101
|
Control of Cellular Aging, Tissue Function, and Cancer by p53 Downstream of Telomeres. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026088. [PMID: 28289249 DOI: 10.1101/cshperspect.a026088] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Telomeres, the nucleoprotein complex at the ends of eukaryotic chromosomes, perform an essential cellular role in part by preventing the chromosomal end from initiating a DNA-damage response. This function of telomeres can be compromised as telomeres erode either as a consequence of cell division in culture or as a normal part of cellular ageing in proliferative tissues. Telomere dysfunction in this context leads to DNA-damage signaling and activation of the tumor-suppressor protein p53, which then can prompt either cellular senescence or apoptosis. By culling cells with dysfunctional telomeres, p53 plays a critical role in protecting tissues against the effects of critically short telomeres. However, as telomere dysfunction worsens, p53 likely exacerbates short telomere-driven tissue failure diseases, including pulmonary fibrosis, aplastic anemia, and liver cirrhosis. In cells lacking p53, unchecked telomere shortening drives chromosomal end-to-end fusions and cycles of chromosome fusion-bridge-breakage. Incipient cancer cells confronting these telomere barriers must disable p53 signaling to avoid senescence and eventually up-regulate telomerase to achieve cellular immortality. The recent findings of highly recurrent activating mutations in the promoter for the telomerase reverse transcriptase (TERT) gene in diverse human cancers, together with the widespread mutations in p53 in cancer, provide support for the idea that circumvention of a telomere-p53 checkpoint is essential for malignant progression in human cancer.
Collapse
|
102
|
Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 2017. [PMID: 28637614 DOI: 10.1053/j.seminhematol.2017.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inherited marrow failure syndromes (IBMFS) are a heterogeneous group of diseases characterized by failure in the production of one or more blood lineage. The clinical manifestations of the IBMFS vary according to the type and number of blood cell lines involved, including different combinations of anemia, leukopenia, and thrombocytopenia. In some IBMFS, systemic non-hematologic manifestations, including congenital malformations, mucocutaneous abnormalities, developmental delay, and other medical complications, may be present. Fanconi anemia (FA), caused by germline pathogenic variants in the DNA repair genes comprising the FA/BRCA pathway is associated with congenital anomalies, bone marrow failure, and increased risk of myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML), and solid tumors. Dyskeratosis congenita (DC) is a telomere biology disorder (TBD) caused by aberrations in key telomere biology genes. In addition to mucocutaneous manifestations, patients with DC are at increased risk of marrow failure, MDS, AML, pulmonary fibrosis, and other complications. Ribosomal biology defects are the primary causes of Diamond Blackfan anemia (DBA) and Shwachman Diamond syndrome (SDS). In addition to pure red blood cell aplasia, DBA is associated with elevated risk of solid tumors, AML, and MDS. Patients with SDS have pancreatic insufficiency, neutropenia, as well as MDS and AML risks. Patients with severe congenital neutropenia (SCN), caused by pathogenic variants in genes essential in myeloid development, have profound neutropenia and high risk of MDS and AML. Herein we review the genetic causes, clinical features, diagnostic modalities, predisposition to malignancies with focus on leukemogenic markers whenever available, and approaches to treatments of the classical IBMFS: FA, DC, SDS, DBA, and SCN.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
103
|
Allegra A, Innao V, Penna G, Gerace D, Allegra AG, Musolino C. Telomerase and telomere biology in hematological diseases: A new therapeutic target. Leuk Res 2017; 56:60-74. [PMID: 28196338 DOI: 10.1016/j.leukres.2017.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/24/2017] [Accepted: 02/05/2017] [Indexed: 11/29/2022]
Abstract
Telomeres are structures confined at the ends of eukaryotic chromosomes. With each cell division, telomeric repeats are lost because DNA polymerases are incapable to fully duplicate the very ends of linear chromosomes. Loss of repeats causes cell senescence, and apoptosis. Telomerase neutralizes loss of telomeric sequences by adding telomere repeats at the 3' telomeric overhang. Telomere biology is frequently associated with human cancer and dysfunctional telomeres have been proved to participate to genetic instability. This review covers the information on telomerase expression and genetic alterations in the most relevant types of hematological diseases. Telomere erosion hampers the capability of hematopoietic stem cells to effectively replicate, clinically resulting in bone marrow failure. Furthermore, telomerase mutations are genetic risk factors for the occurrence of some hematologic cancers. New discoveries in telomere structure and telomerase functions have led to an increasing interest in targeting telomeres and telomerase in anti-cancer therapy.
Collapse
Affiliation(s)
- Alessandro Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vanessa Innao
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppa Penna
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Demetrio Gerace
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Andrea G Allegra
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| | - Caterina Musolino
- Dipartimento di Patologia Umana dell'Adulto e dell'Età Evolutiva "Gaetano Barresi", University of Messina Via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
104
|
Tomlinson CG, Sasaki N, Jurczyluk J, Bryan TM, Cohen SB. Quantitative assays for measuring human telomerase activity and DNA binding properties. Methods 2017; 114:85-95. [DOI: 10.1016/j.ymeth.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 11/27/2022] Open
|
105
|
Telomere-associated aging disorders. Ageing Res Rev 2017; 33:52-66. [PMID: 27215853 PMCID: PMC9926533 DOI: 10.1016/j.arr.2016.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 01/25/2023]
Abstract
Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Several monogenic inherited diseases that display features of human premature aging correlate with shortened telomeres, and are referred to collectively as telomeropathies. These disorders have overlapping symptoms and a common underlying mechanism of telomere dysfunction, but also exhibit variable symptoms and age of onset, suggesting they fall along a spectrum of disorders. Primary telomeropathies are caused by defects in the telomere maintenance machinery, whereas secondary telomeropathies have some overlapping symptoms with primary telomeropathies, but are generally caused by mutations in DNA repair proteins that contribute to telomere preservation. Here we review both the primary and secondary telomeropathies, discuss potential mechanisms for tissue specificity and age of onset, and highlight outstanding questions in the field and future directions toward elucidating disease etiology and developing therapeutic strategies.
Collapse
|
106
|
Mathai SK, Newton CA, Schwartz DA, Garcia CK. Pulmonary fibrosis in the era of stratified medicine. Thorax 2016; 71:1154-1160. [PMID: 27799632 DOI: 10.1136/thoraxjnl-2016-209172] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022]
Abstract
Both common and rare variants contribute to the genetic architecture of pulmonary fibrosis. Genome-wide association studies have identified common variants, or those with a minor allele frequency of >5%, that are linked to pulmonary fibrosis. The most widely replicated variant (rs35705950) is located in the promoter region of the MUC5B gene and has been strongly associated with idiopathic pulmonary fibrosis (IPF) and familial interstitial pneumonia (FIP) across multiple different cohorts. However, many more common variants have been identified with disease risk and in aggregate account for approximately one-third of the risk of IPF. Moreover, several of these common variants appear to have prognostic potential. Next generation sequencing technologies have facilitated the identification of rare variants. Recent whole exome sequencing studies have linked pathogenic rare variants in multiple new genes to FIP. Compared with common variants, rare variants have lower population allele frequencies and higher effect sizes. Pulmonary fibrosis rare variants genes can be subdivided into two pathways: telomere maintenance and surfactant metabolism. Heterozygous rare variants in telomere-related genes co-segregate with adult-onset pulmonary fibrosis with incomplete penetrance, lead to reduced protein function, and are associated with short telomere lengths. Despite poor genotype-phenotype correlations, lung fibrosis associated with pathogenic rare variants in different telomere genes is progressive and displays similar survival characteristics. In contrast, many of the heterozygous rare variants in the surfactant genes predict a gain of toxic function from protein misfolding and increased endoplasmic reticulum (ER) stress. Evidence of both telomere shortening and increased ER stress have been found in sporadic IPF patients, suggesting that the mechanisms identified from rare variant genetic studies in unique individuals and families are applicable to a wider spectrum of patients. The ability to sequence large cohorts of individuals rapidly has the potential to further our understanding of the relative contributions of common and rare variants in the pathogenesis of pulmonary fibrosis. The UK 100,000 Genomes Project will provide opportunities to interrogate both common and rare variants and to investigate how these biological signals provide diagnostic and prognostic information in the era of stratified medicine.
