101
|
Nakamura Y. Function of polar glycerolipids in flower development in Arabidopsis thaliana. Prog Lipid Res 2015; 60:17-29. [DOI: 10.1016/j.plipres.2015.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 11/28/2022]
|
102
|
Okazaki Y, Nishizawa T, Takano K, Ohnishi M, Mimura T, Saito K. Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. PHYSIOLOGIA PLANTARUM 2015; 155:33-42. [PMID: 25677193 DOI: 10.1111/ppl.12334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/05/2015] [Indexed: 05/28/2023]
Abstract
Glucuronosyldiacylglycerol (GlcADG) is a plant glycolipid that accumulates in Arabidopsis and rice in response to phosphorus (P) starvation. It has been suggested that GlcADG functions to mitigate the stress induced by P depletion. Biosynthesis of GlcADG requires sulfolipid (SQDG) synthase, which is coded for in plant genomes. This indicates the possibility that GlcADG may be a general constituent of membrane lipids in plants. In this study, we investigated the SQDG synthases found in the genomes of higher plants, ferns, mosses, algae and cyanobacteria. In addition, we analyzed GlcADG accumulation, and the expression of SQDG synthase homologs in tomato and soybean plants grown under P-limited conditions. LC-MS analysis of lipids from these plants confirmed that GlcADG accumulated during P deprivation, as previously observed in Arabidopsis and rice. We also observed upregulation of SQDG synthase transcripts in these plants during P deprivation. These data suggest that GlcADG is present not only in model plants, but also in various other plant species, and that this lipid molecule performs an important physiological function as a mitigator of P-deprivation stress in plants.
Collapse
Affiliation(s)
- Yozo Okazaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Tomoko Nishizawa
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kouji Takano
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Miwa Ohnishi
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Tetsuro Mimura
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| |
Collapse
|
103
|
Shimojima M, Madoka Y, Fujiwara R, Murakawa M, Yoshitake Y, Ikeda K, Koizumi R, Endo K, Ozaki K, Ohta H. An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:664. [PMID: 26379690 PMCID: PMC4553410 DOI: 10.3389/fpls.2015.00664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/12/2015] [Indexed: 05/24/2023]
Abstract
Inorganic phosphate (Pi) depletion is a serious problem for plant growth. Membrane lipid remodeling is a defense mechanism that plants use to survive Pi-depleted conditions. During Pi starvation, phospholipids are degraded to supply Pi for other essential biological processes, whereas galactolipid synthesis in plastids is up-regulated via the transcriptional activation of monogalactosyldiacylglycerol synthase 3 (MGD3). Thus, the produced galactolipids are transferred to extraplastidial membranes to substitute for phospholipids. We found that, Pi starvation induced oil accumulation in the vegetative tissues of various seed plants without activating the transcription of enzymes involved in the later steps of triacylglycerol (TAG) biosynthesis. Moreover, the Arabidopsis starchless phosphoglucomutase mutant, pgm-1, accumulated higher TAG levels than did wild-type plants under Pi-depleted conditions. We generated transgenic plants that expressed a key gene involved in TAG synthesis using the Pi deficiency-responsive MGD3 promoter in wild-type and pgm-1 backgrounds. During Pi starvation, the transgenic plants accumulated higher TAG amounts compared with the non-transgenic plants, suggesting that the Pi deficiency-responsive promoter of galactolipid synthase in plastids may be useful for producing transgenic plants that accumulate more oil under Pi-depleted conditions.
Collapse
Affiliation(s)
- Mie Shimojima
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Yuka Madoka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Ryota Fujiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Masato Murakawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Yushi Yoshitake
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Keiko Ikeda
- Technical Department, Biomaterial Analysis Center, Tokyo Institute of TechnologyYokohama, Japan
| | - Ryota Koizumi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
| | - Keiji Endo
- Biological Science Laboratories, Kao CorporationTochigi, Japan
| | - Katsuya Ozaki
- Biological Science Laboratories, Kao CorporationTochigi, Japan
| | - Hiroyuki Ohta
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of TechnologyYokohama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| |
Collapse
|
104
|
Block MA, Jouhet J. Lipid trafficking at endoplasmic reticulum-chloroplast membrane contact sites. Curr Opin Cell Biol 2015; 35:21-9. [PMID: 25868077 DOI: 10.1016/j.ceb.2015.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/17/2015] [Accepted: 03/21/2015] [Indexed: 10/23/2022]
Abstract
Glycerolipid synthesis in plant cells is characterized by an intense trafficking of lipids between the endoplasmic reticulum (ER) and chloroplasts. Initially, fatty acids are synthesized within chloroplasts and are exported to the ER where they are used to build up phospholipids and triacylglycerol. Ultimately, derivatives of these phospholipids return to chloroplasts to form galactolipids, monogalactosyldiacylglycerol and digalactosyldiacylglycerol, the main and essential lipids of photosynthetic membranes. Lipid trafficking was proposed to transit through membrane contact sites (MCSs) connecting both organelles. Here, we review recent insights into ER-chloroplast MCSs and lipid trafficking between chloroplasts and the ER.
