101
|
Endocrine vasculatures are preferable targets of an antitumor ineffective low dose of anti-VEGF therapy. Proc Natl Acad Sci U S A 2016; 113:4158-63. [PMID: 27035988 DOI: 10.1073/pnas.1601649113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Anti-VEGF-based antiangiogenic drugs are designed to block tumor angiogenesis for treatment of cancer patients. However, anti-VEGF drugs produce off-tumor target effects on multiple tissues and organs and cause broad adverse effects. Here, we show that vasculatures in endocrine organs were more sensitive to anti-VEGF treatment than tumor vasculatures. In thyroid, adrenal glands, and pancreatic islets, systemic treatment with low doses of an anti-VEGF neutralizing antibody caused marked vascular regression, whereas tumor vessels remained unaffected. Additionally, a low dose of VEGF blockade significantly inhibited the formation of thyroid vascular fenestrae, leaving tumor vascular structures unchanged. Along with vascular structural changes, the low dose of VEGF blockade inhibited vascular perfusion and permeability in thyroid, but not in tumors. Prolonged treatment with the low-dose VEGF blockade caused hypertension and significantly decreased circulating levels of thyroid hormone free-T3 and -T4, leading to functional impairment of thyroid. These findings show that the fenestrated microvasculatures in endocrine organs are more sensitive than tumor vasculatures in response to systemic anti-VEGF drugs. Thus, our data support the notion that clinically nonbeneficial treatments with anti-VEGF drugs could potentially cause adverse effects.
Collapse
|
102
|
Cao Y. Future options of anti-angiogenic cancer therapy. CHINESE JOURNAL OF CANCER 2016; 35:21. [PMID: 26879126 PMCID: PMC4753668 DOI: 10.1186/s40880-016-0084-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
In human patients, drugs that block tumor vessel growth are widely used to treat a variety of cancer types. Many rigorous phase 3 clinical trials have demonstrated significant survival benefits; however, the addition of an anti-angiogenic component to conventional therapeutic modalities has generally produced modest survival benefits for cancer patients. Currently, it is unclear why these clinically available drugs targeting the same angiogenic pathways produce dissimilar effects in preclinical models and human patients. In this article, we discuss possible mechanisms of various anti-angiogenic drugs and the future development of optimized treatment regimens.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77, Stockholm, Sweden. .,Department of Medical and Health Sciences, Linköping University, 581 83, Linköping, Sweden. .,Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK.
| |
Collapse
|
103
|
Inhibition of hypoxia-inducible factor via upregulation of von Hippel-Lindau protein induces "angiogenic switch off" in a hepatoma mouse model. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:15020. [PMID: 27119112 PMCID: PMC4782957 DOI: 10.1038/mto.2015.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/15/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022]
Abstract
“Angiogenic switch off” is one of the ideal therapeutic concepts in the treatment of cancer. However, the specific molecules which can induce “angiogenic switch off” in tumor have not been identified yet. In this study, we focused on von Hippel-Lindau protein (pVHL) in hepatocellular carcinoma (HCC) and investigated the effects of sulfoquinovosyl-acylpropanediol (SQAP), a novel synthetic sulfoglycolipid, for HCC. We examined mutation ratio of VHL gene in HCC using 30 HCC samples and we treated the HCC-implanted mice with SQAP. Thirty clinical samples showed no VHL genetic mutation in HCC. SQAP significantly inhibited tumor growth by inhibiting angiogenesis in a hepatoma mouse model. SQAP induced tumor “angiogenic switch off” by decreasing hypoxia-inducible factor (HIF)-1, 2α protein via pVHL upregulation. pVHL upregulation decreased HIFα protein levels through different multiple mechanisms: (i) increasing pVHL-dependent HIFα protein degradation; (ii) decreasing HIFα synthesis with decrease of NF-κB expression; and (iii) decrease of tumor hypoxia by vascular normalization. We confirmed these antitumor effects of SQAP by the loss-of-function experiments. We found that SQAP directly bound to and inhibited transglutaminase 2. This study provides evidence that upregulation of tumor pVHL is a promising target, which can induce “angiogenic switch off” in HCC.
