101
|
Dasgupta S, Ray SK. Ceramide and Sphingosine Regulation of Myelinogenesis: Targeting Serine Palmitoyltransferase Using microRNA in Multiple Sclerosis. Int J Mol Sci 2019; 20:E5031. [PMID: 31614447 PMCID: PMC6834223 DOI: 10.3390/ijms20205031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ceramide and sphingosine display a unique profile during brain development, indicating their critical role in myelinogenesis. Employing advanced technology such as gas chromatography-mass spectrometry, high performance liquid chromatography, and immunocytochemistry, along with cell culture and molecular biology, we have found an accumulation of sphingosine in brain tissues of patients with multiple sclerosis (MS) and in the spinal cord of rats induced with experimental autoimmune encephalomyelitis. The elevated sphingosine leads to oligodendrocyte death and fosters demyelination. Ceramide elevation by serine palmitoyltransferse (SPT) activation was the primary source of the sphingosine elevation as myriocin, an inhibitor of SPT, prevented sphingosine elevation and protected oligodendrocytes. Supporting this view, fingolimod, a drug used for MS therapy, reduced ceramide generation, thus offering partial protection to oligodendrocytes. Sphingolipid synthesis and degradation in normal development is regulated by a series of microRNAs (miRNAs), and hence, accumulation of sphingosine in MS may be prevented by employing miRNA technology. This review will discuss the current knowledge of ceramide and sphingosine metabolism (synthesis and breakdown), and how their biosynthesis can be regulated by miRNA, which can be used as a therapeutic approach for MS.
Collapse
Affiliation(s)
- Somsankar Dasgupta
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA.
| |
Collapse
|
102
|
Tsai DY, Hung KH, Chang CW, Lin KI. Regulatory mechanisms of B cell responses and the implication in B cell-related diseases. J Biomed Sci 2019; 26:64. [PMID: 31472685 PMCID: PMC6717636 DOI: 10.1186/s12929-019-0558-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Terminally differentiated B cell, the plasma cell, is the sole cell type capable of producing antibodies in our body. Over the past 30 years, the identification of many key molecules controlling B cell activation and differentiation has elucidated the molecular pathways for generating antibody-producing plasma cells. Several types of regulation modulating the functions of the important key molecules in B cell activation and differentiation add other layers of complexity in shaping B cell responses following antigen exposure in the absence or presence of T cell help. Further understanding of the mechanisms contributing to the proper activation and differentiation of B cells into antibody-secreting plasma cells may enable us to develop new strategies for managing antibody humoral responses during health and disease. Herein, we reviewed the effect of different types of regulation, including transcriptional regulation, post-transcriptional regulation and epigenetic regulation, on B cell activation, and on mounting memory B cell and antibody responses. We also discussed the link between the dysregulation of the abovementioned regulatory mechanisms and B cell-related disorders.
Collapse
Affiliation(s)
- Dong-Yan Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Kuo-Hsuan Hung
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan
| | - Chia-Wei Chang
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang Dist, Taipei, 115, Taiwan. .,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, 110, Taiwan.
| |
Collapse
|
103
|
Al‐Rawaf HA, Alghadir AH, Gabr SA. MicroRNAs as Biomarkers of Pain Intensity in Patients With Chronic Fatigue Syndrome. Pain Pract 2019; 19:848-860. [DOI: 10.1111/papr.12817] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Hadeel A. Al‐Rawaf
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Ahmad H. Alghadir
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| | - Sami A. Gabr
- Rehabilitation Research Chair College of Applied Medical Sciences King Saud University Riyadh K.S.A
| |
Collapse
|
104
|
Farzaneh M, Alishahi M, Derakhshan Z, Sarani NH, Attari F, Khoshnam SE. The Expression and Functional Roles of miRNAs in Embryonic and Lineage-Specific Stem Cells. Curr Stem Cell Res Ther 2019; 14:278-289. [PMID: 30674265 DOI: 10.2174/1574888x14666190123162402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
The discovery of small non-coding RNAs began an interesting era in cellular and molecular biology. To date, miRNAs are the best recognized non-coding RNAs for maintenance and differentiation of pluripotent stem cells including embryonic stem cells (ES), induced pluripotent stem cells (iPSC), and cancer stem cells. ES cells are defined by their ability to self-renew, teratoma formation, and to produce numerous types of differentiated cells. Dual capacity of ES cells for self-renewal and differentiation is controlled by specific interaction with the neighboring cells and intrinsic signaling pathways from the level of transcription to translation. The ES cells have been the suitable model for evaluating the function of non-coding RNAs and in specific miRNAs. So far, the general function of the miRNAs in ES cells has been assessed in mammalian and non-mammalian stem cells. Nowadays, the evolution of sequencing technology led to the discovery of numerous miRNAs in human and mouse ES cells that their expression levels significantly changes during proliferation and differentiation. Several miRNAs have been identified in ectoderm, mesoderm, and endoderm cells, as well. This review would focus on recent knowledge about the expression and functional roles of miRNAs in embryonic and lineage-specific stem cells. It also describes that miRNAs might have essential roles in orchestrating the Waddington's landscape structure during development.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Derakhshan
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda H Sarani
- Faculty of Paramedical, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnoosh Attari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
105
|
Saadatian Z, Nariman-Saleh-Fam Z, Bastami M, Mansoori Y, Khaheshi I, Parsa SA, Daraei A, Vahed SZ, Yousefi B, Kafil HS, Eyvazi S, Ghaderian SMH, Omrani MD. Dysregulated expression of STAT1, miR-150, and miR-223 in peripheral blood mononuclear cells of coronary artery disease patients with significant or insignificant stenosis. J Cell Biochem 2019; 120:19810-19824. [PMID: 31318097 DOI: 10.1002/jcb.29286] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Coronary artery disease (CAD) is a multicellular disease characterized by chronic inflammation. Peripheral blood-mononuclear cells (PBMCs), as a critical component of immune system, actively cross-talk with pathophysiological conditions induced by endothelial cell injury, reflecting in perturbed PBMC expression. STAT1 is believed to be relevant to CAD pathogenesis through regulating key inflammatory processes and modulating STAT1 expression play key roles in fine-tuning CAD-related inflammatory processes. This study evaluated PBMC expressions of STAT1, and its regulators (miR-150 and miR-223) in a cohort including 72 patients with CAD with significant ( ≥ 50%) stenosis, 30 patients with insignificant ( < 50%) coronary stenosis (ICAD), and 74 healthy controls, and assessed potential of PBMC expressions to discriminate between patients and controls. We designed quantitative real-time polymerase chain reaction (RT-qPCR) assays and identified stable reference genes for normalizing PBMC quantities of miR-150, miR-223, and STAT1 applying geNorm algorithm to six small RNAs and five mRNAs. There was no significant difference between CAD and ICAD patients regarding STAT1 expression. However, both groups of patients had higher levels of STAT1 than healthy controls. miR-150 and miR-223 were differently expressed across three groups of subjects and were downregulated in patients compared with healthy controls, with the lowest expression levels being observed in patients with ICAD. ROC curves suggested that PBMC expressions may separate between different groups of study subjects. PBMC expressions also discriminated different clinical manifestations of CAD from ICADs or healthy controls. In conclusion, the present study reported PBMC dysregulations of STAT1, miR-150, and miR-223, in patients with significant or insignificant coronary stenosis and suggested that these changes may have diagnostic implications.