Collapse
Affiliation(s)
- Maryse A Block
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France.
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte Recherche 5168, Centre National Recherche Scientifique, Université de Grenoble-Alpes, Institut National de la Recherche Agronomique, Commissariat à l'Energie Atomique et Energies Alternatives, Institut de Recherches en Technologies et Sciences pour le Vivant, 17 Avenue des Martyrs, F-38054 Grenoble, France
| |
Collapse
|
105
|
Kobayashi K, Fujii S, Sato M, Toyooka K, Wada H. Specific role of phosphatidylglycerol and functional overlaps with other thylakoid lipids in Arabidopsis chloroplast biogenesis. PLANT CELL REPORTS 2015; 34:631-42. [PMID: 25477206 DOI: 10.1007/s00299-014-1719-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/12/2014] [Accepted: 11/23/2014] [Indexed: 05/20/2023]
Abstract
With phosphate deficiency, the role of phosphatidylglycerol is compensated by increased glycolipid content in thylakoid membrane biogenesis but not photosynthetic electron transport in Arabidopsis chloroplasts. In plants and cyanobacteria, anionic phosphatidylglycerol (PG) is the only major phospholipid in thylakoid membranes, where neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are predominant. In addition to provide a lipid bilayer matrix, PG plays a specific role in photosynthetic electron transport. Non-phosphorous sulfoquinovosyldiacylglycerol (SQDG) is another anionic lipid in thylakoids; it substitutes for PG under phosphate (Pi) deficiency to maintain proper balance of anionic charge in thylakoid membranes. Although the crucial role of PG in photosynthesis has been deeply analyzed in cyanobacteria, its physiological function in seed plants other than photosynthesis remains unclear. To reveal specific roles of PG and functional overlaps with other thylakoid lipids, we characterized a PG-deficient Arabidopsis mutant (pgp1-2) under Pi-controlled conditions. Under Pi-sufficient conditions, the proportion of PG and other thylakoid lipids was decreased in pgp1-2, which led to severe disruption of thylakoid membrane biogenesis. Under Pi-deficient conditions, the proportion of all glycolipids in the mutant was greatly increased, with that of PG further decreased. In Pi-deficient pgp1-2, thylakoid membranes remarkably developed, which was accompanied by a change in nucleoid morphology and restored expression of nuclear- and plastid-encoded photosynthesis genes. Increase in glycolipid content with Pi deficiency may compensate for the loss of PG in terms of thylakoid membrane biogenesis. Although Pi deficiency increased chlorophyll and photosynthesis protein content in pgp1-2, it critically decreased photochemical activity in PSII. Further deprivation of PG in photosynthesis complexes may abolish the PSII activity in Pi-deficient pgp1-2, which suggests that glycolipids cannot replace PG in photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | | | | | | | | |
Collapse
|
106
|
Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, Scheible WR. The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1907-18. [PMID: 25680792 PMCID: PMC4378627 DOI: 10.1093/jxb/eru535] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 05/19/2023]
Abstract
Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant.
