101
|
Wlaschek M, Singh K, Sindrilaru A, Crisan D, Scharffetter-Kochanek K. Iron and iron-dependent reactive oxygen species in the regulation of macrophages and fibroblasts in non-healing chronic wounds. Free Radic Biol Med 2019; 133:262-275. [PMID: 30261274 DOI: 10.1016/j.freeradbiomed.2018.09.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Chronic wounds pose a stern challenge to health care systems with growing incidence especially in the aged population. In the presence of increased iron concentrations, recruitment of monocytes from the circulation and activation towards ROS and RNS releasing M1 macrophages together with the persistence of senescent fibroblasts at the wound site are significantly enhanced. This unrestrained activation of pro-inflammatory macrophages and senescent fibroblasts has increasingly been acknowledged as main driver causing non-healing wounds. In a metaphor, macrophages act like stage directors of wound healing, resident fibroblasts constitute main actors and increased iron concentrations are decisive parts of the libretto, and - if dysregulated - are responsible for the development of non-healing wounds. This review will focus on recent cellular and molecular findings from chronic venous leg ulcers and diabetic non-healing wounds both constituting the most common pathologies often resulting in limb amputations of patients. This not only causes tremendous suffering and loss of life quality, but is also associated with an increase in mortality and a major socio-economic burden. Despite recent advances, the underlying molecular mechanisms are not completely understood. Overwhelming evidence shows that reactive oxygen species and the transition metal and trace element iron at pathological concentrations are crucially involved in a complex interplay between cells of different histogenetic origin and their extracellular niche environment. This interplay depends on a variety of cellular, non-cellular biochemical and cell biological mechanisms. Here, we will highlight recent progress in the field of iron-dependent regulation of macrophages and fibroblasts and related pathologies linked to non-healing chronic wounds.
Collapse
Affiliation(s)
- Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Diana Crisan
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | | |
Collapse
|
102
|
Fat Chance: The Rejuvenation of Irradiated Skin. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2019; 7:e2092. [PMID: 30881833 PMCID: PMC6416118 DOI: 10.1097/gox.0000000000002092] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/25/2022]
Abstract
Radiotherapy (RT) helps cure and palliate thousands of patients with a range of malignant diseases. A major drawback, however, is the collateral damage done to tissues surrounding the tumor in the radiation field. The skin and subcutaneous tissue are among the most severely affected regions. Immediately following RT, the skin may be inflamed, hyperemic, and can form ulcers. With time, the dermis becomes progressively indurated. These acute and chronic changes cause substantial patient morbidity, yet there are few effective treatment modalities able to reduce radiodermatitis. Fat grafting is increasingly recognized as a tool able to reverse the fibrotic skin changes and rejuvenate the irradiated skin. This review outlines the current progress toward describing and understanding the cellular and molecular effects of fat grafting in irradiated skin. Identification of the key factors involved in the pathophysiology of fibrosis following RT will inform therapeutic interventions to enhance its beneficial effects.
Collapse
|
103
|
Esser TU, Roshanbinfar K, Engel FB. Promoting vascularization for tissue engineering constructs: current strategies focusing on HIF-regulating scaffolds. Expert Opin Biol Ther 2019; 19:105-118. [PMID: 30570406 DOI: 10.1080/14712598.2019.1561855] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Vascularization remains one of the greatest yet unmet challenges in tissue engineering. When engineered tissues are scaled up to therapeutically relevant dimensions, their demand of oxygen and nutrients can no longer be met by diffusion. Thus, there is a need for perfusable vascular structures. Hypoxia-inducible factors (HIF) act as transcriptional oxygen sensors and regulate a multitude of genes involved in adaptive processes to hypoxia, including angiogenesis. Thus, targeting HIFs is a promising strategy to induce vascularization of engineered tissues. AREAS COVERED Here we review current vascularization strategies and summarize the present knowledge regarding activation of HIF signaling by ions, iron chelating agents, α-Ketoglutarate (αKG) analogues, and the lipid-lowering drug simvastatin to induce angiogenesis. Specifically, we focus on the incorporation of HIF-activating agents into biomaterials and scaffolds for controlled release. EXPERT OPINION Vascularization of tissue constructs through activation of upstream regulators of angiogenesis offers advantages but also suffers from drawbacks. HIFs can induce a complete angiogenic program; however, this program appears to be too slow to vascularize larger constructs before cell death occurs. It is therefore crucial that HIF-activation is combined with cell protective strategies and prevascularization techniques to obtain fully vascularized, vital tissues of therapeutically relevant dimensions.
Collapse
Affiliation(s)
- Tilman U Esser
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Kaveh Roshanbinfar
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Felix B Engel
- a Experimental Renal and Cardiovascular Research, Department of Nephropathology , Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| |
Collapse
|
104
|
Treatment With Topical Deferoxamine Improves Cutaneous Vascularity and Tissue Pliability in an Irradiated Animal Model of Tissue Expander–Based Breast Reconstruction. Ann Plast Surg 2019; 82:104-109. [DOI: 10.1097/sap.0000000000001655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
105
|
Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev 2019; 99:665-706. [PMID: 30475656 PMCID: PMC6442927 DOI: 10.1152/physrev.00067.2017] [Citation(s) in RCA: 1301] [Impact Index Per Article: 260.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Nina Kosaric
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Clark A Bonham
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
106
|
Liu Z, Li Y, Li W, Lian W, Kemell M, Hietala S, Figueiredo P, Li L, Mäkilä E, Ma M, Salonen J, Hirvonen JT, Liu D, Zhang H, Deng X, Santos HA. Close-loop dynamic nanohybrids on collagen-ark with in situ gelling transformation capability for biomimetic stage-specific diabetic wound healing. MATERIALS HORIZONS 2019; 6:385-393. [DOI: 10.1039/c8mh01145a] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A self-regulated dynamic nanohybrid that can sensitively respond to hyperglycemic microenvironment is developed. The nanohybrid with a core/shell structure is produced through a single-step microfluidics nanoprecipitation method, where drugs-loaded porous silicon (PSi) nanoparticles are encapsulated by H2O2 responsive polymeric matrix.
Collapse
|
107
|
Lu G, Ding Z, Wei Y, Lu X, Lu Q, Kaplan DL. Anisotropic Biomimetic Silk Scaffolds for Improved Cell Migration and Healing of Skin Wounds. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44314-44323. [PMID: 30507148 DOI: 10.1021/acsami.8b18626] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Improved and more rapid healing of full-thickness skin wounds remains a major clinical need. Silk fibroin (SF) is a natural protein biomaterial that has been used in skin repair. However, there has been little effort aimed at improving skin healing through tuning the hierarchical microstructure of SF-based matrices and introducing multiple physical cues. Recently, enhanced vascularization was achieved with SF scaffolds with nanofibrous structures and tunable secondary conformation of the matrices. We hypothesized that anisotropic features in nanofibrous SF scaffolds would promote cell migration, neovascularization, and tissue regeneration in wounds. To address this hypothesis, SF nanofibers were aligned in an electric field to form anisotropic porous scaffolds after lyophilization. In vitro and in vivo studies indicated good cytocompatibility, and improved cell migration and vascularization than nanofibrous scaffolds without these anisotropic features. These improvements resulted in more rapid wound closure, tissue ingrowth, and the formation of new epidermis, as well as higher collagen deposition with a structure similar to the surrounding native tissue. The new epidermal layers and neovascularization were achieved by day 7, with wound healing complete by day 28. It was concluded that anisotropic SF scaffolds alone, without a need for growth factors and cells, promoted significant cell migration, vascularization, and skin regeneration and may have the potential to effectively treat dermal wounds.