Collapse
Affiliation(s)
- Zahra Saadatian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Isa Khaheshi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour Parsa
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Daraei
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | | | - Bahman Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Eyvazi
- Department of Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Hou L, Zhu L, Li H, Jiang F, Cao L, Hu CY, Wang C. MiR-501-3p Forms a Feedback Loop with FOS, MDFI, and MyoD to Regulate C2C12 Myogenesis. Cells 2019; 8:cells8060573. [PMID: 31212688 PMCID: PMC6627719 DOI: 10.3390/cells8060573] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle plays an essential role in maintaining body energy homeostasis and body flexibility. Loss of muscle mass leads to slower wound healing and recovery from illness, physical disability, poor quality of life, and higher health care costs. So, it is critical for us to understand the mechanism of skeletal muscle myogenic differentiation for maintaining optimal health throughout life. miR-501-3p is a novel muscle-specific miRNA, and its regulation mechanism on myoblast myogenic differentiation is still not clear. We demonstrated that FOS was a direct target gene of miR-501-3p, and MyoD regulated miR-501-3p host gene Clcn5 through bioinformatics prediction. Our previous laboratory experiment found that MDFI overexpression promoted C2C12 myogenic differentiation and MyoD expression. The database also showed there is an FOS binding site in the MDFI promoter region. Therefore, we hypothesize that miR-501-3p formed a feedback loop with FOS, MDFI, and MyoD to regulate myoblast differentiation. To validate our hypothesis, we demonstrated miR-501-3p function in the proliferation and differentiation period of C2C12 cells by transfecting cells with miR-501-3p mimic and inhibitor. Then, we confirmed there is a direct regulatory relationship between miR-501-3p and FOS, MyoD and miR-501-3p, FOS and MDFI through QPCR, dual-luciferase reporter system, and ChIP experiments. Our results not only expand our understanding of the muscle myogenic development mechanism in which miRNA and genes participate in controlling skeletal muscle development, but also provide treatment strategies for skeletal muscle or metabolic-related diseases in the future.
Collapse
Affiliation(s)
- Lianjie Hou
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Linhui Zhu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Huaqin Li
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Fangyi Jiang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Lingbo Cao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| | - Ching Yuan Hu
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | - Chong Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
107
|
Getaneh Z, Asrie F, Melku M. MicroRNA profiles in B-cell non-Hodgkin lymphoma. EJIFCC 2019; 30:195-214. [PMID: 31263393 PMCID: PMC6599190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
B-cell non-Hodgkin's lymphomas are tumors of B-cells that arise following clonal expansion and consequent invasion of immune organs by B-cells blocked at a certain step of the differentiation process. Genetic abnormalities with altered gene expression are common in the transformed state of B-cells at any stage of B-cell development. These stages are regulated by a combination of transcription factors, epigenetic modifications, microRNAs, and extrinsic signals. MicroRNAs are a class of short non-coding single-stranded RNAs implicated in the regulation of mRNA function and translation. Each microRNA can regulate multiple transcripts; and a transcript is under potential control by multiple microRNAs. Their dysregulation can contribute to the pathogenesis of B-cell non-Hodgkin lymphomas, and they could be used as a potential target for diagnosis, evaluation of prognosis and therapy monitoring. The mechanisms of microRNA dysregulation range from dysregulation of the DNA sequences encoding the microRNAs to transcriptional regulation of microRNA loci. In this review, we summarized the microRNA profiles of the most common B-cell Non-Hodgkin Lymphomas for the pathogenesis, diagnosis and their potential therapeutic implications.
Collapse
Affiliation(s)
- Zegeye Getaneh
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Ethiopia
| | | | | |
Collapse
|
108
|
MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res 2019; 123:35-41. [PMID: 30315850 DOI: 10.1016/j.mvr.2018.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023]
Abstract
Venous thromboembolism (VTE), encompassing deep venous thrombosis (DVT) and pulmonary embolism (PE), is the third most common cardiovascular disease. miR-150 is one of important microRNAs which play critical role in various cellular function such as endothelial progenitor cells (EPCs). In this study, we investigate the effect of miR-150 on EPCs function ex vivo and thrombus resolution in vivo. We determined miR-150 expression in EPCs isolated from DVT patients and control subjects by RT-PCR. Potential target of miR-150 was confirmed by bioinformatics analysis and luciferase reporter respectively. The angiogenesis and proliferation were tested by MTT and tube formation assay. A murine model of venous thrombosis was developed as in vivo model. Finally, the effect of miR-150 on EPCs with inferior venous thrombosis were evaluated in vivo. Our data showed that miR-150 was downregulated in EPCs from DVT patients. By using miR-150 agomir and antagomir, we found that miR-150 promoted angiogenesis and proliferation of EPCs. Bioinformatics analysis revealed SRCIN1 as a target of miR-150 and SRCIN1 knockdown inhibited function of EPCs. Forced expression of miR-150 contributed thrombus resolution in a murine model of venous thrombosis. In general, miR-150 was downregulated in EPCs from DVT. Upregulation of miR-150 promoted angiogenesis and proliferation of EPCs by targeting SRCIN1 in vitro and thrombus resolution in vivo.
Collapse
|
109
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
110
|
Integrative genomic analysis of peritoneal malignant mesothelioma: understanding a case with extraordinary chemotherapy response. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a003566. [PMID: 30862609 PMCID: PMC6549577 DOI: 10.1101/mcs.a003566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/17/2019] [Indexed: 12/31/2022] Open
Abstract
Peritoneal malignant mesothelioma is a rare disease with a generally poor prognosis and poor response to chemotherapy. To improve survival there is a need for increased molecular understanding of the disease, including chemotherapy sensitivity and resistance. We here present an unusual case concerning a young woman with extensive peritoneal mesothelioma who had a remarkable response to palliative chemotherapy (platinum/pemetrexed). Tumor samples collected at surgery before and after treatment were analyzed on the genomic and transcriptional levels (exome sequencing, RNA-seq, and smallRNA-seq). Integrative analysis of single nucleotide and copy-number variants, mutational signatures, and gene expression was performed to provide a comprehensive picture of the disease. LATS1/2 were identified as the main mutational drivers together with homozygous loss of BAP1 and PBRM1, which also may have contributed to the extraordinary chemotherapy response. The presence of the S3 mutational signature is consistent with homologous recombination DNA repair defects due to BAP1 loss. Up-regulation of the PI3K/AKT/mTOR pathway after treatment, supported by deactivated PTEN through miRNA regulation, is associated with cancer progression and could explain chemotherapy resistance. The molecular profile suggests potential benefit from experimental targeting of PARP, EZH2, the PI3K/AKT/mTOR pathway and possibly also from immune checkpoint inhibition. In addition to providing the molecular background for this unusual case of peritoneal mesothelioma, the results show the potential value of integrative genomic analysis in precision medicine.