Collapse
Affiliation(s)
- Bikram Datt Pant
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Asdrubal Burgos
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Pooja Pant
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | - Lothar Willmitzer
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Wolf-Rüdiger Scheible
- Max Planck Institute for Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
107
|
Manara A, DalCorso G, Guzzo F, Furini A. Loss of the Atypical Kinases ABC1K7 and ABC1K8 Changes the Lipid Composition of the Chloroplast Membrane. ACTA ACUST UNITED AC 2015; 56:1193-204. [DOI: 10.1093/pcp/pcv046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/14/2015] [Indexed: 11/14/2022]
|
108
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
109
|
Yu B, Li W. Comparative profiling of membrane lipids during water stress in Thellungiella salsuginea and its relative Arabidopsis thaliana. PHYTOCHEMISTRY 2014; 108:77-86. [PMID: 25308761 DOI: 10.1016/j.phytochem.2014.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 07/31/2014] [Accepted: 07/19/2014] [Indexed: 05/12/2023]
Abstract
The remodelling of membrane lipids contributes to the tolerance of plants to stresses, such as freezing and deprivation of phosphorus. However, whether and how this remodelling relates to tolerance of PEG-induced osmotic stress has seldom been reported. Thellungiella salsuginea is a popular extremophile model for studies of stress tolerance. In this study, it was demonstrated that T. salsuginea was more tolerant to PEG-induced osmotic stress than its close relative Arabidopsis thaliana. Lipidomic analysis indicated that plastidic lipids are more sensitive to PEG-induced osmotic stress than extra-plastidic ones in both species, and that the changes in plastidic lipids differed markedly between them. PEG-induced osmotic stress led to a dramatic decrease in levels of plastidic lipids in A. thaliana, whereas the change in plastidic lipid in T. salsuginea involved an adaptive remodelling shortly after the onset of PEG-induced osmotic stress. The two aspects of this remodelling involved increases in (1) the level of plastidic lipids, especially digalactosyl diacylglycerol, and (2) the double bond index of plastidic lipids. These remodelling steps could maintain the integrity and improve the fluidity of plastidic membranes and this may contribute to the PEG-induced osmotic stress tolerance of T. salsuginea.
Collapse
Affiliation(s)
- Buzhu Yu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Weiqi Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; The Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
110
|
Gao QM, Yu K, Xia Y, Shine MB, Wang C, Navarre D, Kachroo A, Kachroo P. Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep 2014; 9:1681-1691. [PMID: 25466253 DOI: 10.1016/j.celrep.2014.10.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022] Open
Abstract
The plant galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) have been linked to the anti-inflammatory and cancer benefits of a green leafy vegetable diet in humans due to their ability to regulate the levels of free radicals like nitric oxide (NO). Here, we show that DGDG contributes to plant NO as well as salicylic acid biosynthesis and is required for the induction of systemic acquired resistance (SAR). In contrast, MGDG regulates the biosynthesis of the SAR signals azelaic acid (AzA) and glycerol-3-phosphate (G3P) that function downstream of NO. Interestingly, DGDG is also required for AzA-induced SAR, but MGDG is not. Notably, transgenic expression of a bacterial glucosyltransferase is unable to restore SAR in dgd1 plants even though it does rescue their morphological and fatty acid phenotypes. These results suggest that MGDG and DGDG are required at distinct steps and function exclusively in their individual roles during the induction of SAR.
Collapse
Affiliation(s)
- Qing-Ming Gao
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Keshun Yu
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Ye Xia
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - M B Shine
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | - Caixia Wang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA; Qingdao Agricultural University, Number 700, Changcheng Road, Chengyang District, Qingdao City 266109, PRC
| | - DuRoy Navarre
- Agricultural Research Service, United States Department of Agriculture, Washington State University, Prosser, WA 99350, USA
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
111
|
Maréchal E, Bastien O. Modeling of regulatory loops controlling galactolipid biosynthesis in the inner envelope membrane of chloroplasts. J Theor Biol 2014; 361:1-13. [DOI: 10.1016/j.jtbi.2014.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
|
112
|
Fujii S, Kobayashi K, Nakamura Y, Wada H. Inducible knockdown of MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 reveals roles of galactolipids in organelle differentiation in Arabidopsis cotyledons. PLANT PHYSIOLOGY 2014; 166:1436-49. [PMID: 25253888 PMCID: PMC4226381 DOI: 10.1104/pp.114.250050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the major lipid constituent of thylakoid membranes and is essential for chloroplast biogenesis in plants. In Arabidopsis (Arabidopsis thaliana), MGDG is predominantly synthesized by inner envelope-localized MONOGALACTOSYLDIACYLGLYCEROL SYNTHASE1 (MGD1); its knockout causes albino seedlings. Because of the lethal phenotype of the null MGD1 mutant, functional details of MGDG synthesis at seedling development have remained elusive. In this study, we used an inducible gene-suppression system to investigate the impact of MGDG synthesis on cotyledon development. We created transgenic Arabidopsis lines that express an artificial microRNA targeting MGD1 (amiR-MGD1) under the control of a dexamethasone-inducible promoter. The induction of amiR-MGD1 resulted in up to 75% suppression of MGD1 expression, although the resulting phenotypes related to chloroplast development were diverse, even within a line. The strong MGD1 suppression by continuous dexamethasone treatment caused substantial decreases in galactolipid content in cotyledons, leading to severe defects in the formation of thylakoid membranes and impaired photosynthetic electron transport. Time-course analyses of the MGD1 suppression during seedling germination revealed that MGDG synthesis at the very early germination stage is particularly important for chloroplast biogenesis. The MGD1 suppression down-regulated genes associated with the photorespiratory pathway in peroxisomes and mitochondria as well as those responsible for photosynthesis in chloroplasts and caused high expression of genes for the glyoxylate cycle. MGD1 function may link galactolipid synthesis with the coordinated transcriptional regulation of chloroplasts and other organelles during cotyledon greening.