Collapse
|
104
|
Kim BR, Lee SH, Park MS, Seo SH, Park YM, Kwon YJ, Rho SB. MARCKSL1 exhibits anti-angiogenic effects through suppression of VEGFR-2-dependent Akt/PDK-1/mTOR phosphorylation. Oncol Rep 2015; 35:1041-8. [PMID: 26555156 DOI: 10.3892/or.2015.4408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/10/2015] [Indexed: 11/06/2022] Open
Abstract
Myristoylated alanine-rich C kinase substrate-like 1 (MARCKSL1) plays a pivotal role in the regulation of apoptosis and has been shown to maintain antitumor and metastasis-suppressive properties. In the present study, we examined the effects of MARCKSL1 as a novel anti-angiogenic agent on the inhibition of angiogenesis-mediated cell migration. MARCKSL1 also reduced vascular endothelial growth factor (VEGF)-induced human umbilical vein endothelial cell (HUVEC) proliferation, as well as capillary-like tubular structure formation in vitro. MARCKSL1 disrupted phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) in ovarian tumorigenesis. In addition, MARCKSL1 showed potent anti-angiogenic activity and reduced the levels of VEGF and hypoxia-inducible factor 1α (HIF-1α) expression, an essential regulator of angiogenesis. Consistently, MARCKSL1 decreased VEGF‑induced phosphorylation of the PI3K/Akt signaling pathway components, including phosphoinositide-dependent protein kinase 1 (PDK-1), mammalian target of rapamycin (mTOR), tuberous sclerosis complex 2 (TSC-2), p70 ribosomal protein S6 kinase (p70S6K), and glycogen synthase kinase 3β (GSK-3β) protein. Collectively, our results provide evidence for the physiological/biological function of an endothelial cell system involved in angiogenesis through suppression of Akt/PDK-1/mTOR phosphorylation by interaction with VEGFR-2.
Collapse
Affiliation(s)
- Boh-Ram Kim
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410‑769, Republic of Korea
| | - Seung-Hoon Lee
- Department of Life Science, Yong In University, Cheoin-gu, Yongin-si, Gyeonggi‑do 449‑714, Republic of Korea
| | - Mi-Sun Park
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410‑769, Republic of Korea
| | - Seung-Hee Seo
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410‑769, Republic of Korea
| | - Young-Min Park
- Department of Biological Sciences, Sung Kyun Kwan University, Jangan-gu, Suwon‑si, Gyeonggi‑do 440‑746, Republic of Korea
| | - Young-Joo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Global Top 5 Program, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Bae Rho
- Research Institute, National Cancer Center, Ilsandong-gu, Goyang-si, Gyeonggi-do 410‑769, Republic of Korea
| |
Collapse
|
105
|
Bernier-Latmani J, Cisarovsky C, Demir CS, Bruand M, Jaquet M, Davanture S, Ragusa S, Siegert S, Dormond O, Benedito R, Radtke F, Luther SA, Petrova TV. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J Clin Invest 2015; 125:4572-86. [PMID: 26529256 DOI: 10.1172/jci82045] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.
Collapse
|
106
|
VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A 2015; 112:E2900-9. [PMID: 25991856 DOI: 10.1073/pnas.1503500112] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The biological functions of VEGF-B in cancer progression remain poorly understood. Here, we report that VEGF-B promotes cancer metastasis through the remodeling of tumor microvasculature. Knockdown of VEGF-B in tumors resulted in increased perivascular cell coverage and impaired pulmonary metastasis of human melanomas. In contrast, the gain of VEGF-B function in tumors led to pseudonormalized tumor vasculatures that were highly leaky and poorly perfused. Tumors expressing high levels of VEGF-B were more metastatic, although primary tumor growth was largely impaired. Similarly, VEGF-B in a VEGF-A-null tumor resulted in attenuated primary tumor growth but substantial pulmonary metastases. VEGF-B also led to highly metastatic phenotypes in Vegfr1 tk(-/-) mice and mice treated with anti-VEGF-A. These data indicate that VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism. High expression levels of VEGF-B in two large-cohort studies of human patients with lung squamous cell carcinoma and melanoma correlated with poor survival. Taken together, our findings demonstrate that VEGF-B is a vascular remodeling factor promoting cancer metastasis and that targeting VEGF-B may be an important therapeutic approach for cancer metastasis.