Collapse
|
111
|
MiR-199b represses porcine muscle satellite cells proliferation by targeting JAG1. Gene 2019; 691:24-33. [DOI: 10.1016/j.gene.2018.12.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 02/02/2023]
|
112
|
Lin X, Zhang S, Huo Z. Serum Circulating miR-150 is a Predictor of Post-Acute Myocardial Infarction Heart Failure. Int Heart J 2019; 60:280-286. [DOI: 10.1536/ihj.18-306] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine
| | - Sichen Zhang
- National Center of Gerontology, Beijing Hospital
| | - Zhaoxia Huo
- Experimental Teaching Center, School of Basic Medical Sciences, Zhejiang University
| |
Collapse
|
113
|
Cron MA, Maillard S, Truffault F, Gualeni AV, Gloghini A, Fadel E, Guihaire J, Behin A, Berrih-Aknin S, Le Panse R. Causes and Consequences of miR-150-5p Dysregulation in Myasthenia Gravis. Front Immunol 2019; 10:539. [PMID: 30984166 PMCID: PMC6450174 DOI: 10.3389/fimmu.2019.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/27/2019] [Indexed: 12/31/2022] Open
Abstract
Autoimmune Myasthenia gravis (MG) is a chronic neuromuscular disease mainly due to antibodies against the acetylcholine receptor (AChR) at the neuromuscular junction that induce invalidating muscle weaknesses. In early-onset MG, the thymus is the effector organ and is often characterized by B-cell infiltrations leading to ectopic germinal center (GC) development. The microRNA miR-150-5p has been previously characterized as a biomarker in MG due to its increase in the serum of patients and its decrease after thymectomy, correlated with an improvement of symptoms. Here, we investigated the causes and consequences of the miR-150 increase in the serum of early-onset MG patients. We observed that miR-150 expression was upregulated in MG thymuses in correlation with the presence of thymic B cells and showed by in situ hybridization experiments, that miR-150 was mainly expressed by cells of the mantle zone of GCs. However, we did not observe any correlation between the degree of thymic hyperplasia and the serum levels in MG patients. In parallel, we also investigated the expression of miR-150 in peripheral blood mononuclear cells (PBMCs) from MG patients. We observed that miR-150 was down-regulated, especially in CD4+ T cells compared to controls. These results suggest that the increased serum levels of miR-150 could result from a release from activated peripheral CD4+ T cells. Next, we demonstrated that the in vitro treatment of PBMCs with miR-150 or antimiR-150 oligonucleotides, respectively, decreased or increased the expression of one of its major target gene: the proto-oncogene MYB, a well-known actor of hematopoiesis. These results revealed that increased serum levels of miR-150 in MG patients could have a functional effect on PBMCs. We also showed that antimiR-150 caused increased cellular death of CD4+ and CD8+ T cells, along with the overexpression of pro-apoptotic genes targeted by miR-150 suggesting that miR-150 controlled the survival of these cells. Altogether, these results showed that miR-150 could play a role in MG both at the thymic level and in periphery by modulating the expression of target genes and peripheral cell survival.
Collapse
Affiliation(s)
- Mélanie A Cron
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Solène Maillard
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Frédérique Truffault
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Ambra Vittoria Gualeni
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Annunziata Gloghini
- Department of Pathology and Laboratory Medicine, Istituto Nazionale dei Tumori, Milan, Italy
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Julien Guihaire
- Marie Lannelongue Hospital, Paris-Sud University, Le Plessis-Robinson, France
| | - Anthony Behin
- Neuromuscular Disease Center, AIM, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| | - Rozen Le Panse
- Center of Research in Myology, Sorbonne University, INSERM, Association Institute of Myology - UMRS 974, Paris, France
| |
Collapse
|
114
|
Hu L, Mao L, Liu S, Zhao J, Chen C, Guo M, He Z, Yang J, Xu W, Xu L. Functional Role of MicroRNAs in Thymocyte Development. Int Arch Allergy Immunol 2019; 178:315-322. [PMID: 30861526 DOI: 10.1159/000496093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous noncoding single-stranded RNAs widely distributed in eukaryotes, which can modulate target gene expression at posttranscriptional level and participate in cell proliferation, differentiation, and apoptosis. Related studies have shown that mi-RNAs are instrumental to many aspects of immunity, including various levels of T-cell immunity. In addition, multiple miRNAs have been ascribed key roles in T-cell development, differentiation, and function. In this review, we highlight the current literature regarding the functional role of miRNAs at various stages of thymocyte development. A better understanding of the relationship between miRNAs and thymocyte development is helpful for the exploration of the exact roles of miRNAs in the development and function of the immune system, as well as related clinical diseases.
Collapse
Affiliation(s)
- Lin Hu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Ling Mao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Shiming Liu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China.,Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Zhixu He
- Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy of the Guizhou Province, Zunyi Medical University, Zunyi, China, .,Department of Immunology, Zunyi Medical University, Zunyi, China,
| |
Collapse
|
115
|
Specific Autoantibodies and Clinical Phenotypes Correlate with the Aberrant Expression of Immune-Related MicroRNAs in Dermatomyositis. J Immunol Res 2019; 2019:2927061. [PMID: 30915368 PMCID: PMC6399529 DOI: 10.1155/2019/2927061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Aims The serum concentrations of miRNAs, miR-23a-3p, miR-23b-3p, miR-146a-5p, miR-146b-5p, and miR-150-5p, were shown to be associated with the immune and inflammatory progressions. We assessed the expressions of these five miRNAs in association with clinical phenotypes and myositis-specific autoantibody-defined subgroups of dermatomyositis (DM). Methods The present study included 49 patients with DM and 30 healthy controls. The serum concentrations of miR-23a-3p, miR-23b-3p, miR-146a-5p, miR-146b-5p, and miR-150-5p were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Associations between the serum concentrations of miRNAs and DM clinical immune phenotypes were examined as well. Results The serum concentrations of miR-23b-3p, miR-146a-5p, and miR-150-5p were significantly downregulated in DM patients (P < 0.001, P < 0.001, and P = 0.002, respectively), while miR-146b-5p was remarkably upregulated in DM patients compared with healthy controls (P = 0.039). Similarly, the expressions of miR-23b-3p, miR-146a-5p, and miR-150-5p were significantly downregulated in the peripheral blood mononuclear cells (PBMCs) from DM patients. Further study indicated that the serum level of miR-23b-3p was significantly correlated with creatine kinase (CK) (r = −0.286, P = 0.046) and the serum level of miR-146a-5p was evidently correlated with C-reactive protein (CRP) (r = −0.358, P = 0.012). Significant correlations were also observed between the serum levels of miR-146b-5p and CRP (r = −0.347, P = 0.014) and the erythrocyte sedimentation rate (ESR) (r = −0.287, P = 0.046). In addition, the expression level of miR-146b-5p was upregulated in DM complicated by tumors compared with those without tumors (P = 0.001 and P < 0.001, respectively). Especially, miR-150-5p was significantly downregulated in DM patients with anti-MDA5 antibodies and anti-NXP2 antibodies compared with those without (P = 0.017 and P = 0.047, respectively). No significant differences were observed between the four serum microRNAs in patients with and without interstitial lung diseases (all P > 0.05). Conclusion The results suggest an association between the four immune-related microRNAs and different clinical immune-phenotypes, and this association may regulate the complexity of disease processes through multipathways in DM patients.
Collapse
|
116
|
A miR-150/TET3 pathway regulates the generation of mouse and human non-classical monocyte subset. Nat Commun 2018; 9:5455. [PMID: 30575719 PMCID: PMC6303340 DOI: 10.1038/s41467-018-07801-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022] Open
Abstract
Non-classical monocyte subsets may derive from classical monocyte differentiation and the proportion of each subset is tightly controlled. Deregulation of this repartition is observed in diverse human diseases, including chronic myelomonocytic leukemia (CMML) in which non-classical monocyte numbers are significantly decreased relative to healthy controls. Here, we identify a down-regulation of hsa-miR-150 through methylation of a lineage-specific promoter in CMML monocytes. Mir150 knock-out mice demonstrate a cell-autonomous defect in non-classical monocytes. Our pulldown experiments point to Ten-Eleven-Translocation-3 (TET3) mRNA as a hsa-miR-150 target in classical human monocytes. We show that Tet3 knockout mice generate an increased number of non-classical monocytes. Our results identify the miR-150/TET3 axis as being involved in the generation of non-classical monocytes.