Collapse
Affiliation(s)
- Sho Fujii
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Koichi Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Yuki Nakamura
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan (S.F., K.K., H.W.);PRESTO (Y.N.) and CREST (H.W.), JST, Kawaguchi, Saitama 332-0012, Japan; andInstitute of Plant and Microbial Biology, Academia Sinica, Nankang, Tapei 11529, Taiwan (Y.N.)
| |
Collapse
|
113
|
Okazaki Y, Saito K. Roles of lipids as signaling molecules and mitigators during stress response in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:584-96. [PMID: 24844563 DOI: 10.1111/tpj.12556] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 05/20/2023]
Abstract
Lipids are the major constituents of biological membranes that can sense extracellular conditions. Lipid-mediated signaling occurs in response to various environmental stresses, such as temperature change, salinity, drought and pathogen attack. Lysophospholipid, fatty acid, phosphatidic acid, diacylglycerol, inositol phosphate, oxylipins, sphingolipid, and N-acylethanolamine have all been proposed to function as signaling lipids. Studies on these stress-inducible lipid species have demonstrated that each lipid class has specific biological relevance, biosynthetic mechanisms and signaling cascades, which activate defense reactions at the transcriptional level. In addition to their roles in signaling, lipids also function as stress mitigators to reduce the intensity of stressors. To mitigate particular stresses, enhanced syntheses of unique lipids that accumulate in trace quantities under normal growth conditions are often observed under stressed conditions. The accumulation of oligogalactolipids and glucuronosyldiacylglycerol has recently been found to mitigate freezing and nutrition-depletion stresses, respectively, during lipid remodeling. In addition, wax, cutin and suberin, which are not constituents of the lipid bilayer, but are components derived from lipids, contribute to the reduction of drought stress and tissue injury. These features indicate that lipid-mediated defenses against environmental stress contributes to plant survival.
Collapse
Affiliation(s)
- Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | |
Collapse
|
114
|
Screening for inhibitors of chloroplast galactolipid synthesis acting in membrano and in planta. Methods Mol Biol 2014; 1056:79-93. [PMID: 24306864 DOI: 10.1007/978-1-62703-592-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The knowledge of the membrane lipid metabolism in photosynthetic cells is expected to benefit from the availability of inhibitors acting at the level of specific enzymes like MGD1 (E.C. 2.4.1.46) that catalyzes the synthesis of monogalactosyldiacylglycerol (MGDG) in chloroplasts. MGDG is a major lipid of photosynthetic membrane, interacting with photosystems. It is the precursor of digalactosyldiacylglycerol that serves as a phospholipid surrogate when plants are deprived of phosphate, and it is a source of polyunsaturated fatty acids for jasmonic acid syntheses. MGD1 is activated by phosphatidic acid and thus a coupling point between phospholipid and galactolipid metabolisms. Here we describe a method to screen for inhibitors of MGD1 assayed in liposomes. Selected compounds can therefore reach the core of the biological membranes in which the target sits. We then describe a secondary screen to evaluate the efficiency of developed compounds at the whole plant level. Major issues raised by the screening of inhibitors acting on membrane proteins are discussed and can be useful for similar targets.
Collapse
|
115
|
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic 2014; 15:915-32. [PMID: 24931800 DOI: 10.1111/tra.12187] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies.
