRM) fractions prepared from the PM of oat and rye. A number of proteins showed differential accumulation between the PM and DRM, and some proteins were only found in the DRM. Numerous proteins were identified as DRM proteins in oat (219 proteins) and rye (213 proteins), of which about half were identified only in the DRM. The DRM proteins were largely common to those found in dicotyledonous plants (Arabidopsis and tobacco), which suggests common functions associated with the DRM in plants. Combination of semiquantitative proteomic analysis and prediction of post-translational protein modification sites revealed differences in several proteins associated with the DRM in oat and rye. It is concluded that protein distribution in the DRM is unique from that in the PM, partly because of the physicochemical properties of the proteins, and the unique distribution of these proteins may define the functions of the specific domains in the PM in various physiological processes in plant cells.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Cryobiofrontier Research Center, Faculty of Agriculture, Iwate University , 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | |
Collapse
|
131
|
Lewis JD, Wan J, Ford R, Gong Y, Fung P, Nahal H, Wang PW, Desveaux D, Guttman DS. Quantitative Interactor Screening with next-generation Sequencing (QIS-Seq) identifies Arabidopsis thaliana MLO2 as a target of the Pseudomonas syringae type III effector HopZ2. BMC Genomics 2012; 13:8. [PMID: 22230763 PMCID: PMC3320541 DOI: 10.1186/1471-2164-13-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/09/2012] [Indexed: 11/10/2022] Open
Abstract
Background Identification of protein-protein interactions is a fundamental aspect of understanding protein function. A commonly used method for identifying protein interactions is the yeast two-hybrid system. Results Here we describe the application of next-generation sequencing to yeast two-hybrid interaction screens and develop Quantitative Interactor Screen Sequencing (QIS-Seq). QIS-Seq provides a quantitative measurement of enrichment for each interactor relative to its frequency in the library as well as its general stickiness (non-specific binding). The QIS-Seq approach is scalable and can be used with any yeast two-hybrid screen and with any next-generation sequencing platform. The quantitative nature of QIS-Seq data make it amenable to statistical evaluation, and importantly, facilitates the standardization of experimental design, data collection, and data analysis. We applied QIS-Seq to identify the Arabidopsis thaliana MLO2 protein as a target of the Pseudomonas syringae type III secreted effector protein HopZ2. We validate the interaction between HopZ2 and MLO2 in planta and show that the interaction is required for HopZ2-associated virulence. Conclusions We demonstrate that QIS-Seq is a high-throughput quantitative interactor screen and validate MLO2 as an interactor and novel virulence target of the P. syringae type III secreted effector HopZ2.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Urbanus SL, Ott T. Plasticity of plasma membrane compartmentalization during plant immune responses. FRONTIERS IN PLANT SCIENCE 2012; 3:181. [PMID: 22876256 PMCID: PMC3411101 DOI: 10.3389/fpls.2012.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 05/10/2023]
Abstract
Plasma membranes require high levels of plasticity to modulate the perception and transduction of extracellular and intracellular signals. Dynamic lateral assembly of protein complexes combined with an independent compositional lipid patterning in both membrane leaflets provide cells the opportunity to decorate this interface with specific proteins in an organized but dynamic manner. Such ability to dynamically reorganize the protein content of the plasma membrane is essential for the regulation of processes such as polarity of transport, development, and microbial infection. While the plant cell wall represents the first physical and mostly unspecific barrier for invading microbes, the plasma membrane is at the forefront of microbial recognition and initiation of defense responses. Accumulating evidence indicating dynamic compartmentalization of plasma membranes in response to environmental cues has increased the interest in the compositional heterogeneity of this bilayer. Here, we elucidate the recruitment of specific proteins into defined membrane structures that ensure functional compartmentalization of the bilayer during infection processes.
