101
|
Hu W, Zhang Y, Tighe S, Zhu YT, Li GG. A New Isolation Method of Human Lacrimal Canaliculus Epithelial Stem Cells by Maintaining Close Association with Their Niche Cells. Int J Med Sci 2018; 15:1260-1267. [PMID: 30275751 PMCID: PMC6158657 DOI: 10.7150/ijms.27705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
Purpose: To investigate whether lacrimal canaliculus epithelial stem cells (LCESC) could be isolated and expanded in vitro. Methods: The lacrimal canaliculus epithelium of 6 patients with limbal stem cell deficiency (LSCD) caused by alkali burn or Stevens Johnson Syndrome were examined by lacrimal endoscope. Cadaveric eyelids were fixed and prepared for cross section and stained with HE and antibodies against PCK, Vim, p63α, SCF and c-Kit. Canaliculus tissue was separated under an operating microscope using a lacrimal probe as an indicator and digested with collagenase A. The clusters of epithelial cells with closely associated stroma were further digested with Trypsin/EDTA to obtain single cells for culture on Matrigel-coated plastic plates in MESCM media. The expression of SCF, c-Kit and p63α was determined by immunostaining. The colony-forming efficiency on 3T3 feeder layers was also measured by calculating the percentage of the clone number divided by the total number cells seeded. Results: The epithelial layers of five out of six inferior lacrimal canaliculi and all the six superior lacrimal canaliculi were visually normal in appearance. Five to fifteen layers of the epithelium in the human lacrimal canaliculi were present with a small, tightly compacted basal layer of cells expressing PCK, p63α, SCF and c-Kit. LCESC were isolated by collagenase A and obtained clonal growth in MESCM. The colony-forming efficiency of LCESC holoclones on a 3T3 feeder layer was 3.2%, compared to 1.9% for those of limbal stem cells (LSC). Conclusions: Herein, we first report that LCESCs can be isolated and have stem cell characteristics, similar to those of LSCs. Such a discovery raises a promising substrate resource of stem cells for LSC reconstruction in LSCD patients.
Collapse
Affiliation(s)
- Weikun Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRC. 430030
| | - Yuan Zhang
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Ying-Tieng Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| | - Gui-Gang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PRC. 430030.,Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, USA. 33173
| |
Collapse
|
102
|
Pellegrini G, Ardigò D, Milazzo G, Iotti G, Guatelli P, Pelosi D, De Luca M. Navigating Market Authorization: The Path Holoclar Took to Become the First Stem Cell Product Approved in the European Union. Stem Cells Transl Med 2017; 7:146-154. [PMID: 29280318 PMCID: PMC5746151 DOI: 10.1002/sctm.17-0003] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 01/29/2023] Open
Abstract
Gene therapy, cell therapy, and tissue engineering have the potential to revolutionize the treatment of disease and injury. Attaining marketing authorization for such advanced therapy medicinal products (ATMPs) requires a rigorous scientific evaluation by the European Medicines Agency—authorization is only granted if the product can fulfil stringent requirements for quality, safety, and efficacy. However, many ATMPs are being provided to patients under alternative means, such as “hospital exemption” schemes. Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells), a novel treatment for eye burns, is one of the few ATMPs to have been granted marketing authorization and is the first containing stem cells. This review highlights the differences in standards between an authorized and unauthorized medicinal product, and specifically discusses how the manufacture of Holoclar had to be updated to achieve authorization. The result is that patients will have access to a therapy that is manufactured to high commercial standards, and is supported by robust clinical safety and efficacy data. stemcellstranslationalmedicine2018;7:146–154
Collapse
Affiliation(s)
- Graziella Pellegrini
- Center for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.,Holostem Terapie Avanzate, Modena, Italy
| | | | | | | | | | | | - Michele De Luca
- Center for Regenerative Medicine ''Stefano Ferrari'', University of Modena and Reggio Emilia, Modena, Italy.,Holostem Terapie Avanzate, Modena, Italy
| |
Collapse
|
103
|
Limbal and Conjunctival Epithelial Cell Cultivation on Contact Lenses-Different Affixing Techniques and the Effect of Feeder Cells. Eye Contact Lens 2017; 43:162-167. [PMID: 27058829 DOI: 10.1097/icl.0000000000000259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Corneal blindness due to limbal stem-cell deficiency can be treated by transplantation of cultivated limbal epithelial stem cells (LESCs). We examined LESC cultivation on a contact lens (CL) carrier. Our goal was to optimize explant affixation and assess the possible benefit of 3T3 feeder cells. METHODS Human cadaver limbal and conjunctival explants were allowed to attach to CLs under the airflow of the laminar box (dried group) or affixed on CLs using suturing (sutured group) or tissue adhesives (glued group), then cultivated with or without 3T3 feeder cells. Outgrowth efficiency was statistically analyzed. CEBPδ, p63, CK3/12, and CK13 were detected by immunofluorescence in expanded cells. RESULTS Suturing and gluing provided excellent sample attachment, whereas drying was less effective. Cell expansion was better in sutured than in dried or glued samples. Presence of 3T3 feeder resulted in significantly better cell growth (P=0.048), most importantly in dried samples (P=0.008). Stepwise regression analysis indicated that cell expansion was dependent on the affixing method (P<0.001) and the presence of feeder layer (P=0.003). Expanded cells maintained their CK expression profiles and expressed putative stem-cell markers p63 and CEBPδ. The 3T3 feeder did not influence the expression of putative LESC markers or growth rate. CONCLUSIONS Suturing is an effective way to fasten explants to CLs. 3T3 fibroblasts are not necessary in this system, although they may enhance cell outgrowth when samples are exposed to stress. However, once cells begin to expand, neither expression of putative stem-cell markers nor growth rate is influenced by feeder cells.
Collapse
|
104
|
Kobayashi Y, Hayashi R, Quantock AJ, Nishida K. Generation of a TALEN-mediated, p63 knock-in in human induced pluripotent stem cells. Stem Cell Res 2017; 25:256-265. [PMID: 29179035 DOI: 10.1016/j.scr.2017.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/30/2022] Open
Abstract
The expression of p63 in surface ectodermal cells during development of the cornea, skin, oral mucosa and olfactory placodes is integral to the process of cellular self-renewal and the maintenance of the epithelial stem cell status. Here, we used TALEN technology to generate a p63 knock-in (KI) human induced pluripotent stem (hiPS) cell line in which p63 expression can be visualized via enhanced green fluorescent protein (EGFP) expression. The KI-hiPS cells maintained pluripotency and expressed the stem cell marker gene, ΔNp63α. They were also able to successfully differentiate into functional corneal epithelial cells as assessed by p63 expression in reconstructed corneal epithelium. This approach enables the tracing of p63-expressing cell lineages throughout epithelial development, and represents a promising application in the field of stem cell research.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, 2-2 Yamdaoka, Suita, Osaka 565-0871, Japan.
| | - Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF24 4HQ, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
105
|
Latta L, Viestenz A, Stachon T, Colanesi S, Szentmáry N, Seitz B, Käsmann-Kellner B. Human aniridia limbal epithelial cells lack expression of keratins K3 and K12. Exp Eye Res 2017; 167:100-109. [PMID: 29162348 DOI: 10.1016/j.exer.2017.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/13/2017] [Accepted: 11/17/2017] [Indexed: 01/12/2023]
Abstract
Aniridia is a rare disease of the eye that affects the iris, lens and the cornea. In about 90% of the cases, patients showed a loss of PAX6 function. Patients with aniridia often develop aniridia-related keratopathy (ARK), due to limbal stem cell insufficiency. The aim of this study was to determine the differentiation status of limbal epithelial cells (LECs) in patients with ARK. Epithelial cells were isolated from the limbus region of two patients with aniridia and cultured in KSFM medium supplemented with EGF and BPE. Normal cells were obtained from limbus region of cadaveric control patients. Cells were analyzed with RT-PCR, qPCR and Western blot to evaluate expression of the developmental transcription factor, PAX6, potential stem cell markers, ΔNp63α and ABCG2, and corneal differentiation markers, keratin 12 (K12) and K3. Conjunctival differentiation markers, keratin 13 (K13) and K19 were also investigated. Cells were immunostained to evaluate K3, PAX6, and p63α protein expression. Protein coding sequence of PAX6 from patient LEC-cDNA was cloned and sequenced. RT-PCR showed that K3 and K12 transcripts were absent from patient cells, but present in healthy control preparations. Transcription levels of PAX6, ABCG2, and p63α of aniridia patients show no differences compared to normal control cells. Western blot showed reduced PAX6, protein levels in aniridia-LECs compared to control-LECs. Immunostaining also showed reduced PAX6 and K3 expression in aniridia-LECs compared to control-LECs. One aniridia patient showed a loss of stop codon in half of the cloned transcripts. In the second aniridia patient mRNA degradation through nonsense mediated decay seems to be very likely since we could not identify the mutation c.174C > T (Refseq. NM_000280), or misspliced transcripts in cDNA. We identified decreased PAX6 protein levels in aniridia patients in addition to decreased K12 mRNA levels compared to control cells. This result indicates an altered differentiation of limbal epithelial cells of aniridia patients. Further studies are necessary to evaluate the mechanism of differentiation of limbal epithelial cells in aniridia.