Collapse
Affiliation(s)
- Anna K Hurlock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
116
|
Nakamura Y, Teo NZW, Shui G, Chua CHL, Cheong WF, Parameswaran S, Koizumi R, Ohta H, Wenk MR, Ito T. Transcriptomic and lipidomic profiles of glycerolipids during Arabidopsis flower development. THE NEW PHYTOLOGIST 2014; 203:310-322. [PMID: 24684726 DOI: 10.1111/nph.12774] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Flower glycerolipids are the yet-to-be discovered frontier of the lipidome. Although ample evidence suggests important roles for glycerolipids in flower development, stage-specific lipid profiling in tiny Arabidopsis flowers is challenging. Here, we utilized a transgenic system to synchronize flower development in Arabidopsis. The transgenic plant PAP1::AP1-GR ap1-1 cal-5 showed synchronized flower development upon dexamethasone treatment, which enabled massive harvesting of floral samples of homogenous developmental stages for glycerolipid profiling. Glycerolipid profiling revealed a decrease in concentrations of phospholipids involved in signaling during the early development stages, such as phosphatidic acid and phosphatidylinositol, and a marked increase in concentrations of nonphosphorous galactolipids during the late stage. Moreover, in the midstage, phosphatidylinositol 4,5-bisphosphate concentration was increased transiently, which suggests the stimulation of the phosphoinositide metabolism. Accompanying transcriptomic profiling of relevant glycerolipid metabolic genes revealed simultaneous induction of multiple phosphoinositide biosynthetic genes associated with the increased phosphatidylinositol 4,5-bisphosphate concentration, with a high degree of differential expression patterns for genes encoding other glycerolipid-metabolic genes. The phosphatidic acid phosphatase mutant pah1 pah2 showed flower developmental defect, suggesting a role for phosphatidic acid in flower development. Our concurrent profiling of glycerolipids and relevant metabolic gene expression revealed distinct metabolic pathways stimulated at different stages of flower development in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 sec.2 Academia Rd, Nankang, Taipei, 11529, Taiwan; PRESTO, Japan Science and Technology Agency, A-1-8 Honcho Kawaguchi, Saitama, Japan; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore city, 117456, Singapore; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore city, 117604, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Murakawa M, Shimojima M, Shimomura Y, Kobayashi K, Awai K, Ohta H. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation. FRONTIERS IN PLANT SCIENCE 2014; 5:280. [PMID: 25002864 PMCID: PMC4066442 DOI: 10.3389/fpls.2014.00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/28/2014] [Indexed: 05/25/2023]
Abstract
Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi) depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG) is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess.
Collapse
Affiliation(s)
- Masato Murakawa
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Yuichi Shimomura
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, Tokyo UniversityTokyo, Japan
| | - Koichiro Awai
- Graduate School of Science, Shizuoka UniversityShizuoka, Japan
- JST PRESTTokyo, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- JST CRESTTokyo, Japan
| |
Collapse
|
118
|
Kobayashi K, Fujii S, Sasaki D, Baba S, Ohta H, Masuda T, Wada H. Transcriptional regulation of thylakoid galactolipid biosynthesis coordinated with chlorophyll biosynthesis during the development of chloroplasts in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:272. [PMID: 24966866 PMCID: PMC4052731 DOI: 10.3389/fpls.2014.00272] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/25/2014] [Indexed: 05/23/2023]
Abstract
Biogenesis of thylakoid membranes in chloroplasts requires the coordinated synthesis of chlorophyll and photosynthetic proteins with the galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which constitute the bulk of the thylakoid lipid matrix. MGD1 and DGD1 are the key enzymes of MGDG and DGDG synthesis, respectively. We investigated the expression profiles of MGD1 and DGD1 in Arabidopsis to identify the transcriptional regulation that coordinates galactolipid synthesis with the synthesis of chlorophyll and photosynthetic proteins during chloroplast biogenesis. The expression of both MGD1 and DGD1 was repressed in response to defects in chlorophyll synthesis. Moreover, these genes were downregulated by norflurazon-induced chloroplast malfunction via the GENOMES-UNCOUPLED1-mediated plastid signaling pathway. Similar to other photosynthesis-associated nuclear genes, the expression of MGD1 and DGD1 was induced by light, in which both cytokinin signaling and LONG HYPOCOTYL5-mediated light signaling played crucial roles. The expression of these galactolipid-synthesis genes, and particularly that of DGD1 under continuous light, was strongly affected by the activities of the GOLDEN2-LIKE transcription factors, which are potent regulators of chlorophyll synthesis and chloroplast biogenesis. These results suggest tight transcriptional coordination of galactolipid synthesis with the formation of the photosynthetic chlorophyll-protein complexes during leaf development. Meanwhile, unlike the photosynthetic genes, the galactolipