101
|
Sanders SJ, Campbell AJ, Cottrell JR, Moller RS, Wagner FF, Auldridge AL, Bernier RA, Catterall WA, Chung WK, Empfield JR, George AL, Hipp JF, Khwaja O, Kiskinis E, Lal D, Malhotra D, Millichap JJ, Otis TS, Petrou S, Pitt G, Schust LF, Taylor CM, Tjernagel J, Spiro JE, Bender KJ. Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci 2018; 41:442-456. [PMID: 29691040 DOI: 10.1016/j.tins.2018.03.011] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 01/20/2023]
Abstract
Advances in gene discovery for neurodevelopmental disorders have identified SCN2A dysfunction as a leading cause of infantile seizures, autism spectrum disorder, and intellectual disability. SCN2A encodes the neuronal sodium channel NaV1.2. Functional assays demonstrate strong correlation between genotype and phenotype. This insight can help guide therapeutic decisions and raises the possibility that ligands that selectively enhance or diminish channel function may improve symptoms. The well-defined function of sodium channels makes SCN2A an important test case for investigating the neurobiology of neurodevelopmental disorders more generally. Here, we discuss the progress made, through the concerted efforts of a diverse group of academic and industry scientists as well as policy advocates, in understanding and treating SCN2A-related disorders.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Arthur J Campbell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Jeffrey R Cottrell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Rikke S Moller
- The Danish Epilepsy Centre, Dianalund, Denmark; Institute for Regional Health Services, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Florence F Wagner
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Angie L Auldridge
- FamilieSCN2a Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
| | - Wendy K Chung
- Simons Foundation, New York, NY 10010, USA; Department of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - James R Empfield
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joerg F Hipp
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Omar Khwaja
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Evangelos Kiskinis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dennis Lal
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames Street, Cambridge, MA 02142, USA
| | - Dheeraj Malhotra
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - John J Millichap
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Epilepsy Center and Division of Neurology, Ann & Robert H. Lurie Children's Hospital of Chicago, IL 60611, USA; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Thomas S Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland Street, London W1T 4JG, UK
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Geoffrey Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Leah F Schust
- FamilieSCN2a Foundation, P.O. Box 82, East Longmeadow, MA 01028, USA
| | - Cora M Taylor
- Geisinger Health System, 100 North Academy Avenue, Danville, PA 17822, USA
| | | | | | - Kevin J Bender
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
102
|
Buyan A, Sun D, Corry B. Protonation state of inhibitors determines interaction sites within voltage-gated sodium channels. Proc Natl Acad Sci U S A 2018; 115:E3135-E3144. [PMID: 29467289 PMCID: PMC5889629 DOI: 10.1073/pnas.1714131115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated sodium channels are essential for carrying electrical signals throughout the body, and mutations in these proteins are responsible for a variety of disorders, including epilepsy and pain syndromes. As such, they are the target of a number of drugs used for reducing pain or combatting arrhythmias and seizures. However, these drugs affect all sodium channel subtypes found in the body. Designing compounds to target select sodium channel subtypes will provide a new therapeutic pathway and would maximize treatment efficacy while minimizing side effects. Here, we examine the binding preferences of nine compounds known to be sodium channel pore blockers in molecular dynamics simulations. We use the approach of replica exchange solute tempering (REST) to gain a more complete understanding of the inhibitors' behavior inside the pore of NavMs, a bacterial sodium channel, and NavPas, a eukaryotic sodium channel. Using these simulations, we are able to show that both charged and neutral compounds partition into the bilayer, but neutral forms more readily cross it. We show that there are two possible binding sites for the compounds: (i) a site on helix 6, which has been previously determined by many experimental and computational studies, and (ii) an additional site, occupied by protonated compounds in which the positively charged part of the drug is attracted into the selectivity filter. Distinguishing distinct binding poses for neutral and charged compounds is essential for understanding the nature of pore block and will aid the design of subtype-selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Amanda Buyan
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Delin Sun
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Ben Corry
- Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
103
|
Zheng YM, Wang WF, Li YF, Yu Y, Gao ZB. Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol Sin 2018; 39:587-596. [PMID: 29094728 PMCID: PMC5888685 DOI: 10.1038/aps.2017.151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/03/2017] [Indexed: 12/16/2022] Open
Abstract
The Nav1.7 channel represents a promising target for pain relief. In the recent decades, a number of Nav1.7 channel inhibitors have been developed. According to the effects on channel kinetics, these inhibitors could be divided into two major classes: reducing activation or enhancing inactivation. To date, however, only several inhibitors have moved forward into phase 2 clinical trials and most of them display a less than ideal analgesic efficacy, thus intensifying the controversy regarding if an ideal candidate should preferentially affect the activation or inactivation state. In the present study, we investigated the action mechanisms of a recently clinically confirmed inhibitor CNV1014802 using both electrophysiology and site-directed mutagenesis. We found that CNV1014802 inhibited Nav1.7 channels through stabilizing a nonconductive inactivated state. When the cells expressing Nav1.7 channels were hold at 70 mV or 120 mV, the half maximal inhibitory concentration (IC50) values (with 95% confidence limits) were 1.77 (1.20-2.33) and 71.66 (46.85-96.48) μmol/L, respectively. This drug caused dramatic hyperpolarizing shift of channel inactivation but did not affect activation. Moreover, CNV1014802 accelerated the onset of inactivation and delayed the recovery from inactivation. Notably, application of CNV1014802 (30 μmol/L) could rescue the Nav1.7 mutations expressed in CHO cells that cause paroxysmal extreme pain disorder (PEPD), thereby restoring the impaired inactivation to those of the wild-type channel. Our study demonstrates that CNV1014802 enhances the inactivation but does not reduce the activation of Nav1.7 channels, suggesting that identifying inhibitors that preferentially affect inactivation is a promising approach for developing drugs targeting Nav1.7.
Collapse
Affiliation(s)
- Yue-ming Zheng
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wan-fu Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yan-fen Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yong Yu
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhao-bing Gao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
104
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
105
|
Na V 1.7 as a Pharmacogenomic Target for Pain: Moving Toward Precision Medicine. Trends Pharmacol Sci 2018; 39:258-275. [DOI: 10.1016/j.tips.2017.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 01/15/2023]
|
106
|
Zhao F, Jin W, Ma L, Zhang JY, Wang JL, Zhang JH, Song YB. Investigation of the selectivity of one type of small-molecule inhibitor for three Na v channel isoforms based on the method of computer simulation. J Biomol Struct Dyn 2018; 37:702-713. [PMID: 29448911 DOI: 10.1080/07391102.2018.1438921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Voltage-gated sodium (Nav) channels play a pivotal role for the changes in membrane potential and belong to large membrane proteins that compose four voltage sensor domains (VSD1-4). In this study, we describe the binding mode and selectivity of one of the aryl sulfonamide sodium channel inhibitors, PF-04856264, for the VSD4s in Nav1.4, Nav1.5 and Nav1.7, respectively, through molecular dynamics simulation and enhanced post-dynamics analyses. Our results show that there are three binding site regions (BSR1-3) in the combination of the ligand and receptors, of which BSR1 and BSR3 contribute to the selectivity and affinity of the ligand to the receptor. What's more, the 39th residue (Y39 in VSD4hNav1.4/ VSD4hNav1.7 and A39 in VSD4hNav1.5) and N42 in BSR1, the 84th residue (L84 in VSD4hNav1.4, T84 in VSD4hNav1.5, and M84 in VSD4hNav1.7) in BSR2 and the conserved positive charged residues in BSR3 have major contributions to the interaction between the ligand and receptor. Further analysis reveals that if the 39th residue has a benzene ring structure, the connection of BSR1 and the ligand would be much stronger through π-stacking interaction. On the other hand, the strength and number of the hydrogen bonds formed by the ligand and the conserved arginines on S4 determine the contribution of BSR3 to the total free binding energy. We anticipate this study pave the way for the design of more effective and safe treatment for pain that selectively target Nav1.7.