Collapse
Affiliation(s)
- Lorenz Latta
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany.
| | - Arne Viestenz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Sarah Colanesi
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany; Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | | |
Collapse
|
106
|
Lee HJ, Wolosin JM, Chung SH. Divergent effects of Wnt/β-catenin signaling modifiers on the preservation of human limbal epithelial progenitors according to culture condition. Sci Rep 2017; 7:15241. [PMID: 29127331 PMCID: PMC5681568 DOI: 10.1038/s41598-017-15454-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/25/2017] [Indexed: 11/10/2022] Open
Abstract
Wnt signaling plays an important role in the regulation of self-renewal in stem cells. Here we investigated the effect of CHIR99021, the primary transducer of the Wnt signaling canonical pathway, and IWP2, a wide action Wnt signal blocker, on the growth and differentiation of the limbal epithelial progenitor cells when these cells are cultured in two different, common culture approaches, outgrowth from limbal biopsy explants and isolated cell seeded in low calcium medium. Consistent with their expected effects, irrespective of the culture system, IWP2 decreased total β-catenin while CHIR99021 increased it in nuclear localization. However, IWP2 increased stem/progenitor cell marker (p63α and ABCG2) content and clonogenic capacity in the explants but had opposite effects on isolated cells. CHIR99021 reduced the growth rate, stem/progenitor cell marker content and clonogenic capacity in the explants but also had the opposite effect on the isolated cells. These results show that the outcome of Wnt/β-catenin signaling modification is dependent on the culture systems. Transplantation of limbal epithelial sheets from explant cultures is one of the standard treatments of limbal stem cell deficiency. Our study shows that Wnt-associated activity has a strong negative impact on stem/progenitor cell preservation in limbal explant cultures.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea
| | - J Mario Wolosin
- Department of Ophthalmology, Eye and Vison Research Institute and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.
| | - So-Hyang Chung
- Department of Ophthalmology and Visual Science, Catholic Institute of Visual Science, College of Medicine, The Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Republic of Korea.
| |
Collapse
|
107
|
Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther 2017; 8:256. [PMID: 29116027 PMCID: PMC5678789 DOI: 10.1186/s13287-017-0707-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Limbal epithelial stem cells (LESCs) play important roles in corneal epithelial homeostasis and regeneration, and damage to the limbus will lead to limbal stem cell deficiency (LSCD), with conjunctivalization and even visual impairment. Cultured LESCs have been used for ocular surface reconstruction, and silk fibroin (SF) membranes have shown potential as a substrate for LESC cultivation. Both culture methods and the carriers of LESCs affect outcomes following LESC transplantation. Methods Rabbit LESCs were cultured from tissue explant, single cell-suspension, and cell cluster culture methods. Ratios of p63α and/or ABCB5-positive LESCs, differentiated corneal epithelial cells (CK12 staining), and corneal tight junction formation (Claudin-1 staining) were examined to choose the most applicable LESC cultures. SF membranes were prepared and modified by 400-Da poly(ethylene glycol) (PEG). The characteristics of stem cells and normal corneal differentiation of LESCs cultured on PEG-modified SF membranes were further examined by immunofluorescence staining and flow cytometric analysis. LESCs cultured on PEG-modified SF membranes (LESC/SF grafts) and PEG-modified SF membranes (SF grafts) were transplanted onto rabbit corneas with total LSCD. New blood vessels, corneal epithelial defects, and cornea clarity were examined after transplantation. Furthermore, corneal epithelial thickness, stromal thickness, and the percentage area of CK12-positive corneal epithelium were quantified 4 months after transplantation. Results Tissue explant and single cell-suspension cultures harvested more p63α and/or ABCB5-positive LESCs, generated more CK12-positive corneal epithelial cells, and formed more corneal tight junctions than cell cluster cultures. Prepared PEG-modified SF membranes were transparent, flexible, and sturdy enough for surgical manipulation. LESCs cultured on PEG-modified SF membranes maintained characteristics of stem cells and normal corneal differentiation. LESC/SF grafts inhibited new blood vessels and rescued corneal epithelial defects in the rabbit total LSCD model. In addition, LESC/SF grafts repopulated the limbus and increased corneal epithelial thickness, stromal thickness, and the area percentage of CK12-positive corneal epithelium. Conclusions LESCs from tissue explant and single cell-suspension cultures were more applicable corneal epithelial cells for ocular surface reconstruction. LESC/SF grafts repaired corneal epithelial defects and reversed LSCD, and PEG-modified SF membranes were suitable to be a carrier for LESC transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0707-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yuli Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Yang
- Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiaowei Gao
- Department of Ophthalmology, 474 Hospital of the Chinese PLA, Xinjiang, Uyghur Autonomous Region, 830013, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
108
|
Gonzalez G, Sasamoto Y, Ksander BR, Frank MH, Frank NY. Limbal stem cells: identity, developmental origin, and therapeutic potential. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29105366 DOI: 10.1002/wdev.303] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/22/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022]
Abstract
The cornea is our window to the world and our vision is critically dependent on corneal clarity and integrity. Its epithelium represents one of the most rapidly regenerating mammalian tissues, undergoing full-turnover over the course of approximately 1-2 weeks. This robust and efficient regenerative capacity is dependent on the function of stem cells residing in the limbus, a structure marking the border between the cornea and the conjunctiva. Limbal stem cells (LSC) represent a quiescent cell population with proliferative capacity residing in the basal epithelial layer of the limbus within a cellular niche. In addition to LSC, this niche consists of various cell populations such as limbal stromal fibroblasts, melanocytes and immune cells as well as a basement membrane, all of which are essential for LSC maintenance and LSC-driven regeneration. The LSC niche's components are of diverse developmental origin, a fact that had, until recently, prevented precise identification of molecularly defined LSC. The recent success in prospective LSC isolation based on ABCB5 expression and the capacity of this LSC population for long-term corneal restoration following transplantation in preclinical in vivo models of LSC deficiency underline the considerable potential of pure LSC formulations for clinical therapy. Additional studies, including genetic lineage tracing of the developmental origin of LSC will further improve our understanding of this critical cell population and its niche, with important implications for regenerative medicine. WIREs Dev Biol 2018, 7:e303. doi: 10.1002/wdev.303 This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuzuru Sasamoto
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Bruce R Ksander
- Massachusetts Eye and Ear, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, USA
| | - Markus H Frank
- Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.,School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA.,Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
109
|
Yao JY, Chen JK. Over-expression of ΔNp63α facilitates rat corneal wound healing in vivo. Biosci Biotechnol Biochem 2017; 81:2279-2284. [PMID: 29090620 DOI: 10.1080/09168451.2017.1391684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To investigate the roles of ΔNp63α during corneal wound healing and the genes regulated by ΔNp63α in limbal epithelial cells. Adenovirus or shRNA targeting ΔNp63α were pre-injected into the anterior chamber of rat eyeballs and the central corneal epithelium was then wounded with NaOH. The effects of ΔNp63α expression during wound healing were observed by propidium iodide staining. In addition, limbal epithelial cells were cultured and ectopically expressed ΔNp63α by transfecting Ad-ΔNp63α. Total RNA was extracted from transfected epithelial cells and subjected to a gene expression microarray assay. The results showed that over-expression of ΔNp63α accelerated the process of corneal wound healing while knockdown of ΔNp63α impaired the process. ΔNp63α positively up-regulated several cell growth promoter genes and could be referred as a positive regulator of limbal epithelial cell proliferation. It might also inhibit cell differentiation and cell death by differential target gene regulation.
Collapse
Affiliation(s)
- Jeng-Yuan Yao
- a Center for Translational Medicine, Department of Basic Medical Science , Xiamen Medical College , Fujian , China.,b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Jan-Kan Chen
- b Department of Physiology, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| |
Collapse
|
110
|
Gouveia RM, Koudouna E, Jester J, Figueiredo F, Connon CJ. Template Curvature Influences Cell Alignment to Create Improved Human Corneal Tissue Equivalents. ACTA ACUST UNITED AC 2017; 1:e1700135. [DOI: 10.1002/adbi.201700135] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/30/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Ricardo M. Gouveia
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
| | - Elena Koudouna
- Gavin Herbert Eye Institute; University of California Irvine; Irvine CA 92697 USA
- Structural Biophysics Research Group; School of Optometry and Vision Sciences; Cardiff University; Cardiff CF24 4HQ Wales UK
| | - James Jester
- Gavin Herbert Eye Institute; University of California Irvine; Irvine CA 92697 USA
| | - Francisco Figueiredo
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
- Department of Ophthalmology; Royal Victoria Infirmary; Newcastle upon Tyne NE1 4LP UK
| | - Che J. Connon
- Institute of Genetic Medicine; Newcastle University; Newcastle upon Tyne NE1 3BZ UK
| |
Collapse
|
111
|
Mei H, González S, Nakatsu MN, Baclagon ER, Chen FV, Deng SX. Human adipose-derived stem cells support the growth of limbal stem/progenitor cells. PLoS One 2017; 12:e0186238. [PMID: 29020119 PMCID: PMC5636133 DOI: 10.1371/journal.pone.0186238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
The most efficient method to expand limbal stem cells (LSCs) in vitro for clinical transplantation is to culture single LSCs directly on growth-arrested mouse fibroblast 3T3 cells. To reduce possible xenobiotic contamination from 3T3s, primary human adipose-derived stem cells (ASCs) were examined as feeder cells to support the expansion of LSCs in vitro. To optimize the ASC-supported culture, freshly isolated limbal epithelial cells in the form of single cells (SC-ASC) or cell clusters (CC-ASC) were cultured using three different methods: LSCs seeded directly on feeder cells, a 3-dimensional (3D) culture system and a 3D culture system with fibrin (fibrin 3D). The expanded LSCs were examined at the end of a 2-week culture. The standard 3T3 culture served as control. Expansion of SC-ASC showed limited proliferation and exhibited differentiated morphology. CC-ASC generated epithelial cells with undifferentiated morphology in all culture methods, among which CC-ASC in 3D culture supported the highest cell doubling (cells doubled 9.0 times compared to cells doubled 4.9 times in control) while maintained the percentage of putative limbal stem/progenitor cells compared to the control. There were few cell-cell contacts between cultured LSCs and ASCs in 3D CC-ASC. In conclusion, ASCs support the growth of LSCs in the form of cell clusters but not in single cells. 3D CC-ASC could serve as a substitute for the standard 3T3 culture to expand LSCs.
Collapse
Affiliation(s)
- Hua Mei
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Sheyla González
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Martin N. Nakatsu
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Elfren R. Baclagon
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
| | - Felix V. Chen
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
- UCLA College of Letters and Science, University of California, Los Angeles, California, United States of America
| | - Sophie X. Deng
- Cornea Division, Stein Eye Institute, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
112
|
Kethiri AR, Basu S, Shukla S, Sangwan VS, Singh V. Optimizing the role of limbal explant size and source in determining the outcomes of limbal transplantation: An in vitro study. PLoS One 2017; 12:e0185623. [PMID: 28957444 PMCID: PMC5619808 DOI: 10.1371/journal.pone.0185623] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose Simple limbal epithelial transplantation (SLET) and cultivated limbal epithelial transplantation (CLET) are proven clinical techniques for treating limbal stem cell deficiency (LSCD). However, the ideal size and number of the limbal explants required for transplantation has not been clearly elucidated. This in vitro study aimed to determine the optimal limbal explant size required for complete corneal epithelialization by characterizing the cell expansion. Methods Limbal explants obtained from both live and cadaveric biopsies were cultured on the denuded amniotic membrane. Explant size and the explant cell outgrowth (expansion) were measured using ImageJ software with respect to days. Cultures were characterized by assessing the rate of proliferation of cells with 5-bromo-2’-deoxyuridine (BrdU) assay along with the expression of different stem cell markers (ABCG2, p63α), corneal epithelial (CK3+12) and adherens junction molecules (E-Cadherin) by immunofluorescence. Results Explants from live biopsies had 80% growth potential in vitro whereas 40% of the cadaveric tissue failed to grow. Minimum explant sizes of 0.3 mm2 for live and ≥0.5 mm2 for cadaveric tissue had a mean expansion areas of 182.39±17.06 mm2 and 217.59±16.91 mm2 respectively suggesting adequate growth potential of the explants. Mean total percentage of proliferative cells was 31.80±3.81 in live and 33.49±4.25 in cadaveric tissue expansion. The expression was noted to be similar in cells cultured from cadaveric compared to cells cultured from live limbal tissue with respect to ABCG2, p63α, CK(3+12) and E-cadherin. Conclusion Our findings show that a minimal amount of 0.3 mm2 live tissue would be sufficient for ample limbal cell expansion in vitro. Cadaveric explants <0.5 mm2 had poor growth potential. However, larger explants (≥ 0.5 mm2) had growth rate and proliferative potential similar to the live tissue. These findings could prove to be critical for clinical success especially while attempting cadaveric limbal transplantation. This study provides a novel clinical strategy for enhancing efficacy of the limbal transplantation surgery and opens the probability of even using the cadaveric tissue by considering the size of explant.