Collapse
Affiliation(s)
- Guozhong Lu
- Department of Burns and Plastic Surgery , The Third Affiliated Hospital of Nantong University , Wuxi 214041 , People's Republic of China
| | - ZhaoZhao Ding
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - Yuanyuan Wei
- Department of Maternity and Child Care Hospital , Lanzhou 730050 , Gansu Province , People's Republic of China
| | - Xiaohong Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - Qiang Lu
- National Engineering Laboratory for Modern Silk & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , People's Republic of China
| | - David L Kaplan
- Department of Biomedical Engineering , Tufts University , Medford , Massachusetts 02155 , United States
| |
Collapse
|
108
|
Deferoxamine but Not Dimethyloxalylglycine, L-Mimosine, or Cobalt Dichloride Can Interfere with the MTT Assay. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5872865. [PMID: 30581861 PMCID: PMC6276496 DOI: 10.1155/2018/5872865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/11/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022]
Abstract
Hypoxia mimetic agents (HMAs) have been shown to have a positive influence on cellular functions in a multitude of tissue regenerative strategies. Novel experimental approaches use biomaterials as carriers for controlled delivery of these HMAs. Here, the cytotoxic aspects of biocompatibility are of key relevance. The MTT assay is widely used to evaluate cytotoxicity and proliferation. Based on the implications from the proceeding research we hypothesized that specific HMAs such as deferoxamine at high concentrations can interfere with the MTT assay. Thus, the aim of this study was to test the repercussions of the HMAs dimethyloxalylglycine, deferoxamine, L-mimosine, and CoCl2 on the validity of the MTT assay. Murine MC3T3-E1 cells were cultured in serum-free alphaMEM and in alphaMEM supplemented with 10 % fetal bovine serum with the HMAs dimethyloxalylglycine, deferoxamine, L-mimosine, and CoCl2, respectively, at 3 mM-0.3 mM for 24 h (experimental groups). Cells without HMAs served as control (control groups). The same experiments were performed with medium and phosphate buffered saline (PBS) without cells. In all settings MTT solution was added to PBS-washed or unwashed culture plates for the last two hours of the incubation period. Then MTT solution was removed and dimethyl sulfoxide was added to dissolve the formazan crystals and absorption was measured. Our data show that the presence of deferoxamine can interfere with the MTT assay if not removed before the addition of MTT. This is particularly important when evaluating cell viability in setups where deferoxamine-loaded biomaterials are used.
Collapse
|
109
|
Abdelgelil NH, Abdellatif MZM, Abdel-Hafeez EH, Belal US, Mohamed RM, Abdel-Razik ARH, Hassanin KMA, Abdel-Wahab A. Effects of iron chelating agent on Schistosoma mansoni infected murine model. Biomed Pharmacother 2018; 109:28-38. [PMID: 30391706 DOI: 10.1016/j.biopha.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/29/2022] Open
Abstract
Schistosomiasis is one of the major health problems in many tropical and developing countries. Infection takes place once cerceriae penetrate human skin, then it changed into schistosomules. The schistosomules takes iron in the form of heme from host's haemoglobin, ferritin and transferrin. Iron is a vital element not only for growth and sexual maturity of schistosomules to adults but also for oogenesis. Since the trapped eggs are the pathological causative agent for most of pathogenesis and complications, the current work was designed to study the effects of early deprivation of schistosomules from iron in the host (in vivo) by chelating it with deferoxamine (DFO). The iron chelation has effects on growth, maturity and egg deposition, as well as it has ameliorative effects on liver pathology such as hepatic fibrosis. Mice were classified into four groups, normal control, DFO treated only, Schistosoma mansoni (S. mansoni) infected DFO untreated and S. mansoni infected DFO treated. The infected DFO treated mice showed significant reduction in fecal egg excretion with increased percentage of dead eggs and this was accompanied with a significant reduction of both total worm burden and hepatic egg load and increased dead egg percentage compared to the infected DFO untreated group. There was also a significant reduction in both serum and hepatic tissue ferritin concentrations in the infected DFO treated mice in comparison to the infected DFO untreated group. Additionally, a significant decrease in number and size of granulomas with subsequent improvement of liver fibrosis was recorded in the infected DFO treated group. This immunopathology was also associated with significant up regulation of Interlukine12 (IL12), Interferon gamma (IFN γ) and significant down regulation in interleukin4 (IL4), interleukin10 (IL10) in both serum and hepatic tissue in the infected DFO treated compared to other groups. Entirely, DFO succeeded in diminishing the growth, maturity and fecundity of S. mansoni with a subsequent improvement of hepatic pathology. As a result of the above findings, it can be concluded that DFO could be considered as a useful treatment against schistosomal infection.
Collapse
Affiliation(s)
- Noha H Abdelgelil
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Manal Z M Abdellatif
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Ekhlas H Abdel-Hafeez
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Usama S Belal
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Rabie M Mohamed
- Department of Parasitology, Faculty of Medicine, Minia University, Minia 61519, Egypt
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni - Suef University, Beni - Suef 62511, Egypt
| | - Kamel M A Hassanin
- Department of Biochemistry, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, Minia 61519, Egypt.
| |
Collapse
|
110
|
Snider AE, Lynn JV, Urlaub KM, Donneys A, Polyatskaya Y, Nelson NS, Ettinger RE, Gurtner GC, Banaszak Holl MM, Buchman SR. Topical Deferoxamine Alleviates Skin Injury and Normalizes Atomic Force Microscopy Patterns Following Radiation in a Murine Breast Reconstruction Model. Ann Plast Surg 2018; 81:604-608. [PMID: 30113984 PMCID: PMC6179919 DOI: 10.1097/sap.0000000000001592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast cancer is most commonly managed with a combination of tumor ablation, radiation, and/or chemotherapy. Despite the oncologic benefit of these treatments, the detrimental effect of radiation on surrounding tissue challenges the attainment of ideal breast reconstruction outcomes. The purpose of this study was to determine the ability of topical deferoxamine (DFO) to reduce cutaneous ulceration and collagen disorganization following radiotherapy in a murine model of expander-based breast reconstruction. METHODS Female Sprague-Dawley rats (n = 15) were divided into 3 groups: control (expander), XRT (expander + radiation), and DFO (expander + radiation + deferoxamine [DFO]). Expanders were placed in a submusculocutaneous plane in the right upper back and ultimately filled to 15 mL. Radiation was administered via a fractionated dose of 28 Gy. Deferoxamine was delivered topically for 10 days following radiation. After a 20-day recovery period, skin ulceration and dermal type I collagen organization were analyzed. RESULTS Compared with control, the XRT group demonstrated a significant increase in skin ulceration (3.7% vs 43.3%, P = 0.00) and collagen fibril disorganization (26.3% vs 81.8%, P = 0.00). Compared with the XRT group, treatment with topical DFO resulted in a significant reduction in ulceration (43.3% vs 7.0%, P = 0.00) and fibril disorganization (81.8% vs 15.3%, P = 0.00). There were no statistical differences between the control and DFO groups in skin ulceration or collagen disorganization. CONCLUSIONS This study suggests topical DFO is capable of reducing skin ulceration and type I collagen fibril disorganization following radiotherapy. This novel application of DFO has potential to enhance expander-based breast reconstruction outcomes and improve quality of life for women suffering the devastating effects of breast cancer.
Collapse
Affiliation(s)
- Alicia E. Snider
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
- University of South Carolina, Department of Surgery, South Carolina, USA
| | - Jeremy V. Lynn
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| | - Kevin M. Urlaub
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| | - Alexis Donneys
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| | | | - Noah S. Nelson
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| | - Russell E. Ettinger
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| | | | | | - Steven R. Buchman
- University of Michigan, Craniofacial Research Laboratory, Ann Arbor, Michigan, USA
| |
Collapse
|
111
|
Gao SQ, Chang C, Li JJ, Li Y, Niu XQ, Zhang DP, Li LJ, Gao JQ. Co-delivery of deferoxamine and hydroxysafflor yellow A to accelerate diabetic wound healing via enhanced angiogenesis. Drug Deliv 2018; 25:1779-1789. [PMID: 30338719 PMCID: PMC6201774 DOI: 10.1080/10717544.2018.1513608] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Nonhealing chronic wounds on foot induced by diabetes is a complicated pathologic process. They are mainly caused by impaired neovascularization, neuropathy, and excessive inflammation. A strategy, which can accelerate the vessel network formation as well as inhibit inflammatory response at the same time, makes it possible for effective diabetic ulcers treatment. Co-delivery of multiple drugs with complementary bioactivity offers a strategy to properly treat diabetic wound. We previously demonstrated that hydroxysafflor yellow A (HSYA) could accelerate diabetic wound healing through promoting angiogenesis and reducing inflammatory response. In order to further enhance blood vessel formation, a pro-angiogenic molecular called deferoxamine (DFO) was topically co-administrated with HSYA. The in vitro results showed that the combination of DFO and HSYA exerted synergistic effect on enhancing angiogenesis by upregulation of hypoxia inducible factor-1 alpha (HIF-1α) expression. The interpenetrating polymer networks hydrogels, characterized by good breathability and water absorption, were designed for co-loading of DFO and HSYA aiming to recruit angiogenesis relative cells and upgrade wound healing in vivo. Both DFO and HSYA in hydrogel have achieved sustained release. The in vivo studies indicated that HSYA/DFO hydrogel could accelerate diabetic wound healing. With a high expression of Hif-1α which is similar to that of normal tissue. The noninvasive US/PA imaging revealed that the wound could be recovered completely with abundant blood perfusion in dermis after given HSYA/DFO hydrogel for 28 days. In conclusion, combination of pro-angiogenic small molecule DFO and HSYA in hydrogel provides a promising strategy to productively promote diabetic wound healing as well as better the repair quality.