Collapse
Affiliation(s)
| | - Thomas Ott
- *Correspondence: Thomas Ott, Institute of Genetics, University of Munich, Großhaderner Str. 2-4, 82152 Martinsried, Germany. e-mail:
| |
Collapse
|
133
|
Uma B, Rani TS, Podile AR. Warriors at the gate that never sleep: non-host resistance in plants. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2141-52. [PMID: 22001579 DOI: 10.1016/j.jplph.2011.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 05/25/2023]
Abstract
The native resistance of most plant species against a wide variety of pathogens is known as non-host resistance (NHR), which confers durable protection to plant species. Only a few pathogens or parasites can successfully cause diseases. NHR is polygenic and appears to be linked with basal plant resistance, a form of elicited protection. Sensing of pathogens by plants is brought about through the recognition of invariant pathogen-associated molecular patterns (PAMPs) that trigger downstream defense signaling pathways. Race-specific resistance, (R)-gene mediated resistance, has been extensively studied and reviewed, while our knowledge of NHR has advanced only recently due to the improved access to excellent model systems. The continuum of the cell wall (CW) and the CW-plasma membrane (PM)-cytoskeleton plays a crucial role in perceiving external cues and activating defense signaling cascades during NHR. Based on the type of hypersensitive reaction (HR) triggered, NHR was classified into two types, namely type-I and type-II. Genetic analysis of Arabidopsis mutants has revealed important roles for a number of specific molecules in NHR, including the role of SNARE-complex mediated exocytosis, lipid rafts and vesicle trafficking. As might be expected, R-gene mediated resistance is found to overlap with NHR, but the extent to which the genes/pathways are common between these two forms of disease resistance is unknown. The present review focuses on the various components involved in the known mechanisms of NHR in plants with special reference to the role of CW-PM components.
Collapse
Affiliation(s)
- Battepati Uma
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | |
Collapse
|
134
|
Simon-Plas F, Perraki A, Bayer E, Gerbeau-Pissot P, Mongrand S. An update on plant membrane rafts. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:642-9. [PMID: 21903451 DOI: 10.1016/j.pbi.2011.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 05/18/2023]
Abstract
The dynamic segregation of membrane components within microdomains, such as the sterol-enriched and sphingolipid-enriched membrane rafts, emerges as a central regulatory mechanism governing physiological responses in various organisms. Over the past five years, plasma membrane located raft-like domains have been described in several plant species. The protein and lipid compositions of detergent-insoluble membranes, supposed to contain these domains, have been extensively characterised. Imaging methods have shown that lateral segregation of lipids and proteins exists at the nanoscale level at the plant plasma membrane, correlating detergent insolubility and membrane-domain localisation of presumptive raft proteins. Finally, the dynamic association of specific proteins with detergent-insoluble membranes upon environmental stress has been reported, confirming a possible role for plant rafts as signal transduction platforms, particularly during biotic interactions.
Collapse
Affiliation(s)
- Françoise Simon-Plas
- UMR Plante-Microbe-Environnement 1088, Institut National de la Recherche Agronomique-5184, CNRS-Université de Bourgogne, 21065 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
135
|
Hückelhoven R, Panstruga R. Cell biology of the plant-powdery mildew interaction. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:738-46. [PMID: 21924669 DOI: 10.1016/j.pbi.2011.08.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/09/2011] [Accepted: 08/17/2011] [Indexed: 05/08/2023]
Abstract
Powdery mildew fungi represent a paradigm for obligate biotrophic parasites, which only propagate in long-lasting intimate interactions with living host cells. These highly specialized phytopathogens induce re-organization of host cell architecture and physiology for their own demands. This probably includes the corruption of basal host cellular functions for successful fungal pathogenesis. Recent studies revealed secretory processes by both interaction partners as key incidents of the combat at the plant-fungus interface. The analysis of cellular events during plant-powdery mildew interactions may not only lead to a better understanding of plant pathological features, but may also foster novel discoveries in the area of plant cell biology.
Collapse
Affiliation(s)
- Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann-Straße 2, 85350 Freising-Weihenstephan, Germany
| | | |
Collapse
|
136
|
Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci Rep 2011; 1:171. [PMID: 22355686 PMCID: PMC3240950 DOI: 10.1038/srep00171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022] Open
Abstract
Rice blast caused by Magnaporthe oryzae is a devastating disease of rice. Mechanisms of rice resistance to blast have been studied extensively, and the rice-M. oryzae pathosystem has become a model for plant-microbe interaction studies. However, the mechanisms of non-host resistance (NHR) to rice blast in other plants remain poorly understood. We found that penetration resistance to M. oryzae in multiple mutants, including pen2 NahG pmr5 agb1 and pen2 NahG pmr5 mlo2 plants, was severely compromised and that fungal growth was permitted in penetrated epidermal cells. Furthermore, rice Pi21 enhanced movement of infection hyphae from penetrated Arabidopsis epidermal cells to adjacent mesophyll cells. These results indicate that PEN2, PMR5, AGB1, and MLO2 function in both penetration and post-penetration resistance to M. oryzae in Arabidopsis, and suggest that the absence of rice Pi21 contributed to Arabidopsis NHR to M. oryzae.