Collapse
Affiliation(s)
- Abhinav Reddy Kethiri
- SSR- Stem Cell Biology Laboratory and Center for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Tej Kohli Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Research Scholar, Manipal University, Manipal, Karnataka, India
| | - Sayan Basu
- SSR- Stem Cell Biology Laboratory and Center for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Tej Kohli Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sachin Shukla
- SSR- Stem Cell Biology Laboratory and Center for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Tej Kohli Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Virender Singh Sangwan
- SSR- Stem Cell Biology Laboratory and Center for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Tej Kohli Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Vivek Singh
- SSR- Stem Cell Biology Laboratory and Center for Ocular Regeneration, L V Prasad Eye Institute, Hyderabad, Telangana, India
- Tej Kohli Cornea Institute, L V Prasad Eye Institute, Hyderabad, Telangana, India
- * E-mail:
| |
Collapse
|
113
|
Sartaj R, Zhang C, Wan P, Pasha Z, Guaiquil V, Liu A, Liu J, Luo Y, Fuchs E, Rosenblatt MI. Characterization of slow cycling corneal limbal epithelial cells identifies putative stem cell markers. Sci Rep 2017. [PMID: 28630424 PMCID: PMC5476663 DOI: 10.1038/s41598-017-04006-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In order to identify reliable markers of corneal epithelial stem cells, we employed an inducible transgenic “pulse-chase” murine model (K5Tta × TRE-H2BGFP) to localize, purify, and characterize slow cycling cells in the cornea. The retention of GFP labeling in slowly dividing cells allowed for localization of these cells to the corneal limbus and their subsequent purification by FACS. Transcriptome analysis from slow cycling cells identified differentially expressed genes when comparing to GFP- faster-dividing cells. RNA-Seq data from corneal epithelium were compared to epidermal hair follicle stem cell RNA-Seq to identify genes representing common putative stem cell markers or determinants, which included Sox9, Fzd7, Actn1, Anxa3 and Krt17. Overlapping retention of GFP and immunohistochemical expression of Krt15, ΔNp63, Sox9, Actn1, Fzd7 and Krt17 were observed in our transgenic model. Our analysis presents an array of novel genes as putative corneal stem cell markers.
Collapse
Affiliation(s)
- R Sartaj
- University of Illinois, Chicago, USA
| | - C Zhang
- Weill Cornell Medical College, New York, USA
| | - P Wan
- Weill Cornell Medical College, New York, USA
| | - Z Pasha
- University of Illinois, Chicago, USA
| | | | - A Liu
- Weill Cornell Medical College, New York, USA
| | - J Liu
- Weill Cornell Medical College, New York, USA
| | - Y Luo
- University of Illinois, Chicago, USA
| | - E Fuchs
- The Rockefeller University, New York, USA
| | | |
Collapse
|
114
|
Lužnik Z, Breda C, Barbaro V, Ferrari S, Migliorati A, Di Iorio E, Ferrari B, Griffoni C, Grassetto A, Elbadawy HM, Bertolin M. Towards xeno-free cultures of human limbal stem cells for ocular surface reconstruction. Cell Tissue Bank 2017; 18:461-474. [DOI: 10.1007/s10561-017-9632-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/15/2017] [Indexed: 12/27/2022]
|
115
|
Characterization of Ex Vivo Expanded Oral Mucosal Epithelium Cells on Acellular Porcine Corneal Stroma for Ocular Surface Reconstruction. J Ophthalmol 2017; 2017:6761714. [PMID: 28567305 PMCID: PMC5439182 DOI: 10.1155/2017/6761714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/27/2017] [Accepted: 03/12/2017] [Indexed: 01/28/2023] Open
Abstract
Purpose To ex vivo expand oral mucosal epithelium cells (OMECs) on acellular porcine corneal stroma (APCS) without using feeder cells and serum and to compare the morphologic and phenotypic characteristics of cultured oral cells on APCS to those of cells on deluded human amniotic membrane (HAM). Methods SD rat oral mucosal biopsies were cultured on APCS and HAM. Reverse-transcription polymerase chain reaction (RT-PCR) and immunohistochemistry were used to analyze the characterization of stem cells and epithelial differentiation of the outgrowth products. Results Stratified and optimal transplantable OMECs were obtained after being cultured three to four weeks. Both RT-PCR and immunohistochemistry showed that cultured OMECs expressed markers of epithelial differentiation cytokeratin K3 and epithelial stem cell markers of p63 and ABCG2. Conclusions OMECs can be successfully cultured on APCS without using xenobiotic feeder cells and serum. Characterization showed that these sheets retain the morphologic and phenotypic characteristics of OMECs within differentiated cells and stem cells. The optimal transplantable sheets can prove to be particularly beneficial to both bilateral limbal stem cell deficiency and deep corneal lesions.
Collapse
|
116
|
Gouveia RM, González-Andrades E, Cardona JC, González-Gallardo C, Ionescu AM, Garzon I, Alaminos M, González-Andrades M, Connon CJ. Controlling the 3D architecture of Self-Lifting Auto-generated Tissue Equivalents (SLATEs) for optimized corneal graft composition and stability. Biomaterials 2017; 121:205-219. [PMID: 28092777 PMCID: PMC5267636 DOI: 10.1016/j.biomaterials.2016.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/02/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022]
Abstract
Ideally, biomaterials designed to play specific physical and physiological roles in vivo should comprise components and microarchitectures analogous to those of the native tissues they intend to replace. For that, implantable biomaterials need to be carefully designed to have the correct structural and compositional properties, which consequently impart their bio-function. In this study, we showed that the control of such properties can be defined from the bottom-up, using smart surface templates to modulate the structure, composition, and bio-mechanics of human transplantable tissues. Using multi-functional peptide amphiphile-coated surfaces with different anisotropies, we were able to control the phenotype of corneal stromal cells and instruct them to fabricate self-lifting tissues that closely emulated the native stromal lamellae of the human cornea. The type and arrangement of the extracellular matrix comprising these corneal stromal Self-Lifting Analogous Tissue Equivalents (SLATEs) were then evaluated in detail, and was shown to correlate with tissue function. Specifically, SLATEs comprising aligned collagen fibrils were shown to be significantly thicker, denser, and more resistant to proteolytic degradation compared to SLATEs formed with randomly-oriented constituents. In addition, SLATEs were highly transparent while providing increased absorption to near-UV radiation. Importantly, corneal stromal SLATEs were capable of constituting tissues with a higher-order complexity, either by creating thicker tissues through stacking or by serving as substrate to support a fully-differentiated, stratified corneal epithelium. SLATEs were also deemed safe as implants in a rabbit corneal model, being capable of integrating with the surrounding host tissue without provoking inflammation, neo-vascularization, or any other signs of rejection after a 9-months follow-up. This work thus paves the way for the de novo bio-fabrication of easy-retrievable, scaffold-free human tissues with controlled structural, compositional, and functional properties to replace corneal, as well as other, tissues.
Collapse
Affiliation(s)
- Ricardo M Gouveia
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, UK
| | - Elena González-Andrades
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Juan C Cardona
- Laboratory of Biomaterials and Optics, Optics Department, Faculty of Sciences, University of Granada, Granada, Spain
| | | | - Ana M Ionescu
- Laboratory of Biomaterials and Optics, Optics Department, Faculty of Sciences, University of Granada, Granada, Spain
| | - Ingrid Garzon
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine and Dentistry, University of Granada, Granada, Spain
| | - Miguel González-Andrades
- Schepens Eye Research Institute and Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Che J Connon
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle-upon-Tyne, UK.
| |
Collapse
|
117
|
Haagdorens M, Behaegel J, Rozema J, Van Gerwen V, Michiels S, Ní Dhubhghaill S, Tassignon MJ, Zakaria N. A method for quantifying limbal stem cell niches using OCT imaging. Br J Ophthalmol 2017; 101:1250-1255. [PMID: 28228408 PMCID: PMC5574400 DOI: 10.1136/bjophthalmol-2016-309549] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/16/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
Aims To evaluate the efficacy of Fourier domain-optical coherence tomography (FD-OCT) in imaging and quantifying the limbal palisades of Vogt and to correlate these images with histological findings. Methods The superior and inferior limbal region of both eyes of 50 healthy volunteers were imaged by FD-OCT. Images were processed and analysed using Matlab software. In vitro immunofluorescent staining of a cadaveric donor limbus was analysed to correlate the presence of stem cells in the visualised structures. Results FD-OCT could successfully visualise limbal crypts and the palisades of Vogt in the limbus region. Fluorescent labelling confirmed the presence of stem cells in these structures. The mean palisade ridge width (ΔPR) and the mean interpalisade epithelial rete peg width (ΔERP) were both of the order of 72 μm, leading to a palisade density (PD) of about 7.4 palisades/mm. A significant difference in ΔPR, ΔERP and PD was seen between the inferior and superior sides of the right eye and the superior sides of the left and right eye(p<0.05.). A significant influence of iris colour on parameters ΔPR, ΔERP and PD was found, and of age on PD and ΔERP (p<0.05). Conclusions In vivo OCT imaging is a safe and effective modality to image the limbus and can be used to visualise the palisades of Vogt. Image processing using Matlab software enabled quantification and density calculation of imaged limbal palisades of Vogt. This technique may enhance targeted limbal biopsies for transplantation.