Collapse
Affiliation(s)
- Fan Zhao
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Wei Jin
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Lin Ma
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Jian-Ye Zhang
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Jin-Long Wang
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Jing-Hai Zhang
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| | - Yong-Bo Song
- a School of Life Science and Bio-pharmaceutics , Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang 110016 , China
| |
Collapse
|
107
|
Wang H, Xie M, Charpin-El Hamri G, Ye H, Fussenegger M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2018; 2:114-123. [PMID: 31015627 DOI: 10.1038/s41551-018-0192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
108
|
An efficient stereoselective synthesis of aminocyclohexenes from 7-azanorbornenes via LiAlH 4 mediated tandem double bond migration-ring opening sequence. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
109
|
Wu YJ, Guernon J, McClure A, Venables B, Rajamani R, Robbins KJ, Knox RJ, Matchett M, Pieschl RL, Herrington J, Bristow LJ, Meanwell NA, Olson R, Thompson LA, Dzierba C. Discovery of morpholine-based aryl sulfonamides as Na v1.7 inhibitors. Bioorg Med Chem Lett 2018; 28:958-962. [PMID: 29439904 DOI: 10.1016/j.bmcl.2018.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Replacement of the piperidine ring in the lead benzenesulfonamide Nav1.7 inhibitor 1 with a weakly basic morpholine core resulted in a significant reduction in Nav1.7 inhibitory activity, but the activity was restored by shortening the linkage from methyleneoxy to oxygen. These efforts led to a series of morpholine-based aryl sulfonamides as isoform-selective Nav1.7 inhibitors. This report describes the synthesis and SAR of these analogs.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA.
| | - Jason Guernon
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Andrea McClure
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Brian Venables
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ramkumar Rajamani
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Kevin J Robbins
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Ronald J Knox
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Michele Matchett
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Rick L Pieschl
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - James Herrington
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Linda J Bristow
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Nicholas A Meanwell
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Richard Olson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Lorin A Thompson
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| | - Carolyn Dzierba
- Bristol-Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492-7660, USA
| |
Collapse
|
110
|
Physical basis of specificity and delayed binding of a subtype selective sodium channel inhibitor. Sci Rep 2018; 8:1356. [PMID: 29358762 PMCID: PMC5778059 DOI: 10.1038/s41598-018-19850-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 01/09/2018] [Indexed: 12/19/2022] Open
Abstract
Nerve and muscle signalling is controlled by voltage-gated sodium (Nav) channels which are the targets of local anesthetics, anti-epileptics and anti-arrythmics. Current medications do not selectively target specific types of Nav found in the body, but compounds that do so have the potential to be breakthrough treatments for chronic pain, epilepsy and other neuronal disorders. We use long computer simulations totaling more than 26 μs to show how a promising lead compound can target one Nav implicated in pain perception and specific channels found in bacteria, and accurately predict the affinity of the compound to different channel types. Most importantly, we provide two explanations for the slow kinetics of this class of compound that limits their therapeutic utility. Firstly, the negative charge on the compound is essential for high affinity binding but is also responsible for energetic barriers that slow binding. Secondly, the compound has to undergo a conformational reorientation during the binding process. This knowledge aids the design of compounds affecting specific eukaryotic and bacterial channels and suggests routes for future drug development.
Collapse
|
111
|
Mechanism-specific assay design facilitates the discovery of Nav1.7-selective inhibitors. Proc Natl Acad Sci U S A 2018; 115:E792-E801. [PMID: 29311306 PMCID: PMC5789920 DOI: 10.1073/pnas.1713701115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Subtype-selective modulation of ion channels is often important, but extremely difficult to achieve for drug development. Using Nav1.7 as an example, we show that this challenge could be attributed to poor design in ion channel assays, which fail to detect most potent and selective compounds and are biased toward nonselective mechanisms. By exploiting different drug binding sites and modes of channel gating, we successfully direct a membrane potential assay toward non–pore-blocking mechanisms and identify Nav1.7-selective compounds. Our mechanistic approach to assay design addresses a significant hurdle in Nav1.7 drug discovery and is applicable to many other ion channels. Many ion channels, including Nav1.7, Cav1.3, and Kv1.3, are linked to human pathologies and are important therapeutic targets. To develop efficacious and safe drugs, subtype-selective modulation is essential, but has been extremely difficult to achieve. We postulate that this challenge is caused by the poor assay design, and investigate the Nav1.7 membrane potential assay, one of the most extensively employed screening assays in modern drug discovery. The assay uses veratridine to activate channels, and compounds are identified based on the inhibition of veratridine-evoked activities. We show that this assay is biased toward nonselective pore blockers and fails to detect the most potent, selective voltage-sensing domain 4 (VSD4) blockers, including PF-05089771 (PF-771) and GX-936. By eliminating a key binding site for pore blockers and replacing veratridine with a VSD-4 binding activator, we directed the assay toward non–pore-blocking mechanisms and discovered Nav1.7-selective chemical scaffolds. Hence, we address a major hurdle in Nav1.7 drug discovery, and this mechanistic approach to assay design is applicable to Cav3.1, Kv1.3, and many other ion channels to facilitate drug discovery.
Collapse
|
112
|
Sodium channel Na V1.3 is important for enterochromaffin cell excitability and serotonin release. Sci Rep 2017; 7:15650. [PMID: 29142310 PMCID: PMC5688111 DOI: 10.1038/s41598-017-15834-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/01/2017] [Indexed: 12/28/2022] Open
Abstract
In the gastrointestinal (GI) epithelium, enterochromaffin (EC) cells are enteroendocrine cells responsible for producing >90% of the body's serotonin (5-hydroxytryptamine, 5-HT). However, the molecular mechanisms of EC cell function are poorly understood. Here, we found that EC cells in mouse primary cultures fired spontaneous bursts of action potentials. We examined the repertoire of voltage-gated sodium channels (NaV) in fluorescence-sorted mouse EC cells and found that Scn3a was highly expressed. Scn3a-encoded NaV1.3 was specifically and densely expressed at the basal side of both human and mouse EC cells. Using electrophysiology, we found that EC cells expressed robust NaV1.3 currents, as determined by their biophysical and pharmacologic properties. NaV1.3 was not only critical for generating action potentials in EC cells, but it was also important for regulating 5-HT release by these cells. Therefore, EC cells use Scn3a-encoded voltage-gated sodium channel NaV1.3 for electrical excitability and 5-HT release. NaV1.3-dependent electrical excitability and its contribution to 5-HT release is a novel mechanism of EC cell function.
Collapse
|
113
|
Wang J, Ou SW, Wang YJ. Distribution and function of voltage-gated sodium channels in the nervous system. Channels (Austin) 2017; 11:534-554. [PMID: 28922053 DOI: 10.1080/19336950.2017.1380758] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.
Collapse
Affiliation(s)
- Jun Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Shao-Wu Ou
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| | - Yun-Jie Wang
- a Department of Neurosurgery , The First Hospital of China Medical University , Shenyang , P.R. China
| |
Collapse
|
114
|
Storer RI, Pike A, Swain NA, Alexandrou AJ, Bechle BM, Blakemore DC, Brown AD, Castle NA, Corbett MS, Flanagan NJ, Fengas D, Johnson MS, Jones LH, Marron BE, Payne CE, Printzenhoff D, Rawson DJ, Rose CR, Ryckmans T, Sun J, Theile JW, Torella R, Tseng E, Warmus JS. Highly potent and selective NaV1.7 inhibitors for use as intravenous agents and chemical probes. Bioorg Med Chem Lett 2017; 27:4805-4811. [DOI: 10.1016/j.bmcl.2017.09.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/17/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023]
|
115
|
Teng M, Wu W, Li Z, Yang G, Qin J, Wang Y, Hu Z, Dong H, Hou L, Hu G, Shen L, Zhang Y, Li J, Chen S, Tian J, Ye L, Zhang J, Wang H. Discovery of aminocyclohexene analogues as selective and orally bioavailable hNav1.7 inhibitors for analgesia. Bioorg Med Chem Lett 2017; 27:4979-4984. [PMID: 29037948 DOI: 10.1016/j.bmcl.2017.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/28/2017] [Accepted: 10/07/2017] [Indexed: 10/18/2022]
Abstract
hNav1.7 receives a lot of attention owing to its attractive mechanism of action in pain processing pathway. We have previously reported our design of a novel series of tetrahydropyridine analogues towards hNav1.7 selective inhibitors. Herein, we disclose further efforts to the optimization of hit compound (-)-6, which led to the identification of aminocyclohexene analogues (-)-9 and (-)-17 with good potency, high selectivity, and minimal CYP inhibition. Both compounds (-)-9 and (-)-17 demonstrated improved pharmacokinetic profiles in rats, and robust efficacy in rat formalin-induced nociception and spinal nerve ligation (SNL) models.
Collapse
Affiliation(s)
- Mingxing Teng
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Wentao Wu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China.
| | - Zhixiang Li
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Guangwen Yang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Jian Qin
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Yikai Wang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Zhijing Hu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Haiheng Dong
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Lijuan Hou
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Guoping Hu
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Liang Shen
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Yang Zhang
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China.
| | - Jian Li
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Shuhui Chen
- WuXi AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, People's Republic of China
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China.
| | - Liang Ye
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Jianzhao Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| | - Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, People's Republic of China
| |
Collapse
|
116
|
Wu YJ, Guernon J, McClure A, Luo G, Rajamani R, Ng A, Easton A, Newton A, Bourin C, Parker D, Mosure K, Barnaby O, Soars MG, Knox RJ, Matchett M, Pieschl R, Herrington J, Chen P, Sivarao D, Bristow LJ, Meanwell NA, Bronson J, Olson R, Thompson LA, Dzierba C. Discovery of non-zwitterionic aryl sulfonamides as Nav1.7 inhibitors with efficacy in preclinical behavioral models and translational measures of nociceptive neuron activation. Bioorg Med Chem 2017; 25:5490-5505. [DOI: 10.1016/j.bmc.2017.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/04/2017] [Accepted: 08/08/2017] [Indexed: 01/12/2023]
|
117
|
Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorg Med Chem 2017; 26:2738-2758. [PMID: 28988749 DOI: 10.1016/j.bmc.2017.09.029] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 12/19/2022]
Abstract
Peptides are recognized as being highly selective, potent and relatively safe as potential therapeutics. Peptides isolated from the venom of different animals satisfy most of these criteria with the possible exception of safety, but when isolated as single compounds and used at appropriate concentrations, venom-derived peptides can become useful drugs. Although the number of venom-derived peptides that have successfully progressed to the clinic is currently limited, the prospects for venom-derived peptides look very optimistic. As proteomic and transcriptomic approaches continue to identify new sequences, the potential of venom-derived peptides to find applications as therapeutics, cosmetics and insecticides grows accordingly.
Collapse
Affiliation(s)
| | - Andrzej Czerwinski
- Peptides International, Inc., 11621 Electron Drive, Louisville, KY 40299, USA
| | - Raymond S Norton
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Monash University, Parkville, 3052, Australia
| |
Collapse
|
118
|
Ciguatoxins Evoke Potent CGRP Release by Activation of Voltage-Gated Sodium Channel Subtypes Na V1.9, Na V1.7 and Na V1.1. Mar Drugs 2017; 15:md15090269. [PMID: 28867800 PMCID: PMC5618408 DOI: 10.3390/md15090269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/04/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
Ciguatoxins (CTXs) are marine toxins that cause ciguatera fish poisoning, a debilitating disease dominated by sensory and neurological disturbances that include cold allodynia and various painful symptoms as well as long-lasting pruritus. Although CTXs are known as the most potent mammalian sodium channel activator toxins, the etiology of many of its neurosensory symptoms remains unresolved. We recently described that local application of 1 nM Pacific Ciguatoxin-1 (P-CTX-1) into the skin of human subjects induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective in releasing calcitonin-gene related peptide (CGRP) from nerve terminals. In this study, we used mouse and rat skin preparations and enzyme-linked immunosorbent assays (ELISA) to study the molecular mechanism by which P-CTX-1 induces CGRP release. We show that P-CTX-1 induces CGRP release more effectively in mouse as compared to rat skin, exhibiting EC50 concentrations in the low nanomolar range. P-CTX-1-induced CGRP release from skin is dependent on extracellular calcium and sodium, but independent from the activation of various thermosensory transient receptor potential (TRP) ion channels. In contrast, lidocaine and tetrodotoxin (TTX) reduce CGRP release by 53–75%, with the remaining fraction involving L-type and T-type voltage-gated calcium channels (VGCC). Using transgenic mice, we revealed that the TTX-resistant voltage-gated sodium channel (VGSC) NaV1.9, but not NaV1.8 or NaV1.7 alone and the combined activation of the TTX-sensitive VGSC subtypes NaV1.7 and NaV1.1 carry the largest part of the P-CTX-1-caused CGRP release of 42% and 34%, respectively. Given the contribution of CGRP to nociceptive and itch sensing pathways, our findings contribute to a better understanding of sensory symptoms of acute and chronic ciguatera that may help in the identification of potential therapeutics.
Collapse
|
119
|
Swain NA, Batchelor D, Beaudoin S, Bechle BM, Bradley PA, Brown AD, Brown B, Butcher KJ, Butt RP, Chapman ML, Denton S, Ellis D, Galan SRG, Gaulier SM, Greener BS, de Groot MJ, Glossop MS, Gurrell IK, Hannam J, Johnson MS, Lin Z, Markworth CJ, Marron BE, Millan DS, Nakagawa S, Pike A, Printzenhoff D, Rawson DJ, Ransley SJ, Reister SM, Sasaki K, Storer RI, Stupple PA, West CW. Discovery of Clinical Candidate 4-[2-(5-Amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7. J Med Chem 2017; 60:7029-7042. [DOI: 10.1021/acs.jmedchem.7b00598] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | | | - Serge Beaudoin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Bruce M. Bechle
- Worldwide
Medicinal Chemistry, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | | | | | | | | | | | - Mark L. Chapman
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | | | | | | | | | | | | | - Matthew S. Johnson
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | - Zhixin Lin
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | - Brian E. Marron
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - David Printzenhoff
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | - Steven M. Reister
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| | | | | | | | - Christopher W. West
- Icagen Inc., 4222 Emperor Blvd
no. 350, Durham, North Carolina 27703, United States
| |
Collapse
|
120
|
Rajamani R, Wu S, Rodrigo I, Gao M, Low S, Megson L, Wensel D, Pieschl RL, Post-Munson DJ, Watson J, Langley DR, Ahlijanian MK, Bristow LJ, Herrington J. A Functional NaV1.7-NaVAb Chimera with a Reconstituted High-Affinity ProTx-II Binding Site. Mol Pharmacol 2017. [DOI: 10.1124/mol.117.108712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
121
|
Pharmacology of the Na v1.1 domain IV voltage sensor reveals coupling between inactivation gating processes. Proc Natl Acad Sci U S A 2017; 114:6836-6841. [PMID: 28607094 DOI: 10.1073/pnas.1621263114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Nav1.1 voltage-gated sodium channel is a critical contributor to excitability in the brain, where pathological loss of function leads to such disorders as epilepsy, Alzheimer's disease, and autism. This voltage-gated sodium (Nav) channel subtype also plays an important role in mechanical pain signaling by primary afferent somatosensory neurons. Therefore, pharmacologic modulation of Nav1.1 represents a potential strategy for treating excitability disorders of the brain and periphery. Inactivation is a complex aspect of Nav channel gating and consists of fast and slow components, each of which may involve a contribution from one or more voltage-sensing domains. Here, we exploit the Hm1a spider toxin, a Nav1.1-selective modulator, to better understand the relationship between these temporally distinct modes of inactivation and ask whether they can be distinguished pharmacologically. We show that Hm1a inhibits the gating movement of the domain IV voltage sensor (VSDIV), hindering both fast and slow inactivation and leading to an increase in Nav1.1 availability during high-frequency stimulation. In contrast, ICA-121431, a small-molecule Nav1.1 inhibitor, accelerates a subsequent VSDIV gating transition to accelerate entry into the slow inactivated state, resulting in use-dependent block. Further evidence for functional coupling between fast and slow inactivation is provided by a Nav1.1 mutant in which fast inactivation removal has complex effects on slow inactivation. Taken together, our data substantiate the key role of VSDIV in Nav channel fast and slow inactivation and demonstrate that these gating processes are sequential and coupled through VSDIV. These findings provide insight into a pharmacophore on VSDIV through which modulation of inactivation gating can inhibit or facilitate Nav1.1 function.
Collapse
|
122
|
Abstract
Acute and chronic pain complaints, although common, are generally poorly served by existing therapies. This unmet clinical need reflects a failure to develop novel classes of analgesics with superior efficacy, diminished adverse effects and a lower abuse liability than those currently available. Reasons for this include the heterogeneity of clinical pain conditions, the complexity and diversity of underlying pathophysiological mechanisms, and the unreliability of some preclinical pain models. However, recent advances in our understanding of the neurobiology of pain are beginning to offer opportunities for developing novel therapeutic strategies and revisiting existing targets, including modulating ion channels, enzymes and G-protein-coupled receptors.
Collapse
|
123
|
Pero JE, Rossi MA, Lehman HD, Kelly MJ, Mulhearn JJ, Wolkenberg SE, Cato MJ, Clements MK, Daley CJ, Filzen T, Finger EN, Gregan Y, Henze DA, Jovanovska A, Klein R, Kraus RL, Li Y, Liang A, Majercak JM, Panigel J, Urban MO, Wang J, Wang YH, Houghton AK, Layton ME. Benzoxazolinone aryl sulfonamides as potent, selective Na v 1.7 inhibitors with in vivo efficacy in a preclinical pain model. Bioorg Med Chem Lett 2017; 27:2683-2688. [DOI: 10.1016/j.bmcl.2017.04.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
|
124
|
Su S, Shao J, Zhao Q, Ren X, Cai W, Li L, Bai Q, Chen X, Xu B, Wang J, Cao J, Zang W. MiR-30b Attenuates Neuropathic Pain by Regulating Voltage-Gated Sodium Channel Nav1.3 in Rats. Front Mol Neurosci 2017; 10:126. [PMID: 28529474 PMCID: PMC5418349 DOI: 10.3389/fnmol.2017.00126] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/18/2017] [Indexed: 01/12/2023] Open
Abstract
Nav1.3 is a tetrodotoxin-sensitive isoform among voltage-gated sodium channels that are closely associated with neuropathic pain. It can be up-regulated following nerve injury, but its biological function remains uncertain. MicroRNAs (miRNAs) are endogenous non-coding RNAs that can regulate post-transcriptional gene expression by binding with their target mRNAs. Using Target Scan software, we discovered that SCN3A is the major target of miR-30b, and we then determined whether miR-30b regulated the expression of Nav1.3 by transfecting miR-30b agomir through the stimulation of TNF-α or by transfecting miR-30b antagomir in primary dorsal root ganglion (DRG) neurons. The spinal nerve ligation (SNL) model was used to determine the contribution of miR-30b to neuropathic pain, to evaluate changes in Nav1.3 mRNA and protein expression, and to understand the sensitivity of rats to mechanical and thermal stimuli. Our results showed that miR-30b agomir transfection down-regulated Nav1.3 mRNA stimulated with TNF-α in primary DRG neurons. Moreover, miR-30b overexpression significantly attenuated neuropathic pain induced by SNL, with decreases in the expression of Nav1.3 mRNA and protein both in DRG neurons and spinal cord. Activation of Nav1.3 caused by miR-30b antagomir was identified. These data suggest that miR-30b is involved in the development of neuropathic pain, probably by regulating the expression of Nav1.3, and might be a novel therapeutic target for neuropathic pain. Perspective: This study is the first to explore the important role of miR-30b and Nav1.3 in spinal nerve ligation-induced neuropathic pain, and our evidence may provide new insight for improving therapeutic approaches to pain.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Jinping Shao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qingzan Zhao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weihua Cai
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Lei Li
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou UniversityZhengzhou, China
| | - Xuemei Chen
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Bo Xu
- Department of Anesthesiology, General Hospital of Guangzhou Military Command of People's Liberation ArmyGuangzhou, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, BaltimoreMD, USA
| | - Jing Cao
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical Sciences College, Zhengzhou UniversityZhengzhou, China
| |
Collapse
|
125
|
Kornecook TJ, Yin R, Altmann S, Be X, Berry V, Ilch CP, Jarosh M, Johnson D, Lee JH, Lehto SG, Ligutti J, Liu D, Luther J, Matson D, Ortuno D, Roberts J, Taborn K, Wang J, Weiss MM, Yu V, Zhu DXD, Fremeau RT, Moyer BD. Pharmacologic Characterization of AMG8379, a Potent and Selective Small Molecule Sulfonamide Antagonist of the Voltage-Gated Sodium Channel NaV1.7. J Pharmacol Exp Ther 2017; 362:146-160. [DOI: 10.1124/jpet.116.239590] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/03/2017] [Indexed: 02/05/2023] Open
|
126
|
Discovery of selective, orally bioavailable, N -linked arylsulfonamide Na v 1.7 inhibitors with pain efficacy in mice. Bioorg Med Chem Lett 2017; 27:2087-2093. [DOI: 10.1016/j.bmcl.2017.03.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/30/2022]
|
127
|
Pryde DC, Swain NA, Stupple PA, West CW, Marron B, Markworth CJ, Printzenhoff D, Lin Z, Cox PJ, Suzuki R, McMurray S, Waldron GJ, Payne CE, Warmus JS, Chapman ML. The discovery of a potent Na v1.3 inhibitor with good oral pharmacokinetics. MEDCHEMCOMM 2017; 8:1255-1267. [PMID: 30108836 DOI: 10.1039/c7md00131b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/26/2017] [Indexed: 11/21/2022]
Abstract
In this article, we describe the discovery of an aryl ether series of potent and selective Nav1.3 inhibitors. Based on structural analogy to a similar series of compounds we have previously shown bind to the domain IV voltage sensor region of Nav channels, we propose this series binds in the same location. We describe the development of this series from a published starting point, highlighting key selectivity and potency data, and several studies designed to validate Nav1.3 as a target for pain.
Collapse
Affiliation(s)
- D C Pryde
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - N A Swain
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - P A Stupple
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK .
| | - C W West
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - B Marron
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - C J Markworth
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - D Printzenhoff
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - Z Lin
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| | - P J Cox
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - R Suzuki
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - S McMurray
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - G J Waldron
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - C E Payne
- Pfizer Neuroscience and Pain Research Unit , Portway Building, Granta Park , Cambridge , CB21 6GS , UK
| | - J S Warmus
- Worldwide Medicinal Chemistry , Pfizer Neuroscience and Pain Research Unit , Groton , CT , USA
| | - M L Chapman
- Pfizer Neuroscience and Pain Research Unit , 4222 Emperor Boulevard, Suite 350 , Durham , North Carolina NC27703 , USA
| |
Collapse
|
128
|
Weiss MM, Dineen TA, Marx IE, Altmann S, Boezio A, Bregman H, Chu-Moyer M, DiMauro EF, Feric Bojic E, Foti RS, Gao H, Graceffa R, Gunaydin H, Guzman-Perez A, Huang H, Huang L, Jarosh M, Kornecook T, Kreiman CR, Ligutti J, La DS, Lin MHJ, Liu D, Moyer BD, Nguyen HN, Peterson EA, Rose PE, Taborn K, Youngblood BD, Yu V, Fremeau RT. Sulfonamides as Selective NaV1.7 Inhibitors: Optimizing Potency and Pharmacokinetics While Mitigating Metabolic Liabilities. J Med Chem 2017; 60:5969-5989. [DOI: 10.1021/acs.jmedchem.6b01851] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Thomas Kornecook
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Joseph Ligutti
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | - Dong Liu
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Bryan D. Moyer
- Department
of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Wingerd JS, Mozar CA, Ussing CA, Murali SS, Chin YKY, Cristofori-Armstrong B, Durek T, Gilchrist J, Vaughan CW, Bosmans F, Adams DJ, Lewis RJ, Alewood PF, Mobli M, Christie MJ, Rash LD. The tarantula toxin β/δ-TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Sci Rep 2017; 7:974. [PMID: 28428547 PMCID: PMC5430537 DOI: 10.1038/s41598-017-01129-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 11/09/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are essential for the transmission of pain signals in humans making them prime targets for the development of new analgesics. Spider venoms are a rich source of peptide modulators useful to study ion channel structure and function. Here we describe β/δ-TRTX-Pre1a, a 35-residue tarantula peptide that selectively interacts with neuronal NaV channels inhibiting peak current of hNaV1.1, rNaV1.2, hNaV1.6, and hNaV1.7 while concurrently inhibiting fast inactivation of hNaV1.1 and rNaV1.3. The DII and DIV S3-S4 loops of NaV channel voltage sensors are important for the interaction of Pre1a with NaV channels but cannot account for its unique subtype selectivity. Through analysis of the binding regions we ascertained that the variability of the S1-S2 loops between NaV channels contributes substantially to the selectivity profile observed for Pre1a, particularly with regards to fast inactivation. A serine residue on the DIV S2 helix was found to be sufficient to explain Pre1a’s potent and selective inhibitory effect on the fast inactivation process of NaV1.1 and 1.3. This work highlights that interactions with both S1-S2 and S3-S4 of NaV channels may be necessary for functional modulation, and that targeting the diverse S1-S2 region within voltage-sensing domains provides an avenue to develop subtype selective tools.
Collapse
Affiliation(s)
- Joshua S Wingerd
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine A Mozar
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Christine A Ussing
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.,Novo Nordisk A/S, Copenhagen Area, Capital Region, Denmark
| | - Swetha S Murali
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia.,Harvard Medical School, Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, United States
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Cristofori-Armstrong
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Thomas Durek
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John Gilchrist
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Christopher W Vaughan
- Pain Management Research Institute, University of Sydney, St Leonards, NSW, 2006, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging & School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lachlan D Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia. .,School of Biomedical Sciences, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
130
|
Vetter I, Deuis JR, Mueller A, Israel MR, Starobova H, Zhang A, Rash LD, Mobli M. NaV1.7 as a pain target – From gene to pharmacology. Pharmacol Ther 2017; 172:73-100. [DOI: 10.1016/j.pharmthera.2016.11.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
131
|
Netirojjanakul C, Miranda LP. Progress and challenges in the optimization of toxin peptides for development as pain therapeutics. Curr Opin Chem Biol 2017; 38:70-79. [PMID: 28376346 DOI: 10.1016/j.cbpa.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/25/2017] [Accepted: 03/13/2017] [Indexed: 02/05/2023]
Abstract
The number of new toxin peptide discoveries has been rapidly growing in the past few decades. Because of progress in proteomics, sequencing technologies, and high throughput bioassays, the search for new toxin peptides from venom collections and potency optimization has become manageable. However, to date, only six toxin peptide-derived therapeutics have been approved by the USFDA, with only one, ziconotide, for a pain indication. The challenge of venom-derived peptide therapeutic development remains in improving selectivity to the target and more importantly, in delivery of these peptides to the sites of action in the central and peripheral nervous system. In this review, we highlight peptide toxins that target major therapeutic targets for pain and discuss the challenges of developing toxin peptides as potential therapeutics.
Collapse
Affiliation(s)
- Chawita Netirojjanakul
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - Les P Miranda
- Therapeutic Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
132
|
Wu YJ, Guernon J, Shi J, Ditta J, Robbins KJ, Rajamani R, Easton A, Newton A, Bourin C, Mosure K, Soars MG, Knox RJ, Matchett M, Pieschl RL, Post-Munson DJ, Wang S, Herrington J, Graef J, Newberry K, Bristow LJ, Meanwell NA, Olson R, Thompson LA, Dzierba C. Development of New Benzenesulfonamides As Potent and Selective Na v1.7 Inhibitors for the Treatment of Pain. J Med Chem 2017; 60:2513-2525. [PMID: 28234467 DOI: 10.1021/acs.jmedchem.6b01918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By taking advantage of certain features in piperidine 4, we developed a novel series of cyclohexylamine- and piperidine-based benzenesulfonamides as potent and selective Nav1.7 inhibitors. However, compound 24, one of the early analogs, failed to reduce phase 2 flinching in the mouse formalin test even at a dose of 100 mpk PO due to insufficient dorsal root ganglion (DRG) exposure attributed to poor membrane permeability. Two analogs with improved membrane permeability showed much increased DRG concentrations at doses of 30 mpk PO, but, confoundingly, only one of these was effective in the formalin test. More data are needed to understand the disconnect between efficacy and exposure relationships.
Collapse
Affiliation(s)
- Yong-Jin Wu
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jason Guernon
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jianliang Shi
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Jonathan Ditta
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kevin J Robbins
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Ramkumar Rajamani
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Amy Easton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Amy Newton
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Clotilde Bourin
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kathleen Mosure
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Matthew G Soars
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Ronald J Knox
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Michele Matchett
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Rick L Pieschl
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Debra J Post-Munson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Shuya Wang
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - James Herrington
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - John Graef
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Kimberly Newberry
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Linda J Bristow
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Nicholas A Meanwell
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Richard Olson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Lorin A Thompson
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| | - Carolyn Dzierba
- Research and Development, Bristol-Myers Squibb , 5 Research Parkway, Wallingford, Connecticut 06492-7660, United States
| |
Collapse
|
133
|
Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 2017; 93:1296-1313. [PMID: 28334605 PMCID: PMC5400015 DOI: 10.1016/j.neuron.2017.02.005] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/13/2022]
Abstract
Pre-diabetes and diabetes are a global epidemic, and the associated neuropathic complications create a substantial burden on both the afflicted patients and society as a whole. Given the enormity of the problem and the lack of effective therapies, there is a pressing need to understand the mechanisms underlying diabetic neuropathy (DN). In this review, we present the structural components of the peripheral nervous system that underlie its susceptibility to metabolic insults and then discuss the pathways that contribute to peripheral nerve injury in DN. We also discuss systems biology insights gleaned from the recent advances in biotechnology and bioinformatics, emerging ideas centered on the axon-Schwann cell relationship and associated bioenergetic crosstalk, and the rapid expansion of our knowledge of the mechanisms contributing to neuropathic pain in diabetes. These recent advances in our understanding of DN pathogenesis are paving the way for critical mechanism-based therapy development.
Collapse
Affiliation(s)
- Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
| | - Troels S Jensen
- Department of Neurology and Danish Pain Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | - David L H Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
134
|
Rahnama S, Deuis JR, Cardoso FC, Ramanujam V, Lewis RJ, Rash LD, King GF, Vetter I, Mobli M. The structure, dynamics and selectivity profile of a NaV1.7 potency-optimised huwentoxin-IV variant. PLoS One 2017; 12:e0173551. [PMID: 28301520 PMCID: PMC5354290 DOI: 10.1371/journal.pone.0173551] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/23/2017] [Indexed: 12/19/2022] Open
Abstract
Venom-derived peptides have attracted much attention as potential lead molecules for pharmaceutical development. A well-known example is Huwentoxin-IV (HwTx-IV), a peptide toxin isolated from the venom of the Chinese bird-eating spider Haplopelma schmitdi. HwTx-IV was identified as a potent blocker of a human voltage-gated sodium channel (hNaV1.7), which is a genetically validated analgesic target. The peptide was promising as it showed high potency at NaV1.7 (IC50 ~26 nM) and selectivity over the cardiac NaV subtype (NaV1.5). Mutagenesis studies aimed at optimising the potency of the peptide resulted in the development of a triple-mutant of HwTx-IV (E1G, E4G, Y33W, m3-HwTx-IV) with significantly increased potency against hNaV1.7 (IC50 = 0.4 ± 0.1 nM) without increased potency against hNaV1.5. The activity of m3-HwTx-IV against other NaV subtypes was, however, not investigated. Similarly, the structure of the mutant peptide was not characterised, limiting the interpretation of the observed increase in potency. In this study we produced isotope-labelled recombinant m3-HwTx-IV in E. coli, which enabled us to characterise the atomic-resolution structure and dynamics of the peptide by NMR spectroscopy. The results show that the structure of the peptide is not perturbed by the mutations, whilst the relaxation studies reveal that residues in the active site of the peptide undergo conformational exchange. Additionally, the NaV subtype selectivity of the recombinant peptide was characterised, revealing potent inhibition of neuronal NaV subtypes 1.1, 1.2, 1.3, 1.6 and 1.7. In parallel to the in vitro studies, we investigated NaV1.7 target engagement of the peptide in vivo using a rodent pain model, where m3-HwTx-IV dose-dependently suppressed spontaneous pain induced by the NaV1.7 activator OD1. Thus, our results provide further insight into the structure and dynamics of this class of peptides that may prove useful in guiding the development of inhibitors with improved selectivity for analgesic NaV subtypes.
Collapse
Affiliation(s)
- Sassan Rahnama
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jennifer R. Deuis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Fernanda C. Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | | | - Richard J. Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lachlan D. Rash
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
- * E-mail:
| |
Collapse
|
135
|
Kocmalova M, Kollarik M, Canning BJ, Ru F, Adam Herbstsomer R, Meeker S, Fonquerna S, Aparici M, Miralpeix M, Chi XX, Li B, Wilenkin B, McDermott J, Nisenbaum E, Krajewski JL, Undem BJ. Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves. J Pharmacol Exp Ther 2017; 361:172-180. [PMID: 28138042 DOI: 10.1124/jpet.116.238469] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/26/2017] [Indexed: 12/19/2022] Open
Abstract
Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.
Collapse
Affiliation(s)
- Michaela Kocmalova
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Marian Kollarik
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Brendan J Canning
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Fei Ru
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - R Adam Herbstsomer
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Sonya Meeker
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Silvia Fonquerna
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Monica Aparici
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Montserrat Miralpeix
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Xian Xuan Chi
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Baolin Li
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Ben Wilenkin
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Jeff McDermott
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Eric Nisenbaum
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Jeffrey L Krajewski
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| | - Bradley J Undem
- The Johns Hopkins University School of Medicine, Division of Allergy and Clinical Immunology, Baltimore, Maryland 21224 (M.Koc., M.Kol., B.J.C., F.R., R.A.H., S.M., B.J.U.); Biomedical Center Martin, Pharmacology and Pathophysiology, Jessenius Faculty of Medicine, Comenius University, Martin 03601, Slovakia (M.Koc., M.Kol.); Almirall S.A., R&D Research Center, Barcelona 08980, Spain (S.F., M.A., M.M.); and Lilly Research Laboratories, Indianapolis, Indiana 46285 (X.C., B.L., B.W., J.M., E.N., J.L.K.)
| |
Collapse
|
136
|
Asiedu MN, Han C, Dib-Hajj SD, Waxman SG, Price TJ, Dussor G. The AMPK Activator A769662 Blocks Voltage-Gated Sodium Channels: Discovery of a Novel Pharmacophore with Potential Utility for Analgesic Development. PLoS One 2017; 12:e0169882. [PMID: 28118359 PMCID: PMC5261566 DOI: 10.1371/journal.pone.0169882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) regulate neuronal excitability by governing action potential (AP) generation and propagation. Recent studies have revealed that AMP-activated protein kinase (AMPK) activators decrease sensory neuron excitability, potentially by preventing sodium (Na+) channel phosphorylation by kinases such as ERK or via modulation of translation regulation pathways. The direct positive allosteric modulator A769662 displays substantially greater efficacy than other AMPK activators in decreasing sensory neuron excitability suggesting additional mechanisms of action. Here, we show that A769662 acutely inhibits AP firing stimulated by ramp current injection in rat trigeminal ganglion (TG) neurons. PT1, a structurally dissimilar AMPK activator that reduces nerve growth factor (NGF) -induced hyperexcitability, has no influence on AP firing in TG neurons upon acute application. In voltage-clamp recordings, application of A769662 reduces VGSC current amplitudes. These findings, based on acute A769662 application, suggest a direct channel blocking effect. Indeed, A769662 dose-dependently blocks VGSC in rat TG neurons and in Nav1.7-transfected cells with an IC50 of ~ 10 μM. A769662 neither displayed use-dependent inhibition nor interacted with the local anesthetic (LA) binding site. Popliteal fossa administration of A769662 decreased noxious thermal responses with a peak effect at 5 mins demonstrating an analgesic effect. These data indicate that in addition to AMPK activation, A769662 acts as a direct blocker/modulator of VGSCs, a potential mechanism enhancing the analgesic property of this compound.
Collapse
Affiliation(s)
- Marina N. Asiedu
- University of Arizona, Department of Pharmacology, Tucson, Arizona, United States of America
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas, United States of America
| | - Chongyang Han
- Yale School of Medicine, Department of Neurology, Center for Neuroscience and Regeneration Research, and Veterans Administration Connecticut Healthcare System, Rehabilitation Research Center, West Haven, Connecticut, United States of America
| | - Sulayman D. Dib-Hajj
- Yale School of Medicine, Department of Neurology, Center for Neuroscience and Regeneration Research, and Veterans Administration Connecticut Healthcare System, Rehabilitation Research Center, West Haven, Connecticut, United States of America
| | - Stephen G. Waxman
- Yale School of Medicine, Department of Neurology, Center for Neuroscience and Regeneration Research, and Veterans Administration Connecticut Healthcare System, Rehabilitation Research Center, West Haven, Connecticut, United States of America
| | - Theodore J. Price
- University of Arizona, Department of Pharmacology, Tucson, Arizona, United States of America
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas, United States of America
| | - Gregory Dussor
- University of Arizona, Department of Pharmacology, Tucson, Arizona, United States of America
- University of Texas at Dallas, School of Behavioral and Brain Sciences, Richardson, Texas, United States of America
- * E-mail:
| |
Collapse
|
137
|
Deuis JR, Dekan Z, Wingerd JS, Smith JJ, Munasinghe NR, Bhola RF, Imlach WL, Herzig V, Armstrong DA, Rosengren KJ, Bosmans F, Waxman SG, Dib-Hajj SD, Escoubas P, Minett MS, Christie MJ, King GF, Alewood PF, Lewis RJ, Wood JN, Vetter I. Pharmacological characterisation of the highly Na V1.7 selective spider venom peptide Pn3a. Sci Rep 2017; 7:40883. [PMID: 28106092 PMCID: PMC5247677 DOI: 10.1038/srep40883] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Human genetic studies have implicated the voltage-gated sodium channel NaV1.7 as a therapeutic target for the treatment of pain. A novel peptide, μ-theraphotoxin-Pn3a, isolated from venom of the tarantula Pamphobeteus nigricolor, potently inhibits NaV1.7 (IC50 0.9 nM) with at least 40-1000-fold selectivity over all other NaV subtypes. Despite on-target activity in small-diameter dorsal root ganglia, spinal slices, and in a mouse model of pain induced by NaV1.7 activation, Pn3a alone displayed no analgesic activity in formalin-, carrageenan- or FCA-induced pain in rodents when administered systemically. A broad lack of analgesic activity was also found for the selective NaV1.7 inhibitors PF-04856264 and phlotoxin 1. However, when administered with subtherapeutic doses of opioids or the enkephalinase inhibitor thiorphan, these subtype-selective NaV1.7 inhibitors produced profound analgesia. Our results suggest that in these inflammatory models, acute administration of peripherally restricted NaV1.7 inhibitors can only produce analgesia when administered in combination with an opioid.
Collapse
Affiliation(s)
- Jennifer R. Deuis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Zoltan Dekan
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Joshua S. Wingerd
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jennifer J. Smith
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nehan R. Munasinghe
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Rebecca F. Bhola
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Wendy L. Imlach
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Volker Herzig
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - David A. Armstrong
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Frank Bosmans
- Department of Physiology & Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, Connecticut 06510, Rehabilitation Research Center, Veterans Administration Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | | | - Michael S. Minett
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Macdonald J. Christie
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Glenn F. King
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Paul F. Alewood
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Richard J. Lewis
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - John N. Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Irina Vetter
- IMB Centre for Pain Research, Institute for Molecular Bioscience, 306 Carmody Rd (Building 80), The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, 20 Cornwall St, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
138
|
Flinspach M, Xu Q, Piekarz AD, Fellows R, Hagan R, Gibbs A, Liu Y, Neff RA, Freedman J, Eckert WA, Zhou M, Bonesteel R, Pennington MW, Eddinger KA, Yaksh TL, Hunter M, Swanson RV, Wickenden AD. Insensitivity to pain induced by a potent selective closed-state Nav1.7 inhibitor. Sci Rep 2017; 7:39662. [PMID: 28045073 PMCID: PMC5206724 DOI: 10.1038/srep39662] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/25/2016] [Indexed: 12/27/2022] Open
Abstract
Pain places a devastating burden on patients and society and current pain therapeutics exhibit limitations in efficacy, unwanted side effects and the potential for drug abuse and diversion. Although genetic evidence has clearly demonstrated that the voltage-gated sodium channel, Nav1.7, is critical to pain sensation in mammals, pharmacological inhibitors of Nav1.7 have not yet fully recapitulated the dramatic analgesia observed in Nav1.7-null subjects. Using the tarantula venom-peptide ProTX-II as a scaffold, we engineered a library of over 1500 venom-derived peptides and identified JNJ63955918 as a potent, highly selective, closed-state Nav1.7 blocking peptide. Here we show that JNJ63955918 induces a pharmacological insensitivity to pain that closely recapitulates key features of the Nav1.7-null phenotype seen in mice and humans. Our findings demonstrate that a high degree of selectivity, coupled with a closed-state dependent mechanism of action is required for strong efficacy and indicate that peptides such as JNJ63955918 and other suitably optimized Nav1.7 inhibitors may represent viable non-opioid alternatives for the pharmacological treatment of severe pain.
Collapse
Affiliation(s)
- M Flinspach
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Q Xu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Piekarz
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Fellows
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Hagan
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A Gibbs
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Y Liu
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R A Neff
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - J Freedman
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - W A Eckert
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - M Zhou
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R Bonesteel
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | - K A Eddinger
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - T L Yaksh
- University of California, San Diego, Department Anesthesiology and Pharmacology, 9500 Gilman Drive, La Jolla, CA 92093-0818, USA
| | - M Hunter
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - R V Swanson
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | - A D Wickenden
- Janssen R&D, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| |
Collapse
|
139
|
|
140
|
Gianti E, Delemotte L, Klein ML, Carnevale V. On the role of water density fluctuations in the inhibition of a proton channel. Proc Natl Acad Sci U S A 2016; 113:E8359-E8368. [PMID: 27956641 PMCID: PMC5206518 DOI: 10.1073/pnas.1609964114] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hv1 is a transmembrane four-helix bundle that transports protons in a voltage-controlled manner. Its crucial role in many pathological conditions, including cancer and ischemic brain damage, makes Hv1 a promising drug target. Starting from the recently solved crystal structure of Hv1, we used structural modeling and molecular dynamics simulations to characterize the channel's most relevant conformations along the activation cycle. We then performed computational docking of known Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI) and analogs. Although salt-bridge patterns and electrostatic potential profiles are well-defined and distinctive features of activated versus nonactivated states, the water distribution along the channel lumen is dynamic and reflects a conformational heterogeneity inherent to each state. In fact, pore waters assemble into intermittent hydrogen-bonded clusters that are replaced by the inhibitor moieties upon ligand binding. The entropic gain resulting from releasing these conformationally restrained waters to the bulk solvent is likely a major contributor to the binding free energy. Accordingly, we mapped the water density fluctuations inside the pore of the channel and identified the regions of maximum fluctuation within putative binding sites. Two sites appear as outstanding: One is the already known binding pocket of 2GBI, which is accessible to ligands from the intracellular side; the other is a site located at the exit of the proton permeation pathway. Our analysis of the waters confined in the hydrophobic cavities of Hv1 suggests a general strategy for drug discovery that can be applied to any ion channel.
Collapse
Affiliation(s)
- Eleonora Gianti
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122
| | - Lucie Delemotte
- Laboratory of Computational Chemistry and Biochemistry, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Michael L Klein
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Department of Chemistry, Temple University, Philadelphia, PA 19122;
| |
Collapse
|
141
|
Voltage-gated sodium channels viewed through a structural biology lens. Curr Opin Struct Biol 2016; 45:74-84. [PMID: 27988421 DOI: 10.1016/j.sbi.2016.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/28/2016] [Indexed: 02/07/2023]
Abstract
Voltage-gated sodium (Nav) channels initiate and propagate action potentials in excitable cells, and are frequently dysregulated or mutated in human disease. Despite decades of intense physiological and biophysical research, eukaryotic Nav channels have so far eluded high-resolution structure determination because of their biochemical complexity. Recently, simpler bacterial voltage-gated sodium (BacNav) channels have provided templates to understand the structural basis of voltage-dependent activation, inactivation, ion selectivity, and drug block in eukaryotic Nav and related voltage-gated calcium (Cav) channels. Further breakthroughs employing BacNav channels have also enabled visualization of bound small molecule modulators that can guide the rational design of next generation therapeutics. This review will highlight the emerging structural biology of BacNav channels and its contribution to our understanding of the gating, ion selectivity, and pharmacological regulation of eukaryotic Nav (and Cav) channels.
Collapse
|
142
|
Rogers M, Zidar N, Kikelj D, Kirby RW. Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening. Assay Drug Dev Technol 2016; 14:109-30. [PMID: 26991361 PMCID: PMC4800267 DOI: 10.1089/adt.2016.704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The rodent neuroblastoma cell line, ND7-23, is used to express voltage-dependent sodium (Nav) and other neuronal ion channels resistant to heterologous expression in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. Their advantage is that they provide endogenous factors and signaling pathways to promote ion channel peptide folding, expression, and function at the cell surface and are also amenable to automated patch clamping. However, ND7-23 cells exhibit endogenous tetrodotoxin (TTX)-sensitive Nav currents, and molecular profiling has revealed the presence of Nav1.2, Nav1.3, Nav1.6, and Nav1.7 transcripts, but no study has determined which subtypes contribute to functional channels at the cell surface. We profiled the repertoire of functional Nav channels endogenously expressed in ND7-23 cells using the QPatch automated patch clamp platform and selective toxins and small molecules. The potency and subtype selectivity of the ligands (Icagen compound 68 from patent US-20060025415-A1-20060202, 4,9 anhydro TTX, and Protoxin-II) were established in human Nav1.3, Nav1.6, and Nav1.7 channel cell lines before application of selective concentrations to ND7-23 cells. Our data confirm previous studies that >97% of macroscopic Nav current in ND7-23 cells is carried by TTX-sensitive channels (300 nM TTX) and that Nav1.7 is the predominant channel contributing to this response (65% of peak inward current), followed by Nav1.6 (∼20%) and negligible Nav1.3 currents (∼2%). In addition, our data are the first to assess the Nav1.6 potency (50% inhibitory concentration [IC50] of 33 nM) and selectivity (50-fold over Nav1.7) of 4,9 anhydro TTX in human Nav channels expressed in mammalian cells, confirming previous studies of rodent Nav channels expressed in oocytes and HEK cells.
Collapse
Affiliation(s)
- Marc Rogers
- 1 Xention Limited , Cambridge, United Kingdom
| | - Nace Zidar
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | - Danijel Kikelj
- 2 Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia
| | | |
Collapse
|
143
|
Bertrand D, Biton B, Licher T, Chambard JM, Lanneau C, Partiseti M, Lefevre IA. Functional Studies of Sodium Channels: From Target to Compound Identification. ACTA ACUST UNITED AC 2016; 75:9.21.1-9.21.35. [PMID: 27960031 DOI: 10.1002/cpph.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last six decades, voltage-gated sodium (Nav ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Nav channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized. The aim of this unit is to review the characteristics of Nav channels, their properties, the cells in which they can be studied, and the currently available techniques. Topics covered include the determination of Nav -channel biophysical properties as well as the use of toxins to discriminate between subtypes using electrophysiological or optical methods. Perspectives on the development of high-throughput screening assays with their advantages and limitations are also discussed to allow a better understanding of the challenges encountered in voltage-gated sodium channel preclinical drug discovery. © 2016 by John Wiley & Sons, Inc.
Collapse
|
144
|
Toma T, Logan MM, Menard F, Devlin AS, Du Bois J. Inhibition of Sodium Ion Channel Function with Truncated Forms of Batrachotoxin. ACS Chem Neurosci 2016; 7:1463-1468. [PMID: 27501251 DOI: 10.1021/acschemneuro.6b00212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A novel family of small molecule inhibitors of voltage-gated sodium channels (NaVs) based on the structure of batrachotoxin (BTX), a well-known channel agonist, is described. Protein mutagenesis and electrophysiology experiments reveal the binding site as the inner pore region of the channel, analogous to BTX, alkaloid toxins, and local anesthetics. Homology modeling of the eukaryotic channel based on recent crystallographic analyses of bacterial NaVs suggests a mechanism of action for ion conduction block.
Collapse
Affiliation(s)
- Tatsuya Toma
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Matthew M. Logan
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - Frederic Menard
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - A. Sloan Devlin
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| | - J. Du Bois
- Department
of Chemistry, Stanford University, Stanford, California 94305-5080, United States
| |
Collapse
|
145
|
Ahern CA, Payandeh J, Bosmans F, Chanda B. The hitchhiker's guide to the voltage-gated sodium channel galaxy. ACTA ACUST UNITED AC 2016; 147:1-24. [PMID: 26712848 PMCID: PMC4692491 DOI: 10.1085/jgp.201511492] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eukaryotic voltage-gated sodium (Nav) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Nav channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Nav channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Nav channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Nav channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure–function studies of eukaryotic Nav channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Nav channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Nav channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts.
Collapse
Affiliation(s)
- Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242
| | - Jian Payandeh
- Department of Structural Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Frank Bosmans
- Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Department of Physiology and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205
| | - Baron Chanda
- Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705 Department of Neuroscience and Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
146
|
Bagal SK, Marron BE, Owen RM, Storer RI, Swain NA. Voltage gated sodium channels as drug discovery targets. Channels (Austin) 2016; 9:360-6. [PMID: 26646477 PMCID: PMC4850042 DOI: 10.1080/19336950.2015.1079674] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Voltage-gated sodium (NaV) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of NaVs has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.
Collapse
Affiliation(s)
- Sharan K Bagal
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - Brian E Marron
- b Worldwide Medicinal Chemistry; Pfizer ; Durham , NC USA
| | - Robert M Owen
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - R Ian Storer
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| | - Nigel A Swain
- a Worldwide Medicinal Chemistry; Pfizer ; Great Abington , Cambridge , UK
| |
Collapse
|
147
|
Theile JW, Fuller MD, Chapman ML. The Selective Nav1.7 Inhibitor, PF-05089771, Interacts Equivalently with Fast and Slow Inactivated Nav1.7 Channels. Mol Pharmacol 2016; 90:540-548. [PMID: 27587537 DOI: 10.1124/mol.116.105437] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated sodium (Nav) channel inhibitors are used clinically as analgesics and local anesthetics. However, the absence of Nav channel isoform selectivity of current treatment options can result in adverse cardiac and central nervous system side effects, limiting their therapeutic utility. Human hereditary gain- or loss-of-pain disorders have demonstrated an essential role of Nav1.7 sodium channels in the sensation of pain, thus making this channel an attractive target for new pain therapies. We previously identified a novel, state-dependent human Nav1.7 selective inhibitor (PF-05089771, IC50 = 11 nM) that interacts with the voltage-sensor domain (VSD) of domain IV. We further characterized the state-dependent interaction of PF-05089771 by systematically varying the voltage, frequency, and duration of conditioning prepulses to provide access to closed, open, and fast- or slow-inactivated states. The current study demonstrates that PF-05089771 exhibits a slow onset of block that is depolarization and concentration dependent, with a similarly slow recovery from block. Furthermore, the onset of block by PF-05089771 develops with similar rates using protocols that bias channels into predominantly fast- or slow-inactivated states, suggesting that channel inhibition is less dependent on the availability of a particular inactivated state than the relative time that the channel is depolarized. Taken together, the inhibitory profile of PF-05089771 suggests that a conformational change in the domain IV VSD after depolarization is necessary and sufficient to reveal a high-affinity binding site with which PF-05089771 interacts, stabilizing the channel in a nonconducting conformation from which recovery is slow.
Collapse
Affiliation(s)
- Jonathan W Theile
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| | - Matthew D Fuller
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| | - Mark L Chapman
- Neusentis US, Pfizer Global R&D, (currently Icagen, Inc.), Durham, North Carolina
| |
Collapse
|
148
|
DiMauro EF, Altmann S, Berry LM, Bregman H, Chakka N, Chu-Moyer M, Bojic EF, Foti RS, Fremeau R, Gao H, Gunaydin H, Guzman-Perez A, Hall BE, Huang H, Jarosh M, Kornecook T, Lee J, Ligutti J, Liu D, Moyer BD, Ortuno D, Rose PE, Schenkel LB, Taborn K, Wang J, Wang Y, Yu V, Weiss MM. Application of a Parallel Synthetic Strategy in the Discovery of Biaryl Acyl Sulfonamides as Efficient and Selective NaV1.7 Inhibitors. J Med Chem 2016; 59:7818-39. [DOI: 10.1021/acs.jmedchem.6b00425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert Fremeau
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | - Thomas Kornecook
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | - Joseph Ligutti
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dong Liu
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Bryan D. Moyer
- Department of Neuroscience, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Lin Z, Santos S, Padilla K, Printzenhoff D, Castle NA. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells. PLoS One 2016; 11:e0161450. [PMID: 27556810 PMCID: PMC4996523 DOI: 10.1371/journal.pone.0161450] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/07/2016] [Indexed: 11/19/2022] Open
Abstract
The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.
Collapse
Affiliation(s)
- Zhixin Lin
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
- * E-mail:
| | - Sonia Santos
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - Karen Padilla
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - David Printzenhoff
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| | - Neil A. Castle
- Neuroscience and Pain Research Unit, Pfizer Inc., Durham, North Carolina, United States of America
| |
Collapse
|
150
|
Tompkins JD, Clason TA, Hardwick JC, Girard BM, Merriam LA, May V, Parsons RL. Activation of MEK/ERK signaling contributes to the PACAP-induced increase in guinea pig cardiac neuron excitability. Am J Physiol Cell Physiol 2016; 311:C643-C651. [PMID: 27488668 DOI: 10.1152/ajpcell.00164.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/01/2016] [Indexed: 01/12/2023]
Abstract
Pituitary adenylate cyclase (PAC)-activating polypeptide (PACAP) peptides (Adcyap1) signaling at the selective PAC1 receptor (Adcyap1r1) participate in multiple homeostatic and stress-related responses, yet the cellular mechanisms underlying PACAP actions remain to be completely elucidated. PACAP/PAC1 receptor signaling increases excitability of neurons within the guinea pig cardiac ganglia, and as these neurons are readily accessible, this neuronal system is particularly amenable to study of PACAP modulation of ionic conductances. The present study investigated how PACAP activation of MEK/ERK signaling contributed to the peptide-induced increase in cardiac neuron excitability. Treatment with the MEK inhibitor PD 98059 blocked PACAP-stimulated phosphorylated ERK and, in parallel, suppressed the increase in cardiac neuron excitability. However, PD 98059 did not blunt the ability of PACAP to enhance two inward ionic currents, one flowing through hyperpolarization-activated nonselective cationic channels (Ih) and another flowing through low-voltage-activated calcium channels (IT), which support the peptide-induced increase in excitability. Thus a PACAP- and MEK/ERK-sensitive, voltage-dependent conductance(s), in addition to Ih and IT, modulates neuronal excitability. Despite prior work implicating PACAP downregulation of the KV4.2 potassium channel in modulation of excitability in other cells, treatment with the KV4.2 current blocker 4-aminopyridine did not replicate the PACAP-induced increase in excitability in cardiac neurons. However, cardiac neurons express the ERK target, the NaV1.7 sodium channel, and treatment with the selective NaV1.7 channel inhibitor PF-04856264 decreased the PACAP modulation of excitability. From these results, PACAP/PAC1 activation of MEK/ERK signaling may phosphorylate the NaV1.7 channel, enhancing sodium currents near the threshold, an action contributing to repetitive firing of the cardiac neurons exposed to PACAP.
Collapse
Affiliation(s)
- John D Tompkins
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California
| | - Todd A Clason
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | | | - Beatrice M Girard
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Laura A Merriam
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Victor May
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| | - Rodney L Parsons
- Department of Neurological Sciences, College of Medicine, University of Vermont, Burlington, Vermont; and
| |
Collapse
|