Collapse
|
117
|
Bragato JP, Melo LM, Venturin GL, Rebech GT, Garcia LE, Lopes FL, de Lima VMF. Relationship of peripheral blood mononuclear cells miRNA expression and parasitic load in canine visceral leishmaniasis. PLoS One 2018; 13:e0206876. [PMID: 30517108 PMCID: PMC6281177 DOI: 10.1371/journal.pone.0206876] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Visceral leishmaniasis (VL) in humans is a chronic and often fatal disease if left untreated. Dogs appear to be the main reservoir host for L. infantum infection, however, in many regions other canids such as jackals, foxes, wolves and other mammals, such as hares or black rats, have been implicated as wild reservoirs. Most dogs cannot form an effective immune response against this infection, and this could be modulated by small non-coding RNAs, called microRNAs, responsible for post-transcriptional control of gene expression. Here, we evaluated the expression of miRNAs in peripheral blood mononuclear cells (PBMC) of symptomatic dogs naturally infected with Leishmania (L.) infantum (n = 10) and compared to those of healthy dogs (n = 5). Microarray analysis revealed that miR-21, miR-424, miR-194 and miR-451 had a 3-fold increase in expression, miR-192, miR-503, and miR-371 had a 2-fold increase in expression, whereas a 2-fold reduction in expression was observed for miR-150 and miR-574. Real-time PCR validated the differential expression of miR-21, miR-150, miR-451, miR-192, miR-194, and miR-371. Parasite load of PBMC was measured by real-time PCR and correlated to the differentially expressed miRNAs, showing a strong positive correlation with expression of miR-194, a regular positive correlation with miR-371 expression, and a moderate negative correlation with miR-150 expression in PBMC. These findings suggest that Leishmania infection interferes with miRNAs expression in PBMC, and their correlation with parasite load may help in the identification of therapeutic targets in Canine Visceral Leishmaniasis (CVL).
Collapse
Affiliation(s)
- Jaqueline Poleto Bragato
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Larissa Martins Melo
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Gabriela Lovizutto Venturin
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Gabriela Torres Rebech
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Leandro Encarnação Garcia
- Department of Support, Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flavia Lombardi Lopes
- Department of Support, Production and Animal Health, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Animal Clinic, Surgery and Reproduction, São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
118
|
Roat R, Hossain MM, Christopherson J, Free C, Guay C, Regazzi R, Guo Z. Circulating miRNA-150-5p is associated with immune-mediated early β-cell loss in a humanized mouse model. Xenotransplantation 2018; 26:e12474. [PMID: 30461074 DOI: 10.1111/xen.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/06/2018] [Accepted: 10/31/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Aberrant microRNA (miRNA) expression levels are associated with various graft rejections. We used our humanized mouse model with transplanted human islets to identify miRNAs in islet grafts related to xenograft rejection and circulating miRNAs associated with xenograft rejection-mediated β-cell loss. METHODS Diabetic immunodeficient NOD.scid mice were transplanted with human islets and subsequently achieved stable normoglycemia. Lymphocytes from NOD mice were then adoptively transferred to the humanized mice to induce human β-cell destruction. Islet graft and plasma were collected immediately once blood glucose reached >200 mg/dL. miRNAs in the islet grafts and in the plasma with or without adoptive lymphocyte transfer (ALT) were measured using NanoString nCounter® miRNA Expression Assay and qPCR. RESULTS A set of immune-related miRNAs was significantly increased in human islet grafts of ALT-treated mice compared to control mice. Of these miRNAs, miR-150-5p was significantly increased in the circulation of ALT-treated mice at tissue collection and the increase was a result of immune activation rather than simply the presence of lymphocytes in circulation. Furthermore, miR-150-5p was significantly increased in human islet graft and circulation prior to the development of hyperglycemia in the ALT-treated mice. CONCLUSIONS Our data demonstrated that immune-related miRNAs are associated with human islet xenograft rejection in mice. miR-150-5p is increased in human islet graft and in the circulation during islet xenograft rejection and β-cell destruction prior to hyperglycemia and may be an early biomarker for islet xenograft rejection.
Collapse
Affiliation(s)
- Regan Roat
- Sanford Research, Sioux Falls, South Dakota
| | | | | | | | - Claudiane Guay
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Romano Regazzi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Zhiguang Guo
- Sanford Research, Sioux Falls, South Dakota.,Departments of Pediatrics and Surgery, University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
119
|
Zhang D, Wei Y, Zhou J, Wang G, Xiao L, Xu J, Wei N, Li W, Zhang M. miR‐150 might inhibit cell proliferation and promote cell apoptosis by targeting
LMO4
in Burkitt lymphoma. J Cell Physiol 2018; 234:9652-9662. [DOI: 10.1002/jcp.27652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dandan Zhang
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Yanshuan Wei
- Clinical Laboratory, Henan No. 2 Provincial People’s Hospital Zhengzhou Henan China
| | - Jun Zhou
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Guannan Wang
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Lin Xiao
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jingjing Xu
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Na Wei
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Wencai Li
- Department of Pathology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Mingzhi Zhang
- Department of Oncology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
120
|
Podshivalova K, Wang EA, Hart T, Salomon DR. Expression of the miR-150 tumor suppressor is restored by and synergizes with rapamycin in a human leukemia T-cell line. Leuk Res 2018; 74:1-9. [PMID: 30269036 PMCID: PMC6290994 DOI: 10.1016/j.leukres.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/21/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
miR-150 functions as a tumor suppressor in malignancies of the lymphocyte lineage and its expression is significantly reduced in these cells. However, the mechanism of miR-150 repression is unknown and so are pharmacological interventions that can reverse it. Here, we report that reduced expression of miR-150 in human Jurkat T-cell acute lymphoblastic leukemia (T-ALL) cells is mediated by constitutive mTOR signaling, a common characteristic of T-ALL cell lines and clinical isolates. Activating mTOR signaling in non-malignant T cells also resulted in a significant miR-150 down-regulation. Conversely, treatment with a pharmacological mTOR inhibitor, rapamycin, increased miR-150 expression in a dose-dependent manner in Jurkat cells, as well as in other leukemia cells. Interestingly, ectopic over-expression of miR-150 acted in a feed-forward loop and further sensitized Jurkat cells to a rapamycin-induced cell cycle arrest by targeting a large network of cell cycle genes. These findings suggest that miR-150 is normally expressed in quiescent T lymphocytes to reinforce an anti-proliferative state, and that mTOR signaling promotes cell proliferation in part by inhibiting miR-150 expression. Restoration of the miR-150-dependent anti-proliferative loop constitutes a novel mechanism underlying the efficacy of rapamycin in a T-ALL cell line. Further investigation of this mechanism in clinical isolates of T-ALL and other hematopoietic malignancies could help better guide development of targeted therapies.
Collapse
Affiliation(s)
- Katie Podshivalova
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States.
| | - Eileen A Wang
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Traver Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| |
Collapse
|
121
|
Serum miR-146a and miR-150 as Potential New Biomarkers for Hip Fracture-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:8101359. [PMID: 30510490 PMCID: PMC6230404 DOI: 10.1155/2018/8101359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022] Open
Abstract
Background Acute lung injury (ALI) and subsequent pulmonary infection are the most severe and usually fatal complications for elderly hip fracture patients. It is necessary to find some biomarkers for early diagnosis and prognosis of it. Objective This study is aimed at examining the differential expression of miR-146a, miR-150, and cytokines (IL-6 and IL-10) between younger and elderly rats suffering from hip fracture and investigating the possible meaning of them in early diagnosis and prognosis of ALI after hip fracture. Methods and Subjects Elderly rats and younger rats were randomly divided into sham group and fracture group, respectively. Two fracture groups received hip fracture operations. The damage degree of ALI was evaluated by histological observation and pathological score. Cytokines were measured by ELISA; miR-146a and miR-150 were analysed by qRT-PCR. Results After treatment, compared with the corresponding sham groups, the pulmonary histological score, the serum miR-146a concentrations, and the cytokine (IL-6 and IL-10) levels in serum and BALF were significantly higher (the miR-150 were lower) in the fracture groups (with the exception of IL-6 of the younger fracture group at 72 h, all P < 0.05). Meanwhile, compared with the younger fracture group, the aforementioned variables were significantly higher (the miR-150 levels were lower) in the elderly fracture group (with the exception of serum IL-10 and pulmonary histological score at 8 h, all P < 0.05). The results of linear regression analysis showed that serum miR-146a and miR-150 were significantly associated with pulmonary histological score. Conclusion Hip fracture can result in significant systemic inflammation and ALI in the rats. Compared to the younger rats, the elderly rats suffered a more remarkable ALI after hip fracture. It may be related to the abnormal expression of miR-146a and miR-150. Serum miR-146a and miR-150 are potential biomarkers for diagnosis and prognosis of ALI after hip fracture.