Collapse
|
137
|
Palanivelu R, Tsukamoto T. Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:96-113. [PMID: 23801670 DOI: 10.1002/wdev.6] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube's journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube-pistil interactions.
Collapse
|
138
|
Bucciantini M, Nosi D, Forzan M, Russo E, Calamai M, Pieri L, Formigli L, Quercioli F, Soria S, Pavone F, Savistchenko J, Melki R, Stefani> M. Toxic effects of amyloid fibrils on cell membranes: the importance of ganglioside GM1. FASEB J 2011; 26:818-31. [DOI: 10.1096/fj.11-189381] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Monica Bucciantini
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
- Research Centre on the Molecular Basis of Neurodegeneration, and Forensic MedicineUniversity of Florence Florence Italy
| | - Daniele Nosi
- Department of Anatomy, Histology, and Forensic MedicineUniversity of Florence Florence Italy
| | - Mario Forzan
- Department of Animal Pathology, Food Prophylaxis, and HygieneUniversity of Pisa Pisa Italy
| | - Edda Russo
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
| | - Martino Calamai
- European Laboratory for Nonlinear Spectroscopy (LENS)University of Florence Florence Italy
| | - Laura Pieri
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Lucia Formigli
- Department of Anatomy, Histology, and Forensic MedicineUniversity of Florence Florence Italy
| | - Franco Quercioli
- National Institute of OpticsConsiglio Nazionale delle Ricerche Florence Research Area Florence Italy
| | - Silvia Soria
- Nello Carrara Institute of Applied PhysicsConsiglio Nazionale delle Ricerche Florence Research Area Florence Italy
| | - Francesco Pavone
- European Laboratory for Nonlinear Spectroscopy (LENS)University of Florence Florence Italy
| | - Jimmy Savistchenko
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Ronald Melki
- Department of Animal Pathology, Food Prophylaxis, and HygieneUniversity of Pisa Pisa Italy
- Laboratoire d'Enzymologie et Biochimie StructuralesCentre National de la Recherche Scientifique Gif sur Yvette France
| | - Massimo Stefani>
- Department of Biochemical Sciences, and Forensic MedicineUniversity of Florence Florence Italy
- Research Centre on the Molecular Basis of Neurodegeneration, and Forensic MedicineUniversity of Florence Florence Italy
| |
Collapse
|
139
|
Carmona-Salazar L, El Hafidi M, Enríquez-Arredondo C, Vázquez-Vázquez C, González de la Vara LE, Gavilanes-Ruíz M. Isolation of detergent-resistant membranes from plant photosynthetic and non-photosynthetic tissues. Anal Biochem 2011; 417:220-7. [PMID: 21723848 DOI: 10.1016/j.ab.2011.05.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 11/25/2022]
Abstract
Microdomains, or lipid rafts, are transient membrane regions enriched in sphingolipids and sterols that have only recently, but intensively, been studied in plants. In this work, we report a detailed, easy-to-follow, and fast procedure to isolate detergent-resistant membranes (DRMs) from purified plasma membranes (PMs) that was used to obtain DRMs from Phaseolus vulgaris and Nicotiana tabacum leaves and germinating Zea mays embryos. Characterized according to yield, ultrastructure, and sterol composition, these DRM preparations showed similarities to analogous preparations from other eukaryotic cells. Isolation of DRMs from germinating maize embryos reveals the presence of microdomains at very early developmental stages of plants.
Collapse
Affiliation(s)
- Laura Carmona-Salazar
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, México DF 04510, Mexico
| | | | | | | | | | | |
Collapse
|
140
|
Chevalier É, Loubert-Hudon A, Zimmerman EL, Matton DP. Cell-cell communication and signalling pathways within the ovule: from its inception to fertilization. THE NEW PHYTOLOGIST 2011; 192:13-28. [PMID: 21793830 DOI: 10.1111/j.1469-8137.2011.03836.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Cell-cell communication pervades every aspect of the life of a plant. It is particularly crucial for the development of the gametes and their subtle interaction leading to double fertilization. The ovule is composed of a funiculus, one or two integuments, and a gametophyte surrounded by nucellus tissue. Proper ovule and embryo sac development are critical to reproductive success. To allow fertilization, the correct relative positioning and differentiation of the embryo sac cells are essential. Integument development is also intimately linked with the normal development of the female gametophyte; the sporophyte and gametophyte are not fully independent tissues. Inside the gametophyte, numerous signs of cell-cell communication take place throughout development, including cell fate patterning, fertilization and the early stages of embryogenesis. This review highlights the current evidence of cell-cell communication and signalling elements based on structural and physiological observations as well as the description and characterization of mutants in structurally specific genes. By combining data from different species, models of cell-cell interactions have been built, particularly for the establishment of the germline, for the progression through megagametogenesis and for double fertilization.
Collapse
Affiliation(s)
- Éric Chevalier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Audrey Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Erin L Zimmerman
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| | - Daniel P Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, QC, Canada H1X 2B2
| |
Collapse
|
141
|
Konopka-Postupolska D, Clark G, Hofmann A. Structure, function and membrane interactions of plant annexins: an update. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:230-41. [PMID: 21763533 DOI: 10.1016/j.plantsci.2011.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/18/2011] [Accepted: 05/18/2011] [Indexed: 05/08/2023]
Abstract
Knowledge accumulated over the past 15 years on plant annexins clearly indicates that this disparate group of proteins builds on the common annexin function of membrane association, but possesses divergent molecular mechanisms. Functionally, the current literature agrees on a key role of plant annexins in stress response processes such as wound healing and drought tolerance. This is contrasted by only few established details of the molecular level mechanisms that are driving these activities. In this review, we appraise the current knowledge of plant annexin molecular, functional and structural properties with a special emphasis on topics of less coverage in recent past overviews. In particular, plant annexin post-translational modification, roles in polar growth and membrane stabilisation processes are discussed.
Collapse
|
142
|
Perochon A, Aldon D, Galaud JP, Ranty B. Calmodulin and calmodulin-like proteins in plant calcium signaling. Biochimie 2011; 93:2048-53. [PMID: 21798306 DOI: 10.1016/j.biochi.2011.07.012] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/09/2011] [Indexed: 01/01/2023]
Abstract
Calmodulin (CaM) is a primary calcium sensor in all eukaryotes. It binds calcium and regulates the activity of a wide range of effector proteins in response to calcium signals. The list of CaM targets includes plant-specific proteins whose functions are progressively being elucidated. Plants also possess numerous calmodulin-like proteins (CMLs) that appear to have evolved unique functions. Functional studies of CaM and CMLs in plants highlight the importance of this protein family in the regulation of plant development and stress responses by converting calcium signals into transcriptional responses, protein phosphorylation or metabolic changes. This review summarizes some of the significant progress made by biochemical and genetic studies in identifying the properties and physiological functions of plant CaMs and CMLs. We discuss emerging paradigms in the field and highlight the areas that need further investigation.
Collapse
Affiliation(s)
- Alexandre Perochon
- UMR 5546 CNRS/Universite Paul Sabatier Toulouse III, Pole de biotechnologie vegetale, Auzeville, Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
143
|
Reichardt I, Slane D, El Kasmi F, Knöll C, Fuchs R, Mayer U, Lipka V, Jürgens G. Mechanisms of Functional Specificity Among Plasma-Membrane Syntaxins in Arabidopsis. Traffic 2011; 12:1269-80. [DOI: 10.1111/j.1600-0854.2011.01222.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
144
|
Grefen C, Honsbein A, Blatt MR. Ion transport, membrane traffic and cellular volume control. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:332-9. [PMID: 21507708 DOI: 10.1016/j.pbi.2011.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/09/2011] [Accepted: 03/23/2011] [Indexed: 05/21/2023]
Abstract
Throughout their development, plants balance cell surface area and volume with ion transport and turgor. This balance lies at the core of cellular homeostatic networks and is central to the capacity to withstand abiotic as well as biotic stress. Remarkably, very little is known of its mechanics, notably how membrane traffic is coupled with osmotic solute transport and its control. Here we outline recent developments in the understanding of so-called SNARE proteins that form part of the machinery for membrane vesicle traffic in all eukaryotes. We focus on SNAREs active at the plasma membrane and the evidence for specialisation in enhanced, homeostatic and stress-related traffic. Recent studies have placed a canonical SNARE complex associated with the plasma membrane in pathogen defense, and the discovery of the first SNARE as a binding partner with ion channels has demonstrated a fundamental link to inorganic osmotic solute uptake. Work localising the channel binding site has now identified a new and previously uncharacterised motif, yielding important clues to a plausible mechanism coupling traffic and transport. We examine the evidence that this physical interaction serves to balance enhanced osmotic solute uptake with membrane expansion through mutual control of the two processes. We calculate that even during rapid cell expansion only a minute fraction of SNAREs present at the membrane need be engaged in vesicle traffic at any one time, a number surprisingly close to the known density of ion channels at the plant plasma membrane. Finally, we suggest a framework of alternative models coupling transport and traffic, and approachable through direct, experimental testing.
Collapse
Affiliation(s)
- Christopher Grefen
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, University of Glasgow, Glasgow, UK
| | | | | |
Collapse
|
145
|
Keisa A, Kanberga-Silina K, Nakurte I, Kunga L, Rostoks N. Differential disease resistance response in the barley necrotic mutant nec1. BMC PLANT BIOLOGY 2011; 11:66. [PMID: 21496226 PMCID: PMC3089796 DOI: 10.1186/1471-2229-11-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 04/15/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Although ion fluxes are considered to be an integral part of signal transduction during responses to pathogens, only a few ion channels are known to participate in the plant response to infection. CNGC4 is a disease resistance-related cyclic nucleotide-gated ion channel. Arabidopsis thaliana CNGC4 mutants hlm1 and dnd2 display an impaired hypersensitive response (HR), retarded growth, a constitutively active salicylic acid (SA)-mediated pathogenesis-related response and elevated resistance against bacterial pathogens. Barley CNGC4 shares 67% aa identity with AtCNGC4. The barley mutant nec1 comprising of a frame-shift mutation of CNGC4 displays a necrotic phenotype and constitutively over-expresses PR-1, yet it is not known what effect the nec1 mutation has on barley resistance against different types of pathogens. RESULTS nec1 mutant accumulated high amount of SA and hydrogen peroxide compared to parental cv. Parkland. Experiments investigating nec1 disease resistance demonstrated positive effect of nec1 mutation on non-host resistance against Pseudomonas syringae pv. tomato (Pst) at high inoculum density, whereas at normal Pst inoculum concentration nec1 resistance did not differ from wt. In contrast to augmented P. syringae resistance, penetration resistance against biotrophic fungus Blumeria graminis f. sp. hordei (Bgh), the causal agent of powdery mildew, was not altered in nec1. The nec1 mutant significantly over-expressed race non-specific Bgh resistance-related genes BI-1 and MLO. Induction of BI-1 and MLO suggested putative involvement of nec1 in race non-specific Bgh resistance, therefore the effect of nec1on mlo-5-mediated Bgh resistance was assessed. The nec1/mlo-5 double mutant was as resistant to Bgh as Nec1/mlo-5 plants, suggesting that nec1 did not impair mlo-5 race non-specific Bgh resistance. CONCLUSIONS Together, the results suggest that nec1 mutation alters activation of systemic acquired resistance-related physiological markers and non-host resistance in barley, while not changing rapid localized response during compatible interaction with host pathogen. Increased resistance of nec1 against non-host pathogen Pst suggests that nec1 mutation may affect certain aspects of barley disease resistance, while it remains to be determined, if the effect on disease resistance is a direct response to changes in SA signaling.
Collapse
Affiliation(s)
- Anete Keisa
- Faculty of Biology, University of Latvia, 4 Kronvalda Boulevard, Riga, LV-1586, Latvia
| | | | - Ilva Nakurte
- Faculty of Biology, University of Latvia, 4 Kronvalda Boulevard, Riga, LV-1586, Latvia
| | - Laura Kunga
- Faculty of Biology, University of Latvia, 4 Kronvalda Boulevard, Riga, LV-1586, Latvia
| | - Nils Rostoks
- Faculty of Biology, University of Latvia, 4 Kronvalda Boulevard, Riga, LV-1586, Latvia
| |
Collapse
|
146
|
Feechan A, Kabbara S, Dry IB. Mechanisms of powdery mildew resistance in the Vitaceae family. MOLECULAR PLANT PATHOLOGY 2011; 12:263-74. [PMID: 21355998 PMCID: PMC6640449 DOI: 10.1111/j.1364-3703.2010.00668.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The cultivated grapevine, Vitis vinifera, is a member of the Vitaceae family, which comprises over 700 species in 14 genera. Vitis vinifera is highly susceptible to the powdery mildew pathogen Erysiphe necator. However, other species within the Vitaceae family have been reported to show resistance to this fungal pathogen, but little is known about the mechanistic basis of this resistance. Therefore, the frequency of successful E. necator penetration events, in addition to programmed cell death (PCD) responses, were investigated in a representative genotype from a range of different species within the Vitaceae family. The results revealed that penetration resistance and PCD-associated responses, or combinations of both, are employed by the different Vitaceae genera to limit E. necator infection. In order to further characterize the cellular processes involved in the observed penetration resistance, specific inhibitors of the actin cytoskeleton and secretory/endocytic vesicle trafficking function were employed. These inhibitors were demonstrated to successfully break the penetration resistance in V. vinifera against the nonadapted powdery mildew E. cichoracearum. However, the use of these inhibitors with the adapted powdery mildew E. necator unexpectedly revealed that, although secretory and endocytic vesicle trafficking pathways play a crucial role in nonhost penetration resistance, the adapted powdery mildew species may actually require these pathways to successfully penetrate the plant host.
Collapse
Affiliation(s)
- Angela Feechan
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
147
|
Honsbein A, Blatt MR, Grefen C. A molecular framework for coupling cellular volume and osmotic solute transport control. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2363-2370. [PMID: 21115662 DOI: 10.1093/jxb/erq386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Eukaryotic cells expand using vesicle traffic to increase membrane surface area. Expansion in walled eukaryotes is driven by turgor pressure which depends fundamentally on the uptake and accumulation of inorganic ions. Thus, ion uptake and vesicle traffic must be controlled coordinately for growth. How this coordination is achieved is still poorly understood, yet is so elemental to life that resolving the underlying mechanisms will have profound implications for our understanding of cell proliferation, development, and pathogenesis, and will find applications in addressing the mineral and water use by plants in the face of global environmental change. Recent discoveries of interactions between trafficking and ion transport proteins now open the door to an entirely new approach to understanding this coordination. Some of the advances to date in identifying key protein partners in the model plant Arabidopsis and in yeast at membranes vital for cell volume and turgor control are outlined here. Additionally, new evidence is provided of a wider participation among Arabidopsis Kv-like K(+) channels in selective interaction with the vesicle-trafficking protein SYP121. These advances suggest some common paradigms that will help guide further exploration of the underlying connection between ion transport and membrane traffic and should transform our understanding of cellular homeostasis in eukaryotes.
Collapse
Affiliation(s)
- Annegret Honsbein
- Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cellular and Systems Biology, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
148
|
Abstract
Sterols are eukaryotic membrane components with crucial roles in diverse cellular processes. Elucidation of sterol function relies on development of tools for in situ sterol visualization. Here we describe protocols for in situ sterol localization in Arabidopsis thaliana root cells, using filipin as a specific probe for detection of fluorescent filipin-sterol complexes. Currently, filipin is the only established tool for sterol visualization in plants. Filipin labeling can be performed on aldehyde-fixed samples, largely preserving fluorescent proteins and being compatible with immunocytochemistry. Filipin can also be applied for probing live cells, taking into account the fact that it inhibits sterol-dependent endocytosis. The experimental procedures described are designed for fluorescence detection by confocal laser-scanning microscopy with excitation of filipin-sterol complexes at 364 nm. The protocols require 1 d for sterol covisualization with fluorescent proteins in fixed or live roots and 2 d for immunocytochemistry on whole-mount roots.
Collapse
|
149
|
Sahoo H. Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2011. [DOI: 10.1016/j.jphotochemrev.2011.05.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
150
|
Jarsch IK, Ott T. Perspectives on remorin proteins, membrane rafts, and their role during plant-microbe interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:7-12. [PMID: 21138374 DOI: 10.1094/mpmi-07-10-0166] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Invasion of host cells by pathogenic or mutualistic microbes requires complex molecular dialogues that often determine host survival. Although several components of the underlying signaling cascades have recently been identified and characterized, our understanding of proteins that facilitate signal transduction or assemble signaling complexes is rather sparse. Our knowledge of plant-specific remorin proteins, annotated as proteins with unknown function, has recently advanced with respect to their involvement in host-microbe interactions. Current data demonstrating that a remorin protein restricts viral movement in tomato leaves and the importance of a symbiosis-specific remorin for bacterial infection of root nodules suggest that these proteins may serve such regulatory functions. Direct interactions of other remorins with a resistance protein in Arabidopsis thaliana, and differential phosphorylation upon perception of microbial-associated molecular patterns and during expression of bacterial effector proteins, strongly underline their roles in plant defense. Furthermore, the specific subcellular localization of remorins in plasma membrane microdomains now provides the opportunity to visualize membrane rafts in living plants cells. There, remorins may oligomerize and act as scaffold proteins during early signaling events. This review summarizes current knowledge of this protein family and the potential roles of remorins in membrane rafts.
Collapse
Affiliation(s)
- Iris K Jarsch
- University of Munich (LMU), Institute of Genetics, Großhaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | | |
Collapse
|