Collapse
Affiliation(s)
- Susan K Mathai
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Chad A Newton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Christine Kim Garcia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
107
|
The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length. Genetics 2016; 204:371-83. [PMID: 27449056 PMCID: PMC5012401 DOI: 10.1534/genetics.116.191148] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023] Open
Abstract
Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans.
Collapse
|
108
|
Ariumi Y. Guardian of the Human Genome: Host Defense Mechanisms against LINE-1 Retrotransposition. Front Chem 2016; 4:28. [PMID: 27446907 PMCID: PMC4924340 DOI: 10.3389/fchem.2016.00028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
Long interspersed element type 1 (LINE-1, L1) is a mobile genetic element comprising about 17% of the human genome, encoding a newly identified ORF0 with unknown function, ORF1p with RNA-binding activity and ORF2p with endonuclease and reverse transcriptase activities required for L1 retrotransposition. L1 utilizes an endonuclease (EN) to insert L1 cDNA into target DNA, which induces DNA double-strand breaks (DSBs). The ataxia-telangiectasia mutated (ATM) is activated by DSBs and subsequently the ATM-signaling pathway plays a role in regulating L1 retrotransposition. In addition, the host DNA repair machinery such as non-homologous end-joining (NHEJ) repair pathway is also involved in L1 retrotransposition. On the other hand, L1 is an insertional mutagenic agent, which contributes to genetic change, genomic instability, and tumorigenesis. Indeed, high-throughput sequencing-based approaches identified numerous tumor-specific somatic L1 insertions in variety of cancers, such as colon cancer, breast cancer, and hepatocellular carcinoma (HCC). In fact, L1 retrotransposition seems to be a potential factor to reduce the tumor suppressive property in HCC. Furthermore, recent study demonstrated that a specific viral-human chimeric transcript, HBx-L1, contributes to hepatitis B virus (HBV)-associated HCC. In contrast, host cells have evolved several defense mechanisms protecting cells against retrotransposition including epigenetic regulation through DNA methylation and host defense factors, such as APOBEC3, MOV10, and SAMHD1, which restrict L1 mobility as a guardian of the human genome. In this review, I focus on somatic L1 insertions into the human genome in cancers and host defense mechanisms against deleterious L1 insertions.
Collapse
Affiliation(s)
- Yasuo Ariumi
- Ariumi Project Laboratory, Center for AIDS Research and International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
| |
Collapse
|
109
|
Mandegar MA, Huebsch N, Frolov EB, Shin E, Truong A, Olvera MP, Chan AH, Miyaoka Y, Holmes K, Spencer CI, Judge LM, Gordon DE, Eskildsen TV, Villalta JE, Horlbeck MA, Gilbert LA, Krogan NJ, Sheikh SP, Weissman JS, Qi LS, So PL, Conklin BR. CRISPR Interference Efficiently Induces Specific and Reversible Gene Silencing in Human iPSCs. Cell Stem Cell 2016; 18:541-53. [PMID: 26971820 DOI: 10.1016/j.stem.2016.01.022] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/21/2015] [Accepted: 01/24/2016] [Indexed: 12/20/2022]
Abstract
Developing technologies for efficient and scalable disruption of gene expression will provide powerful tools for studying gene function, developmental pathways, and disease mechanisms. Here, we develop clustered regularly interspaced short palindromic repeat interference (CRISPRi) to repress gene expression in human induced pluripotent stem cells (iPSCs). CRISPRi, in which a doxycycline-inducible deactivated Cas9 is fused to a KRAB repression domain, can specifically and reversibly inhibit gene expression in iPSCs and iPSC-derived cardiac progenitors, cardiomyocytes, and T lymphocytes. This gene repression system is tunable and has the potential to silence single alleles. Compared with CRISPR nuclease (CRISPRn), CRISPRi gene repression is more efficient and homogenous across cell populations. The CRISPRi system in iPSCs provides a powerful platform to perform genome-scale screens in a wide range of iPSC-derived cell types, dissect developmental pathways, and model disease.
Collapse
Affiliation(s)
- Mohammad A Mandegar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA.
| | - Nathaniel Huebsch
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ekaterina B Frolov
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Edward Shin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Annie Truong
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Michael P Olvera
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Amanda H Chan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Yuichiro Miyaoka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Kristin Holmes
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - C Ian Spencer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Luke M Judge
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Jacqueline E Villalta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Søren P Sheikh
- Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000 Odense C, Denmark; Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000 Odense C, Denmark
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Po-Lin So
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, QB3, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Medicine and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
110
|
Chu TW, MacNeil DE, Autexier C. Multiple Mechanisms Contribute to the Cell Growth Defects Imparted by Human Telomerase Insertion in Fingers Domain Mutations Associated with Premature Aging Diseases. J Biol Chem 2016; 291:8374-86. [PMID: 26887940 DOI: 10.1074/jbc.m116.714782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 11/06/2022] Open
Abstract
Normal human stem cells rely on low levels of active telomerase to sustain their high replicative requirements. Deficiency in telomere maintenance mechanisms leads to the development of premature aging diseases, such as dyskeratosis congenita and aplastic anemia. Mutations in the unique "insertion in fingers domain" (IFD) in the human telomerase reverse transcriptase catalytic subunit (hTERT) have previously been identified and shown to be associated with dyskeratosis congenita and aplastic anemia. However, little is known about the molecular mechanisms impacted by these IFD mutations. We performed comparative functional analyses of disease-associated IFD variants at the molecular and cellular levels. We report that hTERT-P721R- and hTERT-R811C-expressing cells exhibited growth defects likely due to impaired TPP1-mediated recruitment of these variant enzymes to telomeres. We showed that activity and processivity of hTERT-T726M failed to be stimulated by TPP1-POT1 overexpression and that dGTP usage by this variant was less efficient compared with the wild-type enzyme. hTERT-P785L-expressing cells did not show growth defects, and this variant likely confers cell survival through increased DNA synthesis and robust activity stimulation by TPP1-POT1. Altogether, our data suggest that multiple mechanisms contribute to cell growth defects conferred by the IFD variants.
