101
|
A Dysmorphometric Analysis to Investigate Facial Phenotypic Signatures as a Foundation for Non-invasive Monitoring of Lysosomal Storage Disorders. JIMD Rep 2012; 8:31-9. [PMID: 23430517 DOI: 10.1007/8904_2012_152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/28/2012] [Accepted: 05/09/2012] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Some lysosomal storage disorders (LSDs), including Muccopolysaccharidosis type 1 (MPSI), are associated with characteristic facies. METHODS such as three-dimensional (3D) facial scanning and geometric morphometric techniques can potentially generate detailed objective descriptions of these facial phenotypes. This approach can facilitate discriminating the inherent overlap in facial phenotypes within these disease spectra, and the non-invasive monitoring of disease progression and treatment. METHODS 3D facial images of three MPS I-affected individuals and 400 reference subjects (aged 5-25 years) were obtained using a 3dMD camera (Atlanta, Georgia). Images were fitted with an anthropometric mask, comprising a set of spatially dense quasi-landmarks. A statistical face-space was constructed from the reference image set and the MPS I-affected individuals were compared to this face-space utilising an emerging methodology known as dysmorphometrics. This facilitated simultaneous identification of harmonic and discordant facial regions. A relative significant discordance (RSD) score quantified proportional facial discordance for a given individual, whilst a root-mean-squared-error (RMSE) score measured the degree of facial discordance providing a severity measure. RESULTS A consistent facial pattern, with differential severities, primarily affecting the frontal, nasal, infraorbital and cheek regions, was detected in all three individuals. As expected, there was greater discordance (RMSE, RSD) with clinically severe MPS I when compared to attenuated disease. CONCLUSIONS Objective detection and localisation of MPS I facial characteristics was achieved, and severity scores were attributed. This spatially dense dysmorphometric facial phenotyping technique has the potential to be used for non-invasive treatment monitoring and as a discriminatory tool.
Collapse
|
102
|
Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008151. [PMID: 22570373 DOI: 10.1101/cshperspect.a008151] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
All the information to make a complete, fully functional living organism is encoded within the genome of the fertilized oocyte. How is this genetic code translated into the vast array of cellular behaviors that unfold during the course of embryonic development, as the zygote slowly morphs into a new organism? Studies over the last 30 years or so have shown that many of these cellular processes are driven by secreted or membrane-bound signaling molecules. Elucidating how the genetic code is translated into instructions or signals during embryogenesis, how signals are generated at the correct time and place and at the appropriate level, and finally, how these instructions are interpreted and put into action, are some of the central questions of developmental biology. Our understanding of the causes of congenital malformations and disease has improved substantially with the rapid advances in our knowledge of signaling pathways and their regulation during development. In this article, I review some of the signaling pathways that play essential roles during embryonic development. These examples show some of the mechanisms used by cells to receive and interpret developmental signals. I also discuss how signaling pathways downstream from these signals are regulated and how they induce specific cellular responses that ultimately affect cell fate and morphogenesis.
Collapse
Affiliation(s)
- M Albert Basson
- Department of Craniofacial Development, King's College London, United Kingdom.
| |
Collapse
|
103
|
Hammond P, Suttie M, Hennekam RC, Allanson J, Shore EM, Kaplan FS. The face signature of fibrodysplasia ossificans progressiva. Am J Med Genet A 2012; 158A:1368-80. [PMID: 22581580 DOI: 10.1002/ajmg.a.35346] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/26/2012] [Indexed: 11/11/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) causes extensive heterotopic bone formation due to heterozygous mutations in the glycine-serine activation domain of ACVR1 (ALK2), a bone morphogenetic protein type I receptor. Anecdotal observations of facial similarity have been made by clinicians and parents, but no objective quantitative analysis of the faces of FOP patients has ever been undertaken. We delineated the common facial characteristics of 55 individuals with molecularly confirmed FOP by analyzing their face signature (face shape difference normalized against age and sex matched controls) and associated face signature graphs (with face signatures as vertices and adjacency corresponding to greatest similarity). Our analysis identified 10 affected individuals whose face signature is more homogeneous than others with FOP. This distinct subgroup showed the previously identified reduced mandible as well as newly identified features: underdevelopment of the upper orbit/supra-orbital ridge; infra-orbital prominence; and, low-set ears. These findings strongly suggest that the canonical FOP mutation variably affects the postnatal morphogenesis of the normotopic cranial skeleton in the upper midface and mandible and may have important diagnostic and functional implications.
Collapse
Affiliation(s)
- Peter Hammond
- Molecular Medicine Unit, UCL Institute of Child Health, London, UK.
| | | | | | | | | | | |
Collapse
|
104
|
Hammond P, Suttie M. Large-scale objective phenotyping of 3D facial morphology. Hum Mutat 2012; 33:817-25. [PMID: 22434506 PMCID: PMC3327801 DOI: 10.1002/humu.22054] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Accepted: 01/26/2012] [Indexed: 12/28/2022]
Abstract
Abnormal phenotypes have played significant roles in the discovery of gene function, but organized collection of phenotype data has been overshadowed by developments in sequencing technology. In order to study phenotypes systematically, large-scale projects with standardized objective assessment across populations are considered necessary. The report of the 2006 Human Variome Project meeting (Cotton et al, 2007) recommended documentation of phenotypes through electronic means by collaborative groups of computational scientists and clinicians using standard, structured descriptions of disease-specific phenotypes. In this report, we describe progress over the past decade in three-dimensional (3D) digital imaging and shape analysis of the face, and future prospects for large-scale facial phenotyping. Illustrative examples are given throughout using a collection of 1,107 3D face images of healthy controls and individuals with a range of genetic conditions involving facial dysmorphism.
Collapse
Affiliation(s)
- Peter Hammond
- Molecular Medicine Unit, UCL Institute of Child Health, University College London, London, UK.