Collapse
|
122
|
Solé C, Arnaiz E, Lawrie CH. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights 2018; 13:1177271918806840. [PMID: 30349178 PMCID: PMC6195009 DOI: 10.1177/1177271918806840] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopatholgy and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
123
|
Inferring microRNA-Environmental Factor Interactions Based on Multiple Biological Information Fusion. Molecules 2018; 23:molecules23102439. [PMID: 30249984 PMCID: PMC6222788 DOI: 10.3390/molecules23102439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
Accumulated studies have shown that environmental factors (EFs) can regulate the expression of microRNA (miRNA) which is closely associated with several diseases. Therefore, identifying miRNA-EF associations can facilitate the study of diseases. Recently, several computational methods have been proposed to explore miRNA-EF interactions. In this paper, a novel computational method, MEI-BRWMLL, is proposed to uncover the relationship between miRNA and EF. The similarities of miRNA-miRNA are calculated by using miRNA sequence, miRNA-EF interaction, and the similarities of EF-EF are calculated based on the anatomical therapeutic chemical information, chemical structure and miRNA-EF interaction. The similarity network fusion is used to fuse the similarity between miRNA and the similarity between EF, respectively. Further, the multiple-label learning and bi-random walk are employed to identify the association between miRNA and EF. The experimental results show that our method outperforms the state-of-the-art algorithms.
Collapse
|
124
|
Xu M, Gan T, Ning H, Wang L. MicroRNA Functions in Thymic Biology: Thymic Development and Involution. Front Immunol 2018; 9:2063. [PMID: 30254640 PMCID: PMC6141719 DOI: 10.3389/fimmu.2018.02063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
During the entire processes of thymus organogenesis, maturation, and involution, gene regulation occurs post-transcriptionally via recently discovered microRNA (miRNA) transcripts. Numerous reports indicate that miRNAs may be involved in the construction of a normal thymic microenvironment, which constitutes a critical component to support T lymphocyte development. MiRNAs are also expressed in thymic stromal cells including thymic epithelial cells (TECs) during maturation and senescence. This review focuses on the function of miRNAs in thymic development and involution. A better understanding of these processes will provide new insights into the regulatory network of TECs and further comprehension of how genes control TECs to maintain the thymic microenvironment during thymus development and aging, thus supporting a normal cellular immune system.
Collapse
Affiliation(s)
- Minwen Xu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tao Gan
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Huiting Ning
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Liefeng Wang
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| |
Collapse
|
125
|
Lv H, Li J, Che YQ. MicroRNA-150 contributes to ischemic stroke through its effect on cerebral cortical neuron survival and function by inhibiting ERK1/2 axis via Mal. J Cell Physiol 2018; 234:1477-1490. [PMID: 30144062 DOI: 10.1002/jcp.26960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022]
Abstract
Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.
Collapse
Affiliation(s)
- Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Qin Che
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
126
|
Hu Z, Cui Y, Qiao X, He X, Li F, Luo C, Wang S, Li C, Dai R. Silencing miR-150 Ameliorates Experimental Autoimmune Encephalomyelitis. Front Neurosci 2018; 12:465. [PMID: 30050402 PMCID: PMC6052910 DOI: 10.3389/fnins.2018.00465] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/19/2018] [Indexed: 12/29/2022] Open
Abstract
MiR-150 regulates maturation and differentiation of T cells but how it functions in multiple sclerosis (MS) is unclear. In miR-150 knockout (KO) mice, we examined the effect of miR-150 deletion on disease severity of experimental autoimmune encephalomyelitis (EAE), an animal model of MS. After deleting miR-150, EAE disease severity was reduced according to clinical score. Histological staining and MBP immunofluorescence staining revealed that miR-150 deletion limited the extent of inflammatory demyelination and axonal damage in the spinal cord. Flow cytometry showed that CD3+, CD4+, and CD8+ T cells were increased in WT-EAE mice, but miR-150 deletion significantly reversed EAE-mediated up-regulation of CD3+, CD4+, and CD8+ T cells and down-regulation of CD19+ B cells. In addition, miR-150 deletion reduced the mRNA expression of IL-1β, IL-6, IL-17, and TNF-α in spleen and spinal cord after EAE induction. Thus, miR-150 deletion reduces EAE severity and demyelination, probably through inhibiting the activated immune response and the inflammation in the central nervous system.
Collapse
Affiliation(s)
- Zhaolan Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Yanhui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xiaoqing Qiao
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Xinwen He
- School of Life Sciences, Central South University, Changsha, China
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Cong Luo
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shuang Wang
- Medical Research Center and Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Changqi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Ruping Dai
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
127
|
Differential expression profiles of miRNAs and correlation with clinical outcomes in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
128
|
Fu M, Wang B, Chen X, He Z, Wang Y, Li X, Cao H, Zheng SJ. gga-miR-454 suppresses infectious bursal disease virus (IBDV) replication via directly targeting IBDV genomic segment B and cellular Suppressors of Cytokine Signaling 6 (SOCS6). Virus Res 2018; 252:29-40. [PMID: 29777734 DOI: 10.1016/j.virusres.2018.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs), as post-transcriptional regulators, play important roles in the process of viral infection through inhibiting virus replication or modulating host immune response. However, the role of miRNAs in host response against infectious bursal disease virus (IBDV) infection is still unclear. In this study, we found that gga-miR-454 of the host was decreased in response to IBDV infection and that transfection of DF-1 cells with miR-454 inhibited IBDV replication via directly targeting the specific sequence of IBDV genomic segment B, while blockage of endogenous miR-454 by inhibitors enhanced virus replication. Furthermore, gga-miR-454 increased the expression of IFN-β by targeting Suppressors of Cytokine Signaling 6 (SOCS6), enhancing the antiviral response of host cells. These findings highlight a crucial role of gga-miR-454 in host defense against IBDV infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiang Chen
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiyuan He
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
129
|
Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z, Manne S, Khan O, Yang X, Wherry EJ. miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb. Cell Rep 2018; 20:2584-2597. [PMID: 28903040 DOI: 10.1016/j.celrep.2017.08.060] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/09/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Erietta Stelekati
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Makoto Kurachi
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Sixiang Yu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhangying Cai
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA; College of Life Sciences, Peking University, Beijing, China
| | - Sasikanth Manne
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Khan
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
130
|
Ban YH, Oh SC, Seo SH, Kim SM, Choi IP, Greenberg PD, Chang J, Kim TD, Ha SJ. miR-150-Mediated Foxo1 Regulation Programs CD8 + T Cell Differentiation. Cell Rep 2018; 20:2598-2611. [PMID: 28903041 DOI: 10.1016/j.celrep.2017.08.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNA (miR)-150 is a developmental regulator of several immune-cell types, but its role in CD8+ T cells is largely unexplored. Here, we show that miR-150 regulates the generation of memory CD8+ T cells. After acute virus infection, miR-150 knockout (KO) mice exhibited an accelerated differentiation of CD8+ T cells into memory cells and improved production of effector cytokines. Additionally, miR-150 KO CD8+ T cells displayed an enhanced recall response and improved protection against infections with another virus and bacteria. We found that forkhead box O1 (Foxo1) and T cell-specific transcription factor 1 (TCF1) are upregulated during the early activation phase in miR-150 KO CD8+ T cells and that miR-150 directly targets and suppresses Foxo1. These results suggest that miR-150-mediated suppression of Foxo1 regulates the balance between effector and memory cell differentiation, which might aid in the development of improved vaccines and T cell therapeutics.
