101
|
Zhan C, Yang J, Dong XC, Wang YL. Molecular modeling of purinergic receptor P2Y12 and interaction with its antagonists. J Mol Graph Model 2006; 26:20-31. [PMID: 17110146 DOI: 10.1016/j.jmgm.2006.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 09/18/2006] [Accepted: 09/20/2006] [Indexed: 10/24/2022]
Abstract
Purinergic receptors are a class of cell surface receptors for purines that prefer ATP or ADP over adenosine. The surface receptors for extracellular nucleotides are called P2 receptors. They are activated by both pyrimidine and purine nucleotides. ADP initiates platelet aggregation by 'simultaneous activation of two G protein-coupled receptors, P2Y1 and P2Y12. P2Y12 has been shown to be the target of the thienopyridine drugs, ticlopidine and clopidogrel. Here, the active sites of P2Y12 for ATP as well as ADP are predicted by bioinformatics and molecular modeling. First, the three-dimensional (3D) structure of P2Y12 was constructed by InsightII/Homology module using the corresponding bovine rhodopsin (PDB code: 1HZX) as the template. Then the primary structures were optimized by energy minimization that has been successfully accepted by the Protein Data Bank (PDB code: 1VZ1). Second, a simple scoring matrix was built up based on the analysis of 13 known ATP-binding proteins. And the most probable active sites of P2Y12 were predicted using the scoring matrix, which include three distant areas: "head area" (LGTGPLRTFV, 87-96), "middle area" (VGLITNGLAM, 38-47, and LGAKILSVVI, 139-148), and "bottom area" (RTRGVGKVPR, 222-231). Subsequently the structural model of P2Y12 was docked with ATP/ADP in comparison with P2Y1 (PDB code 1ddd). As a comparison, we docked its antagonists, such as ticlopidine and clopidogrel, to the most probable sites and calculated their intermolecular energy. Our results imply that P2Y12 has the potential to be inhibited by ADP/ATP analogs, and it suggests that P2Y12 acts as a target of new drugs that inhibit platelet aggregation.
Collapse
Affiliation(s)
- Chenyang Zhan
- State Key Laboratory of Pharmaceutical Biotechnology, Life College, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
102
|
Rould MA, Wan Q, Joel PB, Lowey S, Trybus KM. Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states. J Biol Chem 2006; 281:31909-19. [PMID: 16920713 DOI: 10.1074/jbc.m601973200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filament growth and disassembly, as well as affinity for actin-binding proteins, is mediated by the nucleotide-bound state of the component actin monomers. The structural differences between ATP-actin and ADP-actin, however, remain controversial. We expressed a cytoplasmic actin in Sf9 cells, which was rendered non-polymerizable by virtue of two point mutations in subdomain 4 (A204E/P243K). This homogeneous monomer, called AP-actin, was crystallized in the absence of toxins, binding proteins, or chemical modification, with ATP or ADP at the active site. The two surface mutations do not perturb the structure. Significant differences between the two states are confined to the active site region and sensor loop. The active site cleft remains closed in both states. Minor structural shifts propagate from the active site toward subdomain 2, but dissipate before reaching the DNase binding loop (D-loop), which remains disordered in both the ADP and ATP states. This result contrasts with previous structures of actin made monomeric by modification with tetramethylrhodamine, which show formation of an alpha-helix at the distal end of the D-loop in the ADP-bound but not the ATP-bound form (Otterbein, L. R., Graceffa, P., and Dominguez, R. (2001) Science 293, 708-711). Our reanalysis of the TMR-modified actin structures suggests that the nucleotide-dependent formation of the D-loop helix may result from signal propagation through crystal packing interactions. Whereas the observed nucleotide-dependent changes in the structure present significantly different surfaces on the exterior of the actin monomer, current models of the actin filament lack any actin-actin interactions that involve the region of these key structural changes.
Collapse
Affiliation(s)
- Mark A Rould
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | |
Collapse
|
103
|
Klenchin VA, Khaitlina SY, Rayment I. Crystal structure of polymerization-competent actin. J Mol Biol 2006; 362:140-50. [PMID: 16893553 DOI: 10.1016/j.jmb.2006.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 07/03/2006] [Accepted: 07/06/2006] [Indexed: 11/20/2022]
Abstract
All actin crystal structures reported to date represent actin complexed or chemically modified with molecules that prevent its polymerization. Actin cleaved with ECP32 protease at a single site between Gly42 and Val43 is virtually non-polymerizable in the Ca-ATP bound form but remains polymerization-competent in the Mg-bound form. Here, a crystal structure of the true uncomplexed ECP32-cleaved actin (ECP-actin) solved to 1.9 A resolution is reported. In contrast to the much more open conformation of the ECP-actin's nucleotide binding cleft in solution, the crystal structure of uncomplexed ECP-actin contains actin in a typical closed conformation similar to the complexed actin structures. This unambiguously demonstrates that the overall structure of monomeric actin is not significantly affected by a multitude of actin-binding proteins and toxins. The invariance of actin crystal structures suggests that the salt and precipitants necessary for crystallization stabilize actin in only one of its possible conformations. The asymmetric unit cell contains a new type of antiparallel actin dimer that may correspond to the "lower dimer" implicated in F-actin nucleation and branching. In addition, symmetry-related actin-actin contacts form a head to tail dimer that is strikingly similar to the longitudinal dimer predicted by the Holmes F-actin model, including a rotation of the monomers relative to each other not observed previously in actin crystal structures.
Collapse
Affiliation(s)
- Vadim A Klenchin
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
104
|
Martin AC, Welch MD, Drubin DG. Arp2/3 ATP hydrolysis-catalysed branch dissociation is critical for endocytic force generation. Nat Cell Biol 2006; 8:826-33. [PMID: 16862144 DOI: 10.1038/ncb1443] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 07/14/2006] [Indexed: 11/08/2022]
Abstract
The Arp2/3 complex, which is crucial for actin-based motility, nucleates actin filaments and organizes them into y-branched networks. The Arp2 subunit has been shown to hydrolyse ATP, but the functional importance of Arp2/3 ATP hydrolysis is not known. Here, we analysed an Arp2 mutant in Saccharomyces cerevisiae that is defective in ATP hydrolysis. Arp2 ATP hydrolysis and Arp2/3-dependent actin nucleation occur almost simultaneously. However, ATP hydrolysis is not required for nucleation. In addition, Arp2 ATP hydrolysis is not required for the release of a WASP-like activator from y-branches. ATP hydrolysis by Arp2, and possibly Arp3, is essential for efficient y-branch dissociation in vitro. In living cells, both Arp2 and Arp3 ATP-hydrolysis mutants exhibit defects in endocytic internalization and actin-network disassembly. Our results suggest a critical feature of dendritic nucleation in which debranching and subsequent actin-filament remodelling and/or depolymerization are important for endocytic vesicle morphogenesis.
Collapse
Affiliation(s)
- Adam C Martin
- Dept. of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
105
|
Pelikan Conchaudron A, Didry D, Le KHD, Larquet E, Boisset N, Pantaloni D, Carlier MF. Analysis of tetramethylrhodamine-labeled actin polymerization and interaction with actin regulatory proteins. J Biol Chem 2006; 281:24036-47. [PMID: 16757474 DOI: 10.1074/jbc.m602747200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hydrolysis of ATP accompanying actin polymerization destabilizes the filament, controls actin assembly dynamics in motile processes, and allows the specific binding of regulatory proteins to ATP- or ADP-actin. However, the relationship between the structural changes linked to ATP hydrolysis and the functional properties of actin is not understood. Labeling of actin Cys374 by tetramethylrhodamine (TMR) has been reported to make actin non-polymerizable and enabled the crystal structures of ADP-actin and 5'-adenylyl beta,gamma-imidodiphosphate-actin to be solved. TMR-actin has also been used to solve the structure of actin in complex with the formin homology 2 domain of mammalian Dia1. To understand how the covalent modification of actin by TMR may affect the structural changes linked to ATP hydrolysis and to evaluate the functional relevance of crystal structures of TMR-actin in complex with actin-binding proteins, we have analyzed the assembly properties of TMR-actin and its interaction with regulatory proteins. We show that TMR-actin polymerized in very short filaments that were destabilized by ATP hydrolysis. The critical concentrations for assembly of TMR-actin in ATP and ADP were only an order of magnitude higher than those for unlabeled actin. The functional interactions of actin with capping proteins, formin, actin-depolymerizing factor/cofilin, and the VCA-Arp2/3 filament branching machinery were profoundly altered by TMR labeling. The data suggest that TMR labeling hinders the intramolecular movements of actin that allow its specific adaptative recognition by regulatory proteins and that determine its function in the ATP- or ADP-bound state.
Collapse
Affiliation(s)
- Andrea Pelikan Conchaudron
- Dynamique du Cytosquelette, Laboratoire d'Enzymologie et Biochimie Structurale, CNRS, avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
106
|
Procaccio V, Salazar G, Ono S, Styers ML, Gearing M, Davila A, Jimenez R, Juncos J, Gutekunst CA, Meroni G, Fontanella B, Sontag E, Sontag JM, Faundez V, Wainer BH. A mutation of beta -actin that alters depolymerization dynamics is associated with autosomal dominant developmental malformations, deafness, and dystonia. Am J Hum Genet 2006; 78:947-60. [PMID: 16685646 PMCID: PMC1474101 DOI: 10.1086/504271] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 03/09/2006] [Indexed: 11/03/2022] Open
Abstract
Actin, one of the major filamentous cytoskeletal molecules, is involved in a variety of cellular functions. Whereas an association between muscle actin mutations and skeletal and cardiac myopathies has been well documented, reports of human disease arising from mutations of nonmuscle actin genes have been rare. We have identified a missense point mutation in the gene coding for beta -actin that results in an arginine-to-tryptophan substitution at position 183. The disease phenotype includes developmental midline malformations, sensory hearing loss, and a delayed-onset generalized dystonia syndrome in monozygotic twins. Cellular studies of a lymphoblastoid cell line obtained from an affected patient demonstrated morphological abnormalities of the actin cytoskeleton and altered actin depolymerization dynamics in response to latrunculin A, an actin monomer-sequestering drug. Resistance to latrunculin A was also observed in NIH 3T3 cells expressing the mutant actin. These findings suggest that mutations in nonmuscle actins may be associated with a broad spectrum of developmental malformations and/or neurological abnormalities such as dystonia.
Collapse
Affiliation(s)
- Vincent Procaccio
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Bryan KE, Wen KK, Zhu M, Rendtorff ND, Feldkamp M, Tranebjaerg L, Friderici KH, Rubenstein PA. Effects of human deafness gamma-actin mutations (DFNA20/26) on actin function. J Biol Chem 2006; 281:20129-39. [PMID: 16690605 DOI: 10.1074/jbc.m601514200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six point mutations in non-muscle gamma-actin at the DFNA20/26 locus cause autosomal dominant nonsyndromic hearing loss. The molecular basis for the hearing loss is unknown. We have engineered each gamma-actin mutation into yeast actin to investigate the effects of these mutations on actin function in vivo and in vitro. Cells expressing each of the mutant actins as the sole actin in the cell were viable. Four of the six mutant strains exhibited significant growth deficiencies in complete medium and an inability to grow on glycerol as the sole carbon source, implying a mitochondrial defect(s). These four strains exhibited abnormal mitochondrial morphology, although the mtDNA was retained. All of the mutant cells exhibited an abnormally high percentage of fragmented/non-polarized actin cables or randomly distributed actin patches. Five of the six mutants displayed strain-specific vacuole morphological abnormalities. Two of the purified mutant actins exhibited decreased thermal stability and increased rates of nucleotide exchange, indicative of increased protein flexibility. V370A actin alone polymerized abnormally. It aggregated in low ionic strength buffer and polymerized faster than wild-type actin, probably in part because of enhanced nucleation. Mixtures of wild-type and V370A actins displayed kinetic properties in proportion to the mole fraction of each actin in the mixture. No dominant effect of the mutant actin was observed. Our results suggest that a major factor in the deafness caused by these mutations is an altered ability of the actin filaments to be properly regulated by actin-binding proteins rather than an inability to polymerize.
Collapse
Affiliation(s)
- Keith E Bryan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
|
109
|
Minehardt TJ, Kollman PA, Cooke R, Pate E. The open nucleotide pocket of the profilin/actin x-ray structure is unstable and closes in the absence of profilin. Biophys J 2006; 90:2445-9. [PMID: 16428279 PMCID: PMC1403162 DOI: 10.1529/biophysj.105.072900] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The open nucleotide pocket conformation of actin in the profilin:actinCaATP x-ray structure has been hypothesized to be a crucial intermediate for nucleotide exchange in the actin depolymerization/polymerization cycle. The requirement for ancillary modification of actin for crystallization leads to ambiguities in this interpretation, however. We have used molecular dynamics simulations to model the thermodynamic properties of the actin x-ray structure, outside the crystal lattice, in an aqueous environment with profilin removed. Our simulations show that the open-nucleotide-pocket, profilin-free structure is actually unstable, and closes. The coordination of actin to the nucleotide in the molecular-dynamics-derived closed structure is virtually identical to that in the closed profilin:actinSrATP x-ray structure. Thus, there is currently no thermodynamically stable structure representing the open-nucleotide-pocket state of actin.
Collapse
Affiliation(s)
- T J Minehardt
- Department of Pharmaceutical Chemistry, and Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
110
|
Willis JH, Munro E, Lyczak R, Bowerman B. Conditional dominant mutations in the Caenorhabditis elegans gene act-2 identify cytoplasmic and muscle roles for a redundant actin isoform. Mol Biol Cell 2006; 17:1051-64. [PMID: 16407404 PMCID: PMC1382297 DOI: 10.1091/mbc.e05-09-0886] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Animal genomes each encode multiple highly conserved actin isoforms that polymerize to form the microfilament cytoskeleton. Previous studies of vertebrates and invertebrates have shown that many actin isoforms are restricted to either nonmuscle (cytoplasmic) functions, or to myofibril force generation in muscle cells. We have identified two temperature-sensitive and semidominant embryonic-lethal Caenorhabditis elegans mutants, each with a single mis-sense mutation in act-2, one of five C. elegans genes that encode actin isoforms. These mutations alter conserved and adjacent amino acids predicted to form part of the ATP binding pocket of actin. At the restrictive temperature, both mutations resulted in aberrant distributions of cortical microfilaments associated with abnormal and striking membrane ingressions and protrusions. In contrast to the defects caused by these dominant mis-sense mutations, an act-2 deletion did not result in early embryonic cell division defects, suggesting that additional and redundant actin isoforms are involved. Accordingly, we found that two additional actin isoforms, act-1 and act-3, were required redundantly with act-2 for cytoplasmic function in early embryonic cells. The act-1 and -3 genes also have been implicated previously in muscle function. We found that an ACT-2::GFP reporter was expressed cytoplasmically in embryonic cells and also was incorporated into contractile filaments in adult muscle cells. Furthermore, one of the dominant act-2 mutations resulted in uncoordinated adult movement. We conclude that redundant C. elegans actin isoforms function in both muscle and nonmuscle contractile processes.
Collapse
Affiliation(s)
- John H Willis
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | |
Collapse
|
111
|
Waingeh VF, Gustafson CD, Kozliak EI, Lowe SL, Knull HR, Thomasson KA. Glycolytic enzyme interactions with yeast and skeletal muscle F-actin. Biophys J 2005; 90:1371-84. [PMID: 16326908 PMCID: PMC1367288 DOI: 10.1529/biophysj.105.070052] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.
Collapse
Affiliation(s)
- Victor F Waingeh
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202-9024, USA
| | | | | | | | | | | |
Collapse
|
112
|
Chen W, Wen KK, Sens AE, Rubenstein PA. Differential interaction of cardiac, skeletal muscle, and yeast tropomyosins with fluorescent (pyrene235) yeast actin. Biophys J 2005; 90:1308-18. [PMID: 16326906 PMCID: PMC1367282 DOI: 10.1529/biophysj.105.064634] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To monitor binding of tropomyosin to yeast actin, we mutated S235 to C and labeled the actin with pyrene maleimide at both C235 and the normally reactive C374. Saturating cardiac tropomyosin (cTM) caused about a 20% increase in pyrene fluorescence of the doubly labeled F-actin but no change in WT actin C374 probe fluorescence. Skeletal muscle tropomyosin caused only a 7% fluorescence increase, suggesting differential binding modes for the two tropomyosins. The increased cTM-induced fluorescence was proportional to the extent of tropomyosin binding. Yeast tropomyosin (TPM1) produced less increase in fluorescence than did cTM, whereas that caused by yeast TPM2 was greater than either TPM1 or cTM. Cardiac troponin largely reversed the cTM-induced fluorescence increase, and subsequent addition of calcium resulted in a small fluorescence recovery. An A230Y mutation, which causes a Ca(+2)-dependent hypercontractile response of regulated thin filaments, did not change probe235 fluorescence of actin alone or with tropomyosin +/- troponin. However, addition of calcium resulted in twice the fluorescence recovery observed with WT actin. Our results demonstrate isoform-specific binding of different tropomyosins to actin and suggest allosteric regulation of the tropomyosin/actin interaction across the actin interdomain cleft.
Collapse
Affiliation(s)
- Weizu Chen
- Department of Biochemistry, University of Iowa, Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
113
|
Muller J, Oma Y, Vallar L, Friederich E, Poch O, Winsor B. Sequence and comparative genomic analysis of actin-related proteins. Mol Biol Cell 2005; 16:5736-48. [PMID: 16195354 PMCID: PMC1289417 DOI: 10.1091/mbc.e05-06-0508] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.
Collapse
Affiliation(s)
- Jean Muller
- Laboratoire de Biologie et Génomique Structurales, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, BP 163, 67404 Illkirch Cedex, France.
| | | | | | | | | | | |
Collapse
|
114
|
Kudryashov DS, Sawaya MR, Adisetiyo H, Norcross T, Hegyi G, Reisler E, Yeates TO. The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin. Proc Natl Acad Sci U S A 2005; 102:13105-10. [PMID: 16141336 PMCID: PMC1196358 DOI: 10.1073/pnas.0506429102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 2.5-A resolution crystal structure is reported for an actin dimer, composed of two protomers cross-linked along the longitudinal (or vertical) direction of the F-actin filament. The crystal structure provides an atomic resolution view of a molecular interface between actin protomers, which we argue represents a near-native interaction in the F-actin filament. The interaction involves subdomains 3 and 4 from distinct protomers. The atomic positions in the interface visualized differ by 5-10 A from those suggested by previous models of F-actin. Such differences fall within the range of uncertainties allowed by the fiber diffraction and electron microscopy methods on which previous models have been based. In the crystal, the translational arrangement of protomers lacks the slow twist found in native filaments. A plausible model of F-actin can be constructed by reintroducing the known filament twist, without disturbing significantly the interface observed in the actin dimer crystal.
Collapse
Affiliation(s)
- Dmitry S Kudryashov
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
115
|
McKane M, Wen KK, Boldogh IR, Ramcharan S, Pon LA, Rubenstein PA. A mammalian actin substitution in yeast actin (H372R) causes a suppressible mitochondria/vacuole phenotype. J Biol Chem 2005; 280:36494-501. [PMID: 16118223 DOI: 10.1074/jbc.m506970200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To determine the reason for the inviability of Saccharomyces cerevisiae with skeletal muscle actin, we introduced into yeast actin the first variant muscle residue from the C-terminal end, H372R. Arg is also found at this position in non-yeast nonmuscle actins. The substitution caused retarded growth on glucose and an inability to use glycerol as a sole carbon source. The mitochondria were clumped and had lost their DNA, the vacuole appeared hypervesiculated, and the actin cytoskeleton became somewhat depolarized. Introduction of the second muscle actin-specific substitution, S365A, rescued these defects. Suppression was also achieved by introducing the four acidic N-terminal residues of muscle actin in place of the two found in yeast actin. The H372R substitution results in an increase in polymerization-dependent fluorescence of Cys-374 pyrene-labeled actin. H372R actin polymerizes slightly faster than wild-type (WT) actin. Yeast actin-related proteins 2 and 3 (Arp2/3) accelerates the polymerization of H372R actin to a much greater extent than WT actin. The two suppressors did not affect the rate of H372R actin polymerization in the absence of an Arp2/3 complex. In contrast, the S365A substitution dampened the rate of Arp2/3 complex-stimulated H372R actin polymerization, and the addition of the four acidic N-terminal residues caused this rate to decrease below that observed with WT actin in the presence of Arp2/3. Structural analysis of the mutations suggests the presence of stringent steric and ionic requirements for the bottom of actin subdomain 1 and also suggests that there is allosteric communication through subdomain 1 within the actin monomer between the N and C termini.
Collapse
Affiliation(s)
- Melissa McKane
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
116
|
Abstract
This is the first of a projected series of canonic reviews covering all invertebrate muscle literature prior to 2005 and covers muscle genes and proteins except those involved in excitation-contraction coupling (e.g., the ryanodine receptor) and those forming ligand- and voltage-dependent channels. Two themes are of primary importance. The first is the evolutionary antiquity of muscle proteins. Actin, myosin, and tropomyosin (at least, the presence of other muscle proteins in these organisms has not been examined) exist in muscle-like cells in Radiata, and almost all muscle proteins are present across Bilateria, implying that the first Bilaterian had a complete, or near-complete, complement of present-day muscle proteins. The second is the extraordinary diversity of protein isoforms and genetic mechanisms for producing them. This rich diversity suggests that studying invertebrate muscle proteins and genes can be usefully applied to resolve phylogenetic relationships and to understand protein assembly coevolution. Fully achieving these goals, however, will require examination of a much broader range of species than has been heretofore performed.
Collapse
Affiliation(s)
- Scott L Hooper
- Neuroscience Program, Department of Biological Sciences, Irvine Hall, Ohio University, Athens, Ohio 45701, USA.
| | | |
Collapse
|
117
|
Martin AC, Xu XP, Rouiller I, Kaksonen M, Sun Y, Belmont L, Volkmann N, Hanein D, Welch M, Drubin DG. Effects of Arp2 and Arp3 nucleotide-binding pocket mutations on Arp2/3 complex function. ACTA ACUST UNITED AC 2005; 168:315-28. [PMID: 15657399 PMCID: PMC2171590 DOI: 10.1083/jcb.200408177] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contributions of actin-related proteins (Arp) 2 and 3 nucleotide state to Arp2/3 complex function were tested using nucleotide-binding pocket (NBP) mutants in Saccharomyces cerevisiae. ATP binding by Arp2 and Arp3 was required for full Arp2/3 complex nucleation activity in vitro. Analysis of actin dynamics and endocytosis in mutants demonstrated that nucleotide-bound Arp3 is particularly important for Arp2/3 complex function in vivo. Severity of endocytic defects did not correlate with effects on in vitro nucleation activity, suggesting that a critical Arp2/3 complex function during endocytosis may be structural rather than catalytic. A separate class of Arp2 and Arp3 NBP mutants suppressed phenotypes of mutants defective for actin nucleation. An Arp2 suppressor mutant increased Arp2/3 nucleation activity. Electron microscopy of Arp2/3 complex containing this Arp2 suppressor identified a structural change that also occurs upon Arp2/3 activation by nucleation promoting factors. These data demonstrate the importance of Arp2 and Arp3 nucleotide binding for nucleating activity, and Arp3 nucleotide binding for maintenance of cortical actin cytoskeleton cytoarchitecture.
Collapse
Affiliation(s)
- Adam C Martin
- Barker Hall, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Drory O, Frolow F, Nelson N. Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 2005; 5:1148-52. [PMID: 15540116 PMCID: PMC1299189 DOI: 10.1038/sj.embor.7400294] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/12/2004] [Accepted: 10/13/2004] [Indexed: 11/08/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) has a crucial role in the vacuolar system of eukaryotic cells. It provides most of the energy required for transport systems that utilize the proton-motive force that is generated by ATP hydrolysis. Some, but not all, of the V-ATPase subunits are homologous to those of F-ATPase and the nonhomologous subunits determine the unique features of V-ATPase. We determined the crystal structure of V-ATPase subunit C (Vma5p), which does not show any homology with F-ATPase subunits, at 1.75 A resolution. The structural features suggest that subunit C functions as a flexible stator that holds together the catalytic and membrane sectors of the enzyme. A second crystal form that was solved at 2.9 A resolution supports the flexible nature of subunit C. These structures provide a framework for exploring the unique mechanistic features of V-ATPases.
Collapse
Affiliation(s)
- Omri Drory
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Tel: +972 3 640 6017; Fax: +972 3 640 6018; E-mail:
| |
Collapse
|
119
|
Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M. Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 2005; 564:65-82. [PMID: 15649975 PMCID: PMC1456038 DOI: 10.1113/jphysiol.2004.078055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutant yeast actins were used to determine the role of actin's N-terminal negative charges in force generation. The thin filament was selectively removed from bovine cardiac skinned muscle fibres by gelsolin, and the actin filament was reconstituted from purified G-actin. In this reconstitution, yeast wild-type actin (2Ac: two N-terminal negative charges), yeast mutant actins (3Ac and 4Ac), and rabbit skeletal muscle actin (MAc) were used. The effects of phosphate, ATP and ADP on force development were studied at 25 degrees C. With MAc, isometric tension was 77% of the initial tension owing to the lack of a regulatory system. With 2Ac, isometric tension was 10% of the initial tension; with 3Ac, isometric tension was 23%; and with 4Ac, isometric tension was 44%. Stiffness followed a similar pattern (2Ac < 3Ac < 4Ac < MAc). A similar trend was observed during rigor induction and relaxation. Sinusoidal analysis was performed to obtain the kinetic constants of the cross-bridge cycle. The results showed that the variability of the kinetic constants was < or = 2.5-fold among the 2Ac, 4Ac and MAc muscle models. When the cross-bridge distribution was examined, there was no significant reapportionment among these three models examined. These results indicate that force supported by each cross-bridge is modified by the N-terminal negative charges of actin, presumably via the actomyosin interface. We conclude that two N-terminal negative charges are not adequate, three negative charges are intermediate, and four negative charges are necessary to generate force.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Mary K Bryant
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Keith E Bryan
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
- Corresponding author M. Kawai: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
120
|
Abstract
Dynamic instability-the switching of a two-state polymer between phases of steady elongation and rapid shortening-is essential to the cellular function of eukaryotic microtubules, especially during chromosome segregation. Since the discovery of dynamic instability 20 years ago, no other biological polymer has been found to exhibit this behavior. Using total internal reflection fluorescence microscopy and fluorescence resonance energy transfer, we observe that the prokaryotic actin homolog ParM, whose assembly is required for the segregation of large, low-copy number plasmids, displays both dynamic instability and symmetrical, bidirectional polymerization. The dynamic instability of ParM is regulated by adenosine triphosphate (ATP) hydrolysis, and filaments are stabilized by a cap of ATP-bound monomers. ParM is not related to tubulin, so its dynamic instability must have arisen by convergent evolution driven by a set of common constraints on polymer-based segregation of DNA.
Collapse
Affiliation(s)
- Ethan C Garner
- University of California, 600 16th Street, San Francisco, CA 94107, USA
| | | | | |
Collapse
|
121
|
Nolen BJ, Littlefield RS, Pollard TD. Crystal structures of actin-related protein 2/3 complex with bound ATP or ADP. Proc Natl Acad Sci U S A 2004; 101:15627-32. [PMID: 15505213 PMCID: PMC524860 DOI: 10.1073/pnas.0407149101] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actin-related protein (Arp) 2/3 complex stimulates formation of actin filaments at the leading edge of motile cells. Nucleation of filaments depends on hydrolysis of ATP bound to Arp2. Here we report crystal structures of Arp2/3 complex with bound ATP or ADP. The nucleotides are immobilized on the face of subdomains 3 and 4 of Arp2, whereas subdomains 1 and 2 are flexible and absent from the electron density maps. This flexibility may explain why Arp2 does not hydrolyze ATP until the complex is activated. ATP stabilizes a relatively closed conformation of Arp3 with the gamma-phosphate bridging loops from opposite sides of the cleft. ADP binds Arp3 in a unique conformation that favors an open cleft, revealing a conformational change that may occur in actin and Arps when ATP is hydrolyzed and phosphate dissociates. These structures provide the an opportunity to compare all nucleotide-binding states in an actin-related protein and give insights into the function of both the Arp2/3 complex and actin.
Collapse
Affiliation(s)
- Brad J Nolen
- Departments of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | |
Collapse
|
122
|
la Cour T, Kiemer L, Mølgaard A, Gupta R, Skriver K, Brunak S. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 2004; 17:527-36. [PMID: 15314210 DOI: 10.1093/protein/gzh062] [Citation(s) in RCA: 615] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We present a thorough analysis of nuclear export signals and a prediction server, which we have made publicly available. The machine learning prediction method is a significant improvement over the generally used consensus patterns. Nuclear export signals (NESs) are extremely important regulators of the subcellular location of proteins. This regulation has an impact on transcription and other nuclear processes, which are fundamental to the viability of the cell. NESs are studied in relation to cancer, the cell cycle, cell differentiation and other important aspects of molecular biology. Our conclusion from this analysis is that the most important properties of NESs are accessibility and flexibility allowing relevant proteins to interact with the signal. Furthermore, we show that not only the known hydrophobic residues are important in defining a nuclear export signals. We employ both neural networks and hidden Markov models in the prediction algorithm and verify the method on the most recently discovered NESs. The NES predictor (NetNES) is made available for general use at http://www.cbs.dtu.dk/.
Collapse
Affiliation(s)
- Tanja la Cour
- Center for Biological Sequence Analysis, Biocentrum-DTU, Technical University of Denmark, Building 208, DK-2800 Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
123
|
Abstract
In the recently solved structure of TMR-modified ADP-G-actin, the nucleotide cleft is in a closed state conformation, and the D-loop contains an alpha-helix (L. R. Otterbein, P. Graceffa, and R. Dominguez, 2001, Science, 293:708-711). Subsequently, questions were raised regarding the possible role of the TMR label on Cys(374) in determining these aspects of G-actin structure. We show here that the susceptibility of D-loop on G-actin to subtilisin cleavage, and ATP/ADP-dependent changes in this cleavage, are not affected by TMR-labeling of actin. The TMR modification inhibits nucleotide exchange, but has no effect on DNase I binding and the fast phase of tryptic digestion of actin. These results show an absence of allosteric effects of TMR on subdomain 2, while confirming ATP/ADP-dependent changes in D-loop structure. In conjunction with similar results obtained on actin-gelsolin segment 1 complex, this works reveals the limitations of solution methods in probing the putative open and closed nucleotide cleft states of G-actin.
Collapse
Affiliation(s)
- Dmitry S Kudryashov
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095 USA
| | | |
Collapse
|
124
|
Guan JQ, Almo SC, Chance MR. Synchrotron radiolysis and mass spectrometry: a new approach to research on the actin cytoskeleton. Acc Chem Res 2004; 37:221-9. [PMID: 15096059 DOI: 10.1021/ar0302235] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxyl radicals generated from millisecond exposure of aqueous solutions to synchrotron X-rays react with proteins to yield stable oxidative modifications of solvent-accessible amino acid side chains. Following proteolysis, HPLC/MS analysis is performed to quantitate the side chain reactivities, and MS/MS analysis is used to identify the modification site(s). Side chain reactivity is shown to be correlated with solvent accessibility; thus the method provides detailed site-specific information about protein structure. The application of these techniques to the study of the actin cytoskeleton is described in detail, including defining the binding sites of monomeric actin with gelsolin segment-1, the actin monomer binding surface on cofilin, the divalent cation-dependent structure changes of monomeric actin, and the conformational changes associated with actin filamentous assembly.
Collapse
Affiliation(s)
- Jing-Qu Guan
- Center for Synchrotron Biosciences, Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | |
Collapse
|
125
|
van Wijk E, Krieger E, Kemperman MH, De Leenheer EMR, Huygen PLM, Cremers CWRJ, Cremers FPM, Kremer H. A mutation in the gamma actin 1 (ACTG1) gene causes autosomal dominant hearing loss (DFNA20/26). J Med Genet 2004; 40:879-84. [PMID: 14684684 PMCID: PMC1735337 DOI: 10.1136/jmg.40.12.879] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Linkage analysis in a multigenerational family with autosomal dominant hearing loss yielded a chromosomal localisation of the underlying genetic defect in the DFNA20/26 locus at 17q25-qter. The 6-cM critical region harboured the gamma-1-actin (ACTG1) gene, which was considered an attractive candidate gene because actins are important structural elements of the inner ear hair cells. In this study, a Thr278Ile mutation was identified in helix 9 of the modelled protein structure. The alteration of residue Thr278 is predicted to have a small but significant effect on the gamma 1 actin structure owing to its close proximity to a methionine residue at position 313 in helix 11. Met313 has no space in the structure to move away. Moreover, the Thr278 residue is highly conserved throughout eukaryotic evolution. Using a known actin structure the mutation could be predicted to impair actin polymerisation. These findings strongly suggest that the Thr278Ile mutation in ACTG1 represents the first disease causing germline mutation in a cytoplasmic actin isoform.
Collapse
Affiliation(s)
- E van Wijk
- Department of Otorhinolaryngology, University Medical Centre, Nijmegen, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Chik JK, Schriemer DC. Hydrogen/deuterium exchange mass spectrometry of actin in various biochemical contexts. J Mol Biol 2003; 334:373-85. [PMID: 14623181 DOI: 10.1016/j.jmb.2003.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrogen/deuterium exchange mass spectrometry (H/D MS) of monomeric actin (G-actin), polymeric actin (F-actin), phalloidin-bound F-actin and G-actin complexed with DNase I provides new insights into the architecture of F-actin and the effects of phalloidin and DNase I binding. Although the overall pattern of deuteration change supports the gross features of the Holmes F-actin model, two important differences were observed. Most significantly, no change in deuteration was observed in the critical "hydrophobic plug" region, suggesting this feature may not be present. Polymerization also produced deuteration increases for peptide fragments containing the ATP phosphate-binding loops, suggesting G-actin transitions to a more "open" conformation upon polymerization. However, polymerization produced decreases in deuteration mainly localized to the "inner", filament-axis side as predicted by the Holmes model. Mapping the phalloidin-induced decreases in F-actin deuteration onto the Lorenz binding site produced a single common patch straddling two monomers across the 1-start helix contact, again consistent with the Holmes architecture. Finally, both DNase I and phalloidin were able to alter the deuteration of regions distal to their respective binding sites. These results highlight the great opportunities for H/D MS to exploit high-resolution structures for detailed studies of the organization and dynamics of complex molecular assemblies.
Collapse
Affiliation(s)
- John K Chik
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, 3330 Hospital Dr NW, T2N 4N1, Calgary, Alta., Canada
| | | |
Collapse
|