101
|
Henry M, Thomas KGF, Ross IL. Sleep, Cognition and Cortisol in Addison's Disease: A Mechanistic Relationship. Front Endocrinol (Lausanne) 2021; 12:694046. [PMID: 34512546 PMCID: PMC8429905 DOI: 10.3389/fendo.2021.694046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific literature suggests there are mechanistic relations between sleep disruption and memory deficits, and that varying concentrations of cortisol may play an important role in mediating those relations. Patients with Addison's disease (AD) experience consistent and predictable periods of sub- and supra-physiological cortisol concentrations due to lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep and impaired memory. These disruptions and impairments may be related to the failure of replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available data provides support for existing theoretical frameworks which postulate that in AD and other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an important biological mechanism that underlies, at least partially, the memory impairments that patients frequently report experiencing. Given the literature linking sleep disruption and cognitive impairment in AD, future initiatives should aim to improve patients' cognitive performance (and, indeed, their overall quality of life) by prioritizing and optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and the role that cortisol concentrations play in the relationship between the two.
Collapse
Affiliation(s)
- Michelle Henry
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
- *Correspondence: Michelle Henry,
| | | | - Ian Louis Ross
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
102
|
Banqueri M, Gutiérrez-Menéndez A, Méndez M, Conejo NM, Arias JL. Early life stress due to repeated maternal separation alters the working memory acquisition brain functional network. Stress 2021; 24:87-95. [PMID: 32510270 DOI: 10.1080/10253890.2020.1777974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Unfortunately, adverse environments in early life are frequently found in most human populations. Early life stress leads to diverse cognitive impairments, some of them related to learning and memory and executive functions such as working memory (WM). We employ an animal model of early stress using repeated maternal separation (MS) for 4 h a day on 21 consecutive days, pre-weaning. In adulthood, we tested their spatial WM using the Morris water maze. MS subjects showed a marked delay in the acquisition of the task. In addition, we explored brain energy oxidative metabolism and found an increase in cytochrome c oxidase (CCO) activity in the cingulate cortex, anterior thalamus, and supramammillary areas, indicating an intense effort to successfully solve the WM task. However, decreased CCO activity was found in the medial-medial mammillary nucleus in MS animals, which would partially explain the delayed acquisition of the WM task. Further studies are needed to explore the long-term alterations produced by early stress. LAY SUMMARY A stressful environment caused by the separation of baby rats from the mother for several hours a day in the first stages of postnatal life can be devastating to brain cells, making them look for alternative sources of energy, among other changes. These alterations in brain functional networks would lead to cognitive impairments such as the delayed acquisition of new learning and strategies.
Collapse
Affiliation(s)
- María Banqueri
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alba Gutiérrez-Menéndez
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Marta Méndez
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Nélida M Conejo
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
| | - Jorge L Arias
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Laboratory of Neuroscience, Department of Psychology, University of Oviedo, Oviedo, Spain
| |
Collapse
|
103
|
Early life sleep disruption alters glutamate and dendritic spines in prefrontal cortex and impairs cognitive flexibility in prairie voles. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35505895 PMCID: PMC9060254 DOI: 10.1016/j.crneur.2021.100020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14–21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes. Early Life Sleep Disruption impairs prefrontal cortex-dependent glutamate and behavior in prairie voles. Sleep during postnatal week 3 is important for social and cognitive development. Long-term effects of early life sleep disruption include increased dendritic spine density and alterations in glutamate.
Collapse
|
104
|
The Impact of FKBP5 Deficiency in Glucocorticoid Receptor Mediated Regulation of Synaptic Transmission in the Medial Prefrontal Cortex. Neuroscience 2020; 457:20-26. [PMID: 33359659 DOI: 10.1016/j.neuroscience.2020.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Exposure to stress activates glucocorticoid receptors in the brain and facilitates the onset of multitude psychiatric disorders. It has been shown that FK506 binding protein 51 (FKBP5) expression increases during glucocorticoid receptor (GR) activation in various brain regions including the medial prefrontal cortex (mPFC). FKBP5 knockout (KO) mice are reported to be resilient to stress, however, it remains uninvestigated whether FKBP5 loss affects neurotransmission and if so, what the functional consequences are. Here, we examined the impact of FKBP5 deletion in synaptic transmission of the mPFC. We found that GR activation significantly decreased excitatory neurotransmission in the mPFC, which was completely abolished upon FKBP5 deletion, in consistent with behavioral resilience observed in FKBP5 KO mice. Even though FKBP5 loss has minimal impact on neural excitability, we found that FKBP5 deletion distorts the excitatory/inhibitory balance in the mPFC. Our study suggests that FKBP5 deficiency leads to the mPFC insensitive to GR activation and provides a neurophysiological explanation for how FKBP5 deficiency may mediate stress resilience.
Collapse
|
105
|
Ebisuzaki BT, Riemen ND, Bettencourt KM, Gonzalez LM, Bennion KA, Greever CJ. No Change in Executive Function or Stress Hormones Following a Bout of Moderate Treadmill Exercise in Preadolescent Children. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2020; 13:1650-1666. [PMID: 33414883 PMCID: PMC7745919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several studies suggest that acute bouts of exercise improve executive function in preadolescent children. However, the mechanisms underlying these effects are not completely understood. Specifically, no studies have examined the relationship between the stress hormone response to exercise and improvements in executive function in preadolescent children. The purpose of this study was to examine the effects of a bout of moderate intensity exercise versus rest on working memory (List Sorting Working Memory Task) and selective inhibition/attention (Eriksen flanker task) in preadolescent children, as well as to investigate whether changes in stress hormones (salivary cortisol and alpha-amylase) could explain any differences in performance on these tasks. Twenty-four children completed both a 30-minute moderate intensity bout of treadmill walking and seated rest in a laboratory setting. Tests of executive function and salivary stress hormone analyses were completed before and after each condition. 2x2 Repeated Measures ANOVAs were used to test the effects of time, condition, and time*condition on all executive function and hormonal outcomes. Linear regression models were used to determine if changes in executive function measures were related to changes in stress hormones in the exercise condition. Likely due to methodological limitations, there were no effects of time, condition, nor an interactive effect on working memory, selective inhibition, salivary cortisol, or salivary alpha-amylase. However, there was a trend observed, where the magnitude of the increase in salivary alpha-amylase levels in the exercise condition marginally predicted the improvement in reaction time on the Eriksen flanker task. This suggests that exercise-induced changes in alpha-amylase may underlie improvements in executive function and highlights the need for additional research to more fully understand these relationships in preadolescent children.
Collapse
Affiliation(s)
- Brian T Ebisuzaki
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Nicholas D Riemen
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Kory M Bettencourt
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Lupita M Gonzalez
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Kelly A Bennion
- Department of Psychology and Child Development, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Cory J Greever
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, CA, USA
| |
Collapse
|
106
|
Dygalo NN, Kalinina TS, Shishkina GT. Stress-induced expression pattern of glutamate signaling genes associated with anhedonia. Stress 2020; 23:700-707. [PMID: 32814471 DOI: 10.1080/10253890.2020.1812574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic stress can predispose vulnerable individuals to mood disorders, including depression. Glutamate, one of the key participants in this process, may exert both pathological and therapeutic psycho-emotional effects. However, the role of expression of genes encoding proteins that provide glutamatergic signal is still unclear. In this study, we attempted to distinguish changes in expression of glutamatergic genes associated with stress-induced anhedonia, a core symptom of depression, from those related to other stress-related effects. For this, expression of genes was compared between rats after a short-term stress, which did not yet cause depressive-like symptoms, and animals exposed chronically to different stressors that produce anhedonia-like responses. The changes in gene expression induced by chronic restraint or forced swimming concomitantly with anhedonia development demonstrated similar for both stressors patterns. Main features of the expression patterns include the decrease in mRNA levels for AMPA and NMDA subunits in the midbrain and hippocampus that is consistent with the hypothesis that "monoamine (serotonin)-Glutamate/GABA long neural circuit" involved in mood regulation. The decrease in expression of these subunits in the midbrain may attenuate glutamatergic drive on the serotonergic neurons promoting a shift of excitation/inhibition balance between glutamate and GABA in the forebrain regions resulting in anhedonia. In general, changes in expression of multiple genes involved in glutamatergic neurotransmission in the forebrain and brainstem regions suggest that stress-induced anhedonia may result from the network dysfunction of this neurotransmitter system.
Collapse
Affiliation(s)
- Nikolay N Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana S Kalinina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Galina T Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| |
Collapse
|
107
|
Herman JP, Nawreen N, Smail MA, Cotella EM. Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020; 23:617-632. [PMID: 33345670 PMCID: PMC8034599 DOI: 10.1080/10253890.2020.1859475] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulation of stress reactivity is a fundamental priority of all organisms. Stress responses are critical for survival, yet can also cause physical and psychological damage. This review provides a synopsis of brain mechanisms designed to control physiological responses to stress, focusing primarily on glucocorticoid secretion via the hypothalamo-pituitary-adrenocortical (HPA) axis. The literature provides strong support for multi-faceted control of HPA axis responses, involving both direct and indirect actions at paraventricular nucleus (PVN) corticotropin releasing hormone neurons driving the secretory cascade. The PVN is directly excited by afferents from brainstem and hypothalamic circuits, likely relaying information on homeostatic challenge. Amygdala subnuclei drive HPA axis responses indirectly via disinhibition, mediated by GABAergic relays onto PVN-projecting neurons in the hypothalamus and bed nucleus of the stria terminalis (BST). Inhibition of stressor-evoked HPA axis responses is mediated by an elaborate network of glucocorticoid receptor (GR)-containing circuits, providing a distributed negative feedback signal that inhibits PVN neurons. Prefrontal and hippocampal neurons play a major role in HPA axis inhibition, again mediated by hypothalamic and BST GABAergic relays to the PVN. The complexity of the regulatory process suggests that information on stressors is integrated across functional disparate brain circuits prior to accessing the PVN, with regions such as the BST in prime position to relay contextual information provided by these sources into appropriate HPA activation. Dysregulation of the HPA in disease is likely a product of inappropriate checks and balances between excitatory and inhibitory inputs ultimately impacting PVN output.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Evelin M Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
108
|
Short predictable stress promotes resistance to anxiety behavior and increases dendritic spines in prefrontal cortex and hippocampus. Brain Res 2020; 1746:147020. [DOI: 10.1016/j.brainres.2020.147020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
|
109
|
Wang X, Xu Z, Zhao F, Lin KJ, Foster JB, Xiao T, Kung N, Askwith CC, Bruno JP, Valentini V, Hodgetts KJ, Lin CLG. Restoring tripartite glutamatergic synapses: A potential therapy for mood and cognitive deficits in Gulf War illness. Neurobiol Stress 2020; 13:100240. [PMID: 33344696 PMCID: PMC7739039 DOI: 10.1016/j.ynstr.2020.100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/13/2023] Open
Abstract
Gulf War illness is associated with a combination of exposure to war-related chemical agents and traumatic stress. Currently, there are no effective treatments, and the pathophysiology remains elusive. Neurological problems are among the most commonly reported symptoms. In this study, we investigated the glutamatergic system in the hippocampi of mice exposed to war-related chemical agents and stress. Mice developed Gulf War illness-like symptoms, including mood deficits, cognitive impairments, and fatigue. They exhibited the following pathological changes in hippocampi: elevated extracellular glutamate levels, impaired glutamatergic synapses, astrocyte atrophy, loss of interneurons, and decreased neurogenesis. LDN/OSU-215111 is a small-molecule that can strengthen the structure and function of both the astrocytic processes and the glutamatergic synapses that together form the tripartite synapses. We found that LDN/OSU-215111 effectively prevented the development of mood and cognitive deficits in mice when treatment was implemented immediately following the exposure. Moreover, when symptoms were already present, LDN/OSU-215111 still significantly ameliorated these deficits; impressively, benefits were sustained one month after treatment cessation, indicating disease modification. LDN/OSU-215111 effectively normalized hippocampal pathological changes. Overall, this study provides strong evidence that restoration of tripartite glutamatergic synapses by LDN/OSU-215111 is a potential therapy for Gulf War illness.
Collapse
Key Words
- BBB, Blood brain barrier
- CA, Cornu ammonis
- DCX, Doublecortin
- DEET, N, N-Diethyl-meta-toluamide
- DG, Dentate gyrus
- EAAT2, Excitatory amino acid transporter 2
- GABA, γ-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- GWI, gulf war illness
- Gulf war illness
- LTP, Long term potentiation
- Mood deficits and cognitive impairments
- PB, Pyridostigmine bromide
- PSD95, Postsynaptic density protein 95
- PV, Parvalbumin
- TBS, Theta burst stimulation
- Therapy
- Traumatic stress
- Tripartite glutamatergic synapses
- fEPSP, field excitatory postsynaptic potentials
- sEPSC/mEPSC, Spontaneous/miniature excitatory postsynaptic current
- sIPSC/mIPSC, Spontaneous/miniature inhibitory postsynaptic current
- vGAT, Vesicular inhibitory amino acid transporter
- vGLUT1, Vesicular glutamate transporter 1
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kuanhung J. Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tianqi Xiao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P. Bruno
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Valentina Valentini
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
110
|
Ávila-Villanueva M, Gómez-Ramírez J, Maestú F, Venero C, Ávila J, Fernández-Blázquez MA. The Role of Chronic Stress as a Trigger for the Alzheimer Disease Continuum. Front Aging Neurosci 2020; 12:561504. [PMID: 33192456 PMCID: PMC7642953 DOI: 10.3389/fnagi.2020.561504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/04/2020] [Indexed: 01/18/2023] Open
Affiliation(s)
- Marina Ávila-Villanueva
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Jaime Gómez-Ramírez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology, Campus de Montegancedo, Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Campus de Somosaguas, Madrid, Spain
| | - César Venero
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Jesús Ávila
- Center of Molecular Biology Severo Ochoa (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Miguel A Fernández-Blázquez
- Alzheimer Disease Research Unit, CIEN Foundation, Carlos III Institute of Health, Queen Sofía Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
111
|
Excitation-Inhibition Imbalance Leads to Alteration of Neuronal Coherence and Neurovascular Coupling under Acute Stress. J Neurosci 2020; 40:9148-9162. [PMID: 33087471 PMCID: PMC7673010 DOI: 10.1523/jneurosci.1553-20.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 01/08/2023] Open
Abstract
A single stressful event can cause morphologic and functional changes in neurons and even malfunction of vascular systems, which can lead to acute stress disorder or post-traumatic stress disorder. However, there is a lack of evidence regarding how acute stress impacts neuronal activity, the concurrent vascular response, and the relationship between these two factors, which is defined as neurovascular coupling. Here, using in vivo two-photon imaging, we found that NMDA-evoked calcium transients of excitatory neurons were impaired and that vasodilation of penetrating arterioles was concomitantly disrupted in acutely stressed male mice. Furthermore, acute stress altered the relationship between excitatory neuronal calcium coherence and vascular responses. By measuring NMDA-evoked excitatory and inhibitory neuronal calcium activity in acute brain slices, we confirmed that neuronal coherence both between excitatory neurons and between excitatory and inhibitory neurons was reduced by acute stress but restored by blockade of glucocorticoid receptor signaling. Furthermore, the ratio of sEPSCs to sIPSCs was altered by acute stress, suggesting that the excitation-inhibition balance was disrupted by acute stress. In summary, in vivo, ex vivo, and whole-cell recording studies demonstrate that acute stress modifies excitatory-inhibitory neuronal coherence, disrupts the excitation-inhibition balance, and causes consequent neurovascular coupling changes, providing critical insights into the neural mechanism of stress-induced disorders. SIGNIFICANCE STATEMENT Acute stress can cause pathologic conditions, such as acute stress disorder and post-traumatic stress disorder, by affecting the functions of neurons and blood vessels. However, investigations into the impacts of acute stress on neurovascular coupling, the tight connection between local neural activity and subsequent blood flow changes, are lacking. Through investigations at the in vivo, ex vivo, and whole-cell recording levels, we found that acute stress alters the NMDA-evoked vascular response, impairs the function and coherence of excitatory and inhibitory neurons, and disrupts the excitatory and inhibitory balance. These novel findings provide insights into the relevance of the excitatory-inhibitory balance, neuronal coherence, and neurovascular coupling to stress-induced disorders.
Collapse
|
112
|
Tryon VL, Garman HD, Loewy RL, Niendam TA. Links Between Human and Animal Models of Trauma and Psychosis: A Narrative Review. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:154-165. [PMID: 33309566 DOI: 10.1016/j.bpsc.2020.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Traumatic experiences during development are associated with an increased risk of developing psychosis. Individuals with psychosis also report a higher rate of past trauma than healthy control subjects and worse outcomes than those who do not have these experiences. It is thought that traumatic experiences negatively impact specific neurobiological processes to confer this increased risk, and that systems affected by trauma are similarly changed in individuals with psychosis. Examining animal models of psychosis and the shared neurobiological changes in response to stressors can offer valuable insight into biological mechanisms that mediate symptoms and targets for intervention. This targeted review highlights a subset of models of psychosis across humans and animals, examines the similarities with the brain's response to stress and traumatic events, and discusses how these models may interact. Suggestions for future research are described.
Collapse
Affiliation(s)
- Valerie L Tryon
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis
| | - Heather D Garman
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Rachel L Loewy
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California
| | - Tara A Niendam
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Davis.
| |
Collapse
|
113
|
Li Q, Yan J, Liao J, Zhang X, Liu L, Fu X, Tan HY, Zhang D, Yan H. Distinct Effects of Social Stress on Working Memory in Obsessive-Compulsive Disorder. Neurosci Bull 2020; 37:81-93. [PMID: 33000423 PMCID: PMC7811969 DOI: 10.1007/s12264-020-00579-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/13/2020] [Indexed: 10/30/2022] Open
Abstract
Stress might exaggerate the compulsion and impair the working memory of patients with obsessive-compulsive disorder (OCD). This study evaluated the effect of stress on the cognitive neural processing of working memory in OCD and its clinical significance using a "number calculation working memory" task. Thirty-eight patients and 55 gender- and education-matched healthy controls were examined. Stress impaired the performance of the manipulation task in patients. Healthy controls showed less engagement of the medial prefrontal cortex and striatum during the task under stress versus less stress, which was absent in the patients with OCD. The diagnosis × stress interaction effect was significant in the right fusiform, supplementary motor area, precentral cortex and caudate. The failure of suppression of the medial prefrontal cortex and striatum and stress-related hyperactivation in the right fusiform, supplementary motor area, precentral cortex, and caudate might be an OCD-related psychopathological and neural response to stress.
Collapse
Affiliation(s)
- Qianqian Li
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jun Yan
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Jinmin Liao
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lijun Liu
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Xiaoyu Fu
- Peking University Sixth Hospital, Beijing, 100191, China.,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Hao Yang Tan
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China. .,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
| | - Hao Yan
- Peking University Sixth Hospital, Beijing, 100191, China. .,Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
| |
Collapse
|
114
|
Bryce CA, Floresco SB. Central CRF and acute stress differentially modulate probabilistic reversal learning in male and female rats. Behav Brain Res 2020; 397:112929. [PMID: 32998044 DOI: 10.1016/j.bbr.2020.112929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
Abstract
Acute stress can have variable and sometimes sex-dependent effects on different executive functions, including cognitive flexibility, some of which may be mediated by increased corticotropin releasing factor (CRF). Previous studies on the effects of stress and CRF on cognitive flexibility have used procedures entailing deterministic rewards, yet how they may alter behavior when outcomes are probabilistic is unclear. The present study examined how acute stress and increased CRF activity alters probabilistic reversal learning (PRL) in male and female rats. Rats learned to discriminate between a 'correct' lever rewarded on 80 % of trials, and an "incorrect" lever delivering reward on 20 % of trials, with reward contingencies reversed after 8 consecutive correct choices. Separate groups received either intracerebroventricular infusions of CRF (3 μg) or restraint stress prior to a PRL session. Experiments examined how these manipulations affected learning when given prior to a one-day acquisition test or during performance in well-trained rats. Exogenous CRF, and to a lesser extent acute stress, impaired motivation across sexes, slowing deliberation times and increasing the number of trials omitted, particularly following a switch in reward contingencies. Neither manipulation significantly altered errors or reversal performance. However, increased CRF activity reduced negative feedback sensitivity. Across manipulations, females showed increased omissions and choice latencies, and were less sensitive to feedback than males. These results reveal the complexity with which stress, CRF, sex, and experience interact to alter aspects of motivation and probabilistic reinforcement learning and provide insight into how CRF activity may contribute to symptoms of stress-related disorders.
Collapse
Affiliation(s)
- Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
115
|
He ZX, Song HF, Liu TY, Ma J, Xing ZK, Yin YY, Liu L, Zhang YN, Zhao YF, Yu HL, He XX, Guo WX, Zhu XJ. HuR in the Medial Prefrontal Cortex is Critical for Stress-Induced Synaptic Dysfunction and Depressive-Like Symptoms in Mice. Cereb Cortex 2020; 29:2737-2747. [PMID: 30843060 DOI: 10.1093/cercor/bhz036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/05/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic stress has been observed to increase the risk of developing depression and induce neuronal alterations of synaptic plasticity, yet the underlying molecular mechanisms remain unclear. Here, we found that the ubiquitously expressed RNA-binding protein HuR was up-regulated in the medial prefrontal cortex (mPFC) of mice following chronic stress. In adult mice, AAV-Cre-mediated knockout of HuR in the mPFC prevented anxiety-like and depression-like behaviors induced by chronic stress. HuR was also required for the stress-induced dendritic spine loss and synaptic transmission deficits. Moreover, HuRflox/flox;Nex-Cre mice, which induce HuR loss of function from embryonic development, exhibited enhanced synaptic functions. Notably, we ascertained RhoA signaling to be regulated by HuR and involved in the modulation of structural synaptic plasticity in response to chronic stress. Our results demonstrate HuR is a critical modulator for the regulation of stress-induced synaptic plasticity alterations and depression, providing a potential therapeutic target for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Zi-Xuan He
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hui-Fang Song
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Ting-Yu Liu
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Ma
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zhen-Kai Xing
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yue-Yue Yin
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lin Liu
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yan-Ning Zhang
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yi-Fei Zhao
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Hua-Li Yu
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiao-Xiao He
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Xiao-Juan Zhu
- Key laboratory of Molecular Epigenetics Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
116
|
Lamanna J, Isotti F, Ferro M, Racchetti G, Anchora L, Rucco D, Malgaroli A. Facilitation of dopamine-dependent long-term potentiation in the medial prefrontal cortex of male rats follows the behavioral effects of stress. J Neurosci Res 2020; 99:662-678. [PMID: 32954528 DOI: 10.1002/jnr.24732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
The effect of stress on animal behavior and brain activity has been attracting growing attention in the last decades. Stress dramatically affects several aspects of animal behavior, including motivation and cognitive functioning, and has been used to model human pathologies such as post-traumatic stress disorder. A key question is whether stress alters the plastic potential of synaptic circuits. In this work, we evaluated if stress affects dopamine (DA)-dependent synaptic plasticity in the medial prefrontal cortex (mPFC). On male adolescent rats, we characterized anxiety- and depressive-like behaviors using behavioral testing before and after exposure to a mild stress (elevated platform, EP). After the behavioral protocols, we investigated DA-dependent long-term potentiation (DA-LTP) and depression (DA-LTD) on acute slices of mPFC and evaluated the activation of DA-producing brain regions by western and dot blot analysis. We show that exposure to the EP stress enhances DA-LTP and that desipramine (DMI) treatment abolishes this effect. We also found that DA-LTD is not affected by EP stress unless when this is followed by DMI treatment. In addition, EP stress reduces anxiety, an effect abolished by both DMI and ketamine, while motivation is promoted by previous exposure to EP stress independently of pharmacological treatments. Finally, this form of stress reduces the expression of the early gene cFOS in the ventral tegmental area. These findings support the idea that mild stressors can promote synaptic plasticity in PFC through a dopaminergic mechanism, an effect that might increase the sensitivity of mPFC to subsequent stressful experiences.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Isotti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Gabriella Racchetti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Lavinia Anchora
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Daniele Rucco
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
117
|
GSB-106 Dipeptide Mimetic of Brain-Derived Neurotrophic Factor Prevents Anhedonia Development under Acute Social Defeat Stress Conditions in Mice. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02217-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
118
|
Plieger T, Reuter M. Stress & executive functioning: A review considering moderating factors. Neurobiol Learn Mem 2020; 173:107254. [PMID: 32485224 DOI: 10.1016/j.nlm.2020.107254] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022]
Abstract
A multitude of studies investigating the effects of stress on cognition has produced an inconsistent picture on whether - and under which conditions - stress has advantageous or disadvantageous effects on executive functions (EF). This review provides a short introduction to the concept of stress and its neurobiology, before discussing the need to consider moderating factors in the association between stress and EF. Three core domains are described and discussed in relation to the interplay between stress and cognition: the influence of different paradigms on physiological stress reactivity, individual differences in demographic and biological factors, and task-related features of cognitive tasks. Although some moderating variables such as the endocrine stress response have frequently been considered in single studies, no attempt of a holistic overview has been made so far. Therefore, we propose a more nuanced and systematic framework to study the effects of stress on executive functioning, comprising a holistic overview from the induction of stress, via biological mechanisms and interactions with individual differences, to the influence of stress on cognitive performance.
Collapse
Affiliation(s)
- Thomas Plieger
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany.
| | - Martin Reuter
- Department of Psychology, Laboratory of Neurogenetics University of Bonn, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany
| |
Collapse
|
119
|
Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl Physiol Nutr Metab 2020; 45:591-600. [DOI: 10.1139/apnm-2019-0495] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aerobic exercise may enhance memory in older adults. However, the optimal intensity and underlying mechanism are unclear. This community-based study examined the effect of aerobic exercise intensity on memory and general cognitive abilities. Brain-derived neurotrophic factor (BDNF) was examined as a potential mechanism. Sixty-four sedentary older adults participated in 1 of 3 groups: (i) high-intensity interval training (HIIT); (ii) moderate continuous training (MCT); or (iii) stretching control (CON). Prior to and following the intervention, high-interference memory was assessed using a Mnemonic Similarity task and executive functions were assessed using Go Nogo and Flanker tasks. HIIT led to the greatest memory performance compared with MCT and CON (F[2,55] = 6.04, p = 0.004) and greater improvements in memory correlated with greater increases in fitness (rs (46) = 0.27, p = 0.03). Exercise intensity seemed to matter less for executive functioning, as positive trends were observed for both HIIT and MCT. No significant differences in BDNF were found between groups. Overall, these results suggest that aerobic exercise may enhance memory in older adults, with the potential for higher intensity exercise to yield the greatest benefit. While our findings suggest that BDNF does not regulate these adaptations, the mechanisms remain to be determined. Novelty High-intensity interval training results in the greatest memory performance in inactive older adults compared with moderate continuous training or stretching. Improvement in fitness correlates with improvement in memory performance.
Collapse
Affiliation(s)
- Ana Kovacevic
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Barbara Fenesi
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Emily Paolucci
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jennifer J. Heisz
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
120
|
Marchisella F, Paladini MS, Guidi A, Begni V, Brivio P, Spero V, Calabrese F, Molteni R, Riva MA. Chronic treatment with the antipsychotic drug blonanserin modulates the responsiveness to acute stress with anatomical selectivity. Psychopharmacology (Berl) 2020; 237:1783-1793. [PMID: 32296859 DOI: 10.1007/s00213-020-05498-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
RATIONALE Patients diagnosed with schizophrenia typically receive life-long treatments with antipsychotic drugs (APDs). However, the impact of chronic APDs treatment on neuroplastic mechanisms in the brain remains largely elusive. OBJECTIVE Here, we focused on blonanserin, a second-generation antipsychotic (SGA) that acts as an antagonist at dopamine D2, D3, and serotonin 5-HT2A receptors, and represents an important tool for the treatment of schizophrenia. METHODS We used rats to investigate the ability of chronic treatment blonanserin to modulate the activity of brain structures relevant for schizophrenia, under baseline conditions or in response to an acute forced swim session (FSS). We measured the expression of different immediate early genes (IEGs), including c-Fos, Arc/Arg 3.1, Zif268 and Npas4. RESULTS Blonanserin per se produced limited changes in the expression of these genes under basal conditions, while, as expected, FSS produced a significant elevation of IEGs transcription in different brain regions. The response of blonanserin-treated rats to FSS show anatomical and gene-selective differences. Indeed, the upregulation of IEGs was greatly reduced in the striatum, a brain structure enriched in dopamine receptors, whereas the upregulation of some genes (Zif268, Npas4) was largely preserved in other regions, such as the prefrontal cortex and the ventral hippocampus. CONCLUSIONS Taken together, our findings show that chronic exposure to blonanserin modulates selective IEGs with a specific anatomical profile. Moreover, the differential activation of specific brain regions under challenging conditions may contribute to specific clinical features of the drug.
Collapse
Affiliation(s)
- Francesca Marchisella
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Alice Guidi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129, Milan, Italy.
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
121
|
Fee C, Prevot T, Misquitta K, Banasr M, Sibille E. Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience 2020; 440:113-129. [PMID: 32473277 DOI: 10.1016/j.neuroscience.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Altered activity of corticolimbic brain regions is a hallmark of stress-related illnesses, including mood disorders, neurodegenerative diseases, and substance abuse disorders. Acute stress adaptively recruits brain region-specific functions for coping, while sustained activation under chronic stress may overwhelm feedback mechanisms and lead to pathological cellular and behavioral responses. The neural mechanisms underlying dysregulated stress responses and how they contribute to behavioral deficits are poorly characterized. Here, we tested whether prior exposure to chronic restraint stress (CRS) or unpredictable chronic mild stress (UCMS) in mice could alter functional response to acute stress and whether these changes are associated with chronic stress-induced behavioral deficits. More specifically, we assessed acute stress-induced functional activation indexed by c-Fos+ cell counts in 24 stress- and mood-related brain regions, and determined if changes in functional activation were linked to chronic stress-induced behavioral impairments, summarized across dimensions through principal component analysis (PCA). Results indicated that CRS and UCMS led to convergent physiological and anxiety-like deficits, whereas working and short-term memory were impaired only in UCMS mice. CRS and UCMS exposure exacerbated functional activation by acute stress in anterior cingulate cortex (ACC) area 24b and ventral hippocampal (vHPC) CA1, CA3, and subiculum. In dysregulated brain regions, levels of functional activation were positively correlated with principal components reflecting variance across behavioral deficits relevant to stress-related disorders. Our data supports an association between a dysregulated stress response, altered functional corticolimbic excitation/inhibition balance, and the expression of maladaptive behaviors.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
122
|
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT. Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 2020; 195:172951. [PMID: 32439454 DOI: 10.1016/j.pbb.2020.172951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
In rodents, prenatal nicotine exposure (PNE) has been associated with increased risk for development of cognitive and emotional disturbances, but the findings are somewhat conflicting. Lack of behavioral alterations following PNE could be due to the variety of methods available for nicotine delivery, exposure time and species used, with inbred strains being mostly employed. Such differences suggest the need to investigate the behavioral phenotype in each PNE model available if we are to find models with enhanced translational value. In this study, we assessed sex-dependent effects of PNE on ADHD-related behaviors and on the levels of mRNA coding for glutamate receptor subunits within the prefrontal cortex in the outbred NMRI mice exposed to nicotine via maternal drinking water during gestation. Cotinine levels were assessed in newborn pups. Behaviors related to anxiety, compulsivity, working memory, and locomotion were evaluated in both sexes of young adult offspring using the elevated zero maze, marble burying, spontaneous alternation behavior, and locomotor activity tests. Expression of mRNA coding for different glutamate receptors subunits within the prefrontal cortex (PFC) was measured using RT-qPCR. Cotinine levels in the serum of newborns confirmed fetal nicotine exposure. Both male and female offspring showed ADHD-like behaviors, such as deficit in the SAB test and hyperactivity. In addition, PNE male mice displayed anxiety- and compulsive-like behaviors, effects that were absent in female offspring. Finally, PNE reduced the mRNA expression of GluN1-, GluN2B-, and mGluR2-related genes within the PFC of male offspring, whereas it reduced the expression of mRNA coding for GluA2 subunit in female mice. PNE in NMRI mice induced sex-dependent behavioral changes, which parallels clinical findings following maternal cigarette smoke exposure. Alterations detected in PFC mRNA glutamate receptor proteins could contribute to the abnormal behavioral responses observed, but other signaling pathways or brain regions are likely involved in the behavioral susceptibility of PNE individuals.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe B Scharff
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Theis H Ipsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
123
|
Chen P, Lou S, Huang ZH, Wang Z, Shan QH, Wang Y, Yang Y, Li X, Gong H, Jin Y, Zhang Z, Zhou JN. Prefrontal Cortex Corticotropin-Releasing Factor Neurons Control Behavioral Style Selection under Challenging Situations. Neuron 2020; 106:301-315.e7. [DOI: 10.1016/j.neuron.2020.01.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/31/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
|
124
|
Lin L, Leung AW, Wu J, Zhang L. Individual differences under acute stress: Higher cortisol responders performs better on N-back task in young men. Int J Psychophysiol 2020; 150:20-28. [DOI: 10.1016/j.ijpsycho.2020.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
125
|
Williams JL, Everett JM, D'Cunha NM, Sergi D, Georgousopoulou EN, Keegan RJ, McKune AJ, Mellor DD, Anstice N, Naumovski N. The Effects of Green Tea Amino Acid L-Theanine Consumption on the Ability to Manage Stress and Anxiety Levels: a Systematic Review. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:12-23. [PMID: 31758301 DOI: 10.1007/s11130-019-00771-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The green tea amino acid, L-theanine (L-THE) is associated with several health benefits, including improvements in mood, cognition and a reduction of stress and anxiety-like symptoms. This systematic review evaluated the effect of pure L-THE intake, in the form of orally administered nutritional supplements, on stress responses and anxiety levels in human randomised controlled trials. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist, 9 peer-reviewed journal articles were identified where L-THE as a supplement was compared to a control. Our findings suggest that supplementation of 200-400 mg/day of L-THE may assist in the reduction of stress and anxiety in people exposed to stressful conditions. Despite this finding, longer-term and larger cohort clinical studies, including those where L-THE is incorporated into the diet regularly, are needed to clinically justify the use of L-THE as a therapeutic agent to reduce stress and anxiety in people exposed to stressful conditions.
Collapse
Affiliation(s)
- Jackson L Williams
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia
| | - Julian M Everett
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
| | - Nathan M D'Cunha
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia
| | - Domenico Sergi
- Nutrition & Health Substantiation Group, Nutrition and Health Program, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, 5000, Australia
| | - Ekavi N Georgousopoulou
- Australian National University Medical School, Australian National University, Canberra, ACT, 2605, Australia
- School of Medicine, University of Notre Dame Australia, Sydney, NSW, 2000, Australia
| | - Richard J Keegan
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Research Institute for Sports and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
| | - Andrew J McKune
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia
- Research Institute for Sports and Exercise, University of Canberra, Canberra, ACT, 2601, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4000, South Africa
| | - Duane D Mellor
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia
- Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Nicola Anstice
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia
| | - Nenad Naumovski
- Faculty of Health, University of Canberra, Canberra, ACT, 2601, Australia.
- Collaborative Research in Bioactives and Biomarkers (CRIBB) Group, University of Canberra, Bruce, ACT, 2601, Australia.
| |
Collapse
|
126
|
Brivio P, Sbrini G, Riva MA, Calabrese F. Acute Stress Induces Cognitive Improvement in the Novel Object Recognition Task by Transiently Modulating Bdnf in the Prefrontal Cortex of Male Rats. Cell Mol Neurobiol 2020; 40:1037-1047. [PMID: 31960229 DOI: 10.1007/s10571-020-00793-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Stress response involves several mechanisms and mediators that allow individuals to adapt to a changing environment. The effects of stress may be adaptive or maladaptive, based on the timing and intensity of exposure as well as on the individual vulnerability. In particular, exposure to mild and brief stressors provides beneficial advantages in a short-term period, by activating protective functions to react with the external demands. On these bases, the purpose of our study was to establish the time-dependent effects of acute stress exposure on neuroplastic mechanisms in adult male rats. Moreover, we aim at establishing the consequences of the acute challenge on memory processes by testing rats in the Novel Object Recognition (NOR) test. We found that acute restraint stress up-regulated total Bdnf expression 1 h post stress specifically in rat prefrontal cortex, an effect that was sustained by the increase of Bdnf isoform IV as well as by the pool of Bdnf transcripts with long 3'UTR. Furthermore, in the same brain region, the acute stress modulated in a time-specific manner the expression of different activity-dependent genes, namely Arc, Gadd45β and Nr4a1. At behavioral level, the challenge was able to improve the performance in the NOR test specifically 1 h post stress, an effect that positively correlated with the expression of the neurotrophic factors. Taken together, our results suggest that a single session of acute stress enhances memory and learning functions with a specific temporal profile, by improving neuroplastic mechanisms within the prefrontal cortex.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
127
|
Repeated Exposure to Multiple Concurrent Stresses Induce Circuit Specific Loss of Inputs to the Posterior Parietal Cortex. J Neurosci 2020; 40:1849-1861. [PMID: 31949108 DOI: 10.1523/jneurosci.1838-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
Severe loss of excitatory synapses in key brain regions is thought to be one of the major mechanisms underlying stress-induced cognitive impairment. To date, however, the identity of the affected circuits remains elusive. Here we examined the effect of exposure to repeated multiple concurrent stressors (RMS) on the connectivity of the posterior parietal cortex (PPC) in adolescent male mice. We found that RMS led to layer-specific elimination of excitatory synapses with the most pronounced loss observed in deeper cortical layers. Quantitative analysis of cortical projections to the PPC revealed a significant loss of sensory and retrosplenial inputs to the PPC while contralateral and frontal projections were preserved. These results were confirmed by decreased synaptic strength from sensory, but not from contralateral, projections in stress-exposed animals. Functionally, RMS disrupted visuospatial working memory performance, implicating disrupted higher-order visual processing. These effects were not observed in mice subjected to restraint-only stress for an identical period of time. The PPC is considered to be a cortical hub for multisensory integration, working memory, and perceptual decision-making. Our data suggest that sensory information streams targeting the PPC may be impacted by recurring stress, likely contributing to stress-induced cognitive impairment.SIGNIFICANCE STATEMENT Repeated exposure to stress profoundly impairs cognitive functions like memory, attention, or decision-making. There is emerging evidence that stress not only impacts high-order regions of the brain, but may affect earlier stages of cognitive processing. Our work focuses on the posterior parietal cortex, a brain region supporting short-term memory, multisensory integration, and decision-making. We show evidence that repeated stress specifically damages sensory inputs to this region. This disruption of synaptic connectivity is linked to working memory impairment and is specific to repeated exposure to multiple stressors. Altogether, our data provide a potential alternative explanation to ailments previously attributed to downstream, cognitive brain structures.
Collapse
|
128
|
Glutamatergic postsynaptic density in early life stress programming: Topographic gene expression of mGlu5 receptors and Homer proteins. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109725. [PMID: 31404590 DOI: 10.1016/j.pnpbp.2019.109725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
Type-5 metabotropic glutamate receptors (mGlu5) have been implicated in the mechanism of resilience to stress. They form part of the postsynaptic density (PSD), a thickening of the glutamatergic synapse that acts as a multimodal hub for multiple cellular signaling. Perinatal stress in rats triggers alterations that make adult offspring less resilient to stress. In the present study, we examined the expression of gene encoding the mGlu5 (Grm5), as well as those encoding the short and long isoforms of Homer proteins in different brain regions of the offspring of dams exposed to repeated episodes of restraint stress during pregnancy ("perinatally stressed" or PRS offspring). To this end, we investigated unconditioned behavioral response using the light/dark box test, as well as the expression of PSD genes (Homer1a, Homer1b, and Grm5), in the medial prefrontal cortex, cortex, caudate-putamen, amygdala, and dorsal hippocampus. PRS rats spent significantly less time in the light area than the control group. In the amygdala, Homer1a mRNA levels were significantly increased in PRS rats, whereas Homer1b and Grm5 mRNA levels were reduced. In contrast, the transcript encoding for Homer1a was significantly reduced in the medial prefrontal cortex, caudate-putamen, and dorsal hippocampus of PRS rats. We also evaluated the relative ratio between Homer1a and Homer1b/Grm5 expression, finding a significant shift toward the expression of Homer1a in the amygdala and toward Homer1b/Grm5 in the other brain regions. These topographic patterns of Homer1a, Homer1b, and mGlu5 gene expression were significantly correlated with risk-taking behavior measured in the light/dark box test. Remarkably, in the amygdala and in other brain regions, Homer1b and Grm5 expression showed positive correlation with time spent in the light box, whereas Homer1a in the amygdala showed a negative correlation with risk-taking behavior, in contrast with all other brain regions analyzed, wherein these correlations were positive. These results suggest that perinatal stress programs the developmental expression of PSD molecules involved in mGlu5 signaling in discrete brain regions, with a predominant role for the amygdala.
Collapse
|
129
|
Kinlein SA, Karatsoreos IN. The hypothalamic-pituitary-adrenal axis as a substrate for stress resilience: Interactions with the circadian clock. Front Neuroendocrinol 2020; 56:100819. [PMID: 31863788 PMCID: PMC7643247 DOI: 10.1016/j.yfrne.2019.100819] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Stress, primarily processed via the hypothalamic-pituitary-adrenal (HPA) axis, engages biological pathways throughout the brain and body which promote adaptation and survival to changing environmental demands. Adaptation to environmental challenges is compromised when these pathways are no longer functioning optimally. The physiological and behavioral mechanisms through which HPA axis function influences stress adaptation and resilience are not fully elucidated. Our understanding of stress biology and disease must take into account the complex interactions between the endocrine system, neural circuits, and behavioral coping strategies. In addition, further consideration must be taken concerning influences of other aspects of physiology, including the circadian clock which is critical for regulation of daily changes in HPA activity. While adding a layer of complexity, it also offers targets for intervention. Understanding the role of HPA function in mediating these diverse biological responses will lead to important insights about how to bolster successful stress adaptation and promote stress resilience.
Collapse
Affiliation(s)
- Scott A Kinlein
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
130
|
Moench KM, Breach MR, Wellman CL. Prior stress followed by a novel stress challenge results in sex-specific deficits in behavioral flexibility and changes in gene expression in rat medial prefrontal cortex. Horm Behav 2020; 117:104615. [PMID: 31634476 PMCID: PMC6980662 DOI: 10.1016/j.yhbeh.2019.104615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Chronic stress leads to sex-specific changes in the structure and function of rat medial prefrontal cortex (mPFC). Little is known about whether these effects persist following the cessation of chronic stress, or how these initial effects may impact responses to future stressors. Here we examined attentional set-shifting in male and female rats following chronic restraint stress, a post-chronic stress rest period, and an acute novel stress challenge. Chronic stress resulted in a reversible impairment in extradimensional set-shifting in males, but had no effect on attentional set-shifting in females. Surprisingly, chronically stressed female, but not male, rats had impaired extradimensional set-shifting following a novel stress challenge. Alterations in the balance of excitation and inhibition of mPFC have been implicated in behavioral deficits following chronic stress. Thus, in a separate group of rats, we examined changes in the expression of genes related to glutamatergic (NR1, NR2A, NR2B, GluR1) and GABAergic (Gad67, parvalbumin, somatostatin) neurotransmission in mPFC after acute and chronic stress, rest, and their combination. Stress significantly altered the expression of NR1, GluR1, Gad67, and parvalbumin. Notably, the pattern of stress effects on NR1, Gad67, and parvalbumin expression differed between males and females. In males, these genes were upregulated following the post-chronic stress rest period, while minimal changes were found in females. In contrast, both males and females had greater GluR1 expression following a rest period. These findings suggest that chronic stress leads to sex-specific stress adaptation mechanisms that may contribute to sex differences in response to subsequent stress exposure.
Collapse
Affiliation(s)
- Kelly M Moench
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA
| | - Michaela R Breach
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Cara L Wellman
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Center for the Integrative Study of Animal Behavior, Bloomington, IN, USA; Indiana University, Bloomington, IN, USA.
| |
Collapse
|
131
|
Lesuis SL, Timmermans W, Lucassen PJ, Hoogenraad CC, Krugers HJ. Glucocorticoid and β-adrenergic regulation of hippocampal dendritic spines. J Neuroendocrinol 2020; 32:e12811. [PMID: 31715030 PMCID: PMC7003927 DOI: 10.1111/jne.12811] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
Glucocorticoid hormones are particularly potent with respect to enhancing memory formation. Notably, this occurs in close synergy with arousal (i.e., when norepinephrine levels are enhanced). In the present study, we examined whether glucocorticoid and norepinephrine hormones regulate the number of spines in hippocampal primary neurons. We report that brief administration of corticosterone or the β-adrenergic receptor agonist isoproterenol alone increases spine number. This effect becomes particularly prominent when corticosterone and isoproterenol are administered together. In parallel, corticosterone and isoproterenol alone increased the amplitude of miniature excitatory postsynaptic currents, an effect that is not amplified when both hormones are administered together. The effects of co-application of corticosterone and isoproterenol on spines could be prevented by blocking the glucocorticoid receptor antagonist RU486. Taken together, both corticosterone and β-adrenergic receptor activation increase spine number, and they exert additive effects on spine number for which activation of glucocorticoid receptors is permissive.
Collapse
Affiliation(s)
- Sylvie L. Lesuis
- SILS‐CNSUniversiteit van AmsterdamAmsterdamThe Netherlands
- Neurosciences and Mental HealthHospital for Sick Children Research InstituteUniversity of TorontoTorontoONCanada
| | | | | | - Casper C. Hoogenraad
- Cell BiologyDepartment of BiologyFaculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | | |
Collapse
|
132
|
Schmitt A, Upadhyay N, Martin JA, Rojas S, Strüder HK, Boecker H. Modulation of Distinct Intrinsic Resting State Brain Networks by Acute Exercise Bouts of Differing Intensity. Brain Plast 2019; 5:39-55. [PMID: 31970059 PMCID: PMC6971822 DOI: 10.3233/bpl-190081] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute exercise bouts alter resting state functional connectivity (rs-FC) within cognitive, sensorimotor, and affective networks, but it remains unknown how these effects are influenced by exercise intensity. Twenty-five male athletes underwent individual fitness assessments using an incremental treadmill test. On separate days, they performed ‘low’ (35% below lactate threshold) and ‘high’ (20% above lactate threshold) intensity exercise bouts of 30 min. Rs-fMRI and Positive and Negative Affect Scale (PANAS) were acquired before and after each exercise bout. Networks of interest were extracted from twenty-two participants (3 dropouts). Pre-to-post changes and between conditions effects were evaluated using FSL’s randomise by applying repeated measures ANOVA. Results were reported at p < 0.05, corrected for multiple comparisons using threshold free cluster enhancement. PANAS revealed a significant increase in positive mood after both exercise conditions. Significant effects were observed between conditions in the right affective and reward network (ARN), the right fronto parietal network (FPN) and the sensorimotor network (SMN). Pre-to-post comparisons after ‘low’ exercise intensity revealed a significant increase in rs-FC in the left and right FPN, while after ‘high’-intensity exercise rs-FC decreased in the SMN and the dorsal attention network (DAN) and increased in the left ARN. Supporting recent findings, this study is the first to report distinct rs-FC alterations driven by exercise intensity: (i) Increased rs-FC in FPN may indicate beneficial functional plasticity for cognitive/attentional processing, (ii) increased rs-FC in ARN may be linked to endogenous opioid-mediated internal affective states. Finally, (iii) decreased rs-FC in the SMN may signify persistent motor fatigue. The distinct effects on rs-FC fit with theories of transient persistent network alterations after acute exercise bouts that are mediated by different exercise intensities and impact differentially on cognitive/attentional or affective responses.
Collapse
Affiliation(s)
- Angelika Schmitt
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Neeraj Upadhyay
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Jason Anthony Martin
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Sandra Rojas
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Heiko Klaus Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - Henning Boecker
- Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
133
|
Effects of stress on the structure and function of the medial prefrontal cortex: Insights from animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 150:129-153. [PMID: 32204829 DOI: 10.1016/bs.irn.2019.11.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress alters both cognitive and emotional function, and increases risk for a variety of psychological disorders, such as depression and posttraumatic stress disorder. The prefrontal cortex is critical for executive function and emotion regulation, is a target for stress hormones, and is implicated in many stress-influenced psychological disorders. Therefore, understanding how stress-induced changes in the structure and function of the prefrontal cortex are related to stress-induced changes in behavior may elucidate some of the mechanisms contributing to stress-sensitive disorders. This review focuses on data from rodent models to describe the effects of chronic stress on behaviors mediated by the medial prefrontal cortex, the effects of chronic stress on the morphology and physiology of the medial prefrontal cortex, mechanisms that may mediate these effects, and evidence for sex differences in the effects of stress on the prefrontal cortex. Understanding how stress influences prefrontal cortex and behaviors mediated by it, as well as sex differences in this effect, will elucidate potential avenues for novel interventions for stress-sensitive disorders characterized by deficits in executive function and emotion regulation.
Collapse
|
134
|
Moriarty TA, Mermier C, Kravitz L, Gibson A, Beltz N, Zuhl M. Acute Aerobic Exercise Based Cognitive and Motor Priming: Practical Applications and Mechanisms. Front Psychol 2019; 10:2790. [PMID: 31920835 PMCID: PMC6920172 DOI: 10.3389/fpsyg.2019.02790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Acute exercise stimulates brain regions involved in motor and cognitive processes. Recent research efforts have explored the benefits of aerobic exercise on brain health and cognitive functioning with positive results reported for both healthy and neurocognitively impaired individuals. Specifically, exercise positioned near therapeutic (both behavioral and physical) activities may enhance outcomes associated with treatment outcomes (e.g., depression or motor skill) through neural plasticity promoting mechanisms (e.g., increased brain flow and oxygenation). This approach has been termed "exercise priming" and is a relatively new topic of exploration in the fields of exercise science and motor control. The authors report on physiological mechanisms that are related to the priming effect. In addition, parameters related to the exercise bout (e.g., intensity, duration) and the idea of combining exercise and therapeutic rehabilitation are explored. This exercise-based priming concept has the potential to be applied to many areas such as education, cognitive therapy, and motor rehabilitation.
Collapse
Affiliation(s)
- Terence A Moriarty
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,Department of Kinesiology, University of Northern Iowa, Cedar Falls, IA, United States
| | - Christine Mermier
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Len Kravitz
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Ann Gibson
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States
| | - Nicholas Beltz
- Department of Kinesiology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Micah Zuhl
- Department of Health, Exercise, and Sports Sciences, The University of New Mexico, Albuquerque, NM, United States.,School of Health Sciences, Central Michigan University, Mount Pleasant, MI, United States
| |
Collapse
|
135
|
Zhang X, Li X, Steffens DC, Guo H, Wang L. Dynamic changes in thalamic connectivity following stress and its association with future depression severity. Brain Behav 2019; 9:e01445. [PMID: 31651099 PMCID: PMC6908855 DOI: 10.1002/brb3.1445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Tracking stress-induced brain activity and connectivity dynamically and examining activity/connectivity-associated recovery ability after stress might be an effective way of detecting stress vulnerability. METHODS Using two widely used stress paradigms, a speech task (social stress) and a mathematical calculation task (mental loading stress), we examined common changes in regional homogeneity (ReHo) and functional connectivity (FC) before, during, and after the two stressful tasks in thirty-nine college students. A counting breath relaxation task was employed as a contrast task. ReHo and FC were compared between subjects with higher versus lower depression symptoms (assessed by the Beck Depression Inventory, BDI). We developed a recovery index (RI) based on dynamic changes of ReHo/FC to evaluate individuals' ability to recover from a stressful state. To assess RI's usefulness in predicting future depression severity, BDI was also measured at one-year follow-up. RESULTS Our results revealed a ReHo decrease after both stressful tasks and a ReHo increase after the relaxation task in bilateral thalamus. The ReHo decrease after both stressful tasks was more significant in the higher BDI than the lower BDI group. Higher ReHo RI of the right thalamus in the higher BDI groups was significantly correlated with lower BDI severity at one-year follow-up. Bilateral thalamus also showed increased FC with the default mode network and decreased FC with the executive control network after the stressful tasks. CONCLUSION These findings highlight the importance of tracking resting activity and connectivity of thalamus dynamically for detecting stress vulnerability.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University School of Medicine, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Hua Guo
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University School of Medicine, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
136
|
Berger JM, Singh P, Khrimian L, Morgan DA, Chowdhury S, Arteaga-Solis E, Horvath TL, Domingos AI, Marsland AL, Yadav VK, Rahmouni K, Gao XB, Karsenty G. Mediation of the Acute Stress Response by the Skeleton. Cell Metab 2019; 30:890-902.e8. [PMID: 31523009 PMCID: PMC6834912 DOI: 10.1016/j.cmet.2019.08.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
Abstract
We hypothesized that bone evolved, in part, to enhance the ability of bony vertebrates to escape danger in the wild. In support of this notion, we show here that a bone-derived signal is necessary to develop an acute stress response (ASR). Indeed, exposure to various types of stressors in mice, rats (rodents), and humans leads to a rapid and selective surge of circulating bioactive osteocalcin because stressors favor the uptake by osteoblasts of glutamate, which prevents inactivation of osteocalcin prior to its secretion. Osteocalcin permits manifestations of the ASR to unfold by signaling in post-synaptic parasympathetic neurons to inhibit their activity, thereby leaving the sympathetic tone unopposed. Like wild-type animals, adrenalectomized rodents and adrenal-insufficient patients can develop an ASR, and genetic studies suggest that this is due to their high circulating osteocalcin levels. We propose that osteocalcin defines a bony-vertebrate-specific endocrine mediation of the ASR.
Collapse
Affiliation(s)
- Julian Meyer Berger
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Program in Microbiology, Immunology and Infection, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Parminder Singh
- Metabolic Research Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Lori Khrimian
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa and Veteran Health Care System, Iowa City, IA 52242, USA
| | - Subrata Chowdhury
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Emilio Arteaga-Solis
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Pediatric Pulmonary, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anna L Marsland
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vijay Kumar Yadav
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA; Metabolic Research Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa and Veteran Health Care System, Iowa City, IA 52242, USA
| | - Xiao-Bing Gao
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
137
|
Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress Exposure in Dopamine D4 Receptor Knockout Mice Induces Schizophrenia-Like Behaviors via Disruption of GABAergic Transmission. Schizophr Bull 2019; 45:1012-1023. [PMID: 30476265 PMCID: PMC6737476 DOI: 10.1093/schbul/sby163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A combination of genetic and environmental risk factors has been considered as the pathogenic cause for mental disorders including schizophrenia. Here, we sought to find out whether the abnormality of the dopamine system, coupled with the exposure to modest stress, is sufficient to trigger the manifestation of schizophrenia-like behaviors. We found that exposing dopamine D4 receptor knockout (D4KO) mice with 1-week restraint stress (2 h/d) induced significant deficits in sensorimotor gating, cognitive processes, social engagement, as well as the elevated exploratory behaviors, which are reminiscent to schizophrenia phenotypes. Electrophysiological studies found that GABAergic transmission was significantly reduced in prefrontal cortical neurons from stressed D4KO mice. Additionally, administration of diazepam, a GABA enhancer, restored GABAergic synaptic responses and ameliorated some behavioral abnormalities in stressed D4KO mice. These results have revealed that the combination of 2 key genetic and environmental susceptibility factors, dopamine dysfunction and stress, is a crucial trigger for schizophrenia-like phenotypes, and GABA system in the prefrontal cortex is a downstream convergent target that mediates some behavioral outcomes.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Wei Wang
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Jamal Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Kaijie Ma
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,To whom correspondence should be addressed; tel: 716-829-3058, fax: 716-829-2344, e-mail:
| |
Collapse
|
138
|
Wang M, Ramasamy VS, Samidurai M, Jo J. Acute restraint stress reverses impaired LTP in the hippocampal CA1 region in mouse models of Alzheimer's disease. Sci Rep 2019; 9:10955. [PMID: 31358853 PMCID: PMC6662902 DOI: 10.1038/s41598-019-47452-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Acute stress facilitates long-term potentiation (LTP) in the mouse hippocampus by modulating glucocorticoid receptors and ion channels. Here, we analysed whether this occurs in mouse models of Alzheimer’s disease (AD) with impaired LTP induction. We found that a brief 30 min restraint stress protocol reversed the impaired LTP assessed with field excitatory postsynaptic potential recordings at cornu ammonis 3-1 (CA3-CA1) synapses in both Tg2576 and 5XFAD mice. This effect was accompanied by increased phosphorylation and surface expression of glutamate A1 (GluA1) -containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Moreover, enhanced LTP induction and GluA1 phosphorylation were sustained up to 4 h after the stress. Treatment with 200 nM dexamethasone produced similar effects in the hippocampi of these mice, which supports the glucocorticoid receptor-mediated mechanism in these models. Collectively, our results demonstrated an alleviation of impaired LTP and synaptic plasticity in the hippocampal CA1 region following acute stress in the AD mouse models.
Collapse
Affiliation(s)
- Ming Wang
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Vijay Sankar Ramasamy
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Manikandan Samidurai
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea.,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea
| | - Jihoon Jo
- NeuroMedical Convergence Lab, Biomedical Research Institute, Chonnam National University Hospital, Jebong-ro, Gwangju, 501-757, Republic of Korea. .,Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, 501-757, South Korea. .,Department of Neurology, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
139
|
Wang Y, Li Z, Tian Z, Wang X, Li Y, Qin L. Emotional arousal modifies auditory steady state response in the auditory cortex and prefrontal cortex of rats. Stress 2019; 22:492-500. [PMID: 30896270 DOI: 10.1080/10253890.2019.1583203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Emotional state has been shown to influence cognitive performance. However, the influence of mood on auditory processing is not fully understood. The auditory steady state response (ASSR) is the entrainment of neural activities elicited by periodic auditory stimulation, which is commonly used to evaluate the sensory and cognitive functions of brain. It has been shown that ASSR at 40 Hz is impaired at some psychotic disorders, such as schizophrenia and bipolar disorder. The primary goal of this study is to investigate the effect of emotional arousal on ASSR. To this end, we performed simultaneous recordings of local field potential (LFP) in response to 40 Hz click-train stimuli in the primary auditory cortex (A1) and medial prefront cortex (mPFC) of rats. During the electrophysiological recording, a negative mood was induced by means of the foot shocks occurred randomly in the inter-stimulus intervals. We found that both the power and phase-locking of ASSR in A1 were significantly increased under arousal condition, and phase-locking of ASSR in mPFC was also increased. The enhanced ASSRs were accompanied by an increase in coherence between A1 and mPFC. Our results suggest that A1-to-mPFC information transfer is enhanced under arousal state and the functional connectivity between mPFC and A1 may contribute to the emotional modulation of auditory process.
Collapse
Affiliation(s)
- Yuchen Wang
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| | - Zijie Li
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| | - Zemin Tian
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| | - Xuejiao Wang
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| | - Yingzhuo Li
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| | - Ling Qin
- a Department of Physiology, School of Life Science , China Medical University , Shenyang , Liaoning Province , P. R. China
| |
Collapse
|
140
|
Repeated diazepam administration reversed working memory impairments and glucocorticoid alterations in the prefrontal cortex after short but not long alcohol-withdrawal periods. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:665-679. [PMID: 29713956 DOI: 10.3758/s13415-018-0595-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The study was designed to assess whether repeated administration of diazepam (Valium®, Roche)-a benzodiazepine exerting an agonist action on GABAA receptors-may alleviate both the short (1 week, 1W) and long-term (6 weeks, 6W) deleterious effects of alcohol withdrawal occurring after chronic alcohol consumption (6 months; 12% v/v) in C57/BL6 male mice. More pointedly, we first evidenced that 1W and 6W alcohol-withdrawn mice exhibited working memory deficits in a sequential alternation task, associated with sustained exaggerated corticosterone rise and decreased pCREB levels in the prefrontal cortex (PFC). In a subsequent experiment, diazepam was administered i.p. for 9 consecutive days (1 injection/day) during the alcohol withdrawal period at decreasing doses ranging from 1.0 mg/kg to 0.25 mg/kg. Diazepam was not detected in the blood of withdrawn mice at the time of memory testing, occurring 24 hours after the last diazepam injection. Repeated diazepam administration significantly improved alternation rates and normalized levels of glucocorticoids and pCREB activity in the PFC in 1W but not in 6W withdrawn mice. Thus, repeated diazepam administration during the alcohol-withdrawal period only transitorily canceled out the working memory impairments and glucocorticoid alterations in the PFC of alcohol-withdrawn animals.
Collapse
|
141
|
A Single Session of Aerobic Exercise Mediates Plasticity-Related Phosphorylation in both the Rat Motor Cortex and Hippocampus. Neuroscience 2019; 412:160-174. [PMID: 31181370 DOI: 10.1016/j.neuroscience.2019.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/23/2022]
Abstract
A single session of aerobic exercise may offer one means to "prime" motor regions to be more receptive to the acquisition of a motor skill; however, the mechanisms whereby this priming may occur are not clear. One possible explanation may be related to the post-translational modification of plasticity-related receptors and their associated intracellular signaling molecules, given that these proteins are integral to the development of synaptic plasticity. In particular, phosphorylation governs the biophysical properties (e.g., Ca2+ conductance) and the migratory patterns (i.e., trafficking) of plasticity-related receptors by altering the relative density of specific receptor subunits at synapses. We hypothesized that a single session of exercise would alter the subunit phosphorylation of plasticity-related receptors (AMPA receptors, NMDA receptors) and signaling molecules (PKA, CaMKII) in a manner that would serve to prime motor cortex. Young, male Sprague-Dawley rats (n = 24) were assigned to either exercise (Moderate, Exhaustion), or non-exercising (Sedentary) groups. Immediately following a single session of treadmill exercise, whole tissue homogenates were prepared from both the motor cortex and hippocampus. We observed a robust (1.2-2.0× greater than sedentary) increase in tyrosine phosphorylation of AMPA (GluA1,2) and NMDA (GluN2A,B) receptor subunits, and a clear indication that exercise preferentially affects pPKA over pCaMKII. The changes were found, specifically, following moderate, but not maximal, acute aerobic exercise in both motor cortex and hippocampus. Given the requirement for these proteins during the early phases of plasticity induction, the possibility exists that exercise-induced priming may occur by altering the phosphorylation of plasticity-related proteins.
Collapse
|
142
|
Zhang X, Huettel SA, Mullette-Gillman OA, Guo H, Wang L. Exploring common changes after acute mental stress and acute tryptophan depletion: Resting-state fMRI studies. J Psychiatr Res 2019; 113:172-180. [PMID: 30959228 DOI: 10.1016/j.jpsychires.2019.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 11/27/2022]
Abstract
Stress and low serotonin levels are important biological factors in depression and anxiety etiologies. Although studies indicate that low serotonin levels, stress, and other factors may interact in depression/anxiety psychopathology, few studies have investigated the potentially shared neural substrates. We conducted resting-state fMRI scans pre- and post-stress task, and under control and tryptophan depletion condition, to explore the common changes induced by acute mental stress (AMS) and acute tryptophan depletion (ATD). The present study targeted regions within core brain networks - default mode network, salience network, executive control network, and emotion network - reported altered in AMS and ATD, and used regional homogeneity (ReHo) and functional connectivity (FC) analyses to explore their overlapped effects. We additionally examined the relationships among core neural networks - operationalized as an index of resource allocation bias that quantifies the shift from internal to external modes of processing. We found both manipulations induced increased ReHo of the amygdala and decreased ReHo of the posterior cingulate cortex (PCC). The PCC-amygdala FC was negatively correlated with the change of negative affect, whereas the right dorsolateral prefrontal cortex and right anterior insula FC was positively associated with anxiety level. In addition, we found that a greater shift to an external mode was correlated with higher anxiety level under both conditions. Common changes induced by acute mental stress and acute tryptophan depletion confirmed our hypothesis that AMS and ATD induce changes in common neural pathways, which in turn might mark vulnerability to depression and anxiety.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Scott A Huettel
- Center for Cognitive Neuroscience, Department of Psychology & Neuroscience, Duke University, Durham, USA
| | | | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, USA.
| |
Collapse
|
143
|
Joffe ME, Santiago CI, Engers JL, Lindsley CW, Conn PJ. Metabotropic glutamate receptor subtype 3 gates acute stress-induced dysregulation of amygdalo-cortical function. Mol Psychiatry 2019; 24:916-927. [PMID: 29269844 PMCID: PMC6013320 DOI: 10.1038/s41380-017-0015-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022]
Abstract
Stress can precipitate or worsen symptoms of many psychiatric disorders by dysregulating glutamatergic function within the prefrontal cortex (PFC). Previous studies suggest that antagonists of group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3) reduce stress-induced anhedonia through actions in the PFC, but the mechanisms by which these receptors act are not known. We now report that activation of mGlu3 induces long-term depression (LTD) of excitatory transmission in the PFC at inputs from the basolateral amygdala. Our data suggest mGlu3-LTD is mediated by postsynaptic AMPAR internalization in PFC pyramidal cells, and we observed a profound impairment in mGlu3-LTD following a single, 20-min restraint stress exposure. Finally, blocking mGlu3 activation in vivo prevented the stress-induced maladaptive changes to amydalo-cortical physiology and motivated behavior. These data demonstrate that mGlu3 mediates stress-induced physiological and behavioral impairments and further support the potential for mGlu3 modulation as a treatment for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Chiaki I. Santiago
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Vanderbilt University, Nashville, TN, 37232, USA
| | - Julie L. Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Correspondence to: P. Jeffrey Conn, Ph.D., Lee E. Limbird Professor of Pharmacology, Director, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1205 Light Hall Nashville, TN 37232-0697, Tel. (615) 936-2478, Fax. (615) 343-3088,
| |
Collapse
|
144
|
Hansen NE, Harel A, Iyer N, Simpson BD, Wisniewski MG. Pre-stimulus brain state predicts auditory pattern identification accuracy. Neuroimage 2019; 199:512-520. [PMID: 31129305 DOI: 10.1016/j.neuroimage.2019.05.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/26/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies show that pre-stimulus band-specific power and phase in the electroencephalogram (EEG) can predict accuracy on tasks involving the detection of near-threshold stimuli. However, results in the auditory modality have been mixed, and few works have examined pre-stimulus features when more complex decisions are made (e.g. identifying supra-threshold sounds). Further, most auditory studies have used background sounds known to induce oscillatory EEG states, leaving it unclear whether phase predicts accuracy without such background sounds. To address this gap in knowledge, the present study examined pre-stimulus EEG as it relates to accuracy in a tone pattern identification task. On each trial, participants heard a triad of 40-ms sinusoidal tones (separated by 40-ms intervals), one of which was at a different frequency than the other two. Participants' task was to indicate the tone pattern (low-low-high, low-high-low, etc.). No background sounds were employed. Using a phase opposition measure based on inter-trial phase consistencies, pre-stimulus 7-10 Hz phase was found to differ between correct and incorrect trials ∼200 to 100 ms prior to tone-pattern onset. After sorting trials into bins based on phase, accuracy was found to be lowest at around π-+ relative to individuals' most accurate phase bin. No significant effects were found for pre-stimulus power. In the context of the literature, findings suggest an important relationship between the complexity of task demands and pre-stimulus activity within the auditory domain. Results also raise interesting questions about the role of induced oscillatory states or rhythmic processing modes in obtaining pre-stimulus effects of phase in auditory tasks.
Collapse
Affiliation(s)
- Natalie E Hansen
- U.S. Air Force Research Laboratory, 45433, USA; Wright State University, 45435, USA
| | | | | | | | | |
Collapse
|
145
|
Mir NT, Saleem U, Anwar F, Ahmad B, Ullah I, Hira S, Ismail T, Ali T, Ayaz M. Lawsonia Inermis Markedly Improves Cognitive Functions in Animal Models and Modulate Oxidative Stress Markers in the Brain. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E192. [PMID: 31121979 PMCID: PMC6571555 DOI: 10.3390/medicina55050192] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023]
Abstract
Background and Objective: Medicinal plants represent an important source of alternative medicine for the management of various diseases. The present study was undertaken to assess the potential of Lawsonia inermis ethanol (Li.Et) and chloroform (Li.Chf) extracts as memory-enhancing agents in experimental animals. Materials and Methods: Li.Et and Li.Chf were phytochemically characterized via gas chromatography-mass spectroscopy (GC-MS). Samples were tested for nootropic potentials at doses of 25, 50, 100, 200 mg/kg (per oral in experimental animals (p.o.)). Swiss albino mice of either sex (n = 210) were divided into 21 × 10 groups for each animal model. Memory-enhancing potentials of the samples were assessed using two methods including "without inducing amnesia" and "induction of amnesia" by administration of diazepam (1 mg/kg, intraperitoneally. Piracetam at 400 mg/kg (i.p.) was used as positive control. Cognitive behavioral models including elevated plus maze (EPM) and the passive shock avoidance (PSA) paradigm were used. Biochemical markers of oxidative stress such as glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) levels were analyzed in the brain tissue of treated mice. Results: In 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals scavenging assay, Li.Et and Li.Chf exhibited 70.98 ± 1.56 and 66.99 ± 1.76% inhibitions respectively at 1.28 mg/mL concentration. GCMS results revealed the presence of important phytochemicals. Both samples (Li.Et and Li.Chf) at 25 mg/kg (p.o.) dose significantly (p < 0.05) improved learning and memory as indicated by decline in transfer latency and increase in step down latency in EPM and PSA models respectively. Li.Et and Li.Chf at 25 mg/kg (p.o.) showed considerable increase in GSH (2.75 ± 0.018 ***), SOD (2.61 ± 0.059 ***) and CAT (2.71 ± 0.049 ***) levels as compared to positive and negative control groups. Conclusions: This study provides the preliminary clue that L. inermis may be a potential source of memory-enhancing and anti-oxidant compounds and thus warrant further studies.
Collapse
Affiliation(s)
- Numra Tariq Mir
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, College of Pharmacy, Government College University, Faisalabad 38000, Pakistan.
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Izhar Ullah
- Department of Pharmacy, Faculty of Medical and Health Sciences, University of Poonch, Rawalakot 12420, Pakistan.
| | - Sundas Hira
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Tariq Ismail
- Department of Pharmacy, Commission on Science and Technology for Sustainable Development in the South (COMSAT), Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Lahore 54000, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| |
Collapse
|
146
|
Becker L, Rohleder N. Time course of the physiological stress response to an acute stressor and its associations with the primacy and recency effect of the serial position curve. PLoS One 2019; 14:e0213883. [PMID: 31100063 PMCID: PMC6524805 DOI: 10.1371/journal.pone.0213883] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Whether stress affects memory depends on which stress pathway becomes activated and which specific memory system is involved. The activation of the sympathetic nervous system (SNS), leads to a release of catecholamines. The activation of the hypothalamic-pituitary-adrenal (HPA) axis, leads to a release of glucocorticoids. In thus study, it was investigated whether SNS and/or HPA axis activation are associated with long-term memory (LTM) and/or working memory (WM) performance in humans. Thirty-three participants underwent the socially evaluated cold-pressor test. Salivary alpha-amylase (sAA) was used as a marker for the activation of the SNS and cortisol as marker for HPA axis activation. Memory was assessed by means of word lists with 15 words each. The primacy effect (i.e., the correctly recalled words from the beginning of the lists) of the serial position curve was considered as indicator for LTM. The recency effect (i.e., the correctly recalled words from the end of the lists) were used as estimator for WM performance. In sAA responders, the recency effect and, therefore, WM performance increased immediately after the stressor. This was not found in sAA non-responders. In cortisol responders, the primacy effect and, thus, LTM performance decreased 20 minutes after the stressor. No change in LTM performance was found in cortisol non-responders. Our study supports the assumptions that 1) SNS activation is associated with WM processes via stimulation of the prefrontal cortex, and 2) HPA axis activation is associated with LTM processes through interactions with the hippocampus.
Collapse
Affiliation(s)
- Linda Becker
- Department of Psychology, Chair of Health Psychology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| | - Nicolas Rohleder
- Department of Psychology, Chair of Health Psychology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
147
|
Chronic Stress Causes Projection-Specific Adaptation of Amygdala Neurons via Small-Conductance Calcium-Activated Potassium Channel Downregulation. Biol Psychiatry 2019; 85:812-828. [PMID: 30737013 PMCID: PMC6800185 DOI: 10.1016/j.biopsych.2018.12.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND The role of the amygdala in mediating stress coping has been long appreciated. However, basolateral amygdala (BLA) projection neurons (PNs) are organized into discrete output circuits, and it remains unclear whether stress differentially impacts these circuits. METHODS Mice were exposed to acute restraint stress or chronic restraint stress (CRS), and c-fos expression was measured as a proxy for neuronal activation in Retrobead retrogradely labeled dorsomedial prefrontal cortex-targeting PNs (BLA→dmPFC) and non-dmPFC-targeting PNs (BLA↛dmPFC). Next, the effects of CRS on neuronal firing and membrane potassium channel current were examined via ex vivo electrophysiology in these neuronal populations and correlated with anxiety-like behavior, as measured in the elevated plus maze and novel open field tests. Lastly, the ability of virus-mediated overexpression of subtype 2 of small-conductance, calcium-activated potassium (SK2) channel in BLA↛dmPFC PNs to negate the anxiety-related effects of CRS was assessed. RESULTS BLA→dmPFC PNs were transiently activated after CRS, whereas BLA↛dmPFC showed sustained c-fos expression and augmented firing to external input. CRS led to a loss of SK2 channel-mediated currents in BLA↛dmPFC PNs, which correlated with heightened anxiety-like behavior. Virus-mediated maintenance of SK2 channel currents in BLA↛dmPFC PNs prevented CRS-induced anxiety-like behavior. Finally, CRS produced persistent activation of BLA PNs targeting the ventral hippocampus, and virally overexpressing SK2 channels in this projection population were sufficient to prevent CRS-induced anxiety-like behavior. CONCLUSIONS The current data reveal that chronic stress produces projection-specific functional adaptations in BLA PNs. These findings offer new insight into the neural circuits that contribute to stress-induced psychopathology.
Collapse
|
148
|
Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, Witztum J, Shaver DC, Rosenthal DL, Alway EJ, Lopez K, Meng Y, Nellissen L, Grosenick L, Milner TA, Deisseroth K, Bito H, Kasai H, Liston C. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. SCIENCE (NEW YORK, N.Y.) 2019; 364:364/6436/eaat8078. [PMID: 30975859 DOI: 10.1126/science.aat8078] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The neurobiological mechanisms underlying the induction and remission of depressive episodes over time are not well understood. Through repeated longitudinal imaging of medial prefrontal microcircuits in the living brain, we found that prefrontal spinogenesis plays a critical role in sustaining specific antidepressant behavioral effects and maintaining long-term behavioral remission. Depression-related behavior was associated with targeted, branch-specific elimination of postsynaptic dendritic spines on prefrontal projection neurons. Antidepressant-dose ketamine reversed these effects by selectively rescuing eliminated spines and restoring coordinated activity in multicellular ensembles that predict motivated escape behavior. Prefrontal spinogenesis was required for the long-term maintenance of antidepressant effects on motivated escape behavior but not for their initial induction.
Collapse
Affiliation(s)
- R N Moda-Sava
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - M H Murdock
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - P K Parekh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - R N Fetcho
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - B S Huang
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - T N Huynh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - J Witztum
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - D C Shaver
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - D L Rosenthal
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - E J Alway
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - K Lopez
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Y Meng
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - L Nellissen
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - L Grosenick
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA.,Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - T A Milner
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - K Deisseroth
- Departments of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - H Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C Liston
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
149
|
Impaired fear memory extinction during adolescence is accompanied by the depressive-like behaviors. Neurosci Lett 2019; 699:8-15. [DOI: 10.1016/j.neulet.2019.01.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/30/2022]
|
150
|
Musazzi L, Sala N, Tornese P, Gallivanone F, Belloli S, Conte A, Di Grigoli G, Chen F, Ikinci A, Treccani G, Bazzini C, Castiglioni I, Nyengaard JR, Wegener G, Moresco RM, Popoli M. Acute Inescapable Stress Rapidly Increases Synaptic Energy Metabolism in Prefrontal Cortex and Alters Working Memory Performance. Cereb Cortex 2019; 29:4948-4957. [DOI: 10.1093/cercor/bhz034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/15/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
Brain energy metabolism actively regulates synaptic transmission and activity. We have previously shown that acute footshock (FS)-stress induces fast and long-lasting functional and morphological changes at excitatory synapses in prefrontal cortex (PFC). Here, we asked whether FS-stress increased energy metabolism in PFC, and modified related cognitive functions. Using positron emission tomography (PET), we found that FS-stress induced a redistribution of glucose metabolism in the brain, with relative decrease of [18F]FDG uptake in ventro-caudal regions and increase in dorso-rostral ones. Absolute [18F]FDG uptake was inversely correlated with serum corticosterone. Increased specific hexokinase activity was also measured in purified PFC synaptosomes (but not in total extract) of FS-stressed rats, which positively correlated with 2-Deoxy [3H] glucose uptake by synaptosomes. In line with increased synaptic energy demand, using an electron microscopy-based stereological approach, we found that acute stress induced a redistribution of mitochondria at excitatory synapses, together with an increase in their volume. The fast functional and metabolic activation of PFC induced by acute stress, was accompanied by rapid and sustained alterations of working memory performance in delayed response to T-maze test. Taken together, the present data suggest that acute stress increases energy consumption at PFC synaptic terminals and alters working memory.
Collapse
Affiliation(s)
- Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Francesca Gallivanone
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Sara Belloli
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Alessandra Conte
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Di Grigoli
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Fengua Chen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Ayşe Ikinci
- Department of Clinical Medicine, Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus C, Denmark
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Chiara Bazzini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), Milan Center for Neuroscience (NeuroMi) CNR, Segrate, Italy
| | - Jens R Nyengaard
- Department of Clinical Medicine, Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University Hospital, Aarhus C, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Medicine and Surgery, University of Milan Bicocca, Monza, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and CEND, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|