Collapse
Affiliation(s)
- Michel Haagdorens
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Joséphine Behaegel
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, University Hospital Brussels, Brussels, Belgium
| | - Jos Rozema
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Veerle Van Gerwen
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium
| | - Sofie Michiels
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Sorcha Ní Dhubhghaill
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Marie-José Tassignon
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Nadia Zakaria
- Faculty of Medicine and Health Sciences, Department of Ophthalmology, Visual Optics and Visual Rehabilitation, Antwerp University, Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
118
|
Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep 2017; 7:41286. [PMID: 28128337 PMCID: PMC5269590 DOI: 10.1038/srep41286] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/05/2016] [Indexed: 12/13/2022] Open
Abstract
The cornea is the transparent outermost surface of the eye, consisting of a stratified epithelium, a collagenous stroma and an innermost single-cell layered endothelium and providing 2/3 of the refractive power of the eye. Multiple diseases of the cornea arise from genetic defects where the ultimate phenotype can be influenced by cross talk between the cell types and the extracellular matrix. Cell culture modeling of diseases can benefit from cornea organoids that include multiple corneal cell types and extracellular matrices. Here we present human iPS cell-derived organoids through sequential rounds of differentiation programs. These organoids share features of the developing cornea, harboring three distinct cell types with expression of key epithelial, stromal and endothelial cell markers. Cornea organoid cultures provide a powerful 3D model system for investigating corneal developmental processes and their disruptions in diseased conditions.
Collapse
Affiliation(s)
- James W Foster
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Karl Wahlin
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Sheila M Adams
- Department of Molecular Pharmacology &Physiology, University of South Florida, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology &Physiology, University of South Florida, Tampa, FL, USA
| | - Donald J Zack
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
119
|
Morphological description of limbal epithelium: searching for stem cells crypts in the dog, cat, pig, cow, sheep and horse. Vet Res Commun 2017; 41:169-173. [DOI: 10.1007/s11259-017-9676-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022]
|
120
|
Autologous method for ex vivo expansion of human limbal epithelial progenitor cells based on plasma rich in growth factors technology. Ocul Surf 2017; 15:248-256. [PMID: 28115245 DOI: 10.1016/j.jtos.2017.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Develop an autologous culture method for ex vivo expansion of human limbal epithelial progenitor cells (LEPCs) using Plasma Rich in Growth Factors (PRGF) as a growth supplement and as a scaffold for the culture of LEPCs. METHODS LEPCs were cultivated in different media supplemented with 10% fetal bovine serum (FBS) or 10% PRGF. The outgrowths, total number of cells, colony forming efficiency (CFE), morphology and immunocytochemistry against p63- α and cytokeratins 3 and 12 (CK3-CK12) were analyzed. PRGF was also used to elaborate a fibrin membrane. The effects of the scaffold on the preservation of stemness and the phenotypic characterization of LEPCs were investigated through analysis of CK3-CK12, ABCG-2 and p63. RESULTS LEPCs cultivated with PRGF showed a significantly higher growth area than FBS cultures. Moreover, the number of cells were also higher in PRGF than FBS, while displaying a better morphology overall. CFE was found to be also higher in PRGF groups compared to FBS, and the p63-α expression also differed between groups. LEPCs cultivated on PRGF membranes appeared as a confluent monolayer of cells and still retained p63 and ABCG-2 expression, being negative for CK3-CK12. CONCLUSIONS PRGF can be used in corneal tissue engineering, supplementing the culture media, even in a basal media without any other additives, as well as providing a scaffold for the culture.
Collapse
|
121
|
Busin M, Breda C, Bertolin M, Bovone C, Ponzin D, Ferrari S, Barbaro V, Elbadawy HM. Corneal Epithelial Stem Cells Repopulate the Donor Area within 1 Year from Limbus Removal for Limbal Autograft. Ophthalmology 2016; 123:2481-2488. [DOI: 10.1016/j.ophtha.2016.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022] Open
|
122
|
Limbal Stem Cells from Aged Donors Are a Suitable Source for Clinical Application. Stem Cells Int 2016; 2016:3032128. [PMID: 28042298 PMCID: PMC5155095 DOI: 10.1155/2016/3032128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/02/2016] [Accepted: 10/09/2016] [Indexed: 12/13/2022] Open
Abstract
Limbal stem cells (LSC) are the progenitor cells that maintain the transparency of the cornea. Limbal stem cell deficiency (LSCD) leads to corneal opacity, inflammation, scarring, and blindness. A clinical approach to treat this condition consists in LSC transplantation (LSCT) after ex vivo expansion of LSC. In unilateral LSCD, an autologous transplant is possible, but cases of bilateral LSCD require allogenic LSCT. Cadaveric donors represent the most important source of LSC allografts for treatment of bilateral LSCD when living relative donors are not available. To evaluate the suitability of aged cadaveric donors for LSCT, we compared three pools of LSC from donors of different ages (<60 years, 60–75 years, and >75 years). We evaluated graft quality in terms of percent of p63-positive (p63+) cells by immunofluorescence, colony forming efficiency, and mRNA and protein expression of p63, PAX6, Wnt7a, E-cadherin, and cytokeratin (CK) 12, CK3, and CK19. The results showed that LSC cultures from aged donors can express ≥3% of p63+ cells—considered as the minimum value for predicting favorable clinical outcomes after LSCT—suggesting that these cells could be a suitable source of LSC for transplantation. Our results also indicate the need to evaluate LSC graft quality criteria for each donor.
Collapse
|
123
|
Kasinathan JR, Namperumalsamy VP, Veerappan M, Chidambaranathan GP. A novel method for a high enrichment of human corneal epithelial stem cells for genomic analysis. Microsc Res Tech 2016; 79:1165-1172. [PMID: 27862636 DOI: 10.1002/jemt.22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Abstract
Understanding the molecular mechanisms that regulate the corneal epithelial stem cells (CESCs) in maintaining corneal homeostasis remains elusive largely due to the lack of a specific marker for their isolation. This study aims to enrich CESCs from human donor limbal epithelium and to evaluate the level of enrichment based on expression of ΔNp63α, a putative CESC marker. A two-stage enrichment of CESCs was carried out. (a) The limbal basal epithelial cells were isolated by differential enzymatic treatment and five-fold enrichment was achieved from 2% of CESCs present in the total limbal epithelium. The CESCs were quantified on the basis of two parameters-high expression of p63/ABCG2 and nucleus to cytoplasmic (N/C) ratio ≥0.7. (b) Cytospin smears of isolated basal cells were Giemsa stained and cells with N/C ratio ≥0.7 were separated by laser capture microdissection. This strategy resulted in an enrichment of CESCs to 78.57% based on two-parameter analysis using p63 and 76.66% using ABCG2. RT-PCR was carried out for ΔNp63 isoforms (α, β, and γ) and connexin-43, with GAPDH for normalization. The expression of ΔNp63α was restricted to the enriched population of CESCs in contrast to its absence in limbal basal cells with N/C ratio <0.7 and CCECs. The unique expression of ΔNp63α and 5.9-fold reduced connexin-43 expression in the enriched population of CESCs indicates its high purity. Further analysis of these cells will help in elucidating the molecular mechanisms associated with stemness and also in identifying a specific marker for CESCs.
Collapse
Affiliation(s)
- Jhansi Rani Kasinathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| | | | - Muthukkaruppan Veerappan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Madurai, Tamil Nadu, India
| |
Collapse
|
124
|
Shaharuddin B, Ahmad S, Md Latar N, Ali S, Meeson A. A Human Corneal Epithelial Cell Line Model for Limbal Stem Cell Biology and Limbal Immunobiology. Stem Cells Transl Med 2016; 6:761-766. [PMID: 28297580 PMCID: PMC5442771 DOI: 10.5966/sctm.2016-0175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/01/2016] [Indexed: 11/16/2022] Open
Abstract
Limbal stem cell (LSC) deficiency is a visually debilitating condition caused by abnormal maintenance of LSCs. It is treated by transplantation of donor-derived limbal epithelial cells (LECs), the success of which depends on the presence and quality of LSCs within the transplant. Understanding the immunobiological responses of these cells within the transplants could improve cell engraftment and survival. However, human corneal rings used as a source of LSCs are not always readily available for research purposes. As an alternative, we hypothesized that a human telomerase-immortalized corneal epithelial cell (HTCEC) line could be used as a model for studying LSC immunobiology. HTCEC constitutively expressed human leukocyte antigen (HLA) class I but not class II molecules. However, when stimulated by interferon-γ, HTCECs then expressed HLA class II antigens. Some HTCECs were also migratory in response to CXCL12 and expressed stem cell markers, Nanog, Oct4, and Sox2. In addition because both HTCECs and LECs contain side population (SP) cells, which are an enriched LSC population, we used these SP cells to show that some HTCEC SP cells coexpressed ABCG2 and ABCB5. HTCEC SP and non-side population (NSP) cells also expressed CXCR4, but the SP cells expressed higher levels. Both were capable of colony formation, but the NSP colonies were smaller and contained fewer cells. In addition, HTCECs expressed ΔNp63α. These results suggest the HTCEC line is a useful model for further understanding LSC biology by using an in vitro approach without reliance on a supply of human tissue. Stem Cells Translational Medicine 2017;6:761-766.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon‐Tyne, United Kingdom
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Sajjad Ahmad
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Nani Md Latar
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon‐Tyne, United Kingdom
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan, Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon‐Tyne, United Kingdom
| | - Annette Meeson
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon‐Tyne, United Kingdom
| |
Collapse
|
125
|
Kasetti RB, Gaddipati S, Tian S, Xue L, Kao WWY, Lu Q, Li Q. Study of corneal epithelial progenitor origin and the Yap1 requirement using keratin 12 lineage tracing transgenic mice. Sci Rep 2016; 6:35202. [PMID: 27734924 PMCID: PMC5062132 DOI: 10.1038/srep35202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
Key issues in corneal epithelium biology are the mechanism for corneal epithelium stem cells to maintain the corneal epithelial homeostasis and wound healing responses, and what are the regulatory molecular pathways involved. There are apparent discrepancies about the locations of the progenitor populations responsible for corneal epithelial self-renewal. We have developed a genetic mouse model to trace the corneal epithelial progenitor lineages during adult corneal epithelial homeostasis and wound healing response. Our data revealed that the early corneal epithelial progenitor cells expressing keratin-12 originated from limbus, and gave rise to the transit amplifying cells that migrated centripetally to differentiate into corneal epithelial cells. Our results support a model that both corneal epithelial homeostasis and wound healing are mainly maintained by the activated limbal stem cells originating form limbus, but not from the corneal basal epithelial layer. In the present study, we further demonstrated the nuclear expression of transcriptional coactivator YAP1 in the limbal and corneal basal epithelial cells and its essential role for maintaining the high proliferative potential of those corneal epithelial progenitor cells in vivo.
Collapse
Affiliation(s)
- Ramesh Babu Kasetti
- Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Subhash Gaddipati
- Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Shifu Tian
- Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Lei Xue
- Department of Interventional Radiology, Shanghai 10th People’s Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Winston W.-Y. Kao
- Department of Ophthalmology, University of Cincinnati, OH 45267, USA
| | - Qingxian Lu
- Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Qiutang Li
- Departments of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
126
|
An important role for adenine, cholera toxin, hydrocortisone and triiodothyronine in the proliferation, self-renewal and differentiation of limbal stem cells in vitro. Exp Eye Res 2016; 152:113-122. [PMID: 27693410 PMCID: PMC5105828 DOI: 10.1016/j.exer.2016.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 01/02/2023]
Abstract
The cornea is a self-renewing tissue located at the front of the eye. Its transparency is essential for allowing light to focus onto the retina for visual perception. The continuous renewal of corneal epithelium is supported by limbal stem cells (LSCs) which are located in the border region between conjunctiva and cornea known as the limbus. Ex vivo expansion of LSCs has been successfully applied in the last two decades to treat patients with limbal stem cell deficiency (LSCD). Various methods have been used for their expansion, yet the most widely used culture media contains a number of ingredients derived from animal sources which may compromise the safety profile of human LSC transplantation. In this study we sought to understand the role of these components namely adenine, cholera toxin, hydrocortisone and triiodothyronine with the aim of re-defining a safe and GMP compatible minimal media for the ex vivo expansion of LSCs on human amniotic membrane. Our data suggest that all four components play a critical role in maintaining LSC proliferation and promoting LSC self-renewal. However removal of adenine and triiodothyronine had a more profound impact and led to LSC differentiation and loss of viability respectively, suggesting their essential role for ex vivo expansion of LSCs. Replacement of each of the components with GMP-grade reagents resulted in equal growth to non-GMP grade media, however an enhanced differentiation of LSCs was observed, suggesting that additional combinations of GMP grade reagents need to be tested to achieve similar or better level of LSC maintenance in the same manner as the traditional LSC media. Adenine, cholera toxin, hydrocortisone and triiodothyronine are essential for LSCs proliferation and self-renewal. Adenine and triiodothyronine had a more profound impact as their removal led to LSC differentiation and loss of viability. Removal of each of four components from traditional culture media may pose a risk for clinical translations. New media composition in compliance with Good Manufacturing Practice is proposed.
Collapse
|
127
|
Optimization of Corneal Epithelial Progenitor Cell Growth on Bombyx mori Silk Fibroin Membranes. Stem Cells Int 2016; 2016:8310127. [PMID: 27648078 PMCID: PMC5018328 DOI: 10.1155/2016/8310127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Scaffolds prepared from silk fibroin derived from cocoons of the domesticated silkworm moth Bombyx mori have demonstrated potential to support the attachment and growth of human limbal epithelial (HLE) cells in vitro. In this study, we attempted to further optimize protocols to promote the expansion of HLE cells on B. mori silk fibroin- (BMSF-) based scaffolds. BMSF films were initially coated with different extracellular matrix proteins and then analysed for their impact on corneal epithelial cell adhesion, cell morphology, and culture confluency. Results showed that collagen I, collagen III, and collagen IV consistently improved HCE-T cell adherence, promoted an elongated cell morphology, and increased culture confluency. By contrast, ECM coating had no significant effect on the performance of primary HLE cells cultured on BMSF films. In the second part of this study, primary HLE cells were grown on BMSF films in the presence of medium (SHEM) supplemented with keratinocyte growth factor (KGF) and the Rho kinase inhibitor, Y-27632. The results demonstrated that SHEM medium supplemented with KGF and Y-27632 dramatically increased expression of corneal differentiation markers, keratin 3 and keratin 12, whereas expression of the progenitor marker, p63, did not appear to be significantly influenced by the choice of culture medium.
Collapse
|
128
|
O'Callaghan AR, Morgan L, Daniels JT, Lewis MP. Human-derived feeder fibroblasts for the culture of epithelial cells for clinical use. Regen Med 2016; 11:529-43. [PMID: 27513189 DOI: 10.2217/rme-2016-0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate human oral mucosal fibroblasts (HOMF) and human limbal fibroblasts (HLF) as alternatives to murine 3T3 feeder fibroblasts currently used to support epithelial cell expansion for the treatment of limbal epithelial stem cell deficiency. METHODS HLF and HOMF were compared with 3T3s for their ability to support the culture of human limbal epithelial cells and human oral mucosal epithelial cells. RESULTS HOMF, but not HLF, were equivalent to 3T3s in terms of the number of epithelial population doublings achieved. Human limbal epithelial cells co-cultured with HOMF or 3T3s had similar expression of corneal and putative stem cell markers. CONCLUSION HOMF are a suitable and safer feeder fibroblast alternative to 3T3s for the production of epithelial cells for clinical use.
Collapse
Affiliation(s)
- Anna R O'Callaghan
- Department of Ocular Biology & Therapeutics, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Louise Morgan
- Department of Ocular Biology & Therapeutics, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Julie T Daniels
- Department of Ocular Biology & Therapeutics, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Mark P Lewis
- National Centre for Sport & Exercise Medicine (NCSEM), EPSRC-MRC Centre for Doctoral Training in Regenerative Medicine, School of Sport, Exercise & Health Sciences, Loughborough University, Leicestershire, LE11 3TU, UK
| |
Collapse
|
129
|
Castro-Muñozledo F, Meza-Aguilar DG, Domínguez-Castillo R, Hernández-Zequinely V, Sánchez-Guzmán E. Vimentin as a Marker of Early Differentiating, Highly Motile Corneal Epithelial Cells. J Cell Physiol 2016; 232:818-830. [DOI: 10.1002/jcp.25487] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Federico Castro-Muñozledo
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Diana G. Meza-Aguilar
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | - Rocío Domínguez-Castillo
- Department of Molecular Biomedicine; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| | | | - Erika Sánchez-Guzmán
- Department of Cell Biology; Centro de Investigación y de Estudios Avanzados del IPN; México City Mexico
| |
Collapse
|
130
|
Dziasko MA, Daniels JT. Anatomical Features and Cell-Cell Interactions in the Human Limbal Epithelial Stem Cell Niche. Ocul Surf 2016; 14:322-30. [DOI: 10.1016/j.jtos.2016.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
|
131
|
Comparative Analysis of KnockOut™ Serum with Fetal Bovine Serum for the In Vitro Long-Term Culture of Human Limbal Epithelial Cells. J Ophthalmol 2016; 2016:7304812. [PMID: 27446607 PMCID: PMC4944074 DOI: 10.1155/2016/7304812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022] Open
Abstract
The limbal epithelial cells can be maintained on 3T3 feeder layer with fetal bovine serum supplemented culture medium, and these cells have been used to successfully treat limbal stem cell deficiency. However, fetal bovine serum contains unknown components and displays quantitative and qualitative lot-to-lot variations. To improve the culture condition, the defined KnockOut serum replacement was investigated to replace fetal bovine serum for culturing human limbal epithelial cell. Human primary limbal epithelial cells were cultured in KnockOut serum and fetal bovine serum supplemented medium, respectively. The cell growth rate, gene expression, and maintenance of limbal epithelial stem cells were studied and compared between these two groups. Human primary limbal epithelial cells were isolated and successfully serially cultivated in this novel KnockOut serum supplemented medium; the cell proliferation and stem cell maintenance were similar to those of cells grown in fetal bovine serum supplemented medium. These data suggests that this KnockOut serum supplemented medium is an efficient replacement to traditional fetal bovine serum supplemented medium for limbal epithelial cell culture, and this medium has great potential for long term maintenance of limbal epithelial cells, limbal epithelial stem cells transplantation, and tissue regeneration.
Collapse
|
132
|
Tomasello L, Musso R, Cillino G, Pitrone M, Pizzolanti G, Coppola A, Arancio W, Di Cara G, Pucci-Minafra I, Cillino S, Giordano C. Donor age and long-term culture do not negatively influence the stem potential of limbal fibroblast-like stem cells. Stem Cell Res Ther 2016; 7:83. [PMID: 27296060 PMCID: PMC4906894 DOI: 10.1186/s13287-016-0342-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 01/14/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In regenerative medicine the maintenance of stem cell properties is of crucial importance. Ageing is considered a cause of reduced stemness capability. The limbus is a stem niche of easy access and harbors two stem cell populations: epithelial stem cells and fibroblast-like stem cells. Our aim was to investigate whether donor age and/or long-term culture have any influence on stem cell marker expression and the profiles in the fibroblast-like stem cell population. METHODS Fibroblast-like stem cells were isolated and digested from 25 limbus samples of normal human corneo-scleral rings and long-term cultures were obtained. SSEA4 expression and sphere-forming capability were evaluated; cytofluorimetric assay was performed to detect the immunophenotypes HLA-DR, CD45, and CD34 and the principle stem cell markers ABCG2, OCT3/4, and NANOG. Molecular expression of the principal mesenchymal stem cell genes was investigated by real-time PCR. Two-dimensional gel electrophoresis and mass spectrometric sequencing were performed and a stable proteomic profile was identified. The proteins detected were explored by gene ontology and STRING analysis. The data were reported as means ± SD, compared by Student's unpaired t test and considering p < 0.05 as statistically significant. RESULTS The isolated cells did not display any hematopoietic surface marker (CD34 and CD45) and HLA-DR and they maintained these features in long-term culture. The expression of the stemness genes and the multilineage differentiation under in-vitro culture conditions proved to be well maintained. Proteomic analysis revealed a fibroblast-like stem cell profile of 164 proteins with higher expression levels. Eighty of these showed stable expression levels and were involved in maintenance of "the stem gene profile"; 84 were differentially expressed and were involved in structural activity. CONCLUSIONS The fibroblast-like limbal stem cells confirmed that they are a robust source of adult stem cells and that they have good plasticity, good proliferative capability, and long-term maintenance of stem cell properties, independently of donor age and long-term culture conditions. Our findings confirm that limbal fibroblast-like stem cells are highly promising for application in regenerative medicine and that in-vitro culture steps do not influence their stem cell properties. Moreover, the proteomic data enrich our knowledge of fibroblast-like stem cells.
Collapse
Affiliation(s)
- Laura Tomasello
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Rosa Musso
- Centro di Oncobiologia Sperimentale (COBS), Palermo, Italy
| | - Giovanni Cillino
- Department of Ophthalmology, University of Palermo, Palermo, Italy
| | - Maria Pitrone
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Giuseppe Pizzolanti
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
- ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | - Walter Arancio
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy
| | | | | | | | - Carla Giordano
- Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, Di.Bi.M.I.S., University of Palermo, Piazza delle Cliniche 2, 90127, Palermo, Italy.
- ATeN (Advanced Technologies Network Center), University of Palermo, Palermo, Italy.
| |
Collapse
|
133
|
Quan Y, Zhang X, Xu S, Li K, Zhu F, Li Q, Cai X, Lu R. Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva. Am J Physiol Cell Physiol 2016; 311:C246-54. [PMID: 27281479 DOI: 10.1152/ajpcell.00014.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/02/2016] [Indexed: 12/23/2022]
Abstract
Conjunctival integrity and preservation is indispensable for vision. The self-renewing capacity of conjunctival cells controls conjunctival homeostasis and regeneration; however, the source of conjunctival self-renewal and the underlying mechanism is currently unclear. Here, we characterize the biochemical phenotype and proliferative potential of conjunctival epithelial cells in adult mouse by detecting proliferation-related signatures and conducting clonal analysis. Further, we show that transcription factor 7-like 2 (T-cell-specific transcription factor 4), a DNA binding protein expressed in multiple types of adult stem cells, is highly correlated with proliferative signatures in basal conjunctival epithelia. Clonal studies demonstrated that Transcription factor 7-like 2 (Tcf7l2) was coexpressed with p63α and proliferating cell nuclear antigen (PCNA) in propagative colonies. Furthermore, Tcf7l2 was actively transcribed concurrently with conjunctival epithelial proliferation in vitro. Collectively, we suggest that Tcf7l2 may be involved in maintenance of stem/progenitor cells properties of conjunctival epithelial stem/progenitor cells, and with the fornix as the optimal site to isolate highly proliferative conjunctival epithelial cells in adult mice.
Collapse
Affiliation(s)
- Yadan Quan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Xinchun Zhang
- Hospital of Stomatology, Guanghua College of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Siying Xu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Kang Li
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Feng Zhu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Qian Li
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Xianxian Cai
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| | - Rong Lu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, China; and
| |
Collapse
|
134
|
Ciliary Neurotrophic Factor Promotes the Migration of Corneal Epithelial Stem/progenitor Cells by Up-regulation of MMPs through the Phosphorylation of Akt. Sci Rep 2016; 6:25870. [PMID: 27174608 PMCID: PMC4865747 DOI: 10.1038/srep25870] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/25/2016] [Indexed: 01/20/2023] Open
Abstract
The migration of limbal epithelial stem cells is important for the homeostasis and regeneration of corneal epithelium. Ciliary neurotrophic factor (CNTF) has been found to promote corneal epithelial wound healing by activating corneal epithelial stem/progenitor cells. However, the possible effect of CNTF on the migration of corneal epithelial stem/progenitor cells is not clear. This study found the expression of CNTF in mouse corneal epithelial stem/progenitor cells (TKE2) to be up-regulated after injury, on both gene and protein level. CNTF promoted migration of TKE2 in a dose-dependent manner and the peak was seen at 10 ng/ml. The phosphorylation level of Akt (p-Akt), and the expression of MMP3 and MMP14, were up-regulated after CNTF treatment both in vitro and in vivo. Akt and MMP3 inhibitor treatment delayed the migration effect by CNTF. Finally, a decreased expression of MMP3 and MMP14 was observed when Akt inhibitor was applied both in vitro and in vivo. This study provides new insights into the role of CNTF on the migration of corneal epithelial stem/progenitor cells and its inherent mechanism of Up-regulation of matrix metalloproteinases through the Akt signalling pathway.
Collapse
|
135
|
Barbaro V, Nasti AA, Raffa P, Migliorati A, Nespeca P, Ferrari S, Palumbo E, Bertolin M, Breda C, Miceli F, Russo A, Caenazzo L, Ponzin D, Palù G, Parolin C, Di Iorio E. Personalized Stem Cell Therapy to Correct Corneal Defects Due to a Unique Homozygous-Heterozygous Mosaicism of Ectrodactyly-Ectodermal Dysplasia-Clefting Syndrome. Stem Cells Transl Med 2016; 5:1098-105. [PMID: 27151912 DOI: 10.5966/sctm.2015-0358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED : Ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome is a rare autosomal dominant disease caused by mutations in the p63 gene. To date, approximately 40 different p63 mutations have been identified, all heterozygous. No definitive treatments are available to counteract and resolve the progressive corneal degeneration due to a premature aging of limbal epithelial stem cells. Here, we describe a unique case of a young female patient, aged 18 years, with EEC and corneal dysfunction, who was, surprisingly, homozygous for a novel and de novo R311K missense mutation in the p63 gene. A detailed analysis of the degree of somatic mosaicism in leukocytes from peripheral blood and oral mucosal epithelial stem cells (OMESCs) from biopsies of buccal mucosa showed that approximately 80% were homozygous mutant cells and 20% were heterozygous. Cytogenetic and molecular analyses excluded genomic alterations, thus suggesting a de novo mutation followed by an allelic gene conversion of the wild-type allele by de novo mutant allele as a possible mechanism to explain the homozygous condition. R311K-p63 OMESCs were expanded in vitro and heterozygous holoclones selected following clonal analysis. These R311K-p63 OMESCs were able to generate well-organized and stratified epithelia in vitro, resembling the features of healthy tissues. This study supports the rationale for the development of cultured autologous oral mucosal epithelial stem cell sheets obtained by selected heterozygous R311K-p63 stem cells, as an effective and personalized therapy for reconstructing the ocular surface of this unique case of EEC syndrome, thus bypassing gene therapy approaches. SIGNIFICANCE This case demonstrates that in a somatic mosaicism context, a novel homozygous mutation in the p63 gene can arise as a consequence of an allelic gene conversion event, subsequent to a de novo mutation. The heterozygous mutant R311K-p63 stem cells can be isolated by means of clonal analysis and given their good regenerative capacity, they may be used to successfully correct the corneal defects present in this unique case of ectrodactyly-ectodermal dysplasia-clefting syndrome.
Collapse
Affiliation(s)
| | | | - Paolo Raffa
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Patrizia Nespeca
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Elisa Palumbo
- Department of Biology, University of Padua, Padua, Italy
| | | | - Claudia Breda
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Francesco Miceli
- Department of Neuroscience, University of Naples Federico II, Naples, Italy
| | | | - Luciana Caenazzo
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Diego Ponzin
- Fondazione Banca degli Occhi del Veneto, Venice, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Enzo Di Iorio
- Fondazione Banca degli Occhi del Veneto, Venice, Italy Department of Molecular Medicine, University of Padua, Padua, Italy
| |
Collapse
|
136
|
Pellegrini G, Lambiase A, Macaluso C, Pocobelli A, Deng S, Cavallini GM, Esteki R, Rama P. From discovery to approval of an advanced therapy medicinal product-containing stem cells, in the EU. Regen Med 2016; 11:407-20. [PMID: 27091398 PMCID: PMC5561870 DOI: 10.2217/rme-2015-0051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In 1997, the human corneal epithelium was reconstructed in vitro and transplanted on patients. Later, it became a routine treatment, before regulations considered advanced therapy medicinal products and drugs on the same lines. Manufacturing, before and after good manufacturing practice setting, was established in different facilities and the clinical application in several hospitals. Advanced therapy medicinal products, including stem cells, are unique products with different challenges than other drugs: some uncertainties, in addition to benefit, cannot be avoided. This review will focus on all recent developments in the stem cell-based corneal therapy.
Collapse
Affiliation(s)
- Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, via G.Gottardi 100, Modena, 41125, Italy; Holostem Terapie Avanzate, Modena, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, University of Rome "Sapienza", viale Regina Elena, Rome, Italy
| | - Claudio Macaluso
- Unit of Ophthalmology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; IMEM - CNR (Italian National Reserach Council), Parco Area delle Scienze 37/A - 43124 Parma, Italy
| | - Augusto Pocobelli
- Ophthalmology Unit-Eye Bank, S. Giovanni Addolorata Hospital, via S. Stefano Rotondo 9, Rome, Italy
| | - Sophie Deng
- Cornea Division Stein Eye Institute, UCLA 100 Stein Plaza Los Angeles, CA 90095, USA
| | - Gian Maria Cavallini
- Ophthalmology Unit, Policlinico University Hospital, University of Modena & Reggio Emilia, via Del Pozzo 71, Modena, 41125, Italy
| | - Roza Esteki
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, via G.Gottardi 100, Modena, 41125, Italy; Holostem Terapie Avanzate, Modena, Italy
| | - Paolo Rama
- Cornea & Ocular Surface Unit San Raffaele Scientific Institute Via Olgettina, 60-20132 Milano, Italy
| |
Collapse
|
137
|
Shaharuddin B, Osei-Bempong C, Ahmad S, Rooney P, Ali S, Oldershaw R, Meeson A. Human limbal mesenchymal stem cells express ABCB5 and can grow on amniotic membrane. Regen Med 2016; 11:273-86. [DOI: 10.2217/rme-2016-0009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings. Materials & methods: Cells were isolated from corneoscleral rings and cultured in a mesenchymal stem cell (MSC)-selective media and examined for differentiation, phenotyping and characterization. Results: LMSCs were capable of trilineage differentiation, adhered to tissue culture plastic, expressed HLA class I and cell surface antigens associated with human MSC while having no/low expression of HLA class II and negative hematopoietic lineage markers. They were capable for CXCL12-mediated cellular migration. LMSCs adhered, proliferated on amniotic membrane and expressed the common putative limbal stem cell markers. Conclusion: Limbal-derived MSC exhibited plasticity, could maintain limbal markers expression and demonstrated viable growth on amniotic membrane.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia
| | - Charles Osei-Bempong
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| | - Sajjad Ahmad
- St Paul's Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
- Department of Eye & Vision Sciences, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, L69 3GA, UK
| | - Paul Rooney
- Tissue Development Laboratory, NHS Blood & Transplant, Estuary Banks, Liverpool, L24 8RB, UK
| | - Simi Ali
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon-Tyne, NE2 4HH, UK
| | - Rachel Oldershaw
- Department of Musculoskeletal Biology Group I, Institute of Ageing & Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, Cheshire, CH64 7TE, UK
| | - Annette Meeson
- Institute of Genetic Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 3BZ, UK
| |
Collapse
|
138
|
Barbaro V, Nasti AA, Del Vecchio C, Ferrari S, Migliorati A, Raffa P, Lariccia V, Nespeca P, Biasolo M, Willoughby CE, Ponzin D, Palù G, Parolin C, Di Iorio E. Correction of Mutant p63 in EEC Syndrome Using siRNA Mediated Allele-Specific Silencing Restores Defective Stem Cell Function. Stem Cells 2016; 34:1588-600. [PMID: 26891374 DOI: 10.1002/stem.2343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 12/19/2022]
Abstract
Ectrodactyly-Ectodermal dysplasia-Clefting (EEC) syndrome is a rare autosomal dominant disease caused by heterozygous mutations in the p63 gene and characterized by limb defects, orofacial clefting, ectodermal dysplasia, and ocular defects. Patients develop progressive total bilateral limbal stem cell deficiency, which eventually results in corneal blindness. Medical and surgical treatments are ineffective and of limited benefit. Oral mucosa epithelial stem cells (OMESCs) represent an alternative source of stem cells capable of regenerating the corneal epithelium and, combined with gene therapy, could provide an attractive therapeutic avenue. OMESCs from EEC patients carrying the most severe p63 mutations (p.R279H and p.R304Q) were characterized and the genetic defect of p.R279H silenced using allele-specific (AS) small interfering RNAs (siRNAs). Systematic screening of locked nucleic acid (LNA)-siRNAs against R279H-p63 allele in (i) stable WT-ΔNp63α-RFP and R279H-ΔNp63α-EGFP cell lines, (ii) transient doubly transfected cell lines, and (iii) p.R279H OMESCs, identified a number of potent siRNA inhibitors for the mutant allele, which had no effect on wild-type p63. In addition, siRNA treatment led to longer acquired life span of mutated stem cells compared to controls, less accelerated stem cell differentiation in vitro, reduced proliferation properties, and effective ability in correcting the epithelial hypoplasia, thus giving rise to full thickness stratified and differentiated epithelia. This study demonstrates the phenotypic correction of mutant stem cells (OMESCs) in EEC syndrome by means of siRNA mediated AS silencing with restoration of function. The application of siRNA, alone or in combination with cell-based therapies, offers a therapeutic strategy for corneal blindness in EEC syndrome. Stem Cells 2016;34:1588-1600.
Collapse
Affiliation(s)
- Vanessa Barbaro
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Annamaria A Nasti
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | | | - Stefano Ferrari
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Angelo Migliorati
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Paolo Raffa
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60120, Ancona, Italy
| | - Patrizia Nespeca
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Mariangela Biasolo
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Colin E Willoughby
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Diego Ponzin
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Cristina Parolin
- Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| | - Enzo Di Iorio
- Research Centre, Fondazione Banca degli Occhi del Veneto, 30174, Venice, Italy.,Department of Molecular Medicine, University of Padua, 35121, Padua, Italy
| |
Collapse
|
139
|
Selver OB, Durak I, Gürdal M, Baysal K, Ates H, Ozbek Z, Wang Z, Wu A, Wolosin JM. Corneal recovery in a rabbit limbal stem cell deficiency model by autologous grafts of tertiary outgrowths from cultivated limbal biopsy explants. Mol Vis 2016; 22:138-49. [PMID: 26937166 PMCID: PMC4757454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/09/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To determine the corneal regenerative capacity of sequentially generated primary, secondary, and tertiary limbal explant outgrowths in a limbal stem cell deficiency (LSCD) surgical model. METHODS Two-millimeter-long limbal shallow biopsies were surgically excised from the upper quadrant of the right eye of rabbits and set on preserved amniotic membrane for explant culture. After the generation of primary outgrowth, the biopsies were sequentially transferred to new amniotic membrane to generate secondary and then tertiary outgrowths. Eighteen rabbits were subjected to a 360° limbal peritomy extending into the scleral zone and combined with superficial keratectomy of the corneal periphery and thorough mechanical debridement of the central cornea in their left eye. Right eye outgrowths, six of each generation, were engrafted on the ocular surface. Clinical outcomes (neovascularization, corneal clarity, and corneal fluorescein staining) were graded after 6 months. Post-mortem corneas were compared with histology, immunochemistry for p63 and Krt3, ABCG2-dependent dye exclusion, and capacity for outgrowths in explant culture. RESULTS Immunohistology and western blot of the outgrowths for p63 and Krt3 indicated no differences in expression between the primary and tertiary outgrowths for these two markers of growth and differentiation. Clinically, all rabbits treated with amniotic membrane alone developed severe LSCD. Most rabbits grafted with cell outgrowths from all three outgrowth generations achieved stable (>6 months) recovery of the ocular surface. There were partial failures of grafts performed with two secondary and tertiary outgrowths. However, Kruskal-Wallis statistical analysis of the clinical scores yielded no significant difference between the three groups (p=0.524). Histology showed full anatomic recovery of grafts made with primary and tertiary outgrowths. Krt3 and p63 expression throughout the whole limbal corneal epithelium with primary or tertiary outgrowths was not distinguishable from each other. The percentage of dye-excluding cells present within this zone and the capacity of the explant epithelial outgrowth of the regenerated peripheral corneal zone were also on par with those of the donor corneas. The Krt3-negative cells that characterize the basal epithelial layer of the normal limbus could not be found in any regenerated cornea from the primary to tertiary outgrowths. CONCLUSIONS Our results demonstrate that in rabbits post-primary explant outgrowths retain the capacity for LSCD recovery found in primary explants.
Collapse
Affiliation(s)
- Ozlem Barut Selver
- Department of Ophtalmology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ismet Durak
- Department of Ophtalmology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Mehmet Gürdal
- Department of Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Kemal Baysal
- Department of Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Halil Ates
- Department of Hematology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Zeynep Ozbek
- Department of Ophtalmology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Zheng Wang
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Albert Wu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - J. Mario Wolosin
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
140
|
Tominac Trcin M, Dekaris I, Mijović B, Bujić M, Zdraveva E, Dolenec T, Pauk-Gulić M, Primorac D, Crnjac J, Špoljarić B, Mršić G, Kuna K, Špoljarić D, Popović M. Synthetic vs natural scaffolds for human limbal stem cells. Croat Med J 2016; 56:246-56. [PMID: 26088849 PMCID: PMC4500975 DOI: 10.3325/cmj.2015.56.246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim To investigate the impact of synthetic electrospun polyurethane (PU) and polycaprolactone (PCL) nanoscaffolds, before and after hydrolytic surface modification, on viability and differentiation of cultured human eye epithelial cells, in comparison with natural scaffolds: fibrin and human amniotic membrane. Methods Human placenta was taken at elective cesarean delivery. Fibrin scaffolds were prepared from commercial fibrin glue kits. Nanoscaffolds were fabricated by electrospinning. Limbal cells were isolated from surpluses of human cadaveric cornea and seeded on feeder 3T3 cells. The scaffolds used for viability testing and immunofluorescence analysis were amniotic membrane, fibrin, PU, and PCL nanoscaffolds, with or without prior NaOH treatment. Results Scanning electron microscope photographs of all tested scaffolds showed good colony spreading of seeded limbal cells. There was a significant difference in viability performance between cells with highest viability cultured on tissue culture plastic and cells cultured on all other scaffolds. On the other hand, electrospun PU, PCL, and electrospun PCL treated with NaOH had more than 80% of limbal cells positive for stem cell marker p63 compared to only 27%of p63 positive cells on fibrin. Conclusion Natural scaffolds, fibrin and amniotic membrane, showed better cell viability than electrospun scaffolds. On the contrary, high percentages of p63 positive cells obtained on these scaffolds still makes them good candidates for efficient delivery systems for therapeutic purposes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maja Popović
- Maja Popović, Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, Croatia,
| |
Collapse
|
141
|
Fate Mapping Mammalian Corneal Epithelia. Ocul Surf 2016; 14:82-99. [PMID: 26774909 DOI: 10.1016/j.jtos.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 02/07/2023]
Abstract
The anterior aspect of the cornea consists of a stratified squamous epithelium, thought to be maintained by a rare population of stem cells (SCs) that reside in the limbal transition zone. Although migration of cells that replenish the corneal epithelium has been studied for over a century, the process is still poorly understood and not well characterized. Numerous techniques have been employed to examine corneal epithelial dynamics, including visualization by light microscopy, the incorporation of vital dyes and DNA labels, and transplantation of genetically marked cells that have acted as cell and lineage beacons. Modern-day lineage tracing utilizes molecular methods to determine the fate of a specific cell and its progeny over time. Classically employed in developmental biology, lineage tracing has been used more recently to track the progeny of adult SCs in a number of organs to pin-point their location and understand their movement and influence on tissue regeneration. This review highlights key discoveries that have led researchers to develop cutting-edge genetic tools to effectively and more accurately monitor turnover and displacement of cells within the mammalian corneal epithelium. Collating information on the basic biology of SCs will have clinical ramifications in furthering our knowledge of the processes that govern their role in homeostasis, wound-healing, transplantation, and how we can improve current unsatisfactory SC-based therapies for patients suffering blinding corneal disease.
Collapse
|
142
|
Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int 2015; 2016:9798374. [PMID: 26788074 PMCID: PMC4691643 DOI: 10.1155/2016/9798374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Collapse
|
143
|
Short-term uvb-irradiation leads to putative limbal stem cell damage and niche cell-mediated upregulation of macrophage recruiting cytokines. Stem Cell Res 2015; 15:643-654. [DOI: 10.1016/j.scr.2015.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
|
144
|
Kolli S, Ahmad S, Mudhar HS, Meeny A, Lako M, Figueiredo FC. Successful application of ex vivo expanded human autologous oral mucosal epithelium for the treatment of total bilateral limbal stem cell deficiency. Stem Cells 2015; 32:2135-46. [PMID: 24590515 DOI: 10.1002/stem.1694] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/09/2014] [Indexed: 11/07/2022]
Abstract
Ocular surface reconstruction with ex vivo expanded limbal stem cells (LSCs) is a widely used clinical treatment for patients with limbal stem cell deficiency (LSCD). This is not applicable to patients with bilateral LSCD where there are no remaining LSCs. Cultivated oral mucosa epithelium (OME) has been used as an alternative source of autologous epithelial stem cells for ocular reconstruction in few clinical trials. However, successful generation of stratified OME epithelium has only been achieved in the presence of animal feeder cells and/or animal-derived products in the culture media, likely to contribute to increased risk of pathogen transmission and graft rejection. In this study, we report generation of multilayered OME epithelium that shares many of the characteristics of corneal epithelium using a fully compliant good manufacturing practice, feeder- and animal product-free method. Proof of concept was achieved by transplantation of autologous ex vivo expanded OME in two patients with histologically confirmed bilateral total LSCD that resulted in successful reversal of LSCD in the treated eye up to 24 months.