| | | |
Collapse
|
105
|
Sasai N, Briscoe J. Primary cilia and graded Sonic Hedgehog signaling. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:753-72. [PMID: 23799571 DOI: 10.1002/wdev.43] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cilia are evolutionary-conserved microtubule-containing organelles protruding from the surface of cells. They are classified into two types--primary and motile cilia. Primary cilia are nearly ubiquitous, at least in vertebrate cells, and it has become apparent that they play an essential role in the intracellular transduction of a range of stimuli. Most notable among these is Sonic Hedgehog. In this article we briefly summarize the structure and biogenesis of primary cilia. We discuss the evidence implicating cilia in the transduction of extrinsic signals. We focus on the involvement and molecular mechanism of cilia in signaling by Sonic Hedgehog in embryonic tissues, specifically the neural tube, and we discuss how cilia play an active role in the interpretation of gradients of Sonic Hedgehog (Shh) signaling.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biology, National Institute for Medical Research, Mill Hill, London, UK
| | | |
Collapse
|
106
|
3D facial analysis can investigate vaccine responses. Med Hypotheses 2012; 78:497-501. [DOI: 10.1016/j.mehy.2012.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 01/09/2012] [Indexed: 02/01/2023]
|
107
|
Tu CT, Yang TC, Huang HY, Tsai HJ. Zebrafish arl6ip1 is required for neural crest development during embryogenesis. PLoS One 2012; 7:e32899. [PMID: 22427906 PMCID: PMC3298456 DOI: 10.1371/journal.pone.0032899] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/06/2012] [Indexed: 12/02/2022] Open
Abstract
Background Although the embryonic expression pattern of ADP ribosylation factor-like 6 interacting protein 1 (Arl6ip1) has been reported, its function in neural crest development is unclear. Methods/Principal Findings We found that knockdown of Arl6ip1 caused defective embryonic neural crest derivatives that were particularly severe in craniofacial cartilages. Expressions of the ectodermal patterning factors msxb, dlx3b, and pax3 were normal, but the expressions of the neural crest specifier genes foxd3, snai1b, and sox10 were greatly reduced. These findings suggest that arl6ip1 is essential for specification of neural crest derivatives, but not neural crest induction. Furthermore, we revealed that the streams of crestin- and sox10-expressing neural crest cells, which migrate ventrally from neural tube into trunk, were disrupted in arl6ip1 morphants. This migration defect was not only in the trunk neural crest, but also in the enteric tract where the vagal-derived neural crest cells failed to populate the enteric nervous system. We found that this migration defect was induced by dampened Shh signaling, which may have resulted from defective cilia. These data further suggested that arl6ip1 is required for neural crest migration. Finally, by double-staining of TUNEL and crestin, we confirmed that the loss of neural crest cells could not be attributed to apoptosis. Conclusions/Significance Therefore, we concluded that arl6ip1 is required for neural crest migration and sublineage specification.
Collapse
Affiliation(s)
| | | | | | - Huai-Jen Tsai
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
108
|
Abstract
Through the combined study of model organisms, cell biology, cell signaling and medical genetics we have significantly increased our understanding of the structure and functions of the vertebrate cilium. This ancient organelle has now emerged as a crucial component of certain signaling and sensory perception pathways in both developmental and homeostatic contexts. Here, we provide a snapshot of the structure, function and distribution of the vertebrate cilium and of the pathologies that are associated with its dysfunction.
Collapse
Affiliation(s)
- Edwin C Oh
- Center for Human Disease Modeling, Department of Cell Biology, Duke University, Durham NC 27710, USA.
| | | |
Collapse
|
109
|
Baynam G, Claes P, Craig JM, Goldblatt J, Kung S, Le Souef P, Walters M. Intersections of Epigenetics, Twinning and Developmental Asymmetries: Insights Into Monogenic and Complex Diseases and a Role for 3D Facial Analysis. Twin Res Hum Genet 2012; 14:305-15. [DOI: 10.1375/twin.14.4.305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
For decades the relationships of twinning and alterations in body patterning, such as laterality and asymmetry, have been investigated. However, the tools to define and quantify these relationships have been limited and the majority of these studies have relied on associations with subjectively defined phenotypes. The emerging technologies of 3-dimensional (3D) facial scanning and geometric morphometrics are providing the means to establish objective criteria, including measures of asymmetry, which can be used for phenotypic classification and investigations. Additionally, advances in molecular epigenetics provide new opportunities for novel investigations of mechanisms central to early developmental processes, twinning and related phenotypes. We review the evidence for overlapping etiologies of twinning, asymmetry and selected monogenic and complex diseases, and we suggest that the combination of epigenetic investigations with detailed and objective phenotyping, utilizing 3D facial analysis tools, can reveal insights into the genesis of these phenomena.
Collapse
|
110
|
Coon BG, Hernandez V, Madhivanan K, Mukherjee D, Hanna CB, Barinaga-Rementeria Ramirez I, Lowe M, Beales PL, Aguilar RC. The Lowe syndrome protein OCRL1 is involved in primary cilia assembly. Hum Mol Genet 2012; 21:1835-47. [DOI: 10.1093/hmg/ddr615] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
111
|
Regulation of PP2A activity by Mid1 controls cranial neural crest speed and gangliogenesis. Mech Dev 2012; 128:560-76. [DOI: 10.1016/j.mod.2012.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/05/2012] [Accepted: 01/11/2012] [Indexed: 12/22/2022]
|
112
|
Casini P, Nardi I, Ori M. Hyaluronan is required for cranial neural crest cells migration and craniofacial development. Dev Dyn 2011; 241:294-302. [PMID: 22184056 DOI: 10.1002/dvdy.23715] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2011] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Hyaluronan is a crucial glycosaminoglycan of the vertebrate embryonic extracellular matrix able to influence cell behaviour, both by assembling the pericellular matrices and by activating signal transducing receptors such as CD44. RESULTS We showed that the hyaluronan synthases, Has1 and Has2, and CD44 display a dynamic expression pattern during cranial neural crest cells (NCC) development. By knocking down Has1 and Has2 gene functions, we revealed that hyaluronan synthesized by Has1 and Has2 is necessary for the proper development of the visceral skeleton. CONCLUSIONS The data suggest that hyaluronan helps to maintain the active migratory behaviour of cranial NCC, and that its presence around pre-chondrogenic NCC is crucial for their survival. CD44 knock down also suggests that the role of hyaluronan in cranial NCC migration could be mediated, at least in part, by the activation of CD44. These findings contribute to the unveiling of the functional relation between NCC and their extracellular environment during craniofacial development.
Collapse
Affiliation(s)
- Paola Casini
- Unit of Cellular and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
113
|
Berbari NF, Kin NW, Sharma N, Michaud EJ, Kesterson RA, Yoder BK. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev Biol 2011; 360:66-76. [PMID: 21945076 PMCID: PMC4059607 DOI: 10.1016/j.ydbio.2011.09.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 08/12/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1 mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential developmental and cellular pathways. The Traf3ip1 mutant mouse and cell lines will provide valuable resources to assess cilia function in mammalian development and also serve as a tool to explore the potential connections between cilia and cytoskeletal dynamics, mTor regulation, and cell volume control.