Collapse
Affiliation(s)
- Tsz Wai Chu
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and
| | - Deanna Elise MacNeil
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| | - Chantal Autexier
- From the Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal H3T 1E2, Canada, Department of Medicine, McGill University, Montréal H4A 3J1, Canada, and Department of Anatomy and Cell Biology, McGill University, Montréal H3A 0C7, Canada
| |
Collapse
|
111
|
Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish. PLoS Genet 2016; 12:e1005798. [PMID: 26789415 PMCID: PMC4720274 DOI: 10.1371/journal.pgen.1005798] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/20/2015] [Indexed: 12/30/2022] Open
Abstract
Telomeres shorten with each cell division and telomere dysfunction is a recognized hallmark of aging. Tissue proliferation is expected to dictate the rate at which telomeres shorten. We set out to test whether proliferative tissues age faster than non-proliferative due to telomere shortening during zebrafish aging. We performed a prospective study linking telomere length to tissue pathology and disease. Contrary to expectations, we show that telomeres shorten to critical lengths only in specific tissues and independently of their proliferation rate. Short telomeres accumulate in the gut but not in other highly proliferative tissues such as the blood and gonads. Notably, the muscle, a low proliferative tissue, accumulates short telomeres and DNA damage at the same rate as the gut. Together, our work shows that telomere shortening and DNA damage in key tissues triggers not only local dysfunction but also anticipates the onset of age-associated diseases in other tissues, including cancer. Why, and how, organisms age and ultimately die is a key question of modern biology. Telomeres are considered molecular timekeepers determining cellular lifespans. Within an organism, tissue proliferation is expected to dictate the rate at which telomeres shorten. Using zebrafish, an organism with human-like telomeres, we set out to test whether, in natural aging, proliferative tissues age faster than non-proliferative in a telomere-dependent manner. We found that telomeres shorten with age to a level where they trigger telomere associated DNA damage and culminate in tissue dysfunction, independently of high or low tissue proliferation rates. Specifically, short telomeres accumulate in the gut, a highly proliferative tissue, and in the muscle, a low proliferative tissue, working as direct predictors of cellular damage prior to onset of intestinal inflammation and myocyte degeneration. Based on our data, we propose a model where telomere shortening in these key tissues is sufficient to trigger damage in others and precedes the onset of organism age-associated diseases, namely cancer. Thus, tissue-specific telomere length is limiting for local and systemic physiological integrity, leading to tissue degeneration and disease in aging.
Collapse
|
112
|
Pech MF, Garbuzov A, Hasegawa K, Sukhwani M, Zhang RJ, Benayoun BA, Brockman SA, Lin S, Brunet A, Orwig KE, Artandi SE. High telomerase is a hallmark of undifferentiated spermatogonia and is required for maintenance of male germline stem cells. Genes Dev 2015; 29:2420-34. [PMID: 26584619 PMCID: PMC4691947 DOI: 10.1101/gad.271783.115] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 01/15/2023]
Abstract
Telomerase inactivation causes loss of the male germline in worms, fish, and mice, indicating a conserved dependence on telomere maintenance in this cell lineage. Here, using telomerase reverse transcriptase (Tert) reporter mice, we found that very high telomerase expression is a hallmark of undifferentiated spermatogonia, the mitotic population where germline stem cells reside. We exploited these high telomerase levels as a basis for purifying undifferentiated spermatogonia using fluorescence-activated cell sorting. Telomerase levels in undifferentiated spermatogonia and embryonic stem cells are comparable and much greater than in somatic progenitor compartments. Within the germline, we uncovered an unanticipated gradient of telomerase activity that also enables isolation of more mature populations. Transcriptomic comparisons of Tert(High) undifferentiated spermatogonia and Tert(Low) differentiated spermatogonia by RNA sequencing reveals marked differences in cell cycle and key molecular features of each compartment. Transplantation studies show that germline stem cell activity is confined to the Tert(High) cKit(-) population. Telomere shortening in telomerase knockout strains causes depletion of undifferentiated spermatogonia and eventual loss of all germ cells after undifferentiated spermatogonia drop below a critical threshold. These data reveal that high telomerase expression is a fundamental characteristic of germline stem cells, thus explaining the broad dependence on telomerase for germline immortality in metazoans.
Collapse
Affiliation(s)
- Matthew F Pech
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alina Garbuzov
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Genetics, Stanford University, California 94305, USA
| | - Kazuteru Hasegawa
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Meena Sukhwani
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania 15213, USA; Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Ruixuan J Zhang
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Stephanie A Brockman
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Shengda Lin
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, California 94305, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh Pennsylvania 15213, USA; Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, USA
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
113
|
Sarek G, Marzec P, Margalef P, Boulton SJ. Molecular basis of telomere dysfunction in human genetic diseases. Nat Struct Mol Biol 2015; 22:867-74. [PMID: 26581521 DOI: 10.1038/nsmb.3093] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 01/28/2023]
Abstract
Mutations in genes encoding proteins required for telomere structure, replication, repair and length maintenance are associated with several debilitating human genetic disorders. These complex telomere biology disorders (TBDs) give rise to critically short telomeres that affect the homeostasis of multiple organs. Furthermore, genome instability is often a hallmark of telomere syndromes, which are associated with increased cancer risk. Here, we summarize the molecular causes and cellular consequences of disease-causing mutations associated with telomere dysfunction.
Collapse
Affiliation(s)
- Grzegorz Sarek
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Paulina Marzec
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Pol Margalef
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| | - Simon J Boulton
- DNA Damage Response Laboratory, Francis Crick Institute, South Mimms, UK
| |
Collapse
|
114
|
Chen J, Bryant MA, Dent JJ, Sun Y, Desierto MJ, Young NS. Hematopoietic lineage skewing and intestinal epithelia degeneration in aged mice with telomerase RNA component deletion. Exp Gerontol 2015; 72:251-60. [PMID: 26523501 DOI: 10.1016/j.exger.2015.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/19/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022]
Abstract
A deletion of a telomerase RNA component (Terc(-/-)) in C57BL/6 (B6) mice resulted in hematopoietic lineage skewing with increased neutrophils and CD11b(+) myeloid cells and decreased red blood cells and CD45R(+) B lymphocytes when animals reach ages older than 12 months. There was no decline in bone marrow (BM) c-Kit(+)Sca-1(+)Lin(-) (KSL) cells in old Terc(-/-) mice, and the lineage skewing phenomenon was not transferred when BM cells from old Terc(-/-) donors were transplanted into young B6 recipients. Necropsy and histological examinations found minimal to no change in the lung, spleen and liver but detected severe epithelia degeneration, ulceration and infection in small and large intestines, leading to enteritis, typhlitis and colitis in old Terc(-/-) mice. In a mouse model of dextran-sulfate-sodium-induced typhlitis and colitis, development of intestinal pathology was associated with increases in neutrophils and CD11b(+) myeloid cells and a decrease in CD45R(+) B cells, similar to those observed in old Terc(-/-) mice. Treatment of 11-13 month old Terc(-/-) mice with antibiotic trimethoprim-sulfa water reduced neutrophils and myeloid cells and increased B lymphocytes in the blood, indicating that mitigation of intestinal infection and inflammation could alleviate hematological abnormalities in old Terc(-/-) animals.
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Mark A Bryant
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD 20892, United States
| | - James J Dent
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yu Sun
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States; Hematology Department, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Marie J Desierto
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
115
|
Stern JL, Theodorescu D, Vogelstein B, Papadopoulos N, Cech TR. Mutation of the TERT promoter, switch to active chromatin, and monoallelic TERT expression in multiple cancers. Genes Dev 2015; 29:2219-24. [PMID: 26515115 PMCID: PMC4647555 DOI: 10.1101/gad.269498.115] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
Stern et al. found in multiple cancer cell lines that a TERT gene with a promoter mutation exhibits the H3K4me2/3 mark of active chromatin, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing. Consistent with these differences, only the mutant promoters are transcriptionally active. Somatic mutations in the promoter of the gene for telomerase reverse transcriptase (TERT) are the most common noncoding mutations in cancer. They are thought to activate telomerase, contributing to proliferative immortality, but the molecular events driving TERT activation are largely unknown. We observed in multiple cancer cell lines that mutant TERT promoters exhibit the H3K4me2/3 mark of active chromatin and recruit the GABPA/B1 transcription factor, while the wild-type allele retains the H3K27me3 mark of epigenetic silencing; only the mutant promoters are transcriptionally active. These results suggest how a single-base-pair mutation can cause a dramatic epigenetic switch and monoallelic expression.