Collapse
Affiliation(s)
- Si-Qian Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Chen Chang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Jun-Jun Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Ying Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiao-Qian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Dan-Ping Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Long-Jian Li
- Zhejiang Provincial Corps Hospital of Chinese People's Armed Police Forces, Jiaxing, Zhejiang, P.R. China
| | - Jian-Qing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Jiangsu Engineering Research Center for New-Type External and Transdermal Preparations, Changzhou, P.R. China
| |
Collapse
|
112
|
Efird WM, Fletcher AG, Draeger RW, Spang JT, Dahners LE, Weinhold PS. Deferoxamine-Soaked Suture Improves Angiogenesis and Repair Potential After Acute Injury of the Chicken Achilles Tendon. Orthop J Sports Med 2018; 6:2325967118802792. [PMID: 30370309 PMCID: PMC6201186 DOI: 10.1177/2325967118802792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A major obstacle to the treatment of soft tissue injuries is the hypovascular
nature of the tissues. Deferoxamine (DFO) has been shown to stimulate
angiogenesis by limiting the degradation of intracellular hypoxia-inducible
factor 1–alpha. Hypothesis: DFO-saturated suture would induce angiogenesis and improve the markers of
early healing in an Achilles tendon repair model. Study Design: Controlled laboratory study. Methods: Broiler hens were randomly assigned to the control (CTL) group or DFO group
(n = 9 per group). The right Achilles tendon was partially transected at its
middle third. The defect was surgically repaired using 3-0 Vicryl suture
soaked in either sterile water (CTL group) or 324 mM DFO solution (DFO
group). All animals were euthanized 2 weeks after the injury, and the tendon
was harvested. Half of the tendon was used to evaluate angiogenesis via
hemoglobin content and tissue repair via DNA content and proteoglycan (PG)
content. The other half of the tendon was sectioned and stained with
hematoxylin and eosin, safranin O, and lectin to evaluate vessel
density. Results: Hemoglobin content (percentage of wet tissue weight) was significantly
increased in the DFO group compared with the CTL group (0.081 ± 0.012 vs
0.063 ± 0.016, respectively; P = .046). DNA content
(percentage of wet tissue weight) was also significantly increased in the
DFO group compared with the CTL group (0.31 ± 0.05 vs 0.23 ± 0.03,
respectively; P = .024). PG content (percentage of wet
tissue weight) was significantly decreased in the DFO group compared with
the CTL group (0.26 ± 0.02 vs 0.33 ± 0.08, respectively; P
= .035). Total chondroid area (number of vessels per mm2 of
tissue area evaluated) was significantly decreased in the DFO group compared
with the CTL group (17.2 ± 6.6 vs 24.6 ± 5.1, respectively;
P = .038). Articular zone vessel density
(vessels/mm2) was significantly increased in the DFO group
compared with the CTL group (7.1 ± 2.5 vs 2.1 ± 0.9, respectively;
P = .026). Conclusion: The significant increase in hemoglobin content as well as articular zone
vessel density in the DFO group compared with the CTL group is evidence of
increased angiogenesis in the fibrocartilaginous region of the tendon
exposed to DFO. The DFO group also displayed a significantly greater level
of DNA and significantly lower level of PG, suggesting enhanced early
healing by fibrous tissue formation. Clinical Relevance: Stimulating angiogenesis by DFO-saturated suture may be clinically useful to
improve healing of poorly vascularized tissues.
Collapse
Affiliation(s)
- William M Efird
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex G Fletcher
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reid W Draeger
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurence E Dahners
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul S Weinhold
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
113
|
Rodrigues M, Bonham CA, Minniti CP, Gupta K, Longaker MT, Gurtner GC. Iron Chelation with Transdermal Deferoxamine Accelerates Healing of Murine Sickle Cell Ulcers. Adv Wound Care (New Rochelle) 2018; 7:323-332. [PMID: 30374417 PMCID: PMC6203233 DOI: 10.1089/wound.2018.0789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Objective: Sickle cell ulcers (SCUs) are a devastating comorbidity affecting patients with sickle cell disease (SCD). SCUs form over the medial or lateral malleoli of the lower extremity, are slow to heal, and prone to recidivism. Some SCUs may never heal, leading to chronic pain and foot deformities. There is no specific and effective therapy for SCUs. Systemic deferoxamine (DFO) has been demonstrated to prevent some of the sequelae of SCD by chelating iron. In this study, we tested the ability of DFO delivered via a transdermal delivery system (DFO-TDDS) to accelerate healing in a murine model of SCU. Approach: Excisional wounds were created in a transgenic murine model of SCD expressing >99% human sickle hemoglobin, and healing rates were compared with wounds in wild-type mice. Next, excisional wounds in SCD mice were treated with DFO-TDDS, DFO injection, or left untreated. Wound closure rates, histology, and iron in the healed wounds were analyzed. Results: Wounds in SCD mice healed significantly slower than wild-type mice (***p < 0.001). DFO-TDDS-treated wounds demonstrated significantly accelerated time to closure, reduced size, and improved wound remodeling compared with untreated wounds (***p < 0.001) and DFO injection treatment (*p < 0.05). DFO released from the TDDS into wounds resulted in chelation of excessive dermal-free iron. Innovation: DFO-TDDS is a novel therapeutic that is effective in healing wounds in sickle cell mice. Conclusion: DFO-TDDS significantly accelerates healing of murine SCUs by chelation of excessive free iron and is currently manufactured in an FDA-compliant facility to be translated for treating human SCUs.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Clark A. Bonham
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Caterina P. Minniti
- Division of Hematology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Kalpna Gupta
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Michael T. Longaker
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Geoffrey C. Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
114
|
Kong L, Wu Z, Zhao H, Cui H, Shen J, Chang J, Li H, He Y. Bioactive Injectable Hydrogels Containing Desferrioxamine and Bioglass for Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30103-30114. [PMID: 30113159 DOI: 10.1021/acsami.8b09191] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Diabetic wound is hard to heal mainly because of the difficulty in vascularization in the wound area. Accumulating results have shown that desferrioxamine (DFO) can promote secretion of hypoxia inducible factor-1 (HIF-1α), thereby upregulating the expression of angiogenic growth factors and facilitating revascularization. Our preliminary study has demonstrated that Si ions in bioglass (BG) can upregulate vascular endothelial growth factor (VEGF) expression, thus promoting revascularization. It is hypothesized that the combined use of BG and DFO may have a synergistic effect in promoting VEGF expression and revascularization. To prove this, we first determined DFO concentration range that had no apparent cytotoxicity on human umbilical vein endothelial cells (HUVECs). Then, the optimal concentration of DFO promoting tube formation of HUVECs was determined by cell migration and tube formation assays. In addition, we demonstrated that combination use of BG and DFO improved the migration and tube formation of HUVECs as compared with the use of either BG or DFO alone as BG and DFO could synergistically upregulate VEGF expression. Furthermore, a sodium alginate hydrogel containing both BG and DFO was developed, and this hydrogel better facilitated diabetic skin wound healing than the use of either BG or DFO alone as BG and DFO in the hydrogels worked synergistically in promoting HIF-1α and VEGF expression and subsequently vascularization in the wound sites. Therefore, in this study, the synergistic effect in promoting revascularization between BG and DFO was first demonstrated and an injectable hydrogel simultaneously containing BG and DFO was developed for enhancing repair of diabetic chronic skin defects by taking advantages of the synergistic effects of BG and DFO in promoting revascularization. The study opens up a new prospect for the development of skin repair-promoting biomaterials.
Collapse
Affiliation(s)
- Lingzhi Kong
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | | | - Huakun Zhao
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Haomin Cui
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Ji Shen
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| | - Jiang Chang
- State Key Laboratory of Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , 1295 Dingxi Road , Shanghai 200050 , China
| | | | - Yaohua He
- Department of Orthopedics , Shanghai Jiao Tong University Affiliated Sixth People's Hospital , 600 Yishan Road , Shanghai 200233 , China
| |
Collapse
|
115
|
Abstract
The constant intrinsic and extrinsic stress the skin is exposed to leads to significant impairments of the regenerative capacity of aging skin. Current skin rejuvenation approaches lack the ability to holistically support the biological processes that exhaust during aging skin degeneration, such as collagen production, cell migration and proliferation, and new vessel formation. Similar to chronic wounds, aged skin is characterized by dysfunction of key cellular regulatory pathways impairing regeneration. Recent evidence suggests that the same mechanisms hindering a physiologic healing response in chronic wounds are the basis of impaired tissue homeostasis in aged skin. Dysfunction of a main response-to-injury pathway, the hypoxia-inducible factor (HIF)-1α regulatory pathway, has been identified as pivotal both in chronic wounds and in aging skin degeneration. HIF-1α signaling is significantly involved in tissue homeostasis and neovascularization, resulting in the production of new collagen, elastin, and nourishing blood vessels. Modulating the functionality of this pathway has been demonstrated to significantly enhance tissue regeneration. In this review, we present an overview of the regenerative effects linked to the up-regulation of HIF-1α functionality, potentially resulting in skin rejuvenation on both the cellular level and the tissue level.
Collapse
|
116
|
Abstract
Diabetes is a global disease, and its prevalence has increased rapidly in the last century. Many complications are associated with diabetes, and diabetic foot ulcers (DFU) are common. There is a variety of different treatments for DFU, and the aim of this article is to discuss the factors responsible for delayed wound healing in patients with diabetes, and the treatment strategies that are available.
Collapse
Affiliation(s)
| | - Sneha S Rao
- Junior research fellow, Yenepoya Research Centre, Yenepoya University, India
| | | | - Ashwini Prabhu
- Assistant Professor, Yenepoya Research Centre, Yenepoya University, India
| |
Collapse
|
117
|
Deferoxamine Preconditioning of Irradiated Tissue Improves Perfusion and Fat Graft Retention. Plast Reconstr Surg 2018; 141:655-665. [PMID: 29135894 DOI: 10.1097/prs.0000000000004167] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiation therapy is a mainstay in the treatment of many malignancies, but collateral damage to surrounding tissue, with resultant hypovascularity, fibrosis, and atrophy, can be difficult to reconstruct. Fat grafting has been shown to improve the quality of irradiated skin, but volume retention of the graft is significantly decreased. Deferoxamine is a U.S. Food and Drug Administration-approved iron-chelating medication for acute iron intoxication and chronic iron overload that has also been shown to increase angiogenesis. The present study evaluates the effects of deferoxamine treatment on irradiated skin and subsequent fat graft volume retention. METHODS Mice underwent irradiation to the scalp followed by treatment with deferoxamine or saline and perfusion and were analyzed using laser Doppler analysis. Human fat grafts were then placed beneath the scalp and retention was also followed up to 8 weeks radiographically. Finally, histologic evaluation of overlying skin was performed to evaluate the effects of deferoxamine preconditioning. RESULTS Treatment with deferoxamine resulted in significantly increased perfusion, as demonstrated by laser Doppler analysis and CD31 immunofluorescent staining (p < 0.05). Increased dermal thickness and collagen content secondary to irradiation, however, were not affected by deferoxamine (p > 0.05). Importantly, fat graft volume retention was significantly increased when the irradiated recipient site was preconditioned with deferoxamine (p < 0.05). CONCLUSIONS The authors' results demonstrated increased perfusion with deferoxamine treatment, which was also associated with improved fat graft volume retention. Preconditioning with deferoxamine may thus enhance fat graft outcomes for soft-tissue reconstruction following radiation therapy.
Collapse
|
118
|
Hu MS, Longaker MT. Wound Healing Research at the Hagey Laboratory for Pediatric Regenerative Medicine at Stanford University School of Medicine. Adv Wound Care (New Rochelle) 2018; 7:257-261. [PMID: 30087801 DOI: 10.1089/wound.2018.0787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael S. Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
119
|
Fang W, Wang G, Tang L, Su H, Chen H, Liao W, Xu J. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J Cell Mol Med 2018; 22:4243-4252. [PMID: 29921037 PMCID: PMC6111801 DOI: 10.1111/jcmm.13704] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H2) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H2 inhalation on pressure ulcer and the underlying mechanisms. H2 inhalation significantly reduced wound area, 8‐oxo‐dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up‐regulating expression of Nrf2 and its downstream components in wound tissue and/or H2O2‐treated endothelia. Meanwhile, H2 inhibited the overexpression of MCP‐1, E‐selectin, P‐selectin and ICAM‐1 in oxidant‐induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF‐α, IL‐1, IL‐6 and IL‐8) production in the wound. Furthermore, H2 promoted the expression of pro‐healing factors (IL‐22, TGF‐β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti‐inflammatory, pro‐healing actions.
Collapse
Affiliation(s)
- Wei Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China.,Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Guizhen Wang
- Emergency room, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| | - Huilin Su
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
120
|
Bonham CA, Rodrigues M, Galvez M, Trotsyuk A, Stern-Buchbinder Z, Inayathullah M, Rajadas J, Gurtner GC. Deferoxamine can prevent pressure ulcers and accelerate healing in aged mice. Wound Repair Regen 2018; 26:300-305. [PMID: 30152571 PMCID: PMC6238634 DOI: 10.1111/wrr.12667] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/18/2018] [Accepted: 08/04/2018] [Indexed: 12/27/2022]
Abstract
Chronic wounds are a significant medical and economic problem worldwide. Individuals over the age of 65 are particularly vulnerable to pressure ulcers and impaired wound healing. With this demographic growing rapidly, there is a need for effective treatments. We have previously demonstrated that defective hypoxia signaling through destabilization of the master hypoxia-inducible factor 1α (HIF-1α) underlies impairments in both aging and diabetic wound healing. To stabilize HIF-1α, we developed a transdermal delivery system of the Food and Drug Administration-approved small molecule deferoxamine (DFO) and found that transdermal DFO could both prevent and treat ulcers in diabetic mice. Here, we demonstrate that transdermal DFO can similarly prevent pressure ulcers and normalize aged wound healing. Enhanced wound healing by DFO is brought about by stabilization of HIF-1α and improvements in neovascularization. Transdermal DFO can be rapidly translated into the clinic and may represent a new approach to prevent and treat pressure ulcers in aged patients.
Collapse
Affiliation(s)
- Clark A. Bonham
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melanie Rodrigues
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Galvez
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Artem Trotsyuk
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mohammed Inayathullah
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jayakumar Rajadas
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C. Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
121
|
Rabbani PS, Ellison T, Waqas B, Sultan D, Abdou S, David JA, Cohen JM, Gomez-Viso A, Lam G, Kim C, Thomson J, Ceradini DJ. Targeted Nrf2 activation therapy with RTA 408 enhances regenerative capacity of diabetic wounds. Diabetes Res Clin Pract 2018; 139:11-23. [PMID: 29476889 DOI: 10.1016/j.diabres.2018.02.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/02/2018] [Accepted: 02/13/2018] [Indexed: 12/21/2022]
Abstract
AIMS Though unmitigated oxidative stress in diabetic chronic non-healing wounds poses a major therapeutic challenge, currently, there are no effective pharmacological agents. We targeted the cytoprotective Nrf2/Keap1 pathway, which is dysfunctional in diabetic skin and the regenerative environment in the diabetic wound. We assessed the efficacy of a potent Nrf2-activator, RTA 408, a semi-synthetic oleanane triterpenoid, on accelerating diabetic wound healing. METHODS Using Leprdb/dbmice, we made 10 mm-diameter excisional humanized wounds in dorsal skin. We administered RTA 408 formulations daily, and used ANOVA for comparison of time to closure, in vivo real-time ROS, histology, molecular changes. RESULTS We found that RTA 408, specifically a 0.1% formulation, significantly reduced wound healing time and increased wound closure rate. While either systemic or topical administration of RTA 408 is effective, wound closure time with the latter was far superior. RTA 408-treated diabetic wounds upregulated Nrf2 and downstream antioxidant genes, and exhibited well-vascularized granulation tissue that aided in re-epithelialization. Reintroduction of redox mechanisms via RTA 408-induced Nrf2 resulted in reduction of the oxidative status of wounds, to coordinate successful wound closure. CONCLUSIONS This preclinical study shows that promoting Nrf2-mediated antioxidant activity in the localized regenerative milieu of a diabetic wound markedly improves the molecular and cellular composition of diabetic wound beds. RTA 408 treats and corrects the irregularity in redox balance mechanisms involving Nrf2, in an avenue not explored previously for treatment of diabetic wounds and tissue regeneration. Our study supports development of RTA 408 as a therapeutic modality for chronic diabetic wounds.
