101
|
Hoyos-Nogués M, Gil FJ, Mas-Moruno C. Antimicrobial Peptides: Powerful Biorecognition Elements to Detect Bacteria in Biosensing Technologies. Molecules 2018; 23:molecules23071683. [PMID: 29996565 PMCID: PMC6100210 DOI: 10.3390/molecules23071683] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections represent a serious threat in modern medicine. In particular, biofilm treatment in clinical settings is challenging, as biofilms are very resistant to conventional antibiotic therapy and may spread infecting other tissues. To address this problem, biosensing technologies are emerging as a powerful solution to detect and identify bacterial pathogens at the very early stages of the infection, thus allowing rapid and effective treatments before biofilms are formed. Biosensors typically consist of two main parts, a biorecognition moiety that interacts with the target (i.e., bacteria) and a platform that transduces such interaction into a measurable signal. This review will focus on the development of impedimetric biosensors using antimicrobial peptides (AMPs) as biorecognition elements. AMPs belong to the innate immune system of living organisms and are very effective in interacting with bacterial membranes. They offer unique advantages compared to other classical bioreceptor molecules such as enzymes or antibodies. Moreover, impedance-based sensors allow the development of label-free, rapid, sensitive, specific and cost-effective sensing platforms. In summary, AMPs and impedimetric transducers combine excellent properties to produce robust biosensors for the early detection of bacterial infections.
Collapse
Affiliation(s)
- Mireia Hoyos-Nogués
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| | - F J Gil
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Universitat Internacional de Catalunya (UIC), 08195 Sant Cugat del Vallès, Spain.
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group (BBT), Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain.
- Barcelona Research Center in Multiscale Science and Engineering, UPC, 08019 Barcelona, Spain.
| |
Collapse
|
102
|
Amiri M, Bezaatpour A, Jafari H, Boukherroub R, Szunerits S. Electrochemical Methodologies for the Detection of Pathogens. ACS Sens 2018; 3:1069-1086. [PMID: 29756447 DOI: 10.1021/acssensors.8b00239] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial infections remain one of the principal causes of morbidity and mortality worldwide. The number of deaths due to infections is declining every year by only 1% with a forecast of 13 million deaths in 2050. Among the 1400 recognized human pathogens, the majority of infectious diseases is caused by just a few, about 20 pathogens only. While the development of vaccinations and novel antibacterial drugs and treatments are at the forefront of research, and strongly financially supported by policy makers, another manner to limit and control infectious outbreaks is targeting the development and implementation of early warning systems, which indicate qualitatively and quantitatively the presence of a pathogen. As toxin contaminated food and drink are a potential threat to human health and consequently have a significant socioeconomic impact worldwide, the detection of pathogenic bacteria remains not only a big scientific challenge but also a practical problem of enormous significance. Numerous analytical methods, including conventional culturing and staining techniques as well as molecular methods based on polymerase chain reaction amplification and immunological assays, have emerged over the years and are used to identify and quantify pathogenic agents. While being highly sensitive in most cases, these approaches are highly time, labor, and cost consuming, requiring trained personnel to perform the frequently complex assays. A great challenge in this field is therefore to develop rapid, sensitive, specific, and if possible miniaturized devices to validate the presence of pathogens in cost and time efficient manners. Electrochemical sensors are well accepted powerful tools for the detection of disease-related biomarkers and environmental and organic hazards. They have also found widespread interest in the last years for the detection of waterborne and foodborne pathogens due to their label free character and high sensitivity. This Review is focused on the current electrochemical-based microorganism recognition approaches and putting them into context of other sensing devices for pathogens such as culturing the microorganism on agar plates and the polymer chain reaction (PCR) method, able to identify the DNA of the microorganism. Recent breakthroughs will be highlighted, including the utilization of microfluidic devices and immunomagnetic separation for multiple pathogen analysis in a single device. We will conclude with some perspectives and outlooks to better understand shortcomings. Indeed, there is currently no adequate solution that allows the selective and sensitive binding to a specific microorganism, that is fast in detection and screening, cheap to implement, and able to be conceptualized for a wide range of biologically relevant targets.
Collapse
Affiliation(s)
- Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Hamed Jafari
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rabah Boukherroub
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| | - Sabine Szunerits
- Univ. Lille, CNRS,
Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, F-59000 Lille, France
| |
Collapse
|
103
|
Sismaet HJ, Goluch ED. Electrochemical Probes of Microbial Community Behavior. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:441-461. [PMID: 29490192 DOI: 10.1146/annurev-anchem-061417-125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.
Collapse
Affiliation(s)
- Hunter J Sismaet
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Bioengineering, Department of Biology, and Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
104
|
Mallya AN, Ramamurthy PC. Conjugated Molecule Based Sensor for Microbial Detection in Water with E. colias a Case Study and Elucidation of Interaction Mechanism. ELECTROANAL 2018. [DOI: 10.1002/elan.201800052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashwini N. Mallya
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560 012 India
| | - Praveen C. Ramamurthy
- Department of Materials Engineering; Indian Institute of Science; Bangalore- 560 012 India
| |
Collapse
|
105
|
Choi Y, Hwang JH, Lee SY. Recent Trends in Nanomaterials-Based Colorimetric Detection of Pathogenic Bacteria and Viruses. SMALL METHODS 2018; 2:1700351. [PMID: 32328530 PMCID: PMC7169612 DOI: 10.1002/smtd.201700351] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 05/15/2023]
Abstract
Rapid, sensitive, selective, convenient, and cost-effective pathogen diagnosis is important to prevent further spread of pandemic diseases, minimize social and economic losses, and to facilitate right clinical therapy. Over the past few years, various sensor-based diagnostic systems outperforming conventional pathogenic diagnostic assays have been developed. Among them, colorimetric biosensors detecting target molecules by the naked eye have attracted much attention due to their simplicity, practicality, and cost-effectiveness. Recently, nanomaterials have been adopted as a versatile signal transduction and amplification tool for rapid and sensitive detection of pathogenic bacteria and viruses. Here, recent trends and advances are reviewed in detecting and diagnosing pathogenic bacteria and viruses using colorimetric biosensors employing various nanomaterials. In addition, it is discussed how nanomaterials and bioreceptors can be better integrated together to develop rapid and sensitive colorimetric detection system in the future.
Collapse
Affiliation(s)
- Yoojin Choi
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Ji Hyeon Hwang
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research LaboratoryDepartment of Chemical and Biomolecular Engineering (BK21 Plus Program), and Institute for the BioCenturyKorea Advanced Institute of Science and Technology291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
106
|
Jin CE, Koo B, Lee EY, Kim JY, Kim SH, Shin Y. Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens. Biosens Bioelectron 2018; 111:66-73. [PMID: 29653418 PMCID: PMC7125596 DOI: 10.1016/j.bios.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
Diseases caused by pathogenic microorganisms including bacteria and viruses can cause serious medical issues including death and result in huge economic losses. Despite the myriad of recent advances in the rapid and accurate detection of pathogens, large volume clinical samples with a low concentration of pathogens continue to present challenges for diagnosis and surveillance. We here report a simple and label-free approach via homobifunctional imidoesters (HIs) with a microfluidic platform (SLIM) to efficiently enrich and extract pathogens at low concentrations from clinical samples. The SLIM system consists of an assembled double microfluidic chip for streamlining large volume processing and HIs for capturing pathogens and isolating nucleic acids by both electrostatic and covalent interaction without a chaotropic detergent or bulky instruments. The SLIM system significantly increases the enrichment and extraction rate of pathogens (up to 80% at 10 CFU (colony forming unit) in a 1 mL volume within 50 min). We demonstrated its clinical utility in large sample volumes from 46 clinical specimens including environmental swabs, saliva, and blood plasma. The SLIM system showed higher sensitivity with these samples and could detect pathogens that were below the threshold of detection with other methods. Finally, by combining our SLIM approach with an isothermal optical sensor, pathogens could be detected at a very high sensitivity in blood plasma samples within 80 min via enrichment, extraction and detection steps. Our SLIM system thus provides a simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform for use with large volume clinical samples and would thus have significant utility for various infectious diseases. SLIM system significantly increases the enrichment and extraction rate of pathogens. Demonstrated its clinical utility in large sample volumes from 46 clinical specimens. A simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
107
|
Khan MS, Misra SK, Dighe K, Wang Z, Schwartz-Duval AS, Sar D, Pan D. Electrically-receptive and thermally-responsive paper-based sensor chip for rapid detection of bacterial cells. Biosens Bioelectron 2018; 110:132-140. [PMID: 29605712 DOI: 10.1016/j.bios.2018.03.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/19/2018] [Indexed: 01/15/2023]
Abstract
Although significant technological advancements have been made in the development of analytical biosensor chips for detecting bacterial strains (E. coli, S. Mutans and B. Subtilis), critical requirements i.e. limit of detection (LOD), fast time of response, ultra-sensitivity with high reproducibility and good shelf-life with robust sensing capability have yet to be met within a single sensor chip. In order to achieve these criteria, we present an electrically-receptive thermally-responsive (ER-TR) sensor chip comprised of simple filter paper used as substrate coated with composite of poly(N-isopropylacrylamide) polymer (PNIPAm) - graphene nanoplatelet (GR) followed by evaporation of Au electrodes for capturing both Gram-positive (S. mutans and B. subtilis) and Gram-negative (E. coli) bacterial cells in real-time. Autoclave water, tap water, lake water and milk samples were tested with ER-TR chip with and without bacterial strains at varying concentration range 101-105 cells/mL. The sensor was integrated with in-house built printed circuit board (PCB) to transmit/receive electrical signals. The interaction of E. coli, S. mutans and B. subtilis cells with fibers of PNIPAm-GR resulted in a change of electrical resistance and the readout was monitored wirelessly in real-time using MATLAB algorithm. Finally, prepared ER-TR chip exhibited the reproducibility of 85-97% with shelf-life of up to four weeks after testing with lake water sample.
Collapse
Affiliation(s)
- Muhammad S Khan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Santosh K Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA.
| | - Ketan Dighe
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Zhen Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Aaron S Schwartz-Duval
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Biomedical Research Center, Carle Foundation Hospital, Urbana, IL, USA; Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA; Department of Materials Science and Engineering, University of Illinois-Urbana Champaign, IL, USA; Carle Illinois College of Medicine, Urbana, IL 61801, USA.
| |
Collapse
|
108
|
Abstract
Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line.
Collapse
|
109
|
Abbasian F, Ghafar-Zadeh E, Magierowski S. Microbiological Sensing Technologies: A Review. Bioengineering (Basel) 2018; 5:E20. [PMID: 29498670 PMCID: PMC5874886 DOI: 10.3390/bioengineering5010020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Microorganisms have a significant influence on human activities and health, and consequently, there is high demand to develop automated, sensitive, and rapid methods for their detection. These methods might be applicable for clinical, industrial, and environmental applications. Although different techniques have been suggested and employed for the detection of microorganisms, and the majority of these methods are not cost effective and suffer from low sensitivity and low specificity, especially in mixed samples. This paper presents a comprehensive review of microbiological techniques and associated challenges for bioengineering researchers with an engineering background. Also, this paper reports on recent technological advances and their future prospects for a variety of microbiological applications.
Collapse
Affiliation(s)
- Firouz Abbasian
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| | - Sebastian Magierowski
- Biologically Inspired Sensors and Actuators Laboratory, Department of EECS, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
110
|
Wu R, Ma Y, Pan J, Lee SH, Liu J, Zhu H, Gu R, Shea KJ, Pan G. Efficient capture, rapid killing and ultrasensitive detection of bacteria by a nano-decorated multi-functional electrode sensor. Biosens Bioelectron 2018; 101:52-59. [DOI: 10.1016/j.bios.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 12/30/2022]
|
111
|
Abdelhamid HN, Wu HF. Selective biosensing of Staphylococcus aureus using chitosan quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 188:50-56. [PMID: 28689078 DOI: 10.1016/j.saa.2017.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 05/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Selective biosensing of Staphylococcus aureus (S. aureus) using chitosan modified quantum dots (CTS@CdS QDs) in the presence of hydrogen peroxide is reported. The method is based on the intrinsic positive catalase activity of S. aureus. CTS@CdS quantum dots provide high dispersion in aqueous media with high fluorescence emission. Staphylococcus aureus causes a selective quenching of the fluorescence emission of CTS@CdS QDs in the presence of H2O2 compared to other pathogens such as Escherichia coli and Pseudomonas aeruginosa. The intrinsic enzymatic character of S. aureus (catalase positive) offers selective and fast biosensing. The present method is highly selective for positive catalase species and requires no expensive reagents such as antibodies, aptamers or microbeads. It could be extended for other species that are positive catalase.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan; Department of Chemistry, Assuit University, Assuit 71515, Egypt
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 800, Taiwan; Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Kaohsiung 80424, Taiwan; Institue of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| |
Collapse
|
112
|
Puiu M, Bala C. Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays. Bioelectrochemistry 2017; 120:66-75. [PMID: 29182910 DOI: 10.1016/j.bioelechem.2017.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
Abstract
Redox-tagged peptides have emerged as functional materials with multiple applications in the area of sensing and biosensing applications due to their high stability, excellent redox properties and versatility of biomolecular interactions. They allow direct observation of molecular interactions in a wide range of affinity and enzymatic assays and act as electron mediators. Short helical peptides possess the ability to self-assemble in specific configurations with the possibility to develop in highly-ordered, stable 1D, 2D and 3D architectures in a hierarchical controlled manner. We provide here a brief overview of the electrochemical techniques available to study the electron transfer in peptide films with particular interest in developing biosensors with immobilized peptide motifs, for biological and clinical applications.
Collapse
Affiliation(s)
- Mihaela Puiu
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania
| | - Camelia Bala
- R&D Center LaborQ, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania; Department of Analytical Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd., 030018 Bucharest, Romania.
| |
Collapse
|
113
|
Jo N, Kim B, Lee SM, Oh J, Park IH, Jin Lim K, Shin JS, Yoo KH. Aptamer-functionalized capacitance sensors for real-time monitoring of bacterial growth and antibiotic susceptibility. Biosens Bioelectron 2017; 102:164-170. [PMID: 29132052 DOI: 10.1016/j.bios.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/15/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022]
Abstract
To prevent spread of infection and antibiotic resistance, fast and accurate diagnosis of bacterial infection and subsequent administration of antimicrobial agents are important. However, conventional methods for bacterial detection and antibiotic susceptibility testing (AST) require more than two days, leading to delays that have contributed to an increase in antibiotic-resistant bacteria. Here, we report an aptamer-functionalized capacitance sensor array that can monitor bacterial growth and antibiotic susceptibility in real-time. While E. coli and S. aureus were cultured, the capacitance increased over time, and apparent bacterial growth curves were observed even when 10 CFU/mL bacteria was inoculated. Furthermore, because of the selectivity of aptamers, bacteria could be identified within 1h using the capacitance sensor array functionalized with aptamers. In addition to bacterial growth, antibiotic susceptibility could be monitored in real-time. When bacteria were treated with antibiotics above the minimum inhibitory concentration (MIC), the capacitance decreased because the bacterial growth was inhibited. These results demonstrate that the aptamer-functionalized capacitance sensor array might be applied for rapid ASTs.
Collapse
Affiliation(s)
- Namgyeong Jo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Bongjun Kim
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Sun-Mi Lee
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeseung Oh
- Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - In Ho Park
- Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kook Jin Lim
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Proteomtech Inc., B202 Yonsei Dairy Building, Seoul 03722, Republic of Korea
| | - Jeon-Soo Shin
- Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea; Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Kyung-Hwa Yoo
- Department of Physics, Yonsei University, Seoul 03722, Republic of Korea; Nanomedical Graduate Program, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
114
|
Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF. A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew Chem Int Ed Engl 2017; 56:15246-15251. [DOI: 10.1002/anie.201706101] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/15/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Benhua Wang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Xiaobo Fan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
- Diognostics Department; Medical School Southeast University; Nanjing 210009 China
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wei Huang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Walter Mier
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Thomas Lindner
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
115
|
Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF. A Polymer/Peptide Complex-Based Sensor Array That Discriminates Bacteria in Urine. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Haoran Cheng
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Benhua Wang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Xiaobo Fan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
- Diognostics Department; Medical School Southeast University; Nanjing 210009 China
| | - Markus Bender
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Wei Huang
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Walter Mier
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Thomas Lindner
- Department of Nuclear Medicine; Heidelberg University; Im Neuenheimer Feld 400 69120 Heidelberg Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 364 69120 Heidelberg Germany
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Centre of Advanced Materials; Ruprecht-Karls-Universität Heidelberg; Im Neuenheimer Feld 225 69120 Heidelberg Germany
| |
Collapse
|
116
|
Mustafa F, Hassan RYA, Andreescu S. Multifunctional Nanotechnology-Enabled Sensors for Rapid Capture and Detection of Pathogens. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2121. [PMID: 28914769 PMCID: PMC5621351 DOI: 10.3390/s17092121] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 01/30/2023]
Abstract
Nanomaterial-based sensing approaches that incorporate different types of nanoparticles (NPs) and nanostructures in conjunction with natural or synthetic receptors as molecular recognition elements provide opportunities for the design of sensitive and selective assays for rapid detection of contaminants. This review summarizes recent advancements over the past ten years in the development of nanotechnology-enabled sensors and systems for capture and detection of pathogens. The most common types of nanostructures and NPs, their modification with receptor molecules and integration to produce viable sensing systems with biorecognition, amplification and signal readout are discussed. Examples of all-in-one systems that combine multifunctional properties for capture, separation, inactivation and detection are also provided. Current trends in the development of low-cost instrumentation for rapid assessment of food contamination are discussed as well as challenges for practical implementation and directions for future research.
Collapse
Affiliation(s)
- Fatima Mustafa
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| | - Rabeay Y A Hassan
- Applied Organic Chemistry Department, National Research Centre (NRC), El Bohouth st., Dokki, 12622-Giza, Egypt.
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA.
| |
Collapse
|
117
|
Pyo H, Lee CY, Kim D, Kim G, Lee S, Yun WS. Electrical Detection of Pneumococcus through the Nanoparticle Decoration Method. SENSORS 2017; 17:s17092012. [PMID: 28869504 PMCID: PMC5621115 DOI: 10.3390/s17092012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/19/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022]
Abstract
A simple method of nanoparticle decoration can be used in the detection of pneumococcus. After the pneumococcal bacteria were captured by an antibody (pneumococcal C-polysaccharide (PnC) antibody) between the interdigitated electrodes, the gold nanoparticles conjugated with the PnC antibodies were let to bind onto an outer membrane of the bacteria. Upon successfully dense decoration, the bacteria surface will become conductive owing to the metal nanoparticles, and a distinctive conductance change between the electrodes can be observed. Since this success ratio, or the probability of the conductance change, reflects the concentration of the analyte, a number of repeated measurements can be used in the quantification of the bacteria. In this way, we have successfully detected S. pneumoniae in the range of 10–108 CFU/mL. The limit of detection in this work is lower than that in the commercial detection kit. We hope that the nanoparticle decoration method will play a role in the facile detection of various bacteria.
Collapse
Affiliation(s)
- Hannah Pyo
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| | - Cho Yeon Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| | - Daehee Kim
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| | - Gyuhee Kim
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| | - Sangho Lee
- Department of Biological Sciences, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| | - Wan Soo Yun
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon 440-746, Korea.
| |
Collapse
|
118
|
Alahi MEE, Mukhopadhyay SC. Detection Methodologies for Pathogen and Toxins: A Review. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1885. [PMID: 28813028 PMCID: PMC5580025 DOI: 10.3390/s17081885] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/02/2017] [Accepted: 08/14/2017] [Indexed: 01/10/2023]
Abstract
Pathogen and toxin-contaminated foods and beverages are a major source of illnesses, even death, and have a significant economic impact worldwide. Human health is always under a potential threat, including from biological warfare, due to these dangerous pathogens. The agricultural and food production chain consists of many steps such as harvesting, handling, processing, packaging, storage, distribution, preparation, and consumption. Each step is susceptible to threats of environmental contamination or failure to safeguard the processes. The production process can be controlled in the food and agricultural sector, where smart sensors can play a major role, ensuring greater food quality and safety by low cost, fast, reliable, and profitable methods of detection. Techniques for the detection of pathogens and toxins may vary in cost, size, and specificity, speed of response, sensitivity, and precision. Smart sensors can detect, analyse and quantify at molecular levels contents of different biological origin and ensure quality of foods against spiking with pesticides, fertilizers, dioxin, modified organisms, anti-nutrients, allergens, drugs and so on. This paper reviews different methodologies to detect pathogens and toxins in foods and beverages.
Collapse
Affiliation(s)
- Md Eshrat E Alahi
- Department of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | | |
Collapse
|
119
|
Tripathi P, Upadhyay N, Nara S. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit Rev Food Sci Nutr 2017; 58:1715-1734. [PMID: 28071928 DOI: 10.1080/10408398.2016.1276048] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Biotechnology embraces various physical and chemical phenomena toward advancement of health diagnostics. Toward such advancement, detection of toxins plays an important role. Toxins produce severe health impacts on consumption with high mortality associated in acute cases. The most prominent route of infection and intoxication is through food matrices. Therefore, rapid detection of toxins at low concentrations is the need of modern diagnostics. Lateral flow immunoassays are one of the emergent and popularly used rapid detection technology developed for detecting various kinds of analytes. This review thus focuses on recent advancements in lateral flow immunoassays for detecting different toxins in agricultural food. Appropriate emphasis was given on how the labels, recognition elements, or detection strategy has laid an impact on improvement in immunochromatographic assays for toxins. The paper also discusses the gradual change in sensitivities and specificities of assays in accordance with the method of food processing used. The review concludes with the major challenges faced by this technology and provides an outlook and insight of ideas to improve it in the future.
Collapse
Affiliation(s)
- Pranav Tripathi
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Neha Upadhyay
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| | - Seema Nara
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad , Uttar Pradesh , India
| |
Collapse
|
120
|
Fundamental Principles for Luminescence Sensing Measuring Devices Used for the Detection of Biological Warfare Agents. ACTA ACUST UNITED AC 2017. [PMCID: PMC7122564 DOI: 10.1007/978-94-024-1113-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
121
|
Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2396-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
122
|
Clark KD, Purslow JA, Pierson SA, Nacham O, Anderson JL. Rapid preconcentration of viable bacteria using magnetic ionic liquids for PCR amplification and culture-based diagnostics. Anal Bioanal Chem 2017. [PMID: 28634762 DOI: 10.1007/s00216-017-0439-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study, a series of magnetic ionic liquids (MILs) were investigated for the extraction and preconcentration of bacteria from aqueous samples. By dispersing small volumes (e.g., 15 μL) of MIL within an aqueous cell suspension, bacteria were rapidly extracted and isolated using a magnetic field. Of the seven hydrophobic MILs examined, the trihexyl(tetradecyl)phosphonium Ni(II) hexafluoroacetylacetonate ([P66614+][Ni(hfacac)3-]) MIL exhibited the greatest enrichment of viable Escherichia coli K12 when coupled with microbiological culture as the detection method. The MIL-based strategy was applied for the preconcentration of E. coli from aqueous samples to obtain enrichment factors (E F) as high as 44.6 in less than 10 min. The MIL extraction approach was also interfaced with polymerase chain reaction (PCR) amplification where the positive detection of E. coli was achieved with the [P66614+][Co(hfacac)3-], [P66614+][Ni(hfacac)3-], [P66614+][Dy(hfacac)4-], and [P66614+][Nd(hfacac)4-] MILs. While direct sampling of an aqueous cell suspension at a concentration of 1.68 × 104 colony-forming units (CFUs) mL-1 yielded no amplicon when subjected to PCR, extraction of the sample with the [P66614+][Ni(hfacac)3-] MIL under optimized conditions provided sufficient enrichment of E. coli for amplicon detection. Importantly, the enrichment of bacteria using the Ni(II)-, Co(II)-, and Dy(III)-based MILs was compatible with real-time quantitative PCR amplification to dramatically improve sample throughput and lower detection limits to 1.0 × 102 CFUs mL-1. The MIL-based method is much faster than existing enrichment approaches that typically require 24-h cultivation times prior to detection and could potentially be applied for the preconcentration of a variety of Gram-negative bacteria from aqueous samples. Graphical abstract Magnetic ionic liquid solvents rapidly preconcentrate viable E. coli cells for unambiguous pathogen detection using microbiological culture and qPCR.
Collapse
Affiliation(s)
- Kevin D Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | - Jeffrey A Purslow
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | - Stephen A Pierson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | - Omprakash Nacham
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA.
| |
Collapse
|
123
|
Ye W, Guo J, Bao X, Chen T, Weng W, Chen S, Yang M. Rapid and Sensitive Detection of Bacteria Response to Antibiotics Using Nanoporous Membrane and Graphene Quantum Dot (GQDs)-Based Electrochemical Biosensors. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E603. [PMID: 28772965 PMCID: PMC5553420 DOI: 10.3390/ma10060603] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
The wide abuse of antibiotics has accelerated bacterial multiresistance, which means there is a need to develop tools for rapid detection and characterization of bacterial response to antibiotics in the management of infections. In the study, an electrochemical biosensor based on nanoporous alumina membrane and graphene quantum dots (GQDs) was developed for bacterial response to antibiotics detection. Anti-Salmonella antibody was conjugated with amino-modified GQDs by glutaraldehyde and immobilized on silanized nanoporous alumina membranes for Salmonella bacteria capture. The impedance signals across nanoporous membranes could monitor the capture of bacteria on nanoporous membranes as well as bacterial response to antibiotics. This nanoporous membrane and GQD-based electrochemical biosensor achieved rapid detection of bacterial response to antibiotics within 30 min, and the detection limit could reach the pM level. It was capable of investigating the response of bacteria exposed to antibiotics much more rapidly and conveniently than traditional tools. The capability of studying the dynamic effects of antibiotics on bacteria has potential applications in the field of monitoring disease therapy, detecting comprehensive food safety hazards and even life in hostile environment.
Collapse
Affiliation(s)
- Weiwei Ye
- Institute of Ocean Research, Zhejiang University of Technology, Hangzhou 310014, China.
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Jiubiao Guo
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Xianfeng Bao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Tian Chen
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wenchuan Weng
- Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou 510623, China.
| | - Sheng Chen
- Shenzhen Key Lab for Food Biological Safety Control, Food Safety and Technology Research Center, Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518063, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| | - Mo Yang
- Interdisciplinary Division of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 00852, China.
| |
Collapse
|
124
|
Lee JH, Fan B, Samdin TD, Monteiro DA, Desai MS, Scheideler O, Jin HE, Kim S, Lee SW. Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System. ACS NANO 2017; 11:3632-3641. [PMID: 28355060 DOI: 10.1021/acsnano.6b07942] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The mammalian olfactory system provides great inspiration for the design of intelligent sensors. To this end, we have developed a bioinspired phage nanostructure-based color sensor array and a smartphone-based sensing network system. Using a M13 bacteriophage (phage) as a basic building block, we created structural color matrices that are composed of liquid-crystalline bundled nanofibers from self-assembled phages. The phages were engineered to express cross-responsive receptors on their major coat protein (pVIII), leading to rapid, detectable color changes upon exposure to various target chemicals, resulting in chemical- and concentration-dependent color fingerprints. Using these sensors, we have successfully detected 5-90% relative humidity with 0.2% sensitivity. In addition, after modification with aromatic receptors, we were able to distinguish between various structurally similar toxic chemicals including benzene, toluene, xylene, and aniline. Furthermore, we have developed a method of interpreting and disseminating results from these sensors using smartphones to establish a wireless system. Our phage-based sensor system has the potential to be very useful in improving national security and monitoring the environment and human health.
Collapse
Affiliation(s)
- Ju Hun Lee
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Benson Fan
- Bioinspira Inc. , Berkeley, California 94720, United States
| | - Tuan D Samdin
- Department of Molecular and Cell Biology, University of California , Berkeley, California 94720, United States
| | - David A Monteiro
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California , Berkeley, California 94720, United States
| | - Malav S Desai
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Olivia Scheideler
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Hyo-Eon Jin
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- College of Pharmacy, Ajou University , Suwon 16499, Republic of Korea
| | - Soyoun Kim
- Department of Biomedical Engineering, Dongguk University , Seoul 04620, Republic of Korea
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California , Berkeley, California 94720, United States
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
- Tsinghua-Berkeley Shenzhen Institute , Shenzhen, People's Republic of China
| |
Collapse
|
125
|
Shriver-Lake LC, Anderson GP, Taitt CR. Effect of Linker Length on Cell Capture by Poly(ethylene glycol)-Immobilized Antimicrobial Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:2878-2884. [PMID: 28253616 DOI: 10.1021/acs.langmuir.6b04481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of antimicrobial peptide (AMP)-functionalized materials has renewed interest in using poly(ethylene glycol) (PEG)-mediated linking to minimize unwanted interactions while engendering the peptides with sufficient flexibility and freedom of movement to interact with the targeted cell types. While PEG-based linkers have been used in many AMP-based materials, the role of the tether length has been minimally explored. Here, we assess the impact of varying the length of PEG-based linkers on the binding of bacterial cells by surface-immobilized AMPs. While higher surface densities of immobilized AMPs were observed using shorter PEG linkers, the increased density was insufficient to fully account for the increased binding activity of peptides. Furthermore, effects were specific to both the peptide and cell type tested. These results suggest that simple alterations in linking strategies-such as changing tether length-may result in large differences in the surface properties of the immobilized AMPs that are not easily predictable.
Collapse
Affiliation(s)
- Lisa C Shriver-Lake
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, DC 20375, United States
| | - George P Anderson
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, DC 20375, United States
| | - Chris Rowe Taitt
- Center for Biomolecular Science & Engineering, Naval Research Laboratory , 4555 Overlook Avenue, SW, Washington, DC 20375, United States
| |
Collapse
|
126
|
Abstract
Bacterial sensing is important for understanding the numerous roles bacteria play in nature and in technology, understanding and managing bacterial populations, detecting pathogenic bacterial infections, and preventing the outbreak of illness. Current analytical challenges in bacterial sensing center on the dilemma of rapidly acquiring quantitative information about bacteria with high detection efficiency, sensitivity, and specificity, while operating within a reasonable budget and optimizing the use of ancillary tools, such as multivariate statistics. This review starts from a general description of bacterial sensing methods and challenges, and then focuses on bacterial characterization using optical methods including Raman spectroscopy and imaging, infrared spectroscopy, fluorescence spectroscopy and imaging, and plasmonics, including both extended and localized surface plasmon resonance spectroscopy. The advantages and drawbacks of each method in relation to the others are discussed, as are their applications. A particularly promising direction in bacterial sensing lies in combining multiple approaches to achieve multiplex analysis, and examples where this has been achieved are highlighted.
Collapse
Affiliation(s)
- Jiayun Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
127
|
Safavieh M, Kaul V, Khetani S, Singh A, Dhingra K, Kanakasabapathy MK, Draz MS, Memic A, Kuritzkes DR, Shafiee H. Paper microchip with a graphene-modified silver nano-composite electrode for electrical sensing of microbial pathogens. NANOSCALE 2017; 9:1852-1861. [PMID: 27845796 PMCID: PMC5695240 DOI: 10.1039/c6nr06417e] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rapid and sensitive point-of-care diagnostics are of paramount importance for early detection of infectious diseases and timely initiation of treatment. Here, we present cellulose paper and flexible plastic chips with printed graphene-modified silver electrodes as universal point-of-care diagnostic tools for the rapid and sensitive detection of microbial pathogens or nucleic acids through utilizing electrical sensing modality and loop-mediated isothermal amplification (LAMP). We evaluated the ability of the developed paper-based assay to detect (i) viruses on cellulose-based paper microchips without implementing amplification in samples with viral loads between 106 and 108 copies per ml, and (ii) amplified HIV-1 nucleic acids in samples with viral loads between 10 fg μl-1 and 108 fg μl-1. The target HIV-1 nucleic acid was amplified using the RT-LAMP technique and detected through the electrical sensing of LAMP amplicons for a broad range of RNA concentrations between 10 fg μl-1 and 108 fg μl-1 after 40 min of amplification time. Our assay may be used for antiretroviral therapy monitoring where it meets the sensitivity requirement of the World Health Organization guidelines. Such a paper microchip assay without the amplification step may also be considered as a simple and inexpensive approach for acute HIV detection where maximum viral replication occurs.
Collapse
Affiliation(s)
- Mohammadali Safavieh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Vivasvat Kaul
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sultan Khetani
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Anupriya Singh
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Karan Dhingra
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Mohamed Shehata Draz
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Adnan Memic
- Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Division of Renal Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. and Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
128
|
Etayash H, Thundat T, Kaur K. Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy. Methods Mol Biol 2017; 1572:113-124. [PMID: 28299684 DOI: 10.1007/978-1-4939-6911-1_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antimicrobial peptides have the ability to function as bio-recognition elements in the detection of bacteria. For instance, we showed that Leucocin A, an antimicrobial peptide from class IIa bacteriocins, binds gram-positive Listeria monocytogenes with higher affinity than other gram-positive bacteria like S. aureus, L. innocua, and E. faecalis. The binding was detected using impedance spectroscopy when Leucocin A immobilized on impedance electrodes binds bacteria from a sample. Here we highlight the strength of utilizing Leucocin A as a bio-recognition probe in biosensor platforms and provide details on its application in real-time bacterial detection using electrochemical impedance spectroscopy. A simple new generation impedance array analyzer is utilized that works at very low frequencies to identify interactions between peptide and the target bacteria.
Collapse
Affiliation(s)
- Hashem Etayash
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Thomas Thundat
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 2V4
| | - Kamaljit Kaur
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E1.
- Chapman University School of Pharmacy (CUSP), Chapman University, Harry and Diane Rinker Health Science Campus, 9401 Jeronimo Road, Irvine, CA, 92618-1908, USA.
| |
Collapse
|
129
|
Kim DK, Kim DM, Yoo SM, Lee SY. Controllable gold-capped nanoporous anodic alumina chip for label-free, specific detection of bacterial cells. RSC Adv 2017. [DOI: 10.1039/c6ra27130h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A gold-capped nanostructured PAA sensor that uses aptamers detected bacterial cells in a quantitative manner with high specificities on a single chip.
Collapse
Affiliation(s)
- Do-Kyun Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- BioProcess Engineering Research Center
- KAIST
- Daejeon
- Republic of Korea
| | - Dong Min Kim
- Center for Applied Life Science
- Hanbat National University
- Daejeon
- Republic of Korea
| | - Seung Min Yoo
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- BioProcess Engineering Research Center
- KAIST
- Daejeon
- Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program)
- BioProcess Engineering Research Center
- KAIST
- Daejeon
- Republic of Korea
| |
Collapse
|
130
|
She Z, Topping K, Dong B, Shamsi MH, Kraatz HB. An unexpected use of ferrocene. A scanning electrochemical microscopy study of a toll-like receptor array and its interaction with E. coli. Chem Commun (Camb) 2017; 53:2946-2949. [DOI: 10.1039/c7cc00863e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Toll-like receptor microarrays were investigated by scanning electrochemical microscopy with enhanced contrast from using ferrocene derivatives.
Collapse
Affiliation(s)
- Zhe She
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry and Chemical Engineering
| | - Kristin Topping
- Department of Chemistry and Chemical Engineering
- Royal Military College of Canada
- Kingston
- Canada
| | - Bin Dong
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry and Chemical Engineering
| | - Mohtashim H. Shamsi
- Department of Chemistry
- Toronto
- Canada
- Department of Chemistry and Biochemistry
- Southern Illinois University Carbondale Neckers
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences
- University of Toronto Scarborough
- Toronto
- Canada
- Department of Chemistry and Chemical Engineering
| |
Collapse
|
131
|
Zhang W, He J, Wu J, Schmuck C. In Vivo Detoxification of Lipopolysaccharide by Antimicrobial Peptides. Bioconjug Chem 2016; 28:319-324. [DOI: 10.1021/acs.bioconjchem.6b00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenxu Zhang
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiangcheng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junchen Wu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Carsten Schmuck
- Institute
for Organic Chemistry University of Duisburg-Essen, 47057 Essen, Germany
| |
Collapse
|
132
|
Pandya HJ, Kanakasabapathy MK, Verma S, Chug MK, Memic A, Gadjeva M, Shafiee H. Label-free electrical sensing of bacteria in eye wash samples: A step towards point-of-care detection of pathogens in patients with infectious keratitis. Biosens Bioelectron 2016; 91:32-39. [PMID: 27987408 DOI: 10.1016/j.bios.2016.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The diagnosis of keratitis is based on visual exam, tissue cytology, and standard microbial culturing to determine the type of the infectious pathogen. To prescribe appropriate therapy, it is important to distinguish between bacterial, fungal, and viral keratitis, as the treatments are quite different. Diagnosis of the causative organism has a substantial prognostic importance. Further, timely knowledge of the nature of the pathogen is also critical to adapt therapy in patients unresponsive to empiric treatment options, which occurs in 10% of all cases. Currently, the identification of the nature of the pathogen that causes keratitis is achieved via microbial culture screening, which is laboratory-based, expensive, and time-consuming. The most frequent pathogens that cause the corneal ulcers are P. aeruginosa and S. aureus. Here, we report a microchip for rapid (<1h) detection of P. aeruginosa (6294), S. aureus(LAC), through on-chip electrical sensing of bacterial lysate. We evaluated the microchip with spiked samples of PBS with bacteria concentration between 101 to 108 CFU/mL. The least diluted bacteria concentration in bacteria-spiked samples with statistically significant impedance change was 10 CFU/mL. We further validated our assay by comparing our microchip results with the standard culture-based methods using eye washes obtained from 13 infected mice.
Collapse
Affiliation(s)
- Hardik J Pandya
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Manoj Kumar Kanakasabapathy
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Saloni Verma
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Manjyot Kaur Chug
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA
| | - Adnan Memic
- Center for Nanotechnology, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Hadi Shafiee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital - Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| |
Collapse
|
133
|
Shi X, Zhang X, Yao Q, He F. A novel method for the rapid detection of microbes in blood using pleurocidin antimicrobial peptide functionalized piezoelectric sensor. J Microbiol Methods 2016; 133:69-75. [PMID: 27932084 DOI: 10.1016/j.mimet.2016.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/04/2016] [Accepted: 12/04/2016] [Indexed: 01/26/2023]
Abstract
The rapid detection of microbes is critical in clinical diagnosis and food safety. Culture-dependent assays are the most widely used microbial detection methods, but these assays are time-consuming. In this study, a rapid microbial detection method was proposed using a pleurocidin/single-walled carbon nanotubes/interdigital electrode-multichannel series piezoelectric quartz crystal (pleurocidin/SWCNT/IDE-MSPQC) sensor. The selected pleurocidin antimicrobial peptide served as a recognition probe that exhibits broad-spectrum antimicrobial activity and the SWCNT acted as the electronic transducer and cross-linker for the immobilization of pleurocidin on the IDE. The response mechanism of the sensor was based on the specific interaction between pleurocidin and the microbe causing pleurocidin to detach from the SWCNT modified IDE, resulting in a sensitive frequency shift response of the MSPQC. Microbes that may be clinically present in the bloodstream during an infection were successfully detected by the proposed method within 15min. The developed strategy provides a new universal platform for the rapid detection of microbes.
Collapse
Affiliation(s)
- Xiaohong Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China; Department of Chemistry, Taiyuan Normal University, Taiyuan 030000, China.
| | - Xiaoqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiongqiong Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fengjiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
134
|
Hoyos-Nogués M, Brosel-Oliu S, Abramova N, Muñoz FX, Bratov A, Mas-Moruno C, Gil FJ. Impedimetric antimicrobial peptide-based sensor for the early detection of periodontopathogenic bacteria. Biosens Bioelectron 2016; 86:377-385. [DOI: 10.1016/j.bios.2016.06.066] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 01/16/2023]
|
135
|
Apetrei A, Ciuca A, Lee JK, Seo CH, Park Y, Luchian T. A Protein Nanopore-Based Approach for Bacteria Sensing. NANOSCALE RESEARCH LETTERS 2016; 11:501. [PMID: 27848237 PMCID: PMC5110462 DOI: 10.1186/s11671-016-1715-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria (Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.
Collapse
Affiliation(s)
- Aurelia Apetrei
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Andrei Ciuca
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania
| | - Jong-Kook Lee
- Research Center for Proteineous Materials, Chosun University, Gwangju, South Korea
| | - Chang Ho Seo
- Department of Bioinformatics, Kongju National University, Kongju, South Korea
| | - Yoonkyung Park
- Department of Bioinformatics, Kongju National University, Kongju, South Korea.
| | - Tudor Luchian
- Department of Physics, Alexandru I. Cuza University, Iasi, Romania.
| |
Collapse
|
136
|
Ansari MH, Hassan S, Qurashi A, Khanday FA. Microfluidic-integrated DNA nanobiosensors. Biosens Bioelectron 2016; 85:247-260. [DOI: 10.1016/j.bios.2016.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 11/28/2022]
|
137
|
Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun 2016; 7:12947. [PMID: 27698375 PMCID: PMC5059454 DOI: 10.1038/ncomms12947] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022] Open
Abstract
In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per μl. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics. Analysis of bacteria and their response to antibiotics in real time is challenging. Here the authors report a microcantilever based system that can detect and discriminate between bacteria species and, due to the ability to discriminate between alive and dead samples, measure response to antibiotics.
Collapse
|
138
|
Cole MA, Scott TF, Mello CM. Bactericidal Hydrogels via Surface Functionalization with Cecropin A. ACS Biomater Sci Eng 2016; 2:1894-1904. [PMID: 33440526 DOI: 10.1021/acsbiomaterials.6b00266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immobilization of antimicrobial peptides (AMPs) to surfaces, enabling their utilization in biosensor and antibacterial/antifouling coating applications, is typically performed using rigid, solid support materials such as glass or gold and may require lengthy, temperamental protocols. Here, we employ a hydrogel immobilization platform to afford facile fabrication and surface functionalization while offering improved biocompatibility for evaluating the influence of linker length, surface density, and AMP conjugation site on retained peptide activity. Rapid, interfacial photo-polymerization using the radical-mediated thiol-ene addition mechanism was used to generate cross-linked, polymeric coatings bearing residual thiol moieties on prefabricated poly(ethylene glycol) (PEG)-based hydrogel supports. The photo-polymerized coatings were 60 μm thick and contained 0.55 nmol of unreacted free thiols, corresponding to a concentration of 410 μM, for use as cecropin A (CPA) immobilization handles via thiol-maleimide conjugation, where the CPA-bound maleimide moiety was localized at either the carboxyl terminus or midsequence between Ala22 and Gly23. Surface presentation of the thiol handles was controlled by varying the thiolated PEG monomer (PEGSH) used in the photo-polymerizable formulation. Bactericidal activity of CPA functionalized hydrogels against E. coli K235 indicated that CPA immobilized at the carboxyl terminus killed 94 ± 6% of the inoculated pathogens when coatings were prepared with high molecular weight PEGSH and 99 ± 1% when prepared with low molecular weight PEGSH. E. coli cell death demonstrated a stronger dependence on peptide concentration than PEG linker length or degree of thiol functionalization, with activity ranging from 34 ± 13% to 99 ± 1% bacterial cells killed as the prefunctionalization thiol concentration in the coatings was increased from 90 to 990 μM. Finally, the immobilization site on the surface-bound CPA strongly affected antibacterial activity; when midsequence modified CPA was bound to a hydrogel coating bearing 990 μM thiol, only 20 ± 4% of the E. coli population was killed.
Collapse
Affiliation(s)
- Megan A Cole
- U.S. Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760, United States
| | - Timothy F Scott
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlene M Mello
- U.S. Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760, United States
| |
Collapse
|
139
|
Swaminathan S, Cui Y. Biochemical functionalization of peptide nanotubes with phage displayed peptides. NANOTECHNOLOGY 2016; 27:365703. [PMID: 27479451 DOI: 10.1088/0957-4484/27/36/365703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Swathi Swaminathan
- Department of Biological Engineering, Utah State University, Logan, UT 84322, USA
| | | |
Collapse
|
140
|
Tenenbaum E, Segal E. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound. Analyst 2016; 140:7726-33. [PMID: 26456237 DOI: 10.1039/c5an01717c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present a label-free optical biosensor for rapid bacteria detection using a novel peptide-mimetic compound, as the recognition element. The biosensor design is based on an oxidized porous silicon (PSiO2) nanostructure used as the optical transducer, functionalized with the sequence K-[C12K]7 (referred to as K-7α12), which is a synthetic antimicrobial peptide. This compound is a member of a family of oligomers of acylated lysines (OAKs), mimicking the hydrophobicity and charge of natural antimicrobial peptides. The OAK is tethered to the PSiO2 film and the changes in the reflectivity spectrum are monitored upon exposure to Escherichia coli (E. coli) bacterial suspensions and their lysates. We show that capture of bacterial cell fragments induces predictable changes in the reflectivity spectrum, proportional to E. coli concentrations, thereby enabling rapid, sensitive and reproducible detection of E. coli at concentrations as low as 10(3) cells per mL. While for intact bacterial cells, the K-7α12-tethered PSiO2 shows a poor capturing ability, resulting in an insignificant optical response. The biosensor performance is also studied upon exposure to model Gram positive and negative bacterial lysates, suggesting preferential capture of E. coli cell fragments in the presented scheme. These OAK-based biosensors offer significant advantages in comparison with conventional antibody-based assays, in terms of their simple and cost-effective production, while providing numerous possible sequence combinations for designing new detection schemes.
Collapse
Affiliation(s)
- Elena Tenenbaum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
141
|
Ebrahimi A, Alam MA. Evaporation-induced stimulation of bacterial osmoregulation for electrical assessment of cell viability. Proc Natl Acad Sci U S A 2016; 113:7059-64. [PMID: 27303045 PMCID: PMC4932974 DOI: 10.1073/pnas.1606097113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacteria cells use osmoregulatory proteins as emergency valves to respond to changes in the osmotic pressure of their external environment. The existence of these emergency valves has been known since the 1960s, but they have never been used as the basis of a viability assay to tell dead bacteria cells apart from live ones. In this paper, we show that osmoregulation provides a much faster, label-free assessment of cell viability compared with traditional approaches that rely on cell multiplication (growth) to reach a detectable threshold. The cells are confined in an evaporating droplet that serves as a dynamic microenvironment. Evaporation-induced increase in ionic concentration is reflected in a proportional increase of the droplet's osmotic pressure, which in turn, stimulates the osmoregulatory response from the cells. By monitoring the time-varying electrical conductance of evaporating droplets, bacterial cells are identified within a few minutes compared with several hours in growth-based methods. To show the versatility of the proposed method, we show detection of WT and genetically modified nonhalotolerant cells (Salmonella typhimurium) and dead vs. live differentiation of nonhalotolerant (such as Escherichia coli DH5α) and halotolerant cells (such as Staphylococcus epidermidis). Unlike the growth-based techniques, the assay time of the proposed method is independent of cell concentration or the bacteria type. The proposed label-free approach paves the road toward realization of a new class of real time, array-formatted electrical sensors compatible with droplet microfluidics for laboratory on a chip applications.
Collapse
Affiliation(s)
- Aida Ebrahimi
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| | - Muhammad Ashraful Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907; Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
142
|
Li B, Kang W, Liu H, Wang Y, Yu C, Zhu X, Dou J, Cai H, Zhou C. The antimicrobial activity of Cbf-K16 against MRSA was enhanced by β-lactamantibiotics through cell wall non-integrity. Arch Pharm Res 2016; 39:978-88. [DOI: 10.1007/s12272-016-0769-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
|
143
|
|
144
|
Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. Int J Mol Sci 2016; 17:E701. [PMID: 27187357 PMCID: PMC4881524 DOI: 10.3390/ijms17050701] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/25/2016] [Accepted: 05/04/2016] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an interesting class of antibiotics characterized by their unique antibiotic activity and lower propensity for developing resistance compared to common antibiotics. They belong to the class of membrane-active peptides and usually act selectively against bacteria, fungi and protozoans. AMPs, but also peptide conjugates containing AMPs, have come more and more into the focus of research during the last few years. Within this article, recent work on AMP conjugates is reviewed. Different aspects will be highlighted as a combination of AMPs with antibiotics or organometallic compounds aiming to increase antibacterial activity or target selectivity, conjugation with photosensitizers for improving photodynamic therapy (PDT) or the attachment to particles, to name only a few. Owing to the enormous resonance of antimicrobial conjugates in the literature so far, this research topic seems to be very attractive to different scientific fields, like medicine, biology, biochemistry or chemistry.
Collapse
Affiliation(s)
- Andre Reinhardt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| | - Ines Neundorf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, D-50674 Cologne, Germany.
| |
Collapse
|
145
|
Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 2016; 89:38-55. [DOI: 10.1016/j.biomaterials.2016.02.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/11/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
|
146
|
|
147
|
Barreiros dos Santos M, Azevedo S, Agusil JP, Prieto-Simón B, Sporer C, Torrents E, Juárez A, Teixeira V, Samitier J. Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria. Bioelectrochemistry 2016; 101:146-52. [PMID: 25460610 DOI: 10.1016/j.bioelechem.2014.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 09/20/2014] [Accepted: 09/21/2014] [Indexed: 01/24/2023]
Abstract
Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm(− 2) (0.08 pmol cm(− 2)). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL(− 1)) over a large linear working range (10–10(6) CFU mL(− 1)). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.
Collapse
|
148
|
Chen H, Huang J, Palaniappan A, Wang Y, Liedberg B, Platt M, Tok AIY. A review on electronic bio-sensing approaches based on non-antibody recognition elements. Analyst 2016; 141:2335-46. [PMID: 27002177 DOI: 10.1039/c5an02623g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this review, recent advances in the development of electronic detection methodologies based on non-antibody recognition elements such as functional liposomes, aptamers and synthetic peptides are discussed. Particularly, we highlight the progress of field effect transistor (FET) sensing platforms where possible as the number of publications on FET-based platforms has increased rapidly. Biosensors involving antibody-antigen interactions have been widely applied in diagnostics and healthcare in virtue of their superior selectivity and sensitivity, which can be attributed to their high binding affinity and extraordinary specificity, respectively. However, antibodies typically suffer from fragile and complicated functional structures, large molecular size and sophisticated preparation approaches (resource-intensive and time-consuming), resulting in limitations such as short shelf-life, insufficient stability and poor reproducibility. Recently, bio-sensing approaches based on synthetic elements have been intensively explored. In contrast to existing reports, this review provides a comprehensive overview of recent advances in the development of biosensors utilizing synthetic recognition elements and a detailed comparison of their assay performances. Therefore, this review would serve as a good summary of the efforts for the development of electronic bio-sensing approaches involving synthetic recognition elements.
Collapse
Affiliation(s)
- Hu Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798.
| | | | | | | | | | | | | |
Collapse
|
149
|
Han L, Liu P, Petrenko VA, Liu A. A Label-Free Electrochemical Impedance Cytosensor Based on Specific Peptide-Fused Phage Selected from Landscape Phage Library. Sci Rep 2016; 6:22199. [PMID: 26908277 PMCID: PMC4764921 DOI: 10.1038/srep22199] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 11/09/2022] Open
Abstract
One of the major challenges in the design of biosensors for cancer diagnosis is to introduce a low-cost and selective probe that can recognize cancer cells. In this paper, we combined the phage display technology and electrochemical impedance spectroscopy (EIS) to develop a label-free cytosensor for the detection of cancer cells, without complicated purification of recognition elements. Fabrication steps of the cytosensing interface were monitored by EIS. Due to the high specificity of the displayed octapeptides and avidity effect of their multicopy display on the phage scaffold, good biocompatibility of recombinant phage, the fibrous nanostructure of phage, and the inherent merits of EIS technology, the proposed cytosensor demonstrated a wide linear range (2.0 × 10(2) - 2.0 × 10(8) cells mL(-1)), a low limit of detection (79 cells mL(-1), S/N = 3), high specificity, good inter-and intra-assay reproducibility and satisfactory storage stability. This novel cytosensor designing strategy will open a new prospect for rapid and label-free electrochemical platform for tumor diagnosis.
Collapse
Affiliation(s)
- Lei Han
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Pei Liu
- Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 269 Greene Hall, Auburn, Alabama 36849-5519, United States
| | - Aihua Liu
- Institute for Biosensing &In-Vitro Diagnostics, and College of Medicine, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China.,Laboratory for Biosensing, Qingdao Institute of Bioenergy &Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| |
Collapse
|
150
|
Guo Y, Wang Y, Liu S, Yu J, Pei Q, Leng X, Huang J. A functional oligonucleotide probe from an encapsulated silver nanocluster assembled by rolling circle amplification and its application in label-free sensors. RSC Adv 2016. [DOI: 10.1039/c6ra18257g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A novel label-free, low cost electrochemical biosensor for highly sensitive and selective detection of E. coli has been developed based on rolling circle amplification coupled silver nanoclusters as effective electrochemical probe.
Collapse
Affiliation(s)
- Yuna Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yu Wang
- School of Biological Sciences and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Su Liu
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xueqi Leng
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jiadong Huang
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|