Collapse
Affiliation(s)
- Sai Kolli
- Institute of Genetic Medicine, Newcastle University, Newcastle, United Kingdom; Department of Ophthalmology, Royal Victoria Infirmary, Newcastle University, Newcastle, United Kingdom
| | | | | | | | | | | |
Collapse
|
145
|
Jackson C, Eidet JR, Reppe S, Aass HCD, Tønseth KA, Roald B, Lyberg T, Utheim TP. Effect of Storage Temperature on the Phenotype of Cultured Epidermal Cells Stored in Xenobiotic-Free Medium. Curr Eye Res 2015; 41:757-68. [PMID: 26398483 DOI: 10.3109/02713683.2015.1062113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Cultured epidermal cell sheets (CECS) are used in the treatment of large area burns to the body and have potential to treat limbal stem cell deficiency (LSCD) as shown in animal studies. Despite widespread use, storage options for CECS are limited. Short-term storage allows flexibility in scheduling surgery, quality control and improved transportation to clinics worldwide. Recent evidence points to the phenotype of cultured epithelial cells as a critical predictor of post-operative success following transplantation of CECS in burns and in transplantation of cultured epithelial cells in patients with LSCD. This study, therefore assessed the effect of a range of temperatures, spanning 4-37 °C, on the phenotype of CECS stored over a 2-week period in a xenobiotic-free system. MATERIALS AND METHODS Progenitor cell (p63, ΔNp63α and ABCG2) and differentiation (C/EBPδ and CK10) associated marker expression was assessed using immunocytochemistry. Immunohistochemistry staining of normal skin for the markers p63, ABCG2 and C/EBPδ was also carried out. Assessment of progenitor cell side population (SP) was performed using JC1 dye by flow cytometry. RESULTS P63 expression remained relatively constant throughout the temperature range but was significantly lower compared to control between 20 and 28 °C (p < 0.05). High C/EBPδ together with low p63 suggested more differentiation beginning at 20 °C and above. Lower CK10 and C/EBPδ expression most similar to control was seen at 12 °C. The percentage of ABCG2 positive cells was most similar to control between 8 and 24 °C. Between 4 and 24 °C, the SP fluctuated, but was not significantly different compared to control. Results were supported by staining patterns indicating differentiation status associated with markers in normal skin sections. CONCLUSIONS Lower storage temperatures, and in particular 12 °C, merit further investigation as optimal storage temperature for maintenance of undifferentiated phenotype in CECS.
Collapse
Affiliation(s)
- Catherine Jackson
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway
| | - Jon R Eidet
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Sjur Reppe
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | | | - Kim A Tønseth
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,c Department of Plastic Surgery , Oslo University Hospital , Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Borghild Roald
- b Institute of Clinical Medicine, Faculty of Medicine, University of Oslo , Norway .,d Department of Pathology , Oslo University Hospital , Oslo , Norway and
| | - Torstein Lyberg
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway
| | - Tor P Utheim
- a Department of Medical Biochemistry , Oslo University Hospital , Oslo , Norway .,e Department of Oral Biology, Faculty of Dentistry , University of Oslo , Oslo , Norway
| |
Collapse
|
146
|
Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Prog Retin Eye Res 2015; 48:203-25. [DOI: 10.1016/j.preteyeres.2015.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022]
|
147
|
Dhamodaran K, Subramani M, Jeyabalan N, Ponnalagu M, Chevour P, Shetty R, Matalia H, Shetty R, Prince SE, Das D. Characterization of ex vivo cultured limbal, conjunctival, and oral mucosal cells: A comparative study with implications in transplantation medicine. Mol Vis 2015; 21:828-45. [PMID: 26283864 PMCID: PMC4522244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Limbal epithelial stem cell deficiency is caused by exposure of the cornea to thermal, chemical, or radiation burns or by diseases (aniridia and Stevens-Johnson syndrome). Autologous cell transplantation is a widely used therapeutic modality for restoring the corneal surface in such pathological conditions. Ex vivo cultured limbal, conjunctival, and oral biopsies have been widely used to reconstruct the corneal surface with variable outcomes. Culture characterization of the ex vivo cultured cells would provide insight and clues into the underlying signaling mechanisms that would aid in determining the probable transplantation outcome. Comparison of the vital proteins and genes among the three ex vivo cultured tissues has implications in clinical practice. To address this issue, we characterized and compared the proliferative and differentiated properties of ex vivo cultured limbal, conjunctival, and oral biopsies used for cell-based therapy for corneal surface restoration. METHODS Limbal, conjunctival, and oral biopsies were collected with informed patient consent. Explant cultures were established on the denuded human amniotic membrane with corneal lineage differentiation medium. The day 14 cultures were characterized for epithelial and corneal lineage-specific markers using reverse transcription (RT)-PCR for cytokeratin 3, 4, 12, 13, 15, connexin 43, vimentin, p63α, and ABCG2 markers. mRNA expression was estimated in day 14 cultures with real-time quantitative real time (qRT)-PCR for pluripotency markers (OCT4, SOX2, NANOG), putative corneal stem cell markers (ABCG2 and p63α), proliferation markers (cyclin d1, Ki-67, PCNA, and CDC20), apoptotic markers (BCL2, BAX, caspase 3, and caspase 9), Notch signaling pathway markers (Notch1, Jagged1, Hes1, Hes3, Hes5, and Hey1), and autophagic markers (LC3A, LC3B, ATG7, RAB7, LAMP1, and LAMP2). Fluorescence-activated cell sorter profiling was performed for pluripotent markers and putative corneal stem cell markers ABCG2 and p63α. RESULTS The protein and mRNA expression levels of the pluripotent markers were lower, whereas those of the putative stem/progenitor markers ABCG2, ΔNp63α, and Notch signaling molecules (Notch1 and Jagged1) were elevated in limbal cultures. The gene expression levels of the autophagy markers (LC3A, LC3B, and LAMP1) were significantly increased in the limbal cultures compared to the oral and conjunctival cultures. CONCLUSIONS In conclusion, the limbal epithelial cultures showed higher expression of proliferative, limbal stem cell marker, Notch signaling, and autophagy markers suggesting a role in stem cell maintenance and differentiation. This implicates the probable factors that might drive a successful transplantation. Our findings provide the initial steps toward understanding transplantation medicine in an ex vivo model.
Collapse
Affiliation(s)
- Kamesh Dhamodaran
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Murali Subramani
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India,Post-graduate & Research Department of Biotechnology, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Nallathambi Jeyabalan
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Murugeswari Ponnalagu
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Priyanka Chevour
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Reshma Shetty
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive surgery, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City, Bommasandra, Bangalore, Karnataka, India
| | - Sabina Evan Prince
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
148
|
Branch MJ, Yu WY, Sheridan C, Hopkinson A. Isolation of adult stem cell populations from the human cornea. Methods Mol Biol 2015; 1235:165-77. [PMID: 25388394 DOI: 10.1007/978-1-4939-1785-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Corneal blindness is a leading cause of vision loss globally. From a tissue engineering perspective, the cornea represents specific challenges in respect to isolating, stably expanding, banking, and effectively manipulating the various cell types required for effective corneal regeneration. The current research trend in this area focuses on a combined stem cell component with a biological or synthetic carrier or engineering scaffold. Corneal derived stem cells play an important role in such strategies as they represent an available supply of cells with specific abilities to further generate corneal cells in the long term. This chapter describes the isolation protocols of the epithelial stromal and endothelial stem cell populations.
Collapse
Affiliation(s)
- Matthew J Branch
- Ophthalmology DCN, University of Nottingham, Queen's Medical Center, Clifton Blvd., Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
149
|
Dziasko MA, Tuft SJ, Daniels JT. Limbal melanocytes support limbal epithelial stem cells in 2D and 3D microenvironments. Exp Eye Res 2015; 138:70-9. [PMID: 26142953 DOI: 10.1016/j.exer.2015.06.026] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/29/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
Human limbal epithelial stem cells (LESCs) are essential for the maintenance of the corneal epithelium of the ocular surface. LESCs are located within limbal crypts between the palisades of Vogt in the limbus; the interface between the peripheral cornea and conjunctiva. The limbal crypts have been proposed as a LESC niche owing to their support of epithelial cells, which can form holoclone colonies in vitro. Closely associated with the limbal crypts is a concentrated population of melanocytes. The anatomical location and close proximity to putative LESC suggests that melanocytes might play a role in maintenance of these stem cells in the niche. The aim of this study was to assess the ability of human limbal melanocytes (hLM) to support the expansion of human limbal epithelial cells (LECs) in vitro as an indicator of functional cell-cell interaction. After observing that hLM co-localize with clusters of compact epithelial cells in the native limbal crypts, hLM were isolated from crypt-rich cadaveric limbal biopsies and used as feeders for the culture of LECs. Interestingly, LECs grown on mitotically active hLM were able to generate large epithelial colonies that contained small and compact cells with morphological stem cell characteristics. Immunocytochemistry revealed that LECs expanded on hLM were positive for the expression of the putative stem cell markers CK15, Bmi-1 and p63α and negative for the marker of terminal cell differentiation CK3. LECs and hLM were finally co-cultured on RAFT (real architecture for 3D tissue) collagen tissue equivalents. In 3D co-cultures, hLM promoted multi-layering of the epithelial sheet in which basal cells were maintained in an undifferentiated state. Taken together, these observations suggest melanocytes could play an important role in the maintenance of LESCs in the native human limbal stem cell niche.
Collapse
Affiliation(s)
- Marc A Dziasko
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom.
| | - Stephen J Tuft
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom.
| | - Julie T Daniels
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
150
|
Yuan S, Fan G. Stem cell-based therapy of corneal epithelial and endothelial diseases. Regen Med 2015; 10:495-504. [DOI: 10.2217/rme.15.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Corneal dysfunction is the second leading cause of blindness. Approximately 10 million patients worldwide are affected by some form of corneal disease. More than 50,000 cornea transplants are performed every year, but this procedure is limited by cornea donation availability. Recently, new cell replacement procedures have been developed to treat a variety of corneal diseases. This review will focus on the recent advances in the use of limbal epithelial stem cells (LESCs) to treat corneal epithelial cell deficiency and improvements in replacing dysfunctional corneal endothelial cells (CECs) with exogenous CECs. Several protocols have been developed to differentiate pluripotent stem cells into LESC- or CEC-like cells, potentially yielding an unlimited source for the cell replacement therapy of corneal diseases.
Collapse
Affiliation(s)
- Songtao Yuan
- Department of Human Genetics & Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Guoping Fan
- Department of Human Genetics & Broad Stem Cell Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|