Collapse
|
107
|
von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood 2015; 125:3153-63. [PMID: 25977583 DOI: 10.1182/blood-2014-08-595686] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/03/2015] [Indexed: 12/13/2022] Open
Abstract
Tumor-mediated procoagulatory activity leads to venous thromboembolism and supports metastasis in cancer patients. A prerequisite for metastasis formation is the interaction of cancer cells with endothelial cells (ECs) followed by their extravasation. Although it is known that activation of ECs and the release of the procoagulatory protein von Willebrand factor (VWF) is essential for malignancy, the underlying mechanisms remain poorly understood. We hypothesized that VWF fibers in tumor vessels promote tumor-associated thromboembolism and metastasis. Using in vitro settings, mouse models, and human tumor samples, we showed that melanoma cells activate ECs followed by the luminal release of VWF fibers and platelet aggregation in tumor microvessels. Analysis of human blood samples and tumor tissue revealed that a promoted VWF release combined with a local inhibition of proteolytic activity and protein expression of ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type I repeats 13) accounts for this procoagulatory milieu. Blocking endothelial cell activation by the low-molecular-weight heparin tinzaparin was accompanied by a lack of VWF networks and inhibited tumor progression in a transgenic mouse model. Our findings implicate a mechanism wherein tumor-derived vascular endothelial growth factor-A (VEGF-A) promotes tumor progression and angiogenesis. Thus, targeting EC activation envisions new therapeutic strategies attenuating tumor-related angiogenesis and coagulation.
Collapse
|
108
|
Wang Z, Dabrosin C, Yin X, Fuster MM, Arreola A, Rathmell WK, Generali D, Nagaraju GP, El-Rayes B, Ribatti D, Chen YC, Honoki K, Fujii H, Georgakilas AG, Nowsheen S, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich B, Yang X, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Halicka D, Mohammed SI, Azmi AS, Bilsland A, Keith WN, Jensen LD. Broad targeting of angiogenesis for cancer prevention and therapy. Semin Cancer Biol 2015; 35 Suppl:S224-S243. [PMID: 25600295 PMCID: PMC4737670 DOI: 10.1016/j.semcancer.2015.01.001] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 12/25/2014] [Accepted: 01/08/2015] [Indexed: 12/20/2022]
Abstract
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Collapse
Affiliation(s)
- Zongwei Wang
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charlotta Dabrosin
- Department of Oncology, Linköping University, Linköping, Sweden; Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Xin Yin
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Mark M Fuster
- Medicine and Research Services, Veterans Affairs San Diego Healthcare System & University of California, San Diego, San Diego, CA, USA
| | - Alexandra Arreola
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Daniele Generali
- Molecular Therapy and Pharmacogenomics Unit, AO Isituti Ospitalieri di Cremona, Cremona, Italy
| | - Ganji P Nagaraju
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, USA
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy; National Cancer Institute Giovanni Paolo II, Bari, Italy
| | - Yi Charlie Chen
- Department of Biology, Alderson Broaddus University, Philippi, WV, USA
| | - Kanya Honoki
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Arthroplasty and Regenerative Medicine, Nara Medical University, Nara, Japan
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirate University, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirate University, United Arab Emirates
| | - Bill Helferich
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Xujuan Yang
- University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guilford, Surrey, UK
| | | | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - Asfar S Azmi
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lasse D Jensen
- Department of Medical, and Health Sciences, Linköping University, Linköping, Sweden; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
109
|
Wang J, Cao Z, Zhang XM, Nakamura M, Sun M, Hartman J, Harris RA, Sun Y, Cao Y. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res 2015; 75:306-15. [PMID: 25492861 DOI: 10.1158/0008-5472.can-14-2819] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cancer metastasis can occur at early stages of tumor development due to facilitative alterations in the tumor microenvironment. Although imaging techniques have considerably improved our understanding of metastasis, early events remain challenging to study due to the small numbers of malignant cells involved that are often undetectable. Using a novel zebrafish model to investigate this process, we discovered that tumor-associated macrophages (TAM) acted to facilitate metastasis by binding tumor cells and mediating their intravasation. Mechanistic investigations revealed that IL6 and TNFα promoted the ability of macrophages to mediate this step. M2 macrophages were particularly potent when induced by IL4, IL10, and TGFβ. In contrast, IFNγ-lipopolysaccharide-induced M1 macrophages lacked the capability to function in the same way in the model. Confirming these observations, we found that human TAM isolated from primary breast, lung, colorectal, and endometrial cancers exhibited a similar capability in invasion and metastasis. Taken together, our work shows how zebrafish can be used to study how host contributions can facilitate metastasis at its earliest stages, and they reveal a new macrophage-dependent mechanism of metastasis with possible prognostic implications.
Collapse
Affiliation(s)
- Jian Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden. Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Ziquan Cao
- Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Xing-Mei Zhang
- Applied Immunology and Immunotherapy, Department of Clinical Neurosciences, Centre for Molecular Medicine, Karolinska Hospital at Solna, Karolinska Institute, Stockholm, Sweden
| | - Masaki Nakamura
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Meili Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden. Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P.R. China.
| | - Johan Hartman
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden. Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neurosciences, Centre for Molecular Medicine, Karolinska Hospital at Solna, Karolinska Institute, Stockholm, Sweden
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, P.R. China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden. Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden. Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
| |
Collapse
|
110
|
Zhou Y, Wang MY, Gao JB, Dong JQ, Xu H, Hou P. Evaluation of efficacy of anti-angiogenesis therapy for VX2 hepatic tumors in rabbits by spectral CT and CT perfusion imaging. Shijie Huaren Xiaohua Zazhi 2014; 22:4726-4733. [DOI: 10.11569/wcjd.v22.i31.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the efficacy of anti-angiogenesis therapy for VX2 hepatic tumors in rabbits by spectral computed tomography (CT) imaging and CT perfusion imaging.
METHODS: Sixty New Zealand white rabbits with implanted VX2 hepatic tumors were randomly divided into two groups (A and B), with each group containing 30 rabbits. On day 14 after tumor implantation, group B received intravenous endostatin at a dose of 3 mg/kg for 7 d. Both groups underwent spectral CT and CT perfusion scans on day 21 after tumor implantation. The animals were then sacrificed, and the expression of VEGF mRNA and FGF2 protein in the tumor rim (TR) and the normal region (NR) was detected by RT-PCR and Western blot, respectively.
RESULTS: For CT perfusion parameters, group A showed increased blood flow (BF), blood volume (BV), permeability surface (PS) and hepatic arterial fraction (HAF) and decreased mean transit time (MTT) in the TR compared with NR (P < 0.05). From days 14 to 21, BF and PS showed an increasing trend, while MTT decreased with tumor growth (P < 0.05). The standardization of iodine (NIC) during arterial phase of the TR and NR exhibited a statistically significant difference (P < 0.05). The NIC of the TR during the arterial phase was significantly higher on day 21 than on day 14. Compared with group A on day 21, BF, BV, PS and HAF decreased, and MTT increased in group B. Pearson correlation analysis showed that these parameters were positively correlated with VEGF mRNA and FGF2 protein expression.
CONCLUSION: Spectral imaging and CT perfusion imaging can provide hemodynamic information of liver lesions and quantitatively reflect the efficacy of anti-angiogenesis therapy.
Collapse
|
111
|
Lim S, Zhang Y, Zhang D, Chen F, Hosaka K, Feng N, Seki T, Andersson P, Li J, Zang J, Sun B, Cao Y. VEGFR2-mediated vascular dilation as a mechanism of VEGF-induced anemia and bone marrow cell mobilization. Cell Rep 2014; 9:569-80. [PMID: 25310988 DOI: 10.1016/j.celrep.2014.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/30/2014] [Accepted: 08/28/2014] [Indexed: 11/29/2022] Open
Abstract
Molecular mechanisms underlying tumor VEGF-induced host anemia and bone marrow cell (BMC) mobilization remain unknown. Here, we report that tumor VEGF markedly induced sinusoidal vasculature dilation in bone marrow (BM) and BMC mobilization to tumors and peripheral tissues in mouse and human tumor models. Unexpectedly, anti-VEGFR2, but not anti-VEGFR1, treatment completely blocked VEGF-induced anemia and BMC mobilization. Genetic deletion of Vegfr2 in endothelial cells markedly ablated VEGF-stimulated BMC mobilization. Conversely, deletion of the tyrosine kinase domain from Vegfr1 gene (Vegfr1(TK-/-)) did not affect VEGF-induced BMC mobilization. Analysis of VEGFR1(+)/VEGFR2(+) populations in peripheral blood and BM showed no significant ratio difference between VEGF- and control tumor-bearing animals. These findings demonstrate that vascular dilation through the VEGFR2 signaling is the mechanism underlying VEGF-induced BM mobilization and anemia. Thus, our data provide mechanistic insights on VEGF-induced BMC mobilization in tumors and have therapeutic implications by targeting VEGFR2 for cancer therapy.
Collapse
Affiliation(s)
- Sharon Lim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Danfang Zhang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Pathology, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping, Tianjin 300070, China
| | - Fang Chen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; The First Affiliated Hospital of Zhejiang Chinese Medicine University, 54 Youdian Road, Hangzhou, Zhejiang 310006, China
| | - Kayoko Hosaka
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ninghan Feng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Urology, The Second Hospital of Wuxi, 68 Zhongshan Road, Wuxi, Jiangsu 214002, China
| | - Takahiro Seki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Patrik Andersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Jingrong Li
- Simcere Pharmaceutical R&D, Nanjing, 699-18 Xuan Wu Avenue, Jiangsu 210042, China
| | - Jingwu Zang
- Simcere Pharmaceutical R&D, Nanjing, 699-18 Xuan Wu Avenue, Jiangsu 210042, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, 22 Qi Xiang Tai Road, Heping, Tianjin 300070, China
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Medicine and Health Sciences, Linköping University, 581 83 Linköping, Sweden; Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK.
| |
Collapse
|
112
|
Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues. Proc Natl Acad Sci U S A 2014; 111:14906-11. [PMID: 25271320 DOI: 10.1073/pnas.1415825111] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs.
Collapse
|
113
|
TNFR1 mediates TNF-α-induced tumour lymphangiogenesis and metastasis by modulating VEGF-C-VEGFR3 signalling. Nat Commun 2014; 5:4944. [PMID: 25229256 DOI: 10.1038/ncomms5944] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 08/07/2014] [Indexed: 12/31/2022] Open
Abstract
Inflammation and lymphangiogenesis are two cohesively coupled processes that promote tumour growth and invasion. Here we report that TNF-α markedly promotes tumour lymphangiogenesis and lymphatic metastasis. The TNF-α-TNFR1 signalling pathway directly stimulates lymphatic endothelial cell activity through a VEGFR3-independent mechanism. However, VEGFR3-induced lymphatic endothelial cell tips are a prerequisite for lymphatic vessel growth in vivo, and a VEGFR3 blockade completely ablates TNF-α-induced lymphangiogenesis. Moreover, TNF-α-TNFR1-activated inflammatory macrophages produce high levels of VEGF-C to coordinately activate VEGFR3. Genetic deletion of TNFR1 (Tnfr1(-/-)) in mice or depletion of tumour-associated macrophages (TAMs) virtually eliminates TNF-α-induced lymphangiogenesis and lymphatic metastasis. Gain-of-function experiments show that reconstitution of Tnfr1(+/+) macrophages in Tnfr1(-/-) mice largely restores tumour lymphangiogenesis and lymphatic metastasis. These findings shed mechanistic light on the intimate interplay between inflammation and lymphangiogenesis in cancer metastasis, and propose therapeutic intervention of lymphatic metastasis by targeting the TNF-α-TNFR1 pathway.
Collapse
|
114
|
Takano S, Ishikawa E, Nakai K, Matsuda M, Masumoto T, Yamamoto T, Matsumura A. Bevacizumab in Japanese patients with malignant glioma: from basic research to clinical trial. Onco Targets Ther 2014; 7:1551-62. [PMID: 25228814 PMCID: PMC4161529 DOI: 10.2147/ott.s67621] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An antiangiogenic approach is especially suitable for the treatment of malignant gliomas. Recently, two large clinical trials in newly diagnosed glioblastoma (the Avastin in Glioblastoma study and Radiation Therapy Oncology Group 0825 study) showed a 3- to 4-month prolongation of progression-free survival (PFS) with bevacizumab, but no significant effect on overall survival (OS). Japan is the first, and so far only, country to approve the use of bevacizumab in newly diagnosed glioblastoma in combination with radiotherapy and temozolomide chemotherapy. The drug is also approved for use as monotherapy for recurrent glioblastoma and certain other types of high-grade glioma after previous therapy. The effectiveness of bevacizumab on Japanese malignant glioma patients was reviewed. The Phase II clinical trial demonstrated that the PFS with bevacizumab alone was 34% at 6 months and 3.3 months at median for 32 patients with recurrent malignant gliomas. In the Avastin in Glioblastoma study, 44 Japanese patients were registered from Japan. PFS and OS for bevacizumab combined with standard temozolomide and radiotherapy were 12.2 months and 29.2 months at median, respectively, for the patients with newly diagnosed glioblastoma. PFS and OS tended to be longer for those treated with bevacizumab than for those not treated with the drug. In addition, biomarkers of bevacizumab effectiveness were investigated in Japanese patients. Vascular endothelial growth factor concentration, matrix metalloproteinase 9 activities in urine, and apparent diffusion coefficient values on magnetic resonance imaging may be biomarkers that predict patient prognosis. Finally, novel experiments for vascular endothelial growth factor antibody action were described; these include the induction of glioma cell apoptosis, an antibody treatment failure model, and a study of the synergistic effect with chemotherapeutic agents.
Collapse
Affiliation(s)
- Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kei Nakai
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Masumoto
- Department of Radiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
115
|
Korevaar TIM, Steegers EAP, Schalekamp-Timmermans S, Ligthart S, de Rijke YB, Visser WE, Visser W, de Muinck Keizer-Schrama SMPF, Hofman A, Hooijkaas H, Bongers-Schokking JJ, Russcher H, Tiemeier H, Jaddoe VWV, Visser TJ, Medici M, Peeters RP. Soluble Flt1 and placental growth factor are novel determinants of newborn thyroid (dys)function: the generation R study. J Clin Endocrinol Metab 2014; 99:E1627-34. [PMID: 24885632 DOI: 10.1210/jc.2014-1884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONTEXT Adequate thyroid hormone availability during fetal and early life is crucial for normal child growth and development. Fetal growth heavily depends on angiogenesis. Placental growth factor (PlGF) is a proangiogenic factor sharing high homology with vascular endothelial growth factor, whereas soluble FMS-like tyrosine kinase-1 (sFlt1) is a potent antagonist of vascular endothelial growth factor and PlGF signaling. Because the thyroid is a highly vascularized organ, we hypothesized that fetal angiogenic factors influence in utero thyrogenesis and impair newborn thyroid function. Therefore, we investigated the association between sFlt1 and PlGF on newborn thyroid function. DESIGN, SETTING, AND PARTICIPANTS sFlt1, PlGF, TSH, and free T4 (FT4) were determined in cord serum of 3525 newborns from a large prospective cohort study. Analyses were adjusted for relevant maternal and child covariates. RESULTS sFlt1 levels were positively associated with TSH (β 0.07 ± 0.02 mU/L; P < .001) and inversely with FT4 (β -0.58 ± 0.11; P < .001). PlGF showed a positive association with FT4 (β 0.19 ± 0.02; P < .001). Elevated levels of sFlt1 were associated with a 2.8-fold increased risk of hypothyroxinemia (P = .04). Decreased levels of PlGF were associated with a 6.7-fold increased risk of hypothyroxinemia (P < .001). Within the normal range, a dose-dependent effect of sFlt1 on thyroid dysfunction was observed: high-normal sFlt1 levels were associated with a 17.7-fold increased risk of hypothyroxinemia (P < .001) and a 2.7-fold increased risk of hyperthyrotropinemia (P = .01). CONCLUSION Fetal angiogenic factors sFlt1 and PlGF are associated with newborn thyroid function. Possible effects are most likely mediated through effects on in utero thyrogenesis. Abnormal as well as normal-range fetal sFlt1 and PlGF levels influence the risk of impaired newborn thyroid function, which has been associated with adverse neurodevelopmental effects. These data provide important novel insights into the physiology of thyrogenesis and into the etiology of newborn thyroid (dys)function.
Collapse
Affiliation(s)
- Tim I M Korevaar
- The Generation R Study Group (T.I.M.K., S.S.-T., V.W.V.J., M.M.) and Departments of Internal Medicine (T.I.M.K., Y.B.d.R., W.E.V., T.J.V., M.M., R.P.P.), Rotterdam Thyroid Center (T.I.M.K., W.E.V., T.J.V., M.M., R.P.P.), Epidemiology (S.L., A.H., H.T., V.W.V.J.), and Immunology (H.H.), Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands; and Departments of Obstetrics and Gynecology (E.A.P.S., S.S.-T., W.V.), Clinical Chemistry (Y.B.d.R., H.R.), Endocrinology (S.M.P.F.d.M.K.-S., J.J.B.-S.), Pediatrics (V.W.V.J.), and Child and Adolescent Psychiatry (H.T.), Erasmus Medical Center, Sophia Children's Hospital, 3015 GJ Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Abstract
Systemic administration of antiangiogenic drugs that target components of the vascular endothelial growth factor A (VEGF-A; VEGF) signal transduction pathway has become a viable therapeutic option for patients with various types of cancer. Nevertheless, these drugs can drive alterations in healthy vasculatures, which in turn are associated with adverse effects in healthy tissues. VEGF is crucial for vascular homeostasis and the maintenance of vascular integrity and architecture in endocrine organs. Given these critical physiological functions, systemic delivery of drugs that target VEGF signalling can block VEGF-mediated vascular functions in endocrine organs, such as the thyroid gland, and lead to endocrine dysfunction, including hypothyroidism, adrenal insufficiency and altered insulin sensitivity. This Review discusses emerging evidence from preclinical and clinical studies that contributes to understanding the mechanisms that underlie the vascular changes and subsequent modulations of endocrine function that are induced by targeted inhibition of VEGF signalling. Understanding these mechanisms is crucial for the design of antiangiogenic drugs with minimal associated adverse effects that will enable effective treatment of patients with cancer.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Nobels vag 16, 17177 Stockholm, Sweden
| |
Collapse
|
117
|
Koyama N, Saito K, Nishioka Y, Yusa W, Yamamoto N, Yamada Y, Nokihara H, Koizumi F, Nishio K, Tamura T. Pharmacodynamic change in plasma angiogenic proteins: a dose-escalation phase 1 study of the multi-kinase inhibitor lenvatinib. BMC Cancer 2014; 14:530. [PMID: 25047123 PMCID: PMC4223557 DOI: 10.1186/1471-2407-14-530] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background Lenvatinib (E7080), an oral multi-kinase inhibitor, has inhibitory action on tumor cell proliferation and tumor angiogenesis in preclinical models. We evaluated correlations between pharmacodynamic (PD) biomarkers with patient clinical outcomes in a lenvatinib phase 1 dose-escalation study. Methods Plasma angiogenic proteins were evaluated as potential PD biomarkers of response to lenvatinib in a dose-escalation phase 1 study. Lenvatinib was administered to 27 patients by twice-daily dosing in 3-week cycles; 2 weeks of treatment followed by 1 week of rest until discontinuation. Blood samples for plasma proteins were collected on days 1 (baseline), 8, and 15 of cycle 1, and days 1, 8, and 15 of cycle 2. Selected clinical outcomes, including tumor shrinkage and adverse events (AEs), were used for correlative analyses of pharmacokinetic parameters and PD biomarkers. Results Tumor shrinkage and changes in PD biomarkers (increased vascular endothelial growth factor [VEGF] and stromal cell-derived factor 1 alpha [SDF1α] levels and decreased soluble VEGF receptor 2 [sVEGFR2] levels) significantly correlated with increasing lenvatinib exposure. Observed changes in levels of VEGF, SDF1α, and sVEGFR2 were maintained on day 15 of cycle 1, but returned to baseline during the 1-week rest period, and similar changes were induced by reinstitution of treatment in cycle 2. The worst grades of hypertension, proteinuria, and fatigue were associated with changes in VEGF and HGF at day 8 of cycle 1. Maximum tumor shrinkage was correlated with increased SDF1α levels. Decreased sVEGFR2 level was also correlated with tumor shrinkage and frequency of hypertension, proteinuria, and fatigue. Tumor shrinkage significantly correlated with the worst grade of proteinuria, but not with hypertension or fatigue. Conclusion PD biomarker changes observed in plasma angiogenic proteins are correlated with lenvatinib-induced tumor shrinkage and AEs. Our findings warrant further assessment of plasma proteins associated with angiogenesis as potential biomarkers of lenvatinib activity. Trial registration ClinicalTrial.gov: NCT00280397 (January 20, 2006).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tomohide Tamura
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
| |
Collapse
|
118
|
Role of plasma membrane caveolae/lipid rafts in VEGF-induced redox signaling in human leukemia cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:857504. [PMID: 24738074 PMCID: PMC3967716 DOI: 10.1155/2014/857504] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/21/2014] [Indexed: 12/02/2022]
Abstract
Caveolae/lipid rafts are membrane-rich cholesterol domains endowed with several functions in signal transduction and caveolin-1 (Cav-1) has been reported to be implicated in regulating multiple cancer-associated processes, ranging from tumor growth to multidrug resistance and angiogenesis. Vascular endothelial growth factor receptor-2 (VEGFR-2) and Cav-1 are frequently colocalized, suggesting an important role played by this interaction on cancer cell survival and proliferation. Thus, our attention was directed to a leukemia cell line (B1647) that constitutively produces VEGF and expresses the tyrosine-kinase receptor VEGFR-2. We investigated the presence of VEGFR-2 in caveolae/lipid rafts, focusing on the correlation between reactive oxygen species (ROS) production and glucose transport modulation induced by VEGF, peculiar features of tumor proliferation. In order to better understand the involvement of VEGF/VEGFR-2 in the redox signal transduction, we evaluated the effect of different compounds able to inhibit VEGF interaction with its receptor by different mechanisms, corroborating the obtained results by immunoprecipitation and fluorescence techniques. Results here reported showed that, in B1647 leukemia cells, VEGFR-2 is present in caveolae through association with Cav-1, demonstrating that caveolae/lipid rafts act as platforms for negative modulation of VEGF redox signal transduction cascades leading to glucose uptake and cell proliferation, suggesting therefore novel potential targets.
Collapse
|
119
|
D'Amico G, Korhonen EA, Anisimov A, Zarkada G, Holopainen T, Hägerling R, Kiefer F, Eklund L, Sormunen R, Elamaa H, Brekken RA, Adams RH, Koh GY, Saharinen P, Alitalo K. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. J Clin Invest 2014; 124:824-34. [PMID: 24430181 DOI: 10.1172/jci68897] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/08/2013] [Indexed: 12/25/2022] Open
Abstract
The endothelial Tie1 receptor is ligand-less, but interacts with the Tie2 receptor for angiopoietins (Angpt). Angpt2 is expressed in tumor blood vessels, and its blockade inhibits tumor angiogenesis. Here we found that Tie1 deletion from the endothelium of adult mice inhibits tumor angiogenesis and growth by decreasing endothelial cell survival in tumor vessels, without affecting normal vasculature. Treatment with VEGF or VEGFR-2 blocking antibodies similarly reduced tumor angiogenesis and growth; however, no additive inhibition was obtained by targeting both Tie1 and VEGF/VEGFR-2. In contrast, treatment of Tie1-deficient mice with a soluble form of the extracellular domain of Tie2, which blocks Angpt activity, resulted in additive inhibition of tumor growth. Notably, Tie1 deletion decreased sprouting angiogenesis and increased Notch pathway activity in the postnatal retinal vasculature, while pharmacological Notch suppression in the absence of Tie1 promoted retinal hypervasularization. Moreover, substantial additive inhibition of the retinal vascular front migration was observed when Angpt2 blocking antibodies were administered to Tie1-deficient pups. Thus, Tie1 regulates tumor angiogenesis, postnatal sprouting angiogenesis, and endothelial cell survival, which are controlled by VEGF, Angpt, and Notch signals. Our results suggest that targeting Tie1 in combination with Angpt/Tie2 has the potential to improve antiangiogenic therapy.
Collapse
|
120
|
Cao Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 2013; 18:478-89. [PMID: 24035587 DOI: 10.1016/j.cmet.2013.08.008] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
White and brown adipose tissues are hypervascularized and the adipose vasculature displays phenotypic and functional plasticity to coordinate with metabolic demands of adipocytes. Blood vessels not only supply nutrients and oxygen to nourish adipocytes, they also serve as a cellular reservoir to provide adipose precursor and stem cells that control adipose tissue mass and function. Multiple signaling molecules modulate the complex interplay between the vascular system and the adipocytes. Understanding fundamental mechanisms by which angiogenesis and vasculatures modulate adipocyte functions may provide new therapeutic options for treatment of obesity and metabolic disorders by targeting the adipose vasculature.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Medicine and Health Sciences, Linköping University, 581 85 Linköping, Sweden.
| |
Collapse
|