Collapse
Affiliation(s)
- Piul S Rabbani
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Trevor Ellison
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Bukhtawar Waqas
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Darren Sultan
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Salma Abdou
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Joshua A David
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Joshua M Cohen
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Alejandro Gomez-Viso
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Gretl Lam
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Camille Kim
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Jennifer Thomson
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States
| | - Daniel J Ceradini
- Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY 10016, United States; NYU, Wyss Department of Plastic Surgery, 430 E 29th Street, Suite 640, New York, NY 10016, United States.
| |
Collapse
|
122
|
Discussion: Deferoxamine Preconditioning of Irradiated Tissue Improves Perfusion and Fat Graft Retention. Plast Reconstr Surg 2018; 141:666-667. [PMID: 29481397 DOI: 10.1097/prs.0000000000004186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
123
|
Cell-permeable iron inhibits vascular endothelial growth factor receptor-2 signaling and tumor angiogenesis. Oncotarget 2018; 7:65348-65363. [PMID: 27589831 PMCID: PMC5323160 DOI: 10.18632/oncotarget.11689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is important for tumor growth and metastasis. Hypoxia in tumors drives this angiogenic response by stabilizing Hypoxia Inducible Factors (HIF) and target genes like Vascular Endothelial Growth Factor (VEGF). HIF stability is regulated by Prolylhydroxylases (PHD)-mediated modification. Iron is an important cofactor in regulating the enzymatic activity of PHDs. Reducing intracellular iron, for instance, mimics hypoxia and induces a pro-angiogenic response. It is hypothesized that increasing the intracellular iron levels will have an opposite, anti-angiogenic effect. We tested this hypothesis by perturbing iron homeostasis in endothelial cells using a unique form of iron, Ferric Ammonium Citrate (FAC). FAC is a cell-permeable form of iron, which can passively enter into cells bypassing the transferrin receptor mediated uptake of transferrin-bound iron. Our studies show that FAC does not decrease the levels of HIF-1α and HIF-2α in endothelial cells but inhibits the autocrine stimulation of VEGF-Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) system by blocking receptor tyrosine kinase phosphorylation. FAC inhibits VEGF-induced endothelial cell proliferation, migration, tube formation and sprouting. Finally, systemic administration of FAC inhibits VEGF and tumor cell-induced angiogenesis in vivo. In conclusion, our studies show that cell-permeable iron attenuates VEGFR-2 mediated signaling and inhibits tumor angiogenesis.
Collapse
|
124
|
Gao W, Sun L, Fu X, Lin Z, Xie W, Zhang W, Zhao F, Chen X. Enhanced diabetic wound healing by electrospun core–sheath fibers loaded with dimethyloxalylglycine. J Mater Chem B 2018; 6:277-288. [DOI: 10.1039/c7tb02342a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DMOG-loaded nanofibrous wound dressings enhanced diabetic wound healing by stabilizing HIF-1α.
Collapse
Affiliation(s)
- W. Gao
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - L. Sun
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - X. Fu
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Z. Lin
- Department of Orthopedics
- Guangzhou General Hospital of Guangzhou Military Command
- Guangzhou
- China
- Guangdong Key Laboratory of Orthopedic Technology and Implant Materials
| | - W. Xie
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - W. Zhang
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - F. Zhao
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - X. Chen
- The School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| |
Collapse
|
125
|
Rodrigues M, Gurtner G. Black, White, and Gray: Macrophages in Skin Repair and Disease. CURRENT PATHOBIOLOGY REPORTS 2017; 5:333-342. [PMID: 30288366 PMCID: PMC6166434 DOI: 10.1007/s40139-017-0152-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Macrophages alter their responses during the temporal stages of wound healing. During the inflammatory phase macrophages perform phagocytosis. During neovascularization macrophages activate angiogenesis. In the proliferation phase of wound healing, macrophages deposit extracellular matrix and during wound resolution macrophages phagocytize excessive cellular components. This review addresses how these changing phenotypes affect skin repair and disease. RECENT FINDINGS Macrophages can determine the outcome of repair and can shift the normal wound healing response into fibrosis or chronic wounds. Emerging single cell technologies for the first time provide us with tools to uncover macrophage origin, heterogeneity and function. SUMMARY Macrophages may exist as one population where all cells alter their phenotype in response to signals from the microenvironment. Alternatively, macrophages may exist as distinct subsets that can control wound outcomes. A clarified understanding will strengthen our knowledge of skin biology and aid in the development of wound healing therapies.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| | - Geoffrey Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, USA
| |
Collapse
|
126
|
Xie P, Yang L, Talaiti A, Wu JJ, Yu J, Yu T, Wang HY, Huang B, Wu Q, Maimaitili Y, Wang J, Ma HP, Yang YN, Zheng H. Deferoxamine-activated hypoxia-inducible factor-1 restores cardioprotective effects of sevoflurane postconditioning in diabetic rats. Acta Physiol (Oxf) 2017; 221:98-114. [PMID: 28316125 DOI: 10.1111/apha.12874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/29/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022]
Abstract
AIM The cardioprotective effects of sevoflurane postconditioning (SpostC) are eliminated under diabetic conditions, and the underlying mechanism for this phenomenon remains unclear. Many studies have demonstrated that the hypoxia-inducible factor-1 (HIF-1) signalling pathway in the myocardium is impaired under diabetic conditions. This study was to investigate whether deferoxamine (DFO)-induced activation of HIF-1 signalling pathway can restore the cardioprotective effects of SpostC in diabetic rats. METHODS A model of myocardial ischaemia/reperfusion (I/R) injury was induced via ligation of the left anterior descending artery. SpostC was conducted by administering 1.0 MAC sevoflurane. After inducing the I/R injury, the following parameters were measured: myocardial infarct size, cardiac function, myocardial ultrastructure, mitochondrial respiratory function, respiratory chain enzyme activity, rate of reactive oxygen species (ROS) generation, and protein expression of HIF-1α, vascular endothelial growth factor (VEGF), cleaved caspase-3, Bcl-2 and Bax. RESULTS After DFO activated HIF-1 in the impaired myocardium of diabetic rats, SpostC significantly upregulated the protein expression of HIF-1α and its downstream mediator VEGF. This improved myocardial mitochondrial respiratory function and respiratory chain enzyme activity and reduced ROS generation as well as the protein expression of cleaved caspase-3 and Bax. As a result, myocardial infarct size decreased, and cardiac function and mitochondrial ultrastructure improved. CONCLUSION This study demonstrates for the first time that abolishment of the cardioprotective effects of SpostC in diabetic rats is associated with impairment of the HIF-1 signalling pathway and that DFO can activate HIF-1 to restore these cardioprotective effects of SpostC in diabetic rats.
Collapse
Affiliation(s)
- P. Xie
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - L. Yang
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - A. Talaiti
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - J. J. Wu
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - J. Yu
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - T. Yu
- Department of Anesthesiology and Guizhou Key Laboratory of Anesthesia and Organ Protection; Zunyi Medical University; Zunyi Guizhou China
| | - H. Y. Wang
- Department of Anesthesiology and Guizhou Key Laboratory of Anesthesia and Organ Protection; Zunyi Medical University; Zunyi Guizhou China
| | - B. Huang
- Key Lab for Pharmacology of Ministry of Education; Department of Pharmacology; Zunyi Medical University; Zunyi China
| | - Q. Wu
- Key Lab for Pharmacology of Ministry of Education; Department of Pharmacology; Zunyi Medical University; Zunyi China
| | - Y. Maimaitili
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - J. Wang
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - H. P. Ma
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| | - Y. N. Yang
- Department of Cardiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - H. Zheng
- Department of Anesthesiology; The First Affiliated Hospital of Xinjiang Medical University; Urumqi Xinjiang China
| |
Collapse
|
127
|
Müller AS, Janjić K, Lilaj B, Edelmayer M, Agis H. Hypoxia-based strategies for regenerative dentistry—Views from the different dental fields. Arch Oral Biol 2017; 81:121-130. [DOI: 10.1016/j.archoralbio.2017.04.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
|
128
|
Abstract
Wound healing is one of the most complex processes that our bodies must perform. While our ability to repair wounds is often taken for granted, conditions such as diabetes, obesity, or simply old age can significantly impair this process. With the incidence of all three predicted to continue growing into the foreseeable future, there is an increasing push to develop strategies that facilitate healing. Biomaterials are an attractive approach for modulating all aspects of repair, and have the potential to steer the healing process towards regeneration. In this review, we will cover recent advances in developing biomaterials that actively modulate the process of wound healing, and will provide insight into how biomaterials can be used to simultaneously rewire multiple phases of the repair process.
Collapse
Affiliation(s)
- Anna Stejskalová
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| | - Benjamin D Almquist
- Department of Bioengineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
129
|
Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plast Reconstr Surg 2017; 139:695e-706e. [PMID: 28234841 DOI: 10.1097/prs.0000000000003072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND A hallmark of diabetes mellitus is the breakdown of almost every reparative process in the human body, leading to critical impairments of wound healing. Stabilization and activity of the transcription factor hypoxia-inducible factor (HIF)-1α is impaired in diabetes, leading to deficits in new blood vessel formation in response to injury. In this article, the authors compare the effectiveness of two promising small-molecule therapeutics, the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine, for attenuating diabetes-associated deficits in cutaneous wound healing by enhancing HIF-1α activation. METHODS HIF-1α stabilization, phosphorylation, and transactivation were measured in murine fibroblasts cultured under normoxic or hypoxic and low-glucose or high-glucose conditions following treatment with deferoxamine or dimethyloxalylglycine. In addition, diabetic wound healing and neovascularization were evaluated in db/db mice treated with topical solutions of either deferoxamine or dimethyloxalylglycine, and the efficacy of these molecules was also compared in aged mice. RESULTS The authors show that deferoxamine stabilizes HIF-1α expression and improves HIF-1α transactivity in hypoxic and hyperglycemic states in vitro, whereas the effects of dimethyloxalylglycine are significantly blunted under hyperglycemic hypoxic conditions. In vivo, both dimethyloxalylglycine and deferoxamine enhance wound healing and vascularity in aged mice, but only deferoxamine universally augmented wound healing and neovascularization in the setting of both advanced age and diabetes. CONCLUSION This first direct comparison of deferoxamine and dimethyloxalylglycine in the treatment of impaired wound healing suggests significant therapeutic potential for topical deferoxamine treatment in ischemic and diabetic disease.
Collapse
|
130
|
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9:434-449. [PMID: 28044409 DOI: 10.1111/1753-0407.12521] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells, as well as their major products nitric oxide (NO) and prostacyclin, play a key role in the regulation of vascular homeostasis. Diabetes mellitus is an important risk factor for cardiovascular disease. Diabetes-induced endothelial dysfunction is a critical and initiating factor in the genesis of diabetic vascular complications. The present review focuses on both large blood vessels and the microvasculature. The endothelial dysfunction in diabetic macrovascular complications is characterized by reduced NO bioavailability, poorly compensated for by increased production of prostacyclin and/or endothelium-dependent hyperpolarizations, and increased production or action of endothelium-derived vasoconstrictors. The endothelial dysfunction of microvascular complications is primarily characterized by decreased release of NO, enhanced oxidative stress, increased production of inflammatory factors, abnormal angiogenesis, and impaired endothelial repair. In addition, non-coding RNAs (microRNAs) have emerged as participating in numerous cellular processes. Thus, this reviews pays special attention to microRNAs and their modulatory role in diabetes-induced vascular dysfunction. Some therapeutic strategies for preventing and restoring diabetic endothelial dysfunction are also highlighted.
Collapse
Affiliation(s)
- Yi Shi
- Biomedical Research Centre, Shanghai Key Laboratory of organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
131
|
Al-Habbal D, Janjić K, Edelmayer M, Moritz A, Agis H. Collagen barrier membranes do not adsorb hypoxia mimetic activity-Activity of gingival fibroblasts cultured directly on collagen barrier membranes loaded with hypoxia mimetic agents. J Biomed Mater Res B Appl Biomater 2017; 106:874-879. [PMID: 28419698 DOI: 10.1002/jbm.b.33893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 02/26/2017] [Accepted: 03/25/2017] [Indexed: 12/17/2022]
Abstract
Hypoxia-based strategies for applications in oral surgery and periodontology have been proposed where collagen barrier membranes (CBM) are loaded with hypoxia mimetic agents (HMA) to induce a pro-angiogenic response. While it was found that CBM release HMA, it remained unclear if CBM adsorb HMA activity. Here we evaluated the response of oral cells cultured on CBM, supplemented with the HMA dimethyloxalylglycine (DMOG), desferrioxamine (DFO), and l-mimosine (l-MIM). Gingival fibroblasts (GF) were cultured on unwashed CBM as well as on CBM that had been washed with serum-free medium for 48 hours. The pro-angiogenic response was measured based on vascular endothelial growth factor (VEGF) production. Viability and proliferation were assessed based on MTT and BrdU assays. We found that GF seeded onto CBM loaded with DFO and l-MIM, but not DMOG, showed an increase in VEGF to 6.1-fold and 7.7-fold compared to unloaded CBM, respectively. Cells remained vital, but a trend for decreased proliferation was observed on DMOG and DFO-loaded CBM which did not reach the level of significance. Evaluation of washed CBM revealed no difference between the unloaded CBM and CBM supplemented with DMOG, DFO, or l-MIM. In conclusion, our results suggest that CBM do not adsorb hypoxia mimetic activity but release HMA within the first hours. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 874-879, 2018.
Collapse
Affiliation(s)
- Diana Al-Habbal
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Klara Janjić
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Michael Edelmayer
- Austrian Cluster for Tissue Regeneration, Austria.,Department of Oral Surgery, School of Dentistry, Medical University of Vienna, Austria
| | - Andreas Moritz
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| | - Hermann Agis
- Department of Conservative Dentistry and Periodontology, School of Dentistry, Medical University of Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Austria
| |
Collapse
|
132
|
Tchanque-Fossuo C, Dahle S, Buchman S, Rivkah Isseroff R. Deferoxamine: potential novel topical therapeutic for chronic wounds. Br J Dermatol 2017; 176:1056-1059. [DOI: 10.1111/bjd.14956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- C.N. Tchanque-Fossuo
- Department of Dermatology; University of California Davis; 3301 C Street Sacramento CA U.S.A
- Veterans Administration, Northern California Health Care System; Dermatology Service; 10535 Hospital Way, Building 801 Mather CA 95655 U.S.A
| | - S.E. Dahle
- Department of Dermatology; University of California Davis; 3301 C Street Sacramento CA U.S.A
- Department of Surgery; Podiatry Section; 10535 Hospital Way, Building 801 Mather CA 95655 U.S.A
| | - S.R. Buchman
- Plastic Surgery Section; University of Michigan; Ann Arbor MI U.S.A
| | - R. Rivkah Isseroff
- Department of Dermatology; University of California Davis; 3301 C Street Sacramento CA U.S.A
- Veterans Administration, Northern California Health Care System; Dermatology Service; 10535 Hospital Way, Building 801 Mather CA 95655 U.S.A
| |
Collapse
|
133
|
Ding L, Yang M, Zhao T, Lv G. Roles of p300 and cyclic adenosine monophosphate response element binding protein in high glucose-induced hypoxia-inducible factor 1α inactivation under hypoxic conditions. J Diabetes Investig 2017; 8:277-285. [PMID: 27808477 PMCID: PMC5415468 DOI: 10.1111/jdi.12592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 10/05/2016] [Accepted: 10/30/2016] [Indexed: 12/19/2022] Open
Abstract
Aims/Introduction Given the high prevalence of diabetes and burn injuries worldwide, it is essential to dissect the underlying mechanism of delayed burn wound healing in diabetes patients, especially the high glucose‐induced hypoxia‐inducible factor 1 (HIF‐1)‐mediated transcription defects. Materials and Methods Human umbilical vein endothelial cells were cultured with low or high concentrations of glucose. HIF‐1α‐induced vascular endothelial growth factor (VEGF) transcription was measured by luciferase assay. Immunofluorescence staining was carried out to visualize cyclic adenosine monophosphate response element binding protein (CREB) localization. Immunoprecipitation was carried out to characterize the association between HIF‐1α/p300/CREB. To test whether p300, CREB or p300+CREB co‐overexpression was sufficient to rescue the HIF‐1‐mediated transcription defect after high glucose exposure, p300, CREB or p300+CREB co‐overexpression were engineered, and VEGF expression was quantified. Finally, in vitro angiogenesis assay was carried out to test whether the high glucose‐induced angiogenesis defect is rescuable by p300 and CREB co‐overexpression. Results Chronic high glucose treatment resulted in impaired HIF‐1‐induced VEGF transcription and CREB exclusion from the nucleus. P300 or CREB overexpression alone cannot rescue high glucose‐induced HIF‐1α transcription defects. In contrast, co‐overexpression of p300 and CREB dramatically ameliorated high glucose‐induced impairment of HIF‐1‐mediated VEGF transcription, as well as in vitro angiogenesis. Finally, we showed that co‐overexpression of p300 and CREB rectifies the dissociation of HIF‐1α‐p300‐CREB protein complex in chronic high glucose‐treated cells. Conclusion Both p300 and CREB are required for the function integrity of HIF‐1α transcription machinery and subsequent angiogenesis, suggesting future studies to improve burn wound healing might be directed to optimization of the interaction between p300, CREB and HIF‐1α.
Collapse
Affiliation(s)
- Lingtao Ding
- Department of Burn and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu Province, China.,Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Minlie Yang
- Department of Burn and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu Province, China
| | - Tianlan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guozhong Lv
- Department of Burn and Plastic Surgery, The Third Affiliated Hospital of Nantong University, Wuxi, Jiangsu Province, China
| |
Collapse
|
134
|
Schivo M, Aksenov AA, Pasamontes A, Cumeras R, Weisker S, Oberbauer AM, Davis CE. A rabbit model for assessment of volatile metabolite changes observed from skin: a pressure ulcer case study. J Breath Res 2017; 11:016007. [PMID: 28068292 DOI: 10.1088/1752-7163/aa51d7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human skin presents a large, easily accessible matrix that is potentially useful for diagnostic applications based on whole body metabolite changes-some of which will be volatile and detected using minimally invasive tools. Unfortunately, identifying skin biomarkers that can be reliably linked to a particular condition is challenging due to a large variability of genetics, dietary intake, and environmental exposures within human populations. This leads to a paucity of clinically validated volatile skin biomarker compounds. Animal models present a very convenient and attractive way to circumvent many of the variability issues. The rabbit (Leporidae) is a potentially logistically useful model to study the skin metabolome, but very limited knowledge of its skin metabolites exists. Here we present the first comprehensive assessment of the volatile fraction of rabbit skin metabolites using polydimethylsiloxane sorbent patch sampling in conjunction with gas chromatography/mass spectrometry. A collection of compounds that are secreted from rabbit skin was documented, and predominantly acyclic long-chain alkyls and alcohols were detected. We then utilized this animal model to study differences between intact skin and skin with early pressure ulcers, as the latter are a major problem in intensive care units. Four New Zealand female white rabbits underwent ulcer formation on one ear with the other ear as a control. Early-stage ulcers were created with neodymium magnets. Histologic analysis showed acute heterophilic dermatitis, edema, and micro-hemorrhage on the ulcerated ears with normal findings on the control ears. The metabolomic analysis revealed subtle but noticeable differences, with several compounds associated with the oxidative stress-related degradation of lipids found to be present in greater abundances in ulcerated ears. The metabolomic findings correlate with histologic evidence of early-stage ulcers. We postulate that the Leporidae model recapitulated the vascular changes associated with ulcer formation. This study illustrates the potential usefulness of the Leporidae model for skin metabolome studies. Additionally, skin metabolome analysis may enhance an understanding of non-skin sources such as urine or breath.
Collapse
Affiliation(s)
- Michael Schivo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of California, Davis, Sacramento, CA 95617, USA. Center for Comparative Respiratory Biology and Medicine, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | |
Collapse
|
135
|
Drager J, Sheikh Z, Zhang YL, Harvey EJ, Barralet JE. Local delivery of iron chelators reduces in vivo remodeling of a calcium phosphate bone graft substitute. Acta Biomater 2016; 42:411-419. [PMID: 27449336 DOI: 10.1016/j.actbio.2016.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/01/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Iron chelators are known activators of the Hypoxia Includible Factor-1α (HIF-1α) pathway, a critical cellular pathway involved in angiogenic responses to hypoxia. Local delivery of these chelators has shown promise in bone tissue engineering strategies by inducing angiogenesis and osteogenesis. Hypoxic microenvironments are also a stimulus for osteoclast differentiation and resorptive activity, a process likely mediated by HIF-1α. In vitro, low doses of the iron chelator Deferoxamine (DFO) has shown to induce HIF-1α mediated osteoclast formation and function. However other studies have proposed an opposite in vitro effect likely through HIF independent mechanisms. To investigate use of these medications in bioceramic based bone tissue engineering strategies this study aimed to determine the in vivo effect of local delivery of iron chelators on bioceramic remodeling. A non-weight bearing cranial onlay model was used to assess monetite resorption and new bone formation in the presence or absence of a repeated delivery of two iron chelators, DFO and 1,10 Phenanthroline (PHT) at doses known to induce HIF. We found a marked reduction graft resorption and remodeling associated with iron chelation. This was correlated to a 3-fold reduction in osteoclast number at the bone graft interface. Iron is needed for mitochondrial biogenesis during osteoclastic differentiation and reducing extracellular iron levels may inhibit this process and possibly overpower any HIF induced osteoclast formation. Our findings suggest that these inexpensive and widely available molecules may be used to locally reduce bioceramic scaffold resorption and encourages future investigations of iron chelators as bone anti-resorptive agents in other clinical contexts. STATEMENT OF SIGNIFICANCE Low doses of iron chelators can induce angiogenesis and osteogenesis in repairing bone by stimulating the oxygen sensitive gene; hypoxia inducible factor. These medications have potential to augment bioceramic based bone tissue engineering strategies without the downsides of protein-based growth factors. HIF activation is also known to stimulate osteoclast-mediated resorption and could potentially accelerate remodeling of biocermaics, however we have shown that the local delivery of iron chelation at doses known to induce HIF resulted in a reduction of monetite resorption and a significant decrease in osteoclast number at the bone graft interface. This maybe due to HIF independent mechanism. This is the first study to show a local effect of iron chelators in vivo on osteoclast-mediated resorption. This opens the potential of further study of these bifunctional medications to modulate resorption of biocermaics in environments where a prolonged presence of material is desired for graft site stability. Moreover these safe widely used medications can be explored to locally reduce osteoclasts in pathological bone resorption.
Collapse
Affiliation(s)
- Justin Drager
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada.
| | - Zeeshan Sheikh
- Faculty of Dentistry, University of Toronto, 150 College Street, Toronto, ON M5S 3E2, Canada.
| | - Yu Ling Zhang
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada; Faculty of Dentistry, McGill University, 3640, Rue University, Montreal, Qc H3A 0C7, Canada.
| | - Edward J Harvey
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada.
| | - Jake E Barralet
- Division of Orthopaedics, McGill University Health Center, 1650 Cedar Ave, Montreal, Qc H3G 1A4, Canada; Faculty of Dentistry, McGill University, 3640, Rue University, Montreal, Qc H3A 0C7, Canada.
| |
Collapse
|
136
|
Engineered human vascularized constructs accelerate diabetic wound healing. Biomaterials 2016; 102:107-19. [DOI: 10.1016/j.biomaterials.2016.06.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 02/07/2023]
|
137
|
Xue H, Chen D, Zhong Y, Zhou Z, Fang S, Li M, Guo C. Deferoxamine ameliorates hepatosteatosis via several mechanisms in
ob/ob
mice. Ann N Y Acad Sci 2016; 1375:52-65. [DOI: 10.1111/nyas.13174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/31/2016] [Accepted: 06/14/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Han Xue
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Di Chen
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Yan‐Ke Zhong
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Zhen‐Diao Zhou
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Shi‐Xin Fang
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Ming‐Yao Li
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| | - Chuang Guo
- College of Life and Health Sciences Northeastern University Shenyang P. R. China
| |
Collapse
|
138
|
Lam GC, Sefton MV. Harnessing gene and drug delivery for vascularizing engineered tissue platforms. Drug Discov Today 2016; 21:1532-1539. [PMID: 27319292 DOI: 10.1016/j.drudis.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/04/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Abstract
Enhancement of tissue vascularization is a therapeutic target for many ischemic conditions, and is crucial for successful engraftment of therapeutic cells for tissue regeneration. The authors present opportunities for using these platforms for dissecting the role of angiogenic mechanisms and highlight recent gene and drug delivery strategies for enhancing vascularization of engineered tissues. Modular tissue engineering is featured as an example.
Collapse
Affiliation(s)
- Gabrielle C Lam
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Michael V Sefton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
139
|
Bonne C. Potential efficiency of antioxidants to prevent pressure ulcers. A neglected hypothesis. Med Hypotheses 2016; 91:28-31. [PMID: 27142137 DOI: 10.1016/j.mehy.2016.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 01/01/2023]
Abstract
Pressure ulcers are necrotic lesions mainly due to capillary hypoperfusion. It is well known that hypoxia and also subsequent oxygenation at reperfusion provoke the formation of reactive oxygen species (ROS) responsible for cell death. The hypothesis of their participation in the pathogenesis of pressure ulcers has already been tested; several antioxidants have the capacity to inhibit skin necrosis in animal models but their efficiency in preventing bedsores has never been demonstrated in patients. The failure of clinical trials to show the protective activity of some antioxidants does not rule out the involvement of ROS in ischemic ulcers and the potential efficacy of other antioxidants in preventing their formation remains possible.
Collapse
Affiliation(s)
- Claude Bonne
- CB-Consultant, 2, rue sur les murs, 17000 La Rochelle, France
| |
Collapse
|
140
|
Khamaisi M, Katagiri S, Keenan H, Park K, Maeda Y, Li Q, Qi W, Thomou T, Eschuk D, Tellechea A, Veves A, Huang C, Orgill DP, Wagers A, King GL. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest 2016; 126:837-53. [PMID: 26808499 DOI: 10.1172/jci82788] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.
Collapse
|
141
|
Chen H, Guo L, Wicks J, Ling C, Zhao X, Yan Y, Qi J, Cui W, Deng L. Quickly promoting angiogenesis by using a DFO-loaded photo-crosslinked gelatin hydrogel for diabetic skin regeneration. J Mater Chem B 2016; 4:3770-3781. [DOI: 10.1039/c6tb00065g] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A desferrioxamine (DFO)-loaded photo-crosslinked gelatin hydrogel was used to reconstruct vessel network and prompt skin regeneration in diabetic wounds.
Collapse
Affiliation(s)
- Hao Chen
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Lei Guo
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Joshua Wicks
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Christopher Ling
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Xin Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education
- School of Life Science and Technology
- Xi'an
- P. R. China
| | - Yufei Yan
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Jin Qi
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| | - Wenguo Cui
- Department of Orthopedics
- The First Affiliated Hospital of Soochow University
- Orthopedic Institute
- Soochow University
- Suzhou
| | - Lianfu Deng
- Shanghai Institute of Traumatology and Orthopaedics
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200025
| |
Collapse
|
142
|
Margulis K, Neofytou EA, Beygui RE, Zare RN. Celecoxib Nanoparticles for Therapeutic Angiogenesis. ACS NANO 2015; 9:9416-9426. [PMID: 26244654 DOI: 10.1021/acsnano.5b04137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Controllable induction of blood vessel formation (angiogenesis) presents an important therapeutic goal in ischemic diseases and is also beneficial in various normal physiological processes. In this study, we have shown that nanoparticles of celecoxib, a lipophilic nonsteroidal anti-inflammatory drug, effectively evoke therapeutic angiogenesis in animal models, in both normal and ischemic organs. Celecoxib is widely considered to inhibit angiogenesis, although a recent study suggests that it can instead promote blood vessel growth in cancer cell lines. The hydrophobic nature of this drug necessitates its administration in nanoparticulate form in order to elicit a perceivable pharmacological response. We developed a facile method for nanoparticle formation by solvent extraction from microemulsions in supercritical carbon dioxide. This method exploits a spontaneous formation of nanometric domains within the microemulsion system and their rapid conversion to nanoparticles by supercritical fluid. The resultant nanoparticles were administered subcutaneously to mice in a biocompatible hydrogel, and caused a 4-fold increase in blood vessel count in normally perfused skin compared with drug-free particles. They were at least as effective in inducing angiogenesis as nanoparticles of deferoxamine, a well-established neovascularization promoter. Next, we evaluated their effect on ischemic tissues in murine model of myocardial infarction. We found that celecoxib nanoparticles were able to induce a significant vascularization of ischemic myocardium and hamper the progression of heart failure, which points toward a new approach for treating ischemia.
Collapse
Affiliation(s)
- Katherine Margulis
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| | - Evgenios A Neofytou
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine , Stanford, California 94305-5407, United States
| | - Ramin E Beygui
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine , Stanford, California 94305-5407, United States
- Heart and Vascular Center, NorthBay Medical Center ,1200 B. Gale Wilson Boulevard, Fairfield, California 94533, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University , Stanford, California 94305-5080, United States
| |
Collapse
|
143
|
Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, Rahal A, Kumar Tandan S, Kumar D. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol 2015; 764:9-21. [PMID: 26101070 DOI: 10.1016/j.ejphar.2015.06.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/24/2022]
Abstract
Deferoxamine has shown cutaneous wound healing potential by increased neovascularization. We hypothesized that topically applied deferoxamine facilitates wound healing in diabetic rats by modulating important cytokines and growth factors that take part in healing processes in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin and wound was created under pentobarbitone anesthesia. The diabetic rats were divided into two groups, of which one (control) was treated with ointment base and other with deferoxamine ointment (0.1%). Wound closure measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor 1-alpha (SDF-1α), transforming growth factor beta 1 (TGF-β1), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), interleukin-1 beta (IL-1β) and interleukin-10 (IL-10) mRNA and proteins were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histological changes were assessed by H&E staining. The per cent wound closure was significantly higher from day 7 onwards in deferoxamine-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and their protein levels were significantly higher on days 3, 7 and 14 in deferoxamine-treated rats. The mRNA expression and protein levels of TNF-α, MMP-9 and IL-1β were progressively and markedly reduced in deferoxamine-treated rats. The collagen deposition and formation of blood vessels were greater in deferoxamine-treated rats. It is suggested that topical application of deferoxamine ointment might be useful in cutaneous wound healing in diabetic patients.
Collapse
Affiliation(s)
- Mahendra Ram
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Sanjay Kumawat
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Dhirendra Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Madhu C Lingaraju
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Anu Rahal
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India
| | - Dinesh Kumar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, UP, India.
| |
Collapse
|
144
|
Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC. Progenitor cell dysfunctions underlie some diabetic complications. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2607-18. [PMID: 26079815 DOI: 10.1016/j.ajpath.2015.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/01/2015] [Accepted: 05/04/2015] [Indexed: 02/08/2023]
Abstract
Stem cells and progenitor cells are integral to tissue homeostasis and repair. They contribute to health through their ability to self-renew and commit to specialized effector cells. Recently, defects in a variety of progenitor cell populations have been described in both preclinical and human diabetes. These deficits affect multiple aspects of stem cell biology, including quiescence, renewal, and differentiation, as well as homing, cytokine production, and neovascularization, through mechanisms that are still unclear. More important, stem cell aberrations resulting from diabetes have direct implications on tissue function and seem to persist even after return to normoglycemia. Understanding how diabetes alters stem cell signaling and homeostasis is critical for understanding the complex pathophysiology of many diabetic complications. Moreover, the success of cell-based therapies will depend on a more comprehensive understanding of these deficiencies. This review has three goals: to analyze stem cell pathways dysregulated during diabetes, to highlight the effects of hyperglycemic memory on stem cells, and to define ways of using stem cell therapy to overcome diabetic complications.
Collapse
Affiliation(s)
- Melanie Rodrigues
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Victor W Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Robert C Rennert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Christopher R Davis
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Michael T Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California
| | - Geoffrey C Gurtner
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, Stanford, California.
| |
Collapse
|
145
|
Duscher D, Barrera J, Wong VW, Maan ZN, Whittam AJ, Januszyk M, Gurtner GC. Stem Cells in Wound Healing: The Future of Regenerative Medicine? A Mini-Review. Gerontology 2015; 62:216-25. [PMID: 26045256 DOI: 10.1159/000381877] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/25/2015] [Indexed: 01/13/2023] Open
Abstract
The increased risk of disease and decreased capacity to respond to tissue insult in the setting of aging results from complex changes in homeostatic mechanisms, including the regulation of oxidative stress and cellular heterogeneity. In aged skin, the healing capacity is markedly diminished resulting in a high risk for chronic wounds. Stem cell-based therapies have the potential to enhance cutaneous regeneration, largely through trophic and paracrine activity. Candidate cell populations for therapeutic application include adult mesenchymal stem cells, embryonic stem cells and induced pluripotent stem cells. Autologous cell-based approaches are ideal to minimize immune rejection but may be limited by the declining cellular function associated with aging. One strategy to overcome age-related impairments in various stem cell populations is to identify and enrich with functionally superior stem cell subsets via single cell transcriptomics. Another approach is to optimize cell delivery to the harsh environment of aged wounds via scaffold-based cell applications to enhance engraftment and paracrine activity of therapeutic stem cells. In this review, we shed light on challenges and recent advances surrounding stem cell therapies for wound healing and discuss limitations for their clinical adoption.
Collapse
Affiliation(s)
- Dominik Duscher
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif., USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Zielins ER, Brett EA, Luan A, Hu MS, Walmsley GG, Paik K, Senarath-Yapa K, Atashroo DA, Wearda T, Lorenz HP, Wan DC, Longaker MT. Emerging drugs for the treatment of wound healing. Expert Opin Emerg Drugs 2015; 20:235-46. [PMID: 25704608 DOI: 10.1517/14728214.2015.1018176] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Wound healing can be characterized as underhealing, as in the setting of chronic wounds, or overhealing, occurring with hypertrophic scar formation after burn injury. Topical therapies targeting specific biochemical and molecular pathways represent a promising avenue for improving and, in some cases normalizing, the healing process. AREAS COVERED A brief overview of both normal and pathological wound healing has been provided, along with a review of the current clinical guidelines and treatment modalities for chronic wounds, burn wounds and scar formation. Next, the major avenues for wound healing drugs, along with drugs currently in development, are discussed. Finally, potential challenges to further drug development, and future research directions are discussed. EXPERT OPINION The large body of research concerning wound healing pathophysiology has provided multiple targets for topical therapies. Growth factor therapies with the ability to be targeted for localized release in the wound microenvironment are most promising, particularly when they modulate processes in the proliferative phase of wound healing.
Collapse
Affiliation(s)
- Elizabeth R Zielins
- Stanford University School of Medicine, Division of Plastic Surgery, Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine , 257 Campus Drive, Stanford, CA 94305-5148 , USA +1 650 736 1707 ; +1 650 736 1705 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|