Collapse
Affiliation(s)
- Josh Lewis Stern
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA; Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, Colorado 80309, USA
| | - Dan Theodorescu
- University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Surgery (Urology), University of Colorado, Aurora, Colorado 80045, USA
| | - Bert Vogelstein
- Ludwig Center, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Nickolas Papadopoulos
- Ludwig Center, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland 21231, USA
| | - Thomas R Cech
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA; Howard Hughes Medical Institute, University of Colorado BioFrontiers Institute, Boulder, Colorado 80309, USA; University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA
| |
Collapse
|
116
|
Wu RA, Dagdas YS, Yilmaz ST, Yildiz A, Collins K. Single-molecule imaging of telomerase reverse transcriptase in human telomerase holoenzyme and minimal RNP complexes. eLife 2015; 4. [PMID: 26457608 PMCID: PMC4600948 DOI: 10.7554/elife.08363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Telomerase synthesizes chromosome-capping telomeric repeats using an active site in telomerase reverse transcriptase (TERT) and an integral RNA subunit template. The fundamental question of whether human telomerase catalytic activity requires cooperation across two TERT subunits remains under debate. In this study, we describe new approaches of subunit labeling for single-molecule imaging, applied to determine the TERT content of complexes assembled in cells or cell extract. Surprisingly, telomerase reconstitutions yielded heterogeneous DNA-bound TERT monomer and dimer complexes in relative amounts that varied with assembly and purification method. Among the complexes, cellular holoenzyme and minimal recombinant enzyme monomeric for TERT had catalytic activity. Dimerization was suppressed by removing a TERT domain linker with atypical sequence bias, which did not inhibit cellular or minimal enzyme assembly or activity. Overall, this work defines human telomerase DNA binding and synthesis properties at single-molecule level and establishes conserved telomerase subunit architecture from single-celled organisms to humans.
Collapse
Affiliation(s)
- Robert Alexander Wu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yavuz S Dagdas
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, United States
| | - S Tunc Yilmaz
- Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Ahmet Yildiz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Physics, University of California, Berkeley, Berkeley, United States
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
117
|
Understanding Idiopathic Interstitial Pneumonia: A Gene-Based Review of Stressed Lungs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:304186. [PMID: 26539479 PMCID: PMC4619788 DOI: 10.1155/2015/304186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
Pulmonary fibrosis is the main cause of severe morbidity and mortality in idiopathic interstitial pneumonias (IIP). In the past years, there has been major progress in the discovery of genetic factors that contribute to disease. Genes with highly penetrant mutations or strongly predisposing common risk alleles have been identified in familial and sporadic IIP. This review summarizes genes harbouring causative rare mutations and replicated common predisposing alleles. To date, rare mutations in nine different genes and five risk alleles fulfil this criterion. Mutated genes represent three genes involved in surfactant homeostasis and six genes involved in telomere maintenance. We summarize gene function, gene expressing cells, and pathological consequences of genetic alterations associated with disease. Consequences of the genetic alteration include dysfunctional surfactant processing, ER stress, immune dysregulation, and maintenance of telomere length. Biological evidence shows that these processes point towards a central role for alveolar epithelial type II cell dysfunction. However, tabulation also shows that function and consequence of most common risk alleles are not known. Most importantly, the predisposition of the MUC5B risk allele to disease is not understood. We propose a mechanism whereby MUC5B decreases surface tension lowering capacity of alveolar surfactant at areas with maximal mechanical stress.
Collapse
|
118
|
Mathai SK, Yang IV, Schwarz MI, Schwartz DA. Incorporating genetics into the identification and treatment of Idiopathic Pulmonary Fibrosis. BMC Med 2015; 13:191. [PMID: 26400796 PMCID: PMC4581155 DOI: 10.1186/s12916-015-0434-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/24/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis, the most common form of idiopathic interstitial pneumonia, is characterized by progressive, irreversible scarring of the lung parenchyma. Idiopathic pulmonary fibrosis has a poor prognosis, and there are no medical therapies available that have been shown to improve survival. It is usually sporadic, but there is evidence of familial clustering of pulmonary fibrosis, suggesting a genetic basis for this disease. More recently, studies have confirmed that specific genetic variants are associated with both familial and sporadic forms of pulmonary fibrosis. DISCUSSION Although there are common and rare genetic variants that have been associated with the risk of developing pulmonary fibrosis, the genotyping of patients is not a generally accepted strategy. Better understanding of the interplay between genetic risk and environmental exposure is likely needed to inform both treatment and disease prevention. Several identified disease-associated genetic variants have implications for disease progression and survival, but systematic studies of known genetic variants and their influence on therapeutic efficacy are lacking. Future investigations should focus on understanding phenotypic differences between patients carrying different risk alleles, and clinical studies should be designed to control for the influence of different genetic risk variants on patient outcomes. Inherited genetic factors play a significant role in the risk of developing pulmonary fibrosis. Future studies will be needed to characterize patient phenotypes and to understand how these genetic factors will influence clinical decision-making for both diagnosis and treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Susan K Mathai
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Ivana V Yang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO, 80045, USA.
| | - Marvin I Schwarz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO, 80045, USA.
| | - David A Schwartz
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, 12631 East 17th Avenue, Aurora, CO, 80045, USA.
| |
Collapse
|
119
|
Abstract
The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.
Collapse
Affiliation(s)
- Alison A Bertuch
- a Departments of Pediatrics and Molecular & Human Genetics , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
120
|
Holohan B, De Meyer T, Batten K, Mangino M, Hunt SC, Bekaert S, De Buyzere ML, Rietzschel ER, Spector TD, Wright WE, Shay JW. Decreasing initial telomere length in humans intergenerationally understates age-associated telomere shortening. Aging Cell 2015; 14:669-77. [PMID: 25952108 PMCID: PMC4531080 DOI: 10.1111/acel.12347] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/03/2023] Open
Abstract
Telomere length shortens with aging, and short telomeres have been linked to a wide variety of pathologies. Previous studies suggested a discrepancy in age-associated telomere shortening rate estimated by cross-sectional studies versus the rate measured in longitudinal studies, indicating a potential bias in cross-sectional estimates. Intergenerational changes in initial telomere length, such as that predicted by the previously described effect of a father's age at birth of his offspring (FAB), could explain the discrepancy in shortening rate measurements. We evaluated whether changes occur in initial telomere length over multiple generations in three large datasets and identified paternal birth year (PBY) as a variable that reconciles the difference between longitudinal and cross-sectional measurements. We also clarify the association between FAB and offspring telomere length, demonstrating that this effect is substantially larger than reported in the past. These results indicate the presence of a downward secular trend in telomere length at birth over generational time with potential public health implications.
Collapse
Affiliation(s)
- Brody Holohan
- Department of Cell Biology, UT Southwestern Medical CenterDallas, TX, 75390, USA
| | - Tim De Meyer
- Department of Mathematical Modeling, Statistics and Bioinformatics, University of GhentGhent, 9000, Belgium
| | - Kimberly Batten
- Department of Cell Biology, UT Southwestern Medical CenterDallas, TX, 75390, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College LondonKing’s College London St. Thomas’ Hospital Campus South Wing, Block D, 3rd Floor Westminster Bridge Road, London, SE1 7EH, London, UK
- NIHR Biomedical Research Centre at Guy’s and St. Thomas’ Foundation TrustKing’s College London St. Thomas’ Hospital Campus South Wing, Block D, 3rd Floor Westminster Bridge Road, London, SE1 7EH, London, UK
| | - Steven C Hunt
- Cardiovascular Genetics Division, Department of Internal Medicine, University of UtahSalt Lake City, UT, 84108, USA
| | - Sofie Bekaert
- Bimetra, Clinical Research Center Ghent, Ghent University HospitalGhent, Belgium
| | - Marc L De Buyzere
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent UniversityGhent, Belgium
| | - Ernst R Rietzschel
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent UniversityGhent, Belgium
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College LondonKing’s College London St. Thomas’ Hospital Campus South Wing, Block D, 3rd Floor Westminster Bridge Road, London, SE1 7EH, London, UK
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical CenterDallas, TX, 75390, USA
| | - Jerry W Shay
- Department of Cell Biology, UT Southwestern Medical CenterDallas, TX, 75390, USA
- Center for Excellence in Genomics Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
121
|
Miano M, Lanciotti M, Giardino S, Dufour C. Ser245Tyr TINF2 mutation in a long-term survivor after a second myeloablative SCT following late graft failure for Aplastic Anaemia. Blood Cells Mol Dis 2015; 55:187-8. [DOI: 10.1016/j.bcmd.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/11/2015] [Indexed: 11/25/2022]
|
122
|
Frank AK, Tran DC, Qu RW, Stohr BA, Segal DJ, Xu L. The Shelterin TIN2 Subunit Mediates Recruitment of Telomerase to Telomeres. PLoS Genet 2015; 11:e1005410. [PMID: 26230315 PMCID: PMC4521702 DOI: 10.1371/journal.pgen.1005410] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/02/2015] [Indexed: 11/26/2022] Open
Abstract
Dyskeratosis Congenita (DC) is a heritable multi-system disorder caused by abnormally short telomeres. Clinically diagnosed by the mucocutaneous symptoms, DC patients are at high risk for bone marrow failure, pulmonary fibrosis, and multiple types of cancers. We have recapitulated the most common DC-causing mutation in the shelterin component TIN2 by introducing a TIN2-R282H mutation into cultured telomerase-positive human cells via a knock-in approach. The resulting heterozygous TIN2-R282H mutation does not perturb occupancy of other shelterin components on telomeres, result in activation of telomeric DNA damage signaling or exhibit other characteristics indicative of a telomere deprotection defect. Using a novel assay that monitors the frequency and extension rate of telomerase activity at individual telomeres, we show instead that telomerase elongates telomeres at a reduced frequency in TIN2-R282H heterozygous cells; this recruitment defect is further corroborated by examining the effect of this mutation on telomerase-telomere co-localization. These observations suggest a direct role for TIN2 in mediating telomere length through telomerase, separable from its role in telomere protection. The shelterin complex protects telomeres from being processed by the DNA damage repair machinery, and also regulates telomerase access and activity at telomeres. The only shelterin subunit known to promote telomerase function is TPP1, which mediates telomerase recruitment to telomeres and stimulates telomerase processivity. Mutations in shelterin components cause Dyskeratosis Congenita (DC) and related disease syndromes due to the inability to maintain telomere homeostasis. In this study, we have identified TIN2-R282H, the most common DC-causing mutation in shelterin subunit TIN2, as a separation-of-function mutant which impairs telomerase recruitment to telomeres, but not chromosome end protection. The telomerase recruitment defect conferred by TIN2-R282H is likely through a mechanism independent of TIN2’s role in anchoring TPP1 at telomeres, since TPP1 localization to telomeres is unaffected by the mutation.
Collapse
Affiliation(s)
- Amanda K. Frank
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Duy C. Tran
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Roy W. Qu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, United States of America
| | - Bradley A. Stohr
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - David J. Segal
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, United States of America
| | - Lifeng Xu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
123
|
Alder JK, Stanley SE, Wagner CL, Hamilton M, Hanumanthu VS, Armanios M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 2015; 147:1361-1368. [PMID: 25539146 DOI: 10.1378/chest.14-1947] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Short telomeres are a common defect in idiopathic pulmonary fibrosis, yet mutations in the telomerase genes account for only a subset of these cases. METHODS We identified a family with pulmonary fibrosis, idiopathic infertility, and short telomeres. RESULTS Exome sequencing of blood-derived DNA revealed two mutations in the telomere-binding protein TINF2. The first was a 15-base-pair deletion encompassing the exon 6 splice acceptor site, and the second was a missense mutation, Thr284Arg. Haplotype analysis indicated both variants fell on the same allele. However, lung-derived DNA showed predominantly the Thr284Arg allele, indicating that the deletion seen in the blood was acquired and may have a protective advantage because it diminished expression of the missense mutation. This mosaicism may represent functional reversion in telomere syndromes similar to that described for Fanconi anemia. No mutations were identified in over 40 uncharacterized pulmonary fibrosis probands suggesting that mutant TINF2 accounts for a small subset of familial cases. However, similar to affected individuals in this family, we identified a history of male and female infertility preceding the onset of pulmonary fibrosis in 11% of TERT and TR mutation carriers (five of 45). CONCLUSIONS Our findings identify TINF2 as a mutant telomere gene in familial pulmonary fibrosis and suggest that infertility may precede the presentation of pulmonary fibrosis in a small subset of adults with telomere syndromes.
Collapse
Affiliation(s)
- Jonathan K Alder
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT
| | - Susan E Stanley
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christa L Wagner
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Makenzie Hamilton
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT
| | - Vidya Sagar Hanumanthu
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mary Armanios
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
124
|
Stanley SE, Armanios M. The short and long telomere syndromes: paired paradigms for molecular medicine. Curr Opin Genet Dev 2015; 33:1-9. [PMID: 26232116 DOI: 10.1016/j.gde.2015.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 01/26/2023]
Abstract
Recent advances have defined a role for abnormally short telomeres in a broad spectrum of genetic disorders. They include rare conditions such as dyskeratosis congenita as well pulmonary fibrosis and emphysema. Now, there is new evidence that some familial cancers, such as melanoma, are caused by mutations that lengthen telomeres. Here, we examine the significance of these short and long telomere length extremes for understanding the molecular basis of age-related disease and cancer.
Collapse
Affiliation(s)
- Susan E Stanley
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States; McKusick Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States.
| |
Collapse
|
125
|
Triallelic and epigenetic-like inheritance in human disorders of telomerase. Blood 2015; 126:176-84. [PMID: 26024875 DOI: 10.1182/blood-2015-03-633388] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/14/2015] [Indexed: 01/17/2023] Open
Abstract
Dyskeratosis congenita (DC) and related diseases are a heterogeneous group of disorders characterized by impaired telomere maintenance, known collectively as the telomeropathies. Disease-causing variants have been identified in 10 telomere-related genes including the reverse transcriptase (TERT) and the RNA component (TERC) of the telomerase complex. Variants in TERC and TERT can impede telomere elongation causing stem cells to enter premature replicative senescence and/or apoptosis as telomeres become critically short. This explains the major impact of the disease on highly proliferative tissues such as the bone marrow and skin. However, telomerase variants are not always fully penetrant and in some families disease-causing variants are seen in asymptomatic family members. As a result, determining the pathogenic status of newly identified variants in TERC or TERT can be quite challenging. Over a 3-year period, we have identified 26 telomerase variants (16 of which are novel) in 23 families. Additional investigations (including family segregation and functional studies) enabled these to be categorized into 3 groups: (1) disease-causing (n = 15), (2) uncertain status (n = 6), and (3) bystanders (n = 5). Remarkably, this process has also enabled us to identify families with novel mechanisms of inheriting human telomeropathies. These include triallelic mutations, involving 2 different telomerase genes, and an epigenetic-like inheritance of short telomeres in the absence of a telomerase mutation. This study therefore highlights that telomerase variants have highly variable functional and clinical manifestations and require thorough investigation to assess their pathogenic contribution.
Collapse
|
126
|
Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the pathogenesis of Hoyeraal-Hreidarsson syndrome, a complex telomere biology disorder. Br J Haematol 2015; 170:457-71. [PMID: 25940403 DOI: 10.1111/bjh.13442] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hoyeraal-Hreidarsson (HH) syndrome is a multisystem genetic disorder characterized by very short telomeres and considered a clinically severe variant of dyskeratosis congenita. The main cause of mortality, usually in early childhood, is bone marrow failure. Mutations in several telomere biology genes have been reported to cause HH in about 60% of the HH patients, but the genetic defects in the rest of the patients are still unknown. Understanding the aetiology of HH and its diverse manifestations is challenging because of the complexity of telomere biology and the multiple telomeric and non-telomeric functions played by telomere-associated proteins in processes such as telomere replication, telomere protection, DNA damage response and ribosome and spliceosome assembly. Here we review the known clinical complications, molecular defects and germline mutations associated with HH, and elucidate possible mechanistic explanations and remaining questions in our understanding of the disease.
Collapse
Affiliation(s)
- Galina Glousker
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Fabien Touzot
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
127
|
Abstract
Dyskeratosis congenita (DC) is an inherited BM failure disorder that is associated with mutations in genes involved with telomere function and maintenance; however, the genetic cause of many instances of DC remains uncharacterized. In this issue of the JCI, Tummala and colleagues identify mutations in the gene encoding the poly(A)-specific ribonuclease (PARN) in individuals with a severe form of DC in three different families. PARN deficiency resulted in decreased expression of genes required for telomere maintenance and an aberrant DNA damage response, including increased levels of p53. Together, the results of this study support PARN as a DC-associated gene and suggest a potential link between p53 and telomere shortening.
Collapse
|
128
|
Abstract
Fanconi anemia (FA) is a genetically and phenotypically heterogeneous disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer, particularly hematological malignancies and solid tumors of the head and neck. The main role of FA proteins is in the repair of DNA interstrand crosslinks (ICLs). FA results from pathogenic variants in at least sixteen distinct genes, causing genomic instability. Although the highly variable phenotype makes accurate diagnosis on the basis of clinical manifestations difficult in some patients, diagnosis based on a profound sensitivity to DNA-crosslinking agents can be used to identify the pre-anemia patient as well as patients with aplastic anemia or leukemia who may or may not have the physical stigmata associated with the syndrome. Diepoxybutane (DEB) analysis is the preferred test for FA because other agents have higher rates of false-positive and false-negative results.
Collapse
Affiliation(s)
- Arleen D Auerbach
- Program in Human Genetics and Hematology, The Rockefeller University, New York, New York
| |
Collapse
|
129
|
Liu JP. Molecular mechanisms of ageing and related diseases. Clin Exp Pharmacol Physiol 2015; 41:445-58. [PMID: 24798238 DOI: 10.1111/1440-1681.12247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/07/2014] [Accepted: 04/24/2014] [Indexed: 11/29/2022]
Abstract
Human and other multicellular life species age, and ageing processes become dominant during the late phase of life. Recent studies challenge this dogma, suggesting that ageing does not occur in some animal species. In mammals, cell replicative senescence occurs as early as before birth (i.e. in embryos) under physiological conditions. How the molecular machinery operates and why ageing cells dominate under some circumstances are intriguing questions. Recent studies show that cell ageing involves extensive cellular remodelling, including telomere attrition, heterochromatin formation, endoplasmic reticulum stress, mitochondrial disorders and lysosome processing organelles and chromatins. This article provides an update on the molecular mechanisms underlying the ageing of various cell types, the newly described developmental and programmed replicative senescence and the critical roles of cellular organelles and effectors in Parkinson's disease, diabetes, hypertension and dyskeratosis congenita.
Collapse
Affiliation(s)
- Jun-Ping Liu
- Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Zhejiang, China; Department of Immunology, Monash University Central Clinical School, Prahran, Victoria, Australia; Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
130
|
Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding. Biochem J 2015; 465:347-57. [PMID: 25365545 DOI: 10.1042/bj20140922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight.
Collapse
|
131
|
Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate. Cell 2015; 160:1013-1026. [PMID: 25684364 DOI: 10.1016/j.cell.2015.01.038] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/15/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
VIDEO ABSTRACT Aging is a complex process that affects multiple organs. Modeling aging and age-related diseases in the lab is challenging because classical vertebrate models have relatively long lifespans. Here, we develop the first platform for rapid exploration of age-dependent traits and diseases in vertebrates, using the naturally short-lived African turquoise killifish. We provide an integrative genomic and genome-editing toolkit in this organism using our de-novo-assembled genome and the CRISPR/Cas9 technology. We mutate many genes encompassing the hallmarks of aging, and for a subset, we produce stable lines within 2-3 months. As a proof of principle, we show that fish deficient for the protein subunit of telomerase exhibit the fastest onset of telomere-related pathologies among vertebrates. We further demonstrate the feasibility of creating specific genetic variants. This genome-to-phenotype platform represents a unique resource for studying vertebrate aging and disease in a high-throughput manner and for investigating candidates arising from human genome-wide studies.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Ben Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Chi-Kuo Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Matthew F Pech
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Biochemistry Department, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Elisa Zhang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sabrina C Sharp
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Biochemistry Department, Stanford University School of Medicine, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging at Stanford, Stanford, CA 94305, USA.
| |
Collapse
|
132
|
Sharma A, Myers K, Ye Z, D’Orazio J. Dyskeratosis congenita caused by a novel TERT point mutation in siblings with pancytopenia and exudative retinopathy. Pediatr Blood Cancer 2014; 61:2302-4. [PMID: 25067791 PMCID: PMC4205177 DOI: 10.1002/pbc.25161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/02/2014] [Indexed: 01/07/2023]
Abstract
Two siblings presenting with exudative retinopathy, thrombocytopenia, and macrocytosis were found to have markedly shortened telomeres and a previously unreported inherited mutation in TERT, c.2603A>G. Revesz syndrome, a subtype of dyskeratosis congenita (DC) caused by TINF2 mutation, combines marrow failure with exudative retinopathy, intracranial calcifications, and neurocognitive impairment. As our patients manifested neither intracranial calcification nor significant neurocognitive impairment, we conclude that the c.2603A>G TERT mutation may define a subtype of DC manifesting first as exudative retinopathy without other signs of DC. Children with exudative retinopathy should be periodically screened for macrocytosis and cytopenias to evaluate for underlying DC.
Collapse
Affiliation(s)
- Akshay Sharma
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kasiani Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio
| | - Zhan Ye
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - John D’Orazio
- Department of Pediatrics, University of Kentucky College of Medicine, Lexington, Kentucky,Correspondence to: John D’Orazio, Markey Cancer Center, Combs Research Building, 800 Rose Street, Lexington, KY 40536.
| |
Collapse
|
133
|
|
134
|
Inherited bone marrow failure associated with germline mutation of ACD, the gene encoding telomere protein TPP1. Blood 2014; 124:2767-74. [PMID: 25205116 DOI: 10.1182/blood-2014-08-596445] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme that is necessary for overcoming telomere shortening in human germ and stem cells. Mutations in telomerase or other telomere-maintenance proteins can lead to diseases characterized by depletion of hematopoietic stem cells and bone marrow failure (BMF). Telomerase localization to telomeres requires an interaction with a region on the surface of the telomere-binding protein TPP1 known as the TEL patch. Here, we identify a family with aplastic anemia and other related hematopoietic disorders in which a 1-amino-acid deletion in the TEL patch of TPP1 (ΔK170) segregates with disease. All family members carrying this mutation, but not those with wild-type TPP1, have short telomeres. When introduced into 293T cells, TPP1 with the ΔK170 mutation is able to localize to telomeres but fails to recruit telomerase to telomeres, supporting a causal relationship between this TPP1 mutation and bone marrow disorders. ACD/TPP1 is thus a newly identified telomere-related gene in which mutations cause aplastic anemia and related BMF disorders.
Collapse
|
135
|
Sokolov M, Brownstein Z, Frydman M, Avraham KB. Apparent phenotypic anticipation in autosomal dominant connexin 26 deafness. J Basic Clin Physiol Pharmacol 2014; 25:289-92. [PMID: 25153233 DOI: 10.1515/jbcpp-2014-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/07/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND Connexin 26 (GJB2) mutations are associated with various types of hearing loss, either without associated symptoms or with skin disease, constituting a form of syndromic hearing loss. These mutations can lead to deafness in either a recessive or a dominant autosomal form of inheritance. METHODS Ascertainment of a Jewish Ashkenazi family with nonsyndromic hearing loss led to the construction of a pedigree for a four-generation family, with hearing loss detected in three successive generations. The entire coding region of the GJB2 gene was amplified and sequenced by Sanger sequencing. RESULTS Audiological analysis revealed that the age of onset and severity of hearing loss were earlier and more severe, respectively, in each successive generation of an Ashkenazi Jewish family. A mutation, c.224G>A, leading to missense p.Arg75Gln was detected only in the affected members of the family. CONCLUSIONS The entire coding region of GJB2 should be checked in hearing-impaired patients by Sanger sequencing, rather than examination only of the two most prevalent mutations, regardless of mode of inheritance or ethnicity. Furthermore, predictions regarding phenotype based on genotype can be difficult to make due to clinical variability in multigenerational families, as demonstrated in the family presented in this study.
Collapse
|
136
|
Fernández García MS, Teruya-Feldstein J. The diagnosis and treatment of dyskeratosis congenita: a review. J Blood Med 2014; 5:157-67. [PMID: 25170286 PMCID: PMC4145822 DOI: 10.2147/jbm.s47437] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dyskeratosis congenita (DC) is an inherited bone marrow failure (BMF) syndrome characterized by the classic triad of abnormal skin pigmentation, nail dystrophy, and oral leukoplakia. However, patients usually develop BMF and are predisposed to cancer, with increased risk for squamous cell carcinoma and hematolymphoid neoplasms. DC is a disease of defective telomere maintenance and is heterogeneous at the genetic level. It can be inherited in X-linked, autosomal dominant, or autosomal recessive patterns. Mutations in at least ten telomere- and telomerase-associated genes have been described in DC. There are no targeted therapies for DC and patients usually die of BMF due to a deficient renewing capability of hematopoietic stem cells. Allogeneic hematopoietic stem cell transplantation is the only curative treatment for BMF.
Collapse
Affiliation(s)
- M Soledad Fernández García
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA ; Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | |
Collapse
|
137
|
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal disease for which there is an ever-expanding body of genetic and related pathophysiological information on disease pathogenesis. Many germline gene mutations have now been described, including mutations in the gene coding bone morphogenic protein receptor type 2 (BMPR2) and related genes. Recent advanced gene-sequencing methods have facilitated the discovery of additional genes with mutations among those with and those without familial forms of PAH (CAV1, KCNK3, EIF2AK4). The reduced penetrance, variable expressivity, and female predominance of PAH suggest that genetic, genomic, and other factors modify disease expression. These multi-faceted variations are an active area of investigation in the field, including but not limited to common genetic variants and epigenetic processes, and may provide novel opportunities for pharmacological intervention in the near future. They also highlight the need for a systems-oriented multi-level approach to incorporate the multitude of biological variations now associated with PAH. Ultimately, an in-depth understanding of the genetic factors relevant to PAH provides the opportunity for improved patient and family counseling about this devastating disease.
Collapse
Affiliation(s)
- Eric D Austin
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN.
| | - James E Loyd
- From the Division of Allergy, Pulmonary, and Immunology Medicine, Department of Pediatrics (E.D.A.) and Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine (J.E.L.), Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN
| |
Collapse
|
138
|
Xi L, Cech TR. Inventory of telomerase components in human cells reveals multiple subpopulations of hTR and hTERT. Nucleic Acids Res 2014; 42:8565-77. [PMID: 24990373 PMCID: PMC4117779 DOI: 10.1093/nar/gku560] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Telomerase is the ribonucleoprotein (RNP) enzyme that elongates telomeric DNA to compensate for the attrition occurring during each cycle of DNA replication. Knowing the levels of telomerase in continuously dividing cells is important for understanding how much telomerase is required for cell immortality. In this study, we measured the endogenous levels of the human telomerase RNP and its two key components, human telomerase RNA (hTR) and human telomerase reverse transcriptase (hTERT). We estimate ∼240 telomerase monomers per cell for HEK 293T and HeLa, a number similar to that of telomeres in late S phase. The subunits were in excess of RNPs (e.g. ∼1150 hTR and ∼500 hTERT molecules per HeLa cell), suggesting the existence of unassembled components. This hypothesis was tested by overexpressing individual subunits, which increased total telomerase activity as measured by the direct enzyme assay. Thus, there are subpopulations of both hTR and hTERT not assembled into telomerase but capable of being recruited. We also determined the specific activity of endogenous telomerase and of overexpressed super-telomerase both to be ∼60 nt incorporated per telomerase per minute, with Km(dGTP) ∼17 μM, indicating super-telomerase is as catalytically active as endogenous telomerase and is thus a good model for biochemical studies.
Collapse
Affiliation(s)
- Linghe Xi
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Thomas R Cech
- University of Colorado BioFrontiers Institute, Boulder, CO 80303, USA Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80303, USA
| |
Collapse
|
139
|
Holohan B, Wright WE, Shay JW. Cell biology of disease: Telomeropathies: an emerging spectrum disorder. ACTA ACUST UNITED AC 2014; 205:289-99. [PMID: 24821837 PMCID: PMC4018777 DOI: 10.1083/jcb.201401012] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A constellation of related genetic diseases are caused by defects in the telomere maintenance machinery. These disorders, often referred to as telomeropathies, share symptoms and molecular mechanisms, and mounting evidence indicates they are points along a spectrum of disease. Several new causes of these disorders have been recently discovered, and a number of related syndromes may be unrecognized telomeropathies. Progress in the clinical understanding of telomeropathies has in turn driven progress in the basic science of telomere biology. In addition, the pattern of genetic anticipation in some telomeropathies generates thought-provoking questions about the way telomere length impacts the course of these diseases.
Collapse
Affiliation(s)
- Brody Holohan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | |
Collapse
|
140
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
141
|
Silhan LL, Shah PD, Chambers DC, Snyder LD, Riise GC, Wagner CL, Hellström-Lindberg E, Orens JB, Mewton JF, Danoff SK, Arcasoy MO, Armanios M. Lung transplantation in telomerase mutation carriers with pulmonary fibrosis. Eur Respir J 2014; 44:178-87. [PMID: 24833766 PMCID: PMC4076528 DOI: 10.1183/09031936.00060014] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung transplantation is the only intervention that prolongs survival in idiopathic pulmonary fibrosis (IPF). Telomerase mutations are the most common identifiable genetic cause of IPF, and at times, the telomere defect manifests in extrapulmonary disease such as bone marrow failure. The relevance of this genetic diagnosis for lung transplant management has not been examined. We gathered an international series of telomerase mutation carriers who underwent lung transplant in the USA, Australia and Sweden. The median age at transplant was 52 years. Seven recipients are alive with a median follow-up of 1.9 years (range 6 months to 9 years); one died at 10 months. The most common complications were haematological, with recipients requiring platelet transfusion support (88%) and adjustment of immunosuppressives (100%). Four recipients (50%) required dialysis for tubular injury and calcineurin inhibitor toxicity. These complications occurred at significantly higher rates relative to historic series (p<0.0001). Our observations support the feasibility of lung transplantation in telomerase mutation carriers; however, severe post-transplant complications reflecting the syndromic nature of their disease appear to occur at higher rates. While these findings need to be expanded to other cohorts, caution should be exercised when approaching the transplant evaluation and management of this subset of pulmonary fibrosis patients. Telomerase mutation carriers with IPF may be prone to complications from their underlying telomere syndrome after LTxhttp://ow.ly/wmy6P
Collapse
Affiliation(s)
- Leann L Silhan
- Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pali D Shah
- Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel C Chambers
- Dept of Medicine, The Prince Charles Hospital, Brisbane, Australia The University of Queensland, Queensland Lung Transplant Service, The Prince Charles Hospital Brisbane, Australia
| | - Laurie D Snyder
- Dept of Medicine, Duke University School of Medicine, Durham, NC, USA
| | | | - Christa L Wagner
- Dept of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Jonathan B Orens
- Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sonye K Danoff
- Dept of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Murat O Arcasoy
- Dept of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Mary Armanios
- Dept of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
142
|
Spagnolo P, Grunewald J, du Bois RM. Genetic determinants of pulmonary fibrosis: evolving concepts. THE LANCET RESPIRATORY MEDICINE 2014; 2:416-28. [DOI: 10.1016/s2213-2600(14)70047-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
143
|
Petkova R, Chicheva Z, Chakarov S. Measuring Telomere Length—From Ends to Means. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
144
|
Barkauskas CE, Noble PW. Cellular mechanisms of tissue fibrosis. 7. New insights into the cellular mechanisms of pulmonary fibrosis. Am J Physiol Cell Physiol 2014; 306:C987-96. [PMID: 24740535 DOI: 10.1152/ajpcell.00321.2013] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by severe and progressive scar formation in the gas-exchange regions of the lung. Despite years of research, therapeutic treatments remain elusive and there is a pressing need for deeper mechanistic insights into the pathogenesis of the disease. In this article, we review our current knowledge of the triggers and/or perpetuators of pulmonary fibrosis with special emphasis on the alveolar epithelium and the underlying mesenchyme. In doing so, we raise a number of questions highlighting critical voids and limitations in our current understanding and study of this disease.
Collapse
Affiliation(s)
- Christina E Barkauskas
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina; and
| | - Paul W Noble
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
145
|
Realizing the promise of cancer predisposition genes. Nature 2014; 505:302-8. [PMID: 24429628 DOI: 10.1038/nature12981] [Citation(s) in RCA: 422] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/21/2013] [Indexed: 12/14/2022]
Abstract
Genes in which germline mutations confer highly or moderately increased risks of cancer are called cancer predisposition genes. More than 100 of these genes have been identified, providing important scientific insights in many areas, particularly the mechanisms of cancer causation. Moreover, clinical utilization of cancer predisposition genes has had a substantial impact on diagnosis, optimized management and prevention of cancer. The recent transformative advances in DNA sequencing hold the promise of many more cancer predisposition gene discoveries, and greater and broader clinical applications. However, there is also considerable potential for incorrect inferences and inappropriate clinical applications. Realizing the promise of cancer predisposition genes for science and medicine will thus require careful navigation.
Collapse
|
146
|
West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci 2014; 1310:111-8. [PMID: 24467820 DOI: 10.1111/nyas.12346] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The familial myelodysplastic (MDS)/acute leukemia (AL) predisposition syndromes are inherited disorders that lead to significantly increased lifetime risks of MDS and AL development. At present, four recognized syndromes have Clinical Laboratory Improvement Amendments--certified testing for their respective germ-line mutations: telomere biology disorders due to mutation of TERC or TERT, familial acute myeloid leukemia (AML) with mutated CEBPA, familial MDS/AML with mutated GATA2, and familial platelet disorder with propensity to myeloid malignancy. These disorders are heterogeneous with regard to their causative genetic mutations, clinical presentation, and progression to MDS/AL. However, as a group, they all share the unique requirement for a high index of clinical suspicion to allow appropriate genetic counseling, genetic testing, and mutation-specific clinical management. In addition, translational investigations of individuals and families with these syndromes provide a rare opportunity to understand key pathways underlying susceptibility and progression to MDS/AL and allow the possibility of novel strategies for the prevention and treatment of both familial and sporadic forms of MDS/AL.
Collapse
Affiliation(s)
- Allison H West
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | | | | |
Collapse
|
147
|
Frescas D, de Lange T. A TIN2 dyskeratosis congenita mutation causes telomerase-independent telomere shortening in mice. Genes Dev 2014; 28:153-66. [PMID: 24449270 PMCID: PMC3909789 DOI: 10.1101/gad.233395.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022]
Abstract
The progressive bone marrow failure syndrome dyskeratosis congenita (DC) is often caused by mutations in telomerase or the factors involved in telomerase biogenesis and trafficking. However, a subset of DC patients is heterozygous for mutations in the shelterin component TIN2. To determine how the TIN2-DC mutations affect telomere function, we generated mice with the equivalent of the TIN2 K280E DC allele (TIN2(DC)) by gene targeting. Whereas homozygous TIN2(DC/DC) mice were not viable, first-generation TIN2(+/DC) mice were healthy and fertile. In the second and third generations, the TIN2(+/DC) mice developed mild pancytopenia, consistent with hematopoietic dysfunction in DC, as well as diminished fecundity. Bone marrow telomeres of TIN2(+/DC) mice shortened over the generations, and immortalized TIN2(+/DC) mouse embryonic fibroblasts (MEFs) showed telomere shortening with proliferation. Unexpectedly, telomere shortening was accelerated in TIN2(+/DC) mTR(-/-) mice and MEFs compared with TIN2(+/+) mTR(-/-) controls, establishing that the TIN2(DC) telomere maintenance defect was not solely due to diminished telomerase action. The TIN2(DC) allele induced mild ATR kinase signaling at telomeres and a fragile telomere phenotype, suggestive of telomere replication problems. These data suggest that this TIN2-DC mutation could induce telomeric dysfunction phenotypes in telomerase-negative somatic cells and tissues that further exacerbate the telomere maintenance problems in telomerase-positive stem cell compartments.
Collapse
Affiliation(s)
- David Frescas
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
148
|
Marrone A, Dokal I. Dyskeratosis congenita: a disorder of telomerase deficiency and its relationship to other diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.1.3.463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
149
|
|
150
|
Savage SA. Human telomeres and telomere biology disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 125:41-66. [PMID: 24993697 DOI: 10.1016/b978-0-12-397898-1.00002-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Telomeres consist of long nucleotide repeats and a protein complex at chromosome ends essential for chromosome stability. Telomeres shorten with each cell division and thus are markers of cellular age. Dyskeratosis congenita (DC) is a cancer-prone inherited bone marrow failure syndrome caused by germ-line mutations in key telomere biology genes that result in extremely short telomeres. The triad of nail dysplasia, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC but highly variable. Patients with DC may also have but numerous other medical problems, including pulmonary fibrosis, liver abnormalities, avascular necrosis of the hips, and stenosis of the esophagus, lacrimal ducts, and/or urethra. All modes of inheritance have been reported in DC and de novo mutations are common. Broad phenotypic heterogeneity occurs within DC. Clinically severe variants of DC are Hoyeraal-Hreidarsson syndrome and Revesz syndrome. Coats plus syndrome joined the spectrum of DC with the discovery that it is caused by mutations in a telomere-capping gene. Less clinically severe variants, such as subsets of apparently isolated aplastic anemia or pulmonary fibrosis, have also been recognized. These patients may not have the DC-associated mucocutaneous triad or complicated medical features, but they do have the same underlying genetic etiology. This has led to the use of the descriptive term telomere biology disorder (TBD). This chapter will review the connection between telomere biology and human disease through the examples of DC and its related TBDs.
Collapse
Affiliation(s)
- Sharon A Savage
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|