Collapse
Affiliation(s)
- Nicolas F. Berbari
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nicholas W. Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Neeraj Sharma
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Edward J. Michaud
- School of Physician Assistant Studies, South College, Knoxville, Tennessee 37909
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
114
|
Seo S, Zhang Q, Bugge K, Breslow DK, Searby CC, Nachury MV, Sheffield VC. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet 2011; 7:e1002358. [PMID: 22072986 PMCID: PMC3207910 DOI: 10.1371/journal.pgen.1002358] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/11/2011] [Indexed: 11/29/2022] Open
Abstract
Many signaling proteins including G protein-coupled receptors localize to primary cilia, regulating cellular processes including differentiation, proliferation, organogenesis, and tumorigenesis. Bardet-Biedl Syndrome (BBS) proteins are involved in maintaining ciliary function by mediating protein trafficking to the cilia. However, the mechanisms governing ciliary trafficking by BBS proteins are not well understood. Here, we show that a novel protein, Leucine-zipper transcription factor-like 1 (LZTFL1), interacts with a BBS protein complex known as the BBSome and regulates ciliary trafficking of this complex. We also show that all BBSome subunits and BBS3 (also known as ARL6) are required for BBSome ciliary entry and that reduction of LZTFL1 restores BBSome trafficking to cilia in BBS3 and BBS5 depleted cells. Finally, we found that BBS proteins and LZTFL1 regulate ciliary trafficking of hedgehog signal transducer, Smoothened. Our findings suggest that LZTFL1 is an important regulator of BBSome ciliary trafficking and hedgehog signaling.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Qihong Zhang
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Kevin Bugge
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - David K. Breslow
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Charles C. Searby
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maxence V. Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
115
|
Aliferis K, Hellé S, Gyapay G, Duchatelet S, Stoetzel C, Mandel JL, Dollfus H. Differentiating Alström from Bardet-Biedl syndrome (BBS) using systematic ciliopathy genes sequencing. Ophthalmic Genet 2011; 33:18-22. [PMID: 22004009 DOI: 10.3109/13816810.2011.620055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Early onset retinal degeneration associated with obesity can present a diagnostic challenge in paediatric ophthalmology practice. Clinical overlap between Bardet-Biedl syndrome (BBS) and Alström syndrome has been described, although the two entities are genetically distinct. To date, 16 genes are known to be associated with BBS (BBS1-16) and only one gene has been identified for Alström syndrome (ALMS1). MATERIALS AND METHODS In collaboration with the French National Center for Sequencing (CNS, Evry), all coding exons and flanking introns were sequenced for 27 ciliopathy genes (BBS1-12, MGC1203, TTC21b, AHI1, NPHP2-8 (NPHP6=BBS14), MKS1(BBS13), MKS3, C2ORF86, SDCCAG8, ALMS1) in 96 patients referred with a clinical diagnosis of BBS. ALMS1 gene analysis included sequencing of all coding exons. RESULTS BBS known gene mutations were found in 44 patients (36 with two mutations and 8 heterozygous). ALMS1 mutations were found in four cases. The rate of ALMS1 mutations among patients suspected of having BBS was 4.2%. DISCUSSION Clinically, all four patients presented early-onset severe retinal degeneration with congenital nystagmus associated with obesity. The difficult early differential diagnosis between the two syndromes is outlined. One mutation had already been reported (c.11310delAGAG/p.R3770fsX) and three were novel (c.2293C > T/p.Q765X, c.6823insA/p.R2275fsX, c.9046delA/p.N3016fsX). CONCLUSIONS Ciliopathy genes sequencing can be very helpful in providing a timely diagnosis in this group of patients, hence appropriate genetic counselling for families and adequate medical follow-up for affected children.
Collapse
Affiliation(s)
- K Aliferis
- Centre de Référence pour les Affections Rares en Génétique Ophtalmologique, CARGO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
The enteric nervous system (ENS) is composed of neurons and glia that modulate many aspects of intestinal function. The ability to use both forward and reverse genetic approaches and to visualize development in living embryos and larvae has made zebrafish an attractive model in which to study mechanisms underlying ENS development. In this chapter, we review the recent work describing the development and organization of the zebrafish ENS and how this relates to intestinal motility. We also discuss the cellular, molecular, and genetic mechanisms that have been revealed by these studies and how they are providing new insights into human ENS diseases.
Collapse
Affiliation(s)
- Iain Shepherd
- Department of Biology, Emory University Rollins Research Building, Atlanta, Georgia, USA
| | | |
Collapse
|
117
|
Wada N, Nohno T, Kuratani S. Dual origins of the prechordal cranium in the chicken embryo. Dev Biol 2011; 356:529-40. [DOI: 10.1016/j.ydbio.2011.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/01/2011] [Accepted: 06/06/2011] [Indexed: 12/17/2022]
|
118
|
Abstract
Wolf-Hirschhorn syndrome is caused by anomalies of the short arm of chromosome 4. About 55% of cases are due to de novo terminal deletions, 40% from unbalanced translocations and 5% from other abnormalities. The facial phenotype is characterized by hypertelorism, protruding eyes, prominent glabella, broad nasal bridge and short philtrum. We used dense surface modelling and pattern recognition techniques to delineate the milder facial phenotype of individuals with a small terminal deletion (breakpoint within 4p16.3) compared to those with a large deletion (breakpoint more proximal than 4p16.3). Further, fine-grained facial analysis of several individuals with an atypical genotype and/or phenotype suggests that multiple genes contiguously contribute to the characteristic Wolf-Hirschhorn syndrome facial phenotype.
Collapse
|
119
|
Murphy DA, Diaz B, Bromann PA, Tsai JH, Kawakami Y, Maurer J, Stewart RA, Izpisúa-Belmonte JC, Courtneidge SA. A Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS One 2011; 6:e22499. [PMID: 21799874 PMCID: PMC3143166 DOI: 10.1371/journal.pone.0022499] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Accepted: 06/27/2011] [Indexed: 01/07/2023] Open
Abstract
In the adult organism, cell migration is required for physiological processes such as angiogenesis and immune surveillance, as well as pathological events such as tumor metastasis. The adaptor protein and Src substrate Tks5 is necessary for cancer cell migration through extracellular matrix in vitro and tumorigenicity in vivo. However, a role for Tks5 during embryonic development, where cell migration is essential, has not been examined. We used morpholinos to reduce Tks5 expression in zebrafish embryos, and observed developmental defects, most prominently in neural crest-derived tissues such as craniofacial structures and pigmentation. The Tks5 morphant phenotype was rescued by expression of mammalian Tks5, but not by a variant of Tks5 in which the Src phosphorylation sites have been mutated. We further evaluated the role of Tks5 in neural crest cells and neural crest-derived tissues and found that loss of Tks5 impaired their ventral migration. Inhibition of Src family kinases also led to abnormal ventral patterning of neural crest cells and their derivatives. We confirmed that these effects were likely to be cell autonomous by shRNA-mediated knockdown of Tks5 in a murine neural crest stem cell line. Tks5 was required for neural crest cell migration in vitro, and both Src and Tks5 were required for the formation of actin-rich structures with similarity to podosomes. Additionally, we observed that neural crest cells formed Src-Tks5-dependent cell protrusions in 3-D culture conditions and in vivo. These results reveal an important and novel role for the Src-Tks5 pathway in neural crest cell migration during embryonic development. Furthermore, our data suggests that this pathway regulates neural crest cell migration through the generation of actin-rich pro-migratory structures, implying that similar mechanisms are used to control cell migration during embryogenesis and cancer metastasis.
Collapse
Affiliation(s)
- Danielle A. Murphy
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Begoña Diaz
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Paul A. Bromann
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeff H. Tsai
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Yasuhiko Kawakami
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Jochen Maurer
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Rodney A. Stewart
- Huntsman Cancer Institute, Salt Lake City, Utah, United States of America
| | | | - Sara A. Courtneidge
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
120
|
Abstract
Ciliopathies comprise a group of disorders associated with genetic mutations encoding defective proteins, which result in either abnormal formation or function of cilia. As cilia are a component of almost all vertebrate cells, cilia dysfunction can manifest as a constellation of features that include characteristically, retinal degeneration, renal disease and cerebral anomalies. Additional manifestations include congenital fibrocystic diseases of the liver, diabetes, obesity and skeletal dysplasias. Ciliopathic features have been associated with mutations in over 40 genes to date. However, with over 1,000 polypeptides currently identified within the ciliary proteome, several other disorders associated with this constellation of clinical features will likely be ascribed to mutations in other ciliary genes. The mechanisms underlying many of the disease phenotypes associated with ciliary dysfunction have yet to be fully elucidated. Several elegant studies have crucially demonstrated the dynamic ciliary localisation of components of the Hedgehog and Wnt signalling pathways during signal transduction. Given the critical role of the cilium in transducing "outside-in" signals, it is not surprising therefore, that the disease phenotypes consequent to ciliary dysfunction are a manifestation of aberrant signal transduction. Further investigation is now needed to explore the developmental and physiological roles of aberrant signal transduction in the manifestation of ciliopathy phenotypes. Utilisation of conditional and inducible murine models to delete or overexpress individual ciliary genes in a spatiotemporal and organ/cell-specific manner should help clarify some of the functional roles of ciliary proteins in the manifestation of phenotypic features.
Collapse
Affiliation(s)
- Aoife M Waters
- Department of Nephro-Urology, Great Ormond Street Hospital, London, WC1N 3JH, UK.
| | | |
Collapse
|
121
|
Rix S, Calmont A, Scambler PJ, Beales PL. An Ift80 mouse model of short rib polydactyly syndromes shows defects in hedgehog signalling without loss or malformation of cilia. Hum Mol Genet 2011; 20:1306-14. [PMID: 21227999 PMCID: PMC3049354 DOI: 10.1093/hmg/ddr013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/15/2010] [Accepted: 01/07/2011] [Indexed: 11/13/2022] Open
Abstract
IFT80, a protein component of intraflagellar transport (IFT) complex B, is required for the formation, maintenance and functionality of cilia. Mutations in IFT80 cause Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III. Both diseases are autosomal recessive chondrodysplasias and share clinical and radiological similarities, including shortening of the long bones and constriction of the thoracic cage. A murine Ift80 gene-trap line was used to investigate the role of Ift80 during development. The homozygote appears hypomorphic rather than a true null due to low level wild-type transcript production by alternative splicing around the gene-trap cassette. Hypomorphic levels of Ift80 result in embryonic lethality highlighting a key role for Ift80 in development. In rare cases, gene-trap homozygotes survive to postnatal stages and phenocopy both JATD and SRP type III by exhibiting growth retardation, shortening of the long bones, constriction of the ribcage and polydactyly. Mouse embryonic fibroblasts made from this line showed a significant reduction in hedgehog pathway activation in response to Hedgehog analog treatment. This defective signalling was not accompanied by the loss or malformation of cilia as seen in some knockout models of other IFT component genes. Phenotypes indicative of defects in cilia structure or function such as situs inversus, cystic renal disease and retinal degeneration were not observed in this line. These data suggest that there is an absolute requirement for Ift80 in hedgehog signalling, but low level expression permits ciliogenesis indicating separate but linked roles for this protein in formation and function.
Collapse
Affiliation(s)
| | | | | | - Philip L. Beales
- Molecular Medicine Unit, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
122
|
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis 2011; 49:177-89. [PMID: 21381182 PMCID: PMC3086711 DOI: 10.1002/dvg.20710] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this work, we describe factors that are active between the development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time.
Collapse
Affiliation(s)
- Ralph S Marcucio
- University of California, San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF, San Francisco General Hospital, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
123
|
Zaghloul NA, Brugmann SA. The emerging face of primary cilia. Genesis 2011; 49:231-46. [PMID: 21305689 PMCID: PMC3118297 DOI: 10.1002/dvg.20728] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/20/2011] [Accepted: 01/24/2011] [Indexed: 01/01/2023]
Abstract
Primary cilia are microtubule-based organelles that serve as hubs for the transduction of various developmental signaling pathways including Hedgehog, Wnt, FGF, and PDGF. Ciliary dysfunction contributes to a range of disorders, collectively known as the ciliopathies. Recently, interest has grown in these syndromes, particularly among craniofacial biologists, as many known and putative ciliopathies have severe craniofacial defects. Herein we discuss the current understanding of ciliary biology and craniofacial development in an attempt to gain insight into the molecular etiology for craniofacial ciliopathies, and uncover a characteristic ciliopathic craniofacial gestalt.
Collapse
Affiliation(s)
- Norann A. Zaghloul
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD
| | - Samantha A. Brugmann
- Divisions of Plastic Surgery & Developmental Biology; Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
124
|
Primary cilia dynamics instruct tissue patterning and repair of corneal endothelium. Proc Natl Acad Sci U S A 2011; 108:2819-24. [PMID: 21285373 DOI: 10.1073/pnas.1016702108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Primary cilia are required for several signaling pathways, but their function in cellular morphogenesis is poorly understood. Here we show that emergence of an hexagonal cellular pattern during development of the corneal endothelium (CE), a monolayer of neural crest-derived cells that maintains corneal transparency, depends on a precise temporal control of assembly of primary cilia that subsequently disassemble in adult corneal endothelial cells (CECs). However, cilia reassembly occurs rapidly in response to an in vivo mechanical injury and precedes basal body polarization and cellular elongation in mature CECs neighboring the wound. In contrast, CE from hypomorphic IFT88 mutants (Tg737(orpk)) or following in vivo lentiviral-mediated IFT88 knockdown display dysfunctional cilia and show disorganized patterning, mislocalization of junctional markers, and accumulation of cytoplasmic acetylated tubulin. Our results indicate an active role of cilia in orchestrating coordinated morphogenesis of CECs during development and repair and define the murine CE as a powerful in vivo system to study ciliary-based cellular dynamics.
Collapse
|
125
|
O'Leary-Moore SK, Parnell SE, Godin EA, Sulik KK. Focus on: magnetic resonance-based studies of fetal alcohol spectrum disorders in animal models. ALCOHOL RESEARCH & HEALTH : THE JOURNAL OF THE NATIONAL INSTITUTE ON ALCOHOL ABUSE AND ALCOHOLISM 2011; 34:99-105. [PMID: 23580047 PMCID: PMC3860555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The imaging techniques magnetic resonance imaging (MRI), diffusion tensor imaging (DTI), and magnetic resonance spectroscopy (MRS) provide valuable tools for studying brain structure and neurochemistry in fetal alcohol spectrum disorders (FASD). Although the application of magnetic resonance-based methodologies to the study of FASD in animal models is in its infancy, it already has provided new clinically relevant insights and holds significant promise to further extend our understanding of alcohol's effects on the developing fetus.
Collapse
Affiliation(s)
- Shonagh K O'Leary-Moore
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
126
|
Brugmann SA, Cordero DR, Helms JA. Craniofacial ciliopathies: A new classification for craniofacial disorders. Am J Med Genet A 2010; 152A:2995-3006. [PMID: 21108387 PMCID: PMC3121325 DOI: 10.1002/ajmg.a.33727] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Craniofacial anomalies are some of the most variable and common defects affecting the population. Herein, we examine a group of craniofacial disorders that are the result of defects in primary cilia; ubiquitous, microtubule-based organelles that transduce molecular signals and facilitate the interactions between the cell and its environment. Based on the frequent appearance of craniofacial phenotypes in diseases born from defective primary cilia (ciliopathies) we propose a new class of craniofacial disorders referred to as craniofacial ciliopathies. We explore the most frequent phenotypes associated with ciliopathic conditions and the ciliary gene mutations responsible for craniofacial defects. Finally, we propose that some non-classified disorders may now be classified as craniofacial ciliopathies.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Plastic and Reconstructive Surgery, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
127
|
May-Simera HL, Kai M, Hernandez V, Osborn DPS, Tada M, Beales PL. Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Dev Biol 2010; 345:215-25. [PMID: 20643117 DOI: 10.1016/j.ydbio.2010.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
Laterality defects such as situs inversus are not uncommonly encountered in humans, either in isolation or as part of another syndrome, but can have devastating developmental consequences. The events that break symmetry during early embryogenesis are highly conserved amongst vertebrates and involve the establishment of unidirectional flow by cilia within an organising centre such as the node in mammals or Kupffer's vesicle (KV) in teleosts. Disruption of this flow can lead to the failure to successfully establish left-right asymmetry. The correct apical-posterior cellular position of each node/KV cilium is critical for its optimal radial movement which serves to sweep fluid (and morphogens) in the same direction as its neighbours. Planar cell polarity (PCP) is an important conserved process that governs ciliary position and posterior tilt; however the underlying mechanism by which this occurs remains unclear. Here we show that Bbs8, a ciliary/basal body protein important for intraciliary/flagellar transport and the core PCP protein Vangl2 interact and are required for establishment and maintenance of left-right asymmetry during early embryogenesis in zebrafish. We discovered that loss of bbs8 and vangl2 results in laterality defects due to cilia disruption at the KV. We showed that perturbation of cell polarity following abrogation of vangl2 causes nuclear mislocalisation, implying defective centrosome/basal body migration and apical docking. Moreover, upon loss of bbs8 and vangl2, we observed defective actin organisation. These data suggest that bbs8 and vangl2 act synergistically on cell polarization to establish and maintain the appropriate length and number of cilia in the KV and thereby facilitate correct LR asymmetry.
Collapse
Affiliation(s)
- Helen L May-Simera
- Molecular Medicine Unit, Institute of Child Health, University College London, WC1N 1EH, UK
| | | | | | | | | | | |
Collapse
|
128
|
Young NM, Chong HJ, Hu D, Hallgrímsson B, Marcucio RS. Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape. Development 2010; 137:3405-9. [PMID: 20826528 DOI: 10.1242/dev.052340] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Variation is an intrinsic feature of biological systems, yet developmental biology does not frequently address population-level phenomena. Sonic hedgehog (SHH) signaling activity in the vertebrate forebrain and face is thought to contribute to continuous variation in the morphology of the upper jaw, but despite its potential explanatory power, this idea has never been quantitatively assessed. Here, we test this hypothesis with an experimental design that is explicitly focused on the generation and measurement of variation in multivariate shape, tissue growth, cellular behavior and gene expression. We show that the majority of upper jaw shape variation can be explained by progressive changes in the spatial organization and mitotic activity of midfacial growth zones controlled by SHH signaling. In addition, nonlinearity between our treatment doses and phenotypic outcomes suggests that threshold effects in SHH signaling may play a role in variability in midfacial malformations such as holoprosencephaly (HPE). Together, these results provide novel insight into the generation of facial morphology, and demonstrate the value of quantifying variation for our understanding of development and disease.
Collapse
Affiliation(s)
- Nathan M Young
- Department of Orthopaedic Surgery, University of California-San Francisco, 2550 23rd Street, San Francisco, CA 94110, USA
| | | | | | | | | |
Collapse
|
129
|
Kulesa PM, Bailey CM, Kasemeier-Kulesa JC, McLennan R. Cranial neural crest migration: new rules for an old road. Dev Biol 2010; 344:543-54. [PMID: 20399765 PMCID: PMC2914193 DOI: 10.1016/j.ydbio.2010.04.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/06/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
The neural crest serve as an excellent model to better understand mechanisms of embryonic cell migration. Cell tracing studies have shown that cranial neural crest cells (CNCCs) emerge from the dorsal neural tube in a rostrocaudal manner and are spatially distributed along stereotypical, long distance migratory routes to precise targets in the head and branchial arches. Although the CNCC migratory pattern is a beautifully choreographed and programmed invasion, the underlying orchestration of molecular events is not well known. For example, it is still unclear how single CNCCs react to signals that direct their choice of direction and how groups of CNCCs coordinate their interactions to arrive at a target in an ordered manner. In this review, we discuss recent cellular and molecular discoveries of the CNCC migratory pattern. We focus on events from the time when CNCCs encounter the tissue adjacent to the neural tube and their travel through different microenvironments and into the branchial arches. We describe the patterning of discrete cell migratory streams that emerge from the hindbrain, rhombomere (r) segments r1-r7, and the signals that coordinate directed migration. We propose a model that attempts to unify many complex events that establish the CNCC migratory pattern, and based on this model we integrate information between cranial and trunk neural crest development.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
130
|
Chimge NO, Bayarsaihan D. Generation of neural crest progenitors from human embryonic stem cells. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 314:95-103. [PMID: 19780036 DOI: 10.1002/jez.b.21321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The neural crest (NC) is a transient population of multipotent progenitors arising at the lateral edge of the neural plate in vertebrate embryos, which then migrate throughout the body to generate diverse array of tissues such as the peripheral nervous system, skin melanocytes, and craniofacial cartilage, bone and teeth. The transient nature of neural crest stem cells make extremely challenging to study the biology of these important cells. In humans induction and differentiation of embryonic NC occurs very early, within a few weeks of fertilization giving rise to technical and ethical issues surrounding isolation of early embryonic tissues and therefore severely limiting the study of human NC cells. For that reason our current knowledge of the biology of NC mostly derives from the studies of lower organisms. Recent progress in human embryonic stem cell research provides a unique opportunity for generation of a useful source of cells for basic developmental studies. The development of cost-effective, time and labor efficient improved differentiation protocols for the production of human NC cells is a critical step toward a better understanding of NC biology.
Collapse
Affiliation(s)
- Nyam-Osor Chimge
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | |
Collapse
|
131
|
Wiens CJ, Tong Y, Esmail MA, Oh E, Gerdes JM, Wang J, Tempel W, Rattner JB, Katsanis N, Park HW, Leroux MR. Bardet-Biedl syndrome-associated small GTPase ARL6 (BBS3) functions at or near the ciliary gate and modulates Wnt signaling. J Biol Chem 2010; 285:16218-30. [PMID: 20207729 PMCID: PMC2871489 DOI: 10.1074/jbc.m109.070953] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The expansive family of metazoan ADP-ribosylation factor and ADP-ribosylation factor-like small GTPases is known to play essential roles in modulating membrane trafficking and cytoskeletal functions. Here, we present the crystal structure of ARL6, mutations in which cause Bardet-Biedl syndrome (BBS3), and reveal its unique ring-like localization at the distal end of basal bodies, in proximity to the so-called ciliary gate where vesicles carrying ciliary cargo fuse with the membrane. Overproduction of GDP- or GTP-locked variants of ARL6/BBS3 in vivo influences primary cilium length and abundance. ARL6/BBS3 also modulates Wnt signaling, a signal transduction pathway whose association with cilia in vertebrates is just emerging. Importantly, this signaling function is lost in ARL6 variants containing BBS-associated point mutations. By determining the structure of GTP-bound ARL6/BBS3, coupled with functional assays, we provide a mechanistic explanation for such pathogenic alterations, namely altered nucleotide binding. Our findings therefore establish a previously unknown role for ARL6/BBS3 in mammalian ciliary (dis)assembly and Wnt signaling and provide the first structural information for a BBS protein.
Collapse
Affiliation(s)
- Cheryl J Wiens
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Brugmann SA, Allen NC, James AW, Mekonnen Z, Madan E, Helms JA. A primary cilia-dependent etiology for midline facial disorders. Hum Mol Genet 2010; 19:1577-92. [PMID: 20106874 DOI: 10.1093/hmg/ddq030] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Human faces exhibit enormous variation. When pathological conditions are superimposed on normal variation, a nearly unbroken series of facial morphologies is produced. When viewed in full, this spectrum ranges from cyclopia and hypotelorism to hypertelorism and facial duplications. Decreased Hedgehog pathway activity causes holoprosencephaly and hypotelorism. Here, we show that excessive Hedgehog activity, caused by truncating the primary cilia on cranial neural crest cells, causes hypertelorism and frontonasal dysplasia (FND). Elimination of the intraflagellar transport protein Kif3a leads to excessive Hedgehog responsiveness in facial mesenchyme, which is accompanied by broader expression domains of Gli1, Ptc and Shh, and reduced expression domains of Gli3. Furthermore, broader domains of Gli1 expression correspond to areas of enhanced neural crest cell proliferation in the facial prominences of Kif3a conditional knockouts. Avian Talpid embryos that lack primary cilia exhibit similar molecular changes and similar facial phenotypes. Collectively, these data support our hypothesis that a severe narrowing of the facial midline and excessive expansion of the facial midline are both attributable to disruptions in Hedgehog pathway activity. These data also raise the possibility that genes encoding ciliary proteins are candidates for human conditions of hypertelorism and FNDs.
Collapse
Affiliation(s)
- Samantha A Brugmann
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
133
|
Pearson CG, Osborn DPS, Giddings TH, Beales PL, Winey M. Basal body stability and ciliogenesis requires the conserved component Poc1. ACTA ACUST UNITED AC 2010; 187:905-20. [PMID: 20008567 PMCID: PMC2806327 DOI: 10.1083/jcb.200908019] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Poc1 shores up basal bodies to support cilia formation in Tetrahymena thermophila, zebrafish, and humans; Poc1 depletion causes phenotypes commonly seen in ciliopathies. Centrioles are the foundation for centrosome and cilia formation. The biogenesis of centrioles is initiated by an assembly mechanism that first synthesizes the ninefold symmetrical cartwheel and subsequently leads to a stable cylindrical microtubule scaffold that is capable of withstanding microtubule-based forces generated by centrosomes and cilia. We report that the conserved WD40 repeat domain–containing cartwheel protein Poc1 is required for the structural maintenance of centrioles in Tetrahymena thermophila. Furthermore, human Poc1B is required for primary ciliogenesis, and in zebrafish, DrPoc1B knockdown causes ciliary defects and morphological phenotypes consistent with human ciliopathies. T.thermophila Poc1 exhibits a protein incorporation profile commonly associated with structural centriole components in which the majority of Poc1 is stably incorporated during new centriole assembly. A second dynamic population assembles throughout the cell cycle. Our experiments identify novel roles for Poc1 in centriole stability and ciliogenesis.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | | | |
Collapse
|
134
|
Han YG, Alvarez-Buylla A. Role of primary cilia in brain development and cancer. Curr Opin Neurobiol 2010; 20:58-67. [PMID: 20080044 DOI: 10.1016/j.conb.2009.12.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/02/2009] [Accepted: 12/03/2009] [Indexed: 12/11/2022]
Abstract
The primary cilium, a hair-like extension from a cell's surface, acts as a sensory organelle to receive signals that regulate cellular behavior and physiology. Like most mammalian cells, neural progenitors and neurons have primary cilia. Recent studies show that this tiny projection plays important roles in brain development and diseases. Ciliary mutant mice show defects in brain patterning, progenitor proliferation, and specification of adult neural stem cells. Primary cilia also have dual opposing functions in the development of brain tumors. Ciliary defects are associated with genetic syndromes that frequently have neurological symptoms. Understanding the multifaceted roles that primary cilia have in brain development will provide important insights into the mechanism of brain development and diseases.
Collapse
Affiliation(s)
- Young-Goo Han
- Department of Neurological Surgery, The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, 505 Parnassus Ave., San Francisco, CA 94143-0112, USA
| | | |
Collapse
|
135
|
Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST. Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 2010; 25:279-92. [PMID: 20110689 DOI: 10.1159/000276562] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2009] [Indexed: 12/28/2022] Open
Abstract
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRalpha signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88(Tg737Rpw)) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRalpha signaling to monitor directional movement during wound healing.
Collapse
Affiliation(s)
- Linda Schneider
- Department of Biology, Section of Cell and Developmental Biology, The August Krogh Building, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Baker K, Beales PL. Making sense of cilia in disease: the human ciliopathies. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 151C:281-95. [PMID: 19876933 DOI: 10.1002/ajmg.c.30231] [Citation(s) in RCA: 258] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ubiquitous in nature, cilia and flagella comprise nearly identical structures with similar functions. The most obvious example of the latter is motility: driving movement of the organism or particle flow across the epithelial surface in fixed structures. In vertebrates, such motile cilia are evident in the respiratory epithelia, ependyma, and oviducts. For over a century, non-motile cilia have been observed on the surface of most vertebrate cells but until recently their function has eluded us. Gathering evidence now points to critical roles for the mono-cilium in sensing the extracellular environment, and perturbation of this function gives rise to a predictable panoply of clinical problems. We review the common clinical phenotypes associated with ciliopathies and interrogate Online Mendelian Inheritance in Man (OMIM) to compile a comprehensive list of putative disorders in which ciliary dysfunction may play a role.
Collapse
Affiliation(s)
- Kate Baker
- UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | | |
Collapse
|
137
|
New directions in craniofacial morphogenesis. Dev Biol 2009; 341:84-94. [PMID: 19941846 DOI: 10.1016/j.ydbio.2009.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 01/15/2023]
Abstract
The vertebrate head is an extremely complicated structure: development of the head requires tissue-tissue interactions between derivates of all the germ layers and coordinated morphogenetic movements in three dimensions. In this review, we highlight a number of recent embryological studies, using chicken, frog, zebrafish and mouse, which have identified crucial signaling centers in the embryonic face. These studies demonstrate how small variations in growth factor signaling can lead to a diversity of phenotypic outcomes. We also discuss novel genetic studies, in human, mouse and zebrafish, which describe cell biological mechanisms fundamental to the growth and morphogenesis of the craniofacial skeleton. Together, these findings underscore the complex interactions leading to species-specific morphology. These and future studies will improve our understanding of the genetic and environmental influences underlying human craniofacial anomalies.
Collapse
|
138
|
Abstract
Abnormalities in the central nervous system and renal function are seen together in a variety of congenital syndromes. This Review examines the clinical presentation and the genetic basis of several such syndromes. The X-linked oculocerebrorenal syndrome of Lowe is characterized by developmental delay, blindness, renal tubular dysfunction, and progressive renal failure. This syndrome results from mutations in the OCRL gene, which encodes a phosphatase involved in endosomal trafficking. Mutations in OCRL also occur in Dent disease, which has a milder disease phenotype than Lowe syndrome. Patients with Joubert syndrome have cerebellar ataxia, pigmentary retinopathy, and nephronophthisis. Joubert syndrome is a genetically heterogeneous condition associated with mutations in at least five genes that encode ciliary proteins. Bardet-Biedl syndrome is a clinically variable condition associated with learning disabilities, progressive visual loss, obesity, polydactyly, hypogonadism, and cystic and fibrotic renal changes that can lead to renal failure. Most of the 12 genes mutated in Bardet-Biedl syndrome are also involved in ciliary function, as are the genes implicated in other 'ciliopathies' with similar phenotypes, including Meckel syndrome.
Collapse
Affiliation(s)
- Scott J Schurman
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
139
|
|
140
|
Hutson MR, Sackey FN, Lunney K, Kirby ML. Blocking hedgehog signaling after ablation of the dorsal neural tube allows regeneration of the cardiac neural crest and rescue of outflow tract septation. Dev Biol 2009; 335:367-73. [PMID: 19765571 DOI: 10.1016/j.ydbio.2009.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/17/2022]
Abstract
Cardiac neural crest cells (CNCC) migrate into the caudal pharynx and arterial pole of the heart to form the outflow septum. Ablation of the CNCC results in arterial pole malalignment and failure of outflow septation, resulting in a common trunk overriding the right ventricle. Unlike preotic cranial crest, the postotic CNCC do not normally regenerate. We applied the hedgehog signaling inhibitor, cyclopamine (Cyc), to chick embryos after CNCC ablation and found normal heart development at day 9 suggesting that the CNCC population was reconstituted. We ablated the CNCC, and labeled the remaining neural tube with DiI/CSRE and applied cyclopamine. Cells migrated from the neural tube in the CNCC-ablated, cyclopamine-treated embryos but not in untreated CNCC-ablated embryos. The newly generated cells followed the CNCC migration pathways, expressed neural crest markers and supported normal heart development. Finally, we tested whether reducing hedgehog signaling caused redeployment of the dorsal-ventral axis of the injured neural tube, allowing generation of new neural crest-like cells. The dorsal neural tube marker, Pax7, was maintained 12 h after CNCC ablation with Cyc treatment but not in the CNCC-ablated alone. This disruption of dorsal-ventral neural patterning permits a new wave of migratory cardiac neural crest-like cells.
Collapse
Affiliation(s)
- Mary Redmond Hutson
- Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
141
|
Ocbina PJR, Tuson M, Anderson KV. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo. PLoS One 2009; 4:e6839. [PMID: 19718259 PMCID: PMC2729396 DOI: 10.1371/journal.pone.0006839] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/29/2009] [Indexed: 01/08/2023] Open
Abstract
Background Sonic hedgehog (Shh) signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT) and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals. Methodology/Principal Findings We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a) or IFT complex B proteins (Ift172 or Ift88). We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1). The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs) derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a. Conclusions We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands.
Collapse
Affiliation(s)
- Polloneal Jymmiel R. Ocbina
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Miquel Tuson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
142
|
Epistasis between RET and BBS mutations modulates enteric innervation and causes syndromic Hirschsprung disease. Proc Natl Acad Sci U S A 2009; 106:13921-6. [PMID: 19666486 DOI: 10.1073/pnas.0901219106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease (HSCR) is a common, multigenic neurocristopathy characterized by incomplete innervation along a variable length of the gut. The pivotal gene in isolated HSCR cases, either sporadic or familial, is RET. HSCR also presents in various syndromes, including Shah-Waardenburg syndrome (WS), Down (DS), and Bardet-Biedl (BBS). Here, we report 3 families with BBS and HSCR with concomitant mutations in BBS genes and regulatory RET elements, whose functionality is tested in physiologically relevant assays. Our data suggest that BBS mutations can potentiate HSCR predisposing RET alleles, which by themselves are insufficient to cause disease. We also demonstrate that these genes interact genetically in vivo to modulate gut innervation, and that this interaction likely occurs through complementary, yet independent, pathways that converge on the same biological process.
Collapse
|
143
|
Lunt SC, Haynes T, Perkins BD. Zebrafish ift57, ift88, and ift172 intraflagellar transport mutants disrupt cilia but do not affect hedgehog signaling. Dev Dyn 2009; 238:1744-59. [PMID: 19517571 PMCID: PMC2771627 DOI: 10.1002/dvdy.21999] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cilia formation requires intraflagellar transport (IFT) proteins. Recent studies indicate that mammalian Hedgehog (Hh) signaling requires cilia. It is unclear, however, if the requirement for cilia and IFT proteins in Hh signaling represents a general rule for all vertebrates. Here we examine zebrafish ift57, ift88, and ift172 mutants and morphants for defects in Hh signaling. Although ift57 and ift88 mutants and morphants contained residual maternal protein, the cilia were disrupted. In contrast to previous genetic studies in mouse, mutations in zebrafish IFT genes did not affect the expression of Hh target genes in the neural tube and forebrain and had no quantitative effect on Hh target gene expression. Zebrafish IFT mutants also exhibited no dramatic changes in the craniofacial skeleton, somite formation, or motor neuron patterning. Thus, our data indicate the requirement for cilia in the Hh signal transduction pathway may not represent a universal mechanism in vertebrates.
Collapse
Affiliation(s)
- Shannon C Lunt
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
144
|
Abstract
Over the last 5 years, disorders of nonmotile cilia have come of age and their study has contributed immeasurably to our understanding of cell biology and human genetics. This review summarizes the main features of the ciliopathies, their underlying genetics, and the functions of the proteins involved. We describe some of the key findings in the field, including new animal models, the role of ciliopathy proteins in signaling pathways and development, and the unusual genetics of these diseases. We also discuss the therapeutic potential for these diseases and finally, discuss important future work that will extend our understanding of this fascinating organelle and its associated pathologies.
Collapse
Affiliation(s)
- Jonathan L Tobin
- Cancer Research United Kingdom London Research Institute, London, United Kingdom
| | | |
Collapse
|
145
|
Durkin EF, Shaaban A. Commonly encountered surgical problems in the fetus and neonate. Pediatr Clin North Am 2009; 56:647-69, Table of Contents. [PMID: 19501697 DOI: 10.1016/j.pcl.2009.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neonatal surgical care requires a current understanding of pre- and postnatal intervention for a myriad of congenital anomalies. This article includes an update of the recent information on commonly encountered fetal and neonatal surgical problems, highlighting specific areas of controversy and challenges in diagnosis. The authors hope that this article is useful for trainees and practitioners involved in any aspect of fetal and neonatal care.
Collapse
Affiliation(s)
- Emily F Durkin
- Department of Surgery, University of Wisconsin, School of Medicine and Public Health, H4/325 Clinical Science Center, Madison, WI 53798, USA
| | | |
Collapse
|
146
|
Roper RJ, VanHorn JF, Cain CC, Reeves RH. A neural crest deficit in Down syndrome mice is associated with deficient mitotic response to Sonic hedgehog. Mech Dev 2009; 126:212-9. [PMID: 19056491 PMCID: PMC2820727 DOI: 10.1016/j.mod.2008.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/31/2008] [Accepted: 11/11/2008] [Indexed: 11/21/2022]
Abstract
Trisomy 21 results in phenotypes collectively referred to as Down syndrome (DS) including characteristic facial dysmorphology. Ts65Dn mice are trisomic for orthologs of about half of the genes found on human chromosome 21 and exhibit DS-like craniofacial abnormalities, including a small dysmorphic mandible. Quantitative analysis of neural crest (NC) progenitors of the mandible revealed a paucity of NC and a smaller first pharyngeal arch (PA1) in Ts65Dn as compared to euploid embryos. Similar effects in PA2 suggest that trisomy causes a neurocristopathy in Ts65Dn mice (and by extension, DS). Further analyses demonstrated deficits in delamination, migration, and mitosis of trisomic NC. Addition of Sonic hedgehog (Shh) growth factor to trisomic cells from PA1 increased cell number to the same level as untreated control cells. Combined with previous demonstrations of a deficit in mitogenic response to Shh by trisomic cerebellar granule cell precursors, these results implicate common cellular and molecular bases of multiple DS phenotypes.
Collapse
Affiliation(s)
- Randall J. Roper
- Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology and Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Justin F. VanHorn
- Department of Biology and Indiana University Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Colyn C. Cain
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Roger H. Reeves
- Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
147
|
Abstract
Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.
Collapse
Affiliation(s)
- Rodney M Dale
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Children's Memorial Research Center, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
148
|
Burzynski G, Shepherd IT, Enomoto H. Genetic model system studies of the development of the enteric nervous system, gut motility and Hirschsprung's disease. Neurogastroenterol Motil 2009; 21:113-27. [PMID: 19215589 PMCID: PMC4041618 DOI: 10.1111/j.1365-2982.2008.01256.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The enteric nervous system (ENS) is the largest and most complicated subdivision of the peripheral nervous system. Its action is necessary to regulate many of the functions of the gastrointestinal tract including its motility. Whilst the ENS has been studied extensively by developmental biologists, neuroscientists and physiologists for several decades it has only been since the early 1990s that the molecular and genetic basis of ENS development has begun to emerge. Central to this understanding has been the use of genetic model organisms. In this article, we will discuss recent advances that have been achieved using both mouse and zebrafish model genetic systems that have led to new insights into ENS development and the genetic basis of Hirschsprung's disease.
Collapse
Affiliation(s)
- G Burzynski
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
149
|
Tonomura Y, Hirano M, Shimada K, Asai H, Ikeda M, Kataoka H, Tanaka I, Konishi N, Ueno S. Treatable fluctuating mental impairment in a patient with Bardet–Biedl syndrome. Clin Neurol Neurosurg 2009; 111:102-4. [DOI: 10.1016/j.clineuro.2008.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 05/26/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
150
|
Abstract
Posttranslational modifications of tubulin likely generate the functional diversity of microtubules. In this issue of Developmental Cell, Loktev and colleagues (2008) describe a novel protein BBIP10 with dual roles: it is required for ciliogenesis as well as acetylation and stabilization of microtubules.
Collapse
Affiliation(s)
- Anna Diaz-Font
- Molecular Medicine Unit, Institute of Child Health, University College London, London, UK
| | | |
Collapse
|