Collapse
Affiliation(s)
- Young Ho Ban
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - In-Pyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Philip D Greenberg
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jun Chang
- Division of Life & Pharmaceutical Sciences, Center for Cell Signaling & Drug Discovery Research, Ewha Womans University, Seoul 03760, Korea
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
131
|
Zheng B, Xi Z, Liu R, Yin W, Sui Z, Ren B, Miller H, Gong Q, Liu C. The Function of MicroRNAs in B-Cell Development, Lymphoma, and Their Potential in Clinical Practice. Front Immunol 2018; 9:936. [PMID: 29760712 PMCID: PMC5936759 DOI: 10.3389/fimmu.2018.00936] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
B-cell formation, development, and differentiation are complex processes regulated by several mechanisms. Recently, there has been growing evidence indicating that microRNAs (miRNAs) are important for normal B-cell lineage development. miRNAs are small non-coding RNA molecules, about 20–22 nucleotide in length, that play an important role in regulating gene expression. They pair with specific messenger RNAs (mRNAs), resulting in mRNAs translational repression or degradation. Here, we review current research about the function of miRNAs in the aspects of B-cell physiology and pathology. We start by introducing the process of miRNA biogenesis. We will then focus on the role of miRNAs during B-cell lineage commitment and development in the bone marrow, followed by a discussion of miRNAs’ role in subsequent peripheral B-cell activation, proliferation, and final differentiation (including B-cell central tolerance and autoimmunity). We list and describe several examples to illustrate miRNAs’ role in the development of B-cell lymphoma, both as oncogenes and tumor suppressor genes. Finally, we delineate the potential value of miRNAs in diagnosing B-cell lymphoma, predicting clinical outcomes, and modulating the efficiency of anticancer treatments. Despite the vast amount of research conducted on miRNAs in recent years, it is still necessary to increase and further strengthen studies on miRNAs and their targets to promote a better understanding on B-cell development and as a result, construct more effective treatments against B-cell disease.
Collapse
Affiliation(s)
- Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Zhijiang Xi
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Rong Liu
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Wei Yin
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwei Sui
- Division of Medical and Biological Measurement, National Institute of Metrology, Beijing, China
| | - Boxu Ren
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
132
|
Bellavia D, Palermo R, Felli MP, Screpanti I, Checquolo S. Notch signaling as a therapeutic target for acute lymphoblastic leukemia. Expert Opin Ther Targets 2018. [PMID: 29527929 DOI: 10.1080/14728222.2018.1451840] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Acute lymphoblastic leukemia (ALL) is the most common pediatric malignancy. Although the therapy of ALL has significantly improved, the heterogeneous genetic landscape of the disease often causes relapse, which is difficult to treat. Achieving a positive outcome for patients with relapsed or refractory ALL remains a challenging issue. The high prevalence of NOTCH-activating mutations in T-cell acute lymphoblastic leukemia (T-ALL) and the central role of NOTCH signaling in regulating cell survival and growth of ALL provide a rationale for the development of Notch signaling-targeted strategies in this disease. Therapeutic alternatives with effective anti-leukemic potential and low toxicity are needed. Areas covered: This review provides an overview of the currently available drugs directly or indirectly targeting Notch signaling in ALL. Besides considering the known Notch targeting approaches, such as γ-secretase inhibitors (GSIs) and Notch inhibiting antibodies (mAbs), currently in clinical trials, we focus on the recent insights into the molecular mechanisms underlying the Notch signaling regulation in ALL. Expert opinion: Novel drugs targeting specific steps of Notch signaling or intersecting pathways could improve the efficiency of the conventional hematological cancers therapies. Further studies are required to translate the new findings into future clinical applications.
Collapse
Affiliation(s)
- Diana Bellavia
- a Department of Molecular Medicine , Sapienza University , Rome , Italy
| | - Rocco Palermo
- b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Maria Pia Felli
- c Department of Experimental Medicine , Sapienza University , Rome , Italy
| | - Isabella Screpanti
- a Department of Molecular Medicine , Sapienza University , Rome , Italy.,b Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy.,d Institute Pasteur-Foundation Cenci Bolognetti , Sapienza University , Rome , Italy
| | - Saula Checquolo
- e Department of Medico-Surgical Sciences and Biotechnology , Sapienza University , Latina , Italy
| |
Collapse
|
133
|
Jiang XX, Liu Y, Li H, Gao Y, Mu R, Guo J, Zhang J, Yang YM, Xiao F, Liu B, Wang C, Shen B, Chen SY, Li Z, Yang G. MYSM1/miR-150/FLT3 inhibits B1a cell proliferation. Oncotarget 2018; 7:68086-68096. [PMID: 27590507 PMCID: PMC5356540 DOI: 10.18632/oncotarget.11738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 01/09/2023] Open
Abstract
The aberrant expansion of B1a cells has been observed in several murine autoimmune disease models; however, the mechanism of such proliferation of B1a cells is still limited. Here, we identify that Myb Like, SWIRM And MPN Domains 1 (MYSM1), a histone H2A deubiquitinase, plays an intrinsic role in the proliferation of B1a cells where MYSM1 deficiency results in the increased proliferation of B1a cells in mice. We demonstrate that MYSM1 recruits c-Myc to the promoter of miR-150 and stimulates the transcription of miR-150. Our further investigation shows that miR-150 decreases FMS-like tyrosine kinase 3 (FLT3) in B1a cells. In agreement with our animal studies, the percentage of FLT3+ B1 cells in Systemic Lupus Erythematosus (SLE) patients is significantly higher than healthy control. Thus, this study uncovers a novel pathway MYSM1/miR-150/FLT3 that inhibits proliferation of B1a, which may be involved in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China.,Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Hong Li
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaping Gao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Mu
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jianping Guo
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Yan-Mei Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | | | - Bing Liu
- 307-Ivy Translational Medicine Center, Laboratory of Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, China
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Beifen Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhanguo Li
- Department of Rheumatology and Immunology, People's Hospital, Peking University, Beijing, China
| | - Guang Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
134
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
135
|
Guo YH, Wang LQ, Li B, Xu H, Yang JH, Zheng LS, Yu P, Zhou AD, Zhang Y, Xie SJ, Liang ZR, Zhang CM, Zhou H, Qu LH. Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget 2018; 7:42513-42526. [PMID: 27285761 PMCID: PMC5173152 DOI: 10.18632/oncotarget.9893] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 05/09/2016] [Indexed: 12/11/2022] Open
Abstract
A hallmark of aberrant activation of the Wnt/β-catenin signaling pathway has been observed in most colorectal cancers (CRC), but little is known about the role of non-coding RNAs regulated by this pathway. Here, we found that miR-150 was the most significantly upregulated microRNA responsive to elevated of Wnt/β-catenin signaling activity in both HCT116 and HEK293T cells. Mechanistically, the β-catenin/LEF1 complex binds to the conserved TCF/LEF1-binding element in the miR-150 promoter and thereby transactivates its expression. Enforced expression of miR-150 in HCT116 cell line transformed cells into a spindle shape with higher migration and invasion activity. miR-150 markedly suppressed the CREB signaling pathway by targeting its core transcription factors CREB1 and EP300. Knockdown of CREB1 or EP300 and knockout of CREB1 by CRISPR/Cas9 phenocopied the epithelial-mesenchymal transition (EMT) observed in HCT116 cells in response to miR-150 overexpression. In summary, our data indicate that miR-150 is a novel Wnt effector that may significantly enhance EMT of CRC cells by targeting the CREB signaling pathway.
Collapse
Affiliation(s)
- Yan-Hua Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China.,Present address: Guangzhou Quality Supervision and Testing Institute, Guangzhou, P. R. China
| | - Lu-Qin Wang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Bin Li
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hui Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jian-Hua Yang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Li-Si Zheng
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Peng Yu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Ai-Dong Zhou
- Present address: Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yin Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Shu-Juan Xie
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zi-Rui Liang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Chen-Min Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hui Zhou
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Liang-Hu Qu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
136
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
137
|
The Secrets of T Cell Polarization. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
138
|
MicroRNA gga-miR-130b Suppresses Infectious Bursal Disease Virus Replication via Targeting of the Viral Genome and Cellular Suppressors of Cytokine Signaling 5. J Virol 2017; 92:JVI.01646-17. [PMID: 29046449 DOI: 10.1128/jvi.01646-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/10/2017] [Indexed: 01/29/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally through silencing or degrading their targets, thus playing important roles in the immune response. However, the role of miRNAs in the host response against infectious bursal disease virus (IBDV) infection is not clear. In this study, we show that the expression of a series of miRNAs was significantly altered in DF-1 cells after IBDV infection. We found that the miRNA gga-miR-130b inhibited IBDV replication via targeting the specific sequence of IBDV segment A and enhanced the expression of beta interferon (IFN-β) by targeting suppressors of cytokine signaling 5 (SOCS5) in host cells. These findings indicate that gga-miR-130b-3p plays a crucial role in host defense against IBDV infection.IMPORTANCE This work shows that gga-miR-130b suppresses IBDV replication via directly targeting the viral genome and cellular SOCS5, the negative regulator for type I interferon expression, revealing the mechanism underlying gga-miR-130-induced inhibition of IBDV replication. This information will be helpful for the understanding of how host cells combat pathogenic infection by self-encoded small RNA and furthers our knowledge of the role of microRNAs in the cell response to viral infection.
Collapse
|
139
|
Zhuge B, Li G. MiR-150 deficiency ameliorated hepatosteatosis and insulin resistance in nonalcoholic fatty liver disease via targeting CASP8 and FADD-like apoptosis regulator. Biochem Biophys Res Commun 2017; 494:687-692. [DOI: 10.1016/j.bbrc.2017.10.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
|
140
|
microRNA-449a modulates medullary thymic epithelial cell differentiation. Sci Rep 2017; 7:15915. [PMID: 29162901 PMCID: PMC5698406 DOI: 10.1038/s41598-017-16162-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 12/23/2022] Open
Abstract
Medullary thymic epithelial cells (mTECs) ectopically express a diversity of peripheral tissue-restricted antigens (PTAs) and provide unique cues for the expansion, maturation and selection of a repertoire of functionally diverse T lymphocytes. Genetic deletion of all mature microRNAs in thymic epithelial cells (TECs) results in premature thymic involution, progressive disorganisation of the thymic epithelium, and alteration in thymic T cell lineage commitment, consequently eliciting autoimmune disorders. In the present study, we identified that microRNA-449a (miR-449a), a member of miR-449 cluster, regulated mTEC differentiation. Expression of miR-449a was induced by RANK ligand in mouse fetal thymus. In in vitro studies, overexpression of miR-449a induced thymic epithelial progenitor cells (TEPCs) differentiation into mature mTECs. Despite abundant expression of miR-449a in developing thymus, miR-449a-mutant mice exhibited normal thymic development. This might be partially due to in miR-449a-mutant thymus the up-regulation of miR-34a which shared similar seed sequence with miR-449a. However, thymic expression of miR-449/34 sponge which was able to neutralize the function of miR-449/34 family members significantly reduced the number of mature Ly51-MHCIIhi mTECs. Taken together, our data suggested that miR-449a modulated mTEC differentiation, and members of miR-34 cluster functioned redundantly to rescue miR-449a deficiency in thymus development.
Collapse
|
141
|
Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression. Int J Mol Sci 2017; 18:ijms18102167. [PMID: 29039805 PMCID: PMC5666848 DOI: 10.3390/ijms18102167] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 11/17/2022] Open
Abstract
Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. FHC knockdown induces a change in the balance of GATA transcription factors and significantly reduces the expression of a repertoire of erythroid-specific genes, including α- and γ-globins, as well as CD71 and CD235a surface markers, in the absence of differentiation stimuli. These molecular changes are also reflected at the morphological level. Moreover, the ability of FHC-silenced K562 cells to respond to the erythroid-specific inducer hemin is almost completely abolished. Interestingly, we found that this new role for FHC is largely mediated via regulation of miR-150, one of the main microRNA implicated in the cell-fate choice of common erythroid/megakaryocytic progenitors. These findings shed further insight into the biological properties of FHCand delineate a role in erythroid differentiation where this protein does not act as a mere iron metabolism-related factor but also as a critical regulator of the expression of genes of central relevance for erythropoiesis.
Collapse
|
142
|
Qin Y, Wu L, Ouyang Y, Zhou P, Zhou H, Wang Y, Ma J, Zhang J, Chen Y, Qian J, Tang Y, Shen N. MiR-125a Is a critical modulator for neutrophil development. PLoS Genet 2017; 13:e1007027. [PMID: 28976973 PMCID: PMC5643141 DOI: 10.1371/journal.pgen.1007027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 10/16/2017] [Accepted: 09/17/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs are universal post-transcriptional regulators in genomes. They have the ability of buffering gene expressional programs, contributing to robustness of biological systems and playing important roles in development, physiology and diseases. Here, we identified a microRNA, miR-125a, as a positive regulator of granulopoiesis. MiR125a knockout mice show reduced infiltration of neutrophils in the lung and alleviated tissue destruction after endotoxin challenge as a consequence of decreased neutrophil numbers. Furthermore, we demonstrated that this significant reduction of neutrophils was due to impaired development of granulocyte precursors to mature neutrophils in an intrinsic manner. We showed that Socs3, a critical repressor for granulopoiesis, was a target of miR-125a. Overall, our study revealed a new microRNA regulating granulocyte development and supported a model in which miR-125a acted as a fine-tuner of granulopoiesis.
Collapse
Affiliation(s)
- Yuting Qin
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingling Wu
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Ouyang
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Zhou
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haibo Zhou
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyang Ma
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinsong Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Chen
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Qian
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanjia Tang
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Department of Rheumatology and Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai, China
- Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States of America
- China–Australia Centre for Personalised Immunology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
143
|
Zhang XY, Tang XY, Ma LJ, Guo YL, Li XS, Zhao LM, Tian CJ, Cheng DJ, Chen ZC, Zhang LX. Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif 2017; 50. [PMID: 28960519 DOI: 10.1111/cpr.12382] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE The mechanism of Schisandrin B on the proliferation and migration of airway smooth muscle cells (ASMCs) in asthmatic rats was explored. METHODS SD rats were divided into three groups: control (group 1), model (group 2) and model + Schisandrin B (group 3). miR-150 and lncRNA BCYRN1 levels were measured by qRT-PCR. The combination of BCYRN1 and miR-150 was detected by RNA pull down. ASMCs' viability/proliferation/migration were examined by WST-1 assay and 24-well Transwell system. RESULTS Schisandrin B up-regulated miR-150 expression and down-regulated BCYRN1 expression in sensitized rats. Schisandrin B reversed the expression of miR-150 and BCYRN1 in MV-treated ASMCs. In addition, Schisandrin B inhibited the viability, proliferation and migration of MV-induced ASMCs. We also found miR-150 inhibited BCYRN1 expression which was proved by experiments using ASMCs transfected with miR-150 inhibitor. CONCLUSION Schisandrin B increased miR-150 expression and decreased BCYRN1, and BCYRN1 expression was inhibited by miR-150, which indicated that Schisandrin B could regulate BCYRN1 through miR-150.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xue-Yi Tang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Jun Ma
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ya-Li Guo
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xiao-Su Li
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhao
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Cui-Jie Tian
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Dong-Jun Cheng
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Zhuo-Chang Chen
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Luo-Xian Zhang
- Department of Respiratory Medicine, People's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
144
|
Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development 2017; 144:2548-2559. [PMID: 28720652 DOI: 10.1242/dev.146613] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
145
|
Lindner SE, Lohmüller M, Kotkamp B, Schuler F, Knust Z, Villunger A, Herzog S. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep 2017; 18:1604-1617. [PMID: 28705801 PMCID: PMC5579393 DOI: 10.15252/embr.201643735] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.
Collapse
Affiliation(s)
- Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bianka Kotkamp
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Zeynep Knust
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
146
|
Cirillo F, Lazzeroni P, Sartori C, Street ME. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate. Int J Mol Sci 2017; 18:E1878. [PMID: 28858208 PMCID: PMC5618527 DOI: 10.3390/ijms18091878] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Pietro Lazzeroni
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Chiara Sartori
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
147
|
Seo SH, Jang MS, Kim DJ, Kim SM, Oh SC, Jung CR, Park Y, Ha SJ, Jung H, Park YJ, Yoon SR, Choi I, Kim TD. MicroRNA-150 controls differentiation of intraepithelial lymphocytes through TGF-β receptor II regulation. J Allergy Clin Immunol 2017; 141:1382-1394.e14. [PMID: 28797734 DOI: 10.1016/j.jaci.2017.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intraepithelial lymphocytes (IELs) in the intestines play pivotal roles in maintaining the integrity of the mucosa, regulating immune cells, and protecting against pathogenic invasion. Although several extrinsic factors, such as TGF-β, have been identified to contribute to IEL generation, intrinsic regulatory factors have not been determined fully. OBJECTIVE Here we investigated the regulation of IEL differentiation and the underlying mechanisms in mice. METHODS We analyzed IELs and the expression of molecules associated with IEL differentiation in wild-type control and microRNA (miRNA)-150 knockout mice. Methotrexate was administered to mice lacking miR-150 and control mice. RESULTS miR-150 deficiency reduced the IEL population in the small intestine and increased susceptibility to methotrexate-induced mucositis. Evaluation of expression of IEL differentiation-associated molecules showed that miR-150-deficient IELs exhibited decreased expression of TGF-β receptor (TGF-βR) II, CD103, CD8αα, and Runt-related transcription factor 3 in all the IEL subpopulations. The reduced expression of TGF-βRII in miR-150-deficient IELs was caused by increased expression of c-Myb/miR-20a. Restoration of miR-150 or inhibition of miR-20a recovered the TGF-βRII expression. CONCLUSION miR-150 is an intrinsic regulator of IEL differentiation through TGF-βRII regulation. miR-150-mediated IEL generation is crucial for maintaining intestinal integrity against anticancer drug-induced mucositis.
Collapse
Affiliation(s)
- Sang-Hwan Seo
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Min Seong Jang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seok-Min Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Se-Chan Oh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Cho-Rok Jung
- the Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Haiyoung Jung
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Young-Jun Park
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Suk Ran Yoon
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Inpyo Choi
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| | - Tae-Don Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Korea.
| |
Collapse
|
148
|
孙 瑞, 龚 建, 邹 海, 张 林, 高 林. miR-17-92基因簇在肿瘤发生发展中作用的研究进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1840-1853. [DOI: 10.11569/wcjd.v25.i20.1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
肿瘤是威胁全世界人类健康和影响社会经济的重要因素. 近年来, 随着经济的发展, 肿瘤的发病率呈明显上升趋势, 但是其病因尚未完全阐明. 越来越多的证据显示肿瘤的发生和遗传因素有关, 随着病理生理学和遗传学的发展, 许多学者认为生物标志物可以预测癌症甚至指导临床治疗. 微小RNA(microRNA, miRNA)是非编码小分子RNA, 在发育、生理、病理过程以及肿瘤发生等环节中起着重要的调节作用. miR-17-92基因簇是研究较为深入、最有特点的miRNA, 被认为是原癌基因miRNA的代表, 在多种肿瘤的发生发展中起着至关重要的作用. 本文就miR-17-92基因簇在肿瘤发生发展中的作用及功能进行综述.
Collapse
|
149
|
Chen M, Shen C, Zhang Y, Shu H. MicroRNA-150 attenuates hypoxia-induced excessive proliferation and migration of pulmonary arterial smooth muscle cells through reducing HIF-1α expression. Biomed Pharmacother 2017; 93:861-868. [PMID: 28715868 DOI: 10.1016/j.biopha.2017.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/30/2017] [Accepted: 07/06/2017] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, fatal disease for which currently there is no curative therapy available. Pathologic changes in this disease involve excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs). However, the underlying role of miR-150 in PASMCs remains elusive. Here in this study, miR-150 down-regulation was observed in hypoxia-treated PASMCs. Restoration of miR-150 attenuates hypoxia-treated PASMC proliferation and migration. Luciferase reporter assay showed that miR-150 directly regulated expression of HIF-1α. Moreover, overexpression of HIF-1α impaired the suppressive effect of miR-150 on the proliferative and migratory capacities of PASMCs. Altogether, our findings indicate that miR-150 may exert inhibitory effects on excessive proliferation and migration of PASMCs through down-regulation of HIF-1α, providing new insights into the potential mechanisms of human PAH.
Collapse
Affiliation(s)
- Mantian Chen
- Department of Cardiology, Xinhua Hospital, Shanghai, China.
| | - Chengxing Shen
- Department of Cardiology, Xinhua Hospital, Shanghai, China
| | - Yi Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai, China
| | - Hong Shu
- Department of Cardiology, Xinhua Hospital, Shanghai, China
| |
Collapse
|
150
|
Minhas G, Mathur D, Ragavendrasamy B, Sharma NK, Paanu V, Anand A. Hypoxia in CNS Pathologies: Emerging Role of miRNA-Based Neurotherapeutics and Yoga Based Alternative Therapies. Front Neurosci 2017; 11:386. [PMID: 28744190 PMCID: PMC5504619 DOI: 10.3389/fnins.2017.00386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cellular respiration is a vital process for the existence of life. Any condition that results in deprivation of oxygen (also termed as hypoxia) may eventually lead to deleterious effects on the functioning of tissues. Brain being the highest consumer of oxygen is prone to increased risk of hypoxia-induced neurological insults. This in turn has been associated with many diseases of central nervous system (CNS) such as stroke, Alzheimer's, encephalopathy etc. Although several studies have investigated the pathophysiological mechanisms underlying ischemic/hypoxic CNS diseases, the knowledge about protective therapeutic strategies to ameliorate the affected neuronal cells is meager. This has augmented the need to improve our understanding of the hypoxic and ischemic events occurring in the brain and identify novel and alternate treatment modalities for such insults. MicroRNA (miRNAs), small non-coding RNA molecules, have recently emerged as potential neuroprotective agents as well as targets, under hypoxic conditions. These 18-22 nucleotide long RNA molecules are profusely present in brain and other organs and function as gene regulators by cleaving and silencing the gene expression. In brain, these are known to be involved in neuronal differentiation and plasticity. Therefore, targeting miRNA expression represents a novel therapeutic approach to intercede against hypoxic and ischemic brain injury. In the first part of this review, we will discuss the neurophysiological changes caused as a result of hypoxia, followed by the contribution of hypoxia in the neurodegenerative diseases. Secondly, we will provide recent updates and insights into the roles of miRNA in the regulation of genes in oxygen and glucose deprived brain in association with circadian rhythms and how these can be targeted as neuroprotective agents for CNS injuries. Finally, we will emphasize on alternate breathing or yogic interventions to overcome the hypoxia associated anomalies that could ultimately lead to improvement in cerebral perfusion.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and ResearchChandigarh, India
| | - Deepali Mathur
- Faculty of Biological Sciences, University of ValenciaValencia, Spain
| | | | - Neel K. Sharma
- Armed Forces Radiobiology Research InstituteBethesda, MD, United States
| | - Viraaj Paanu
- Government Medical College and HospitalChandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and ResearchChandigarh, India
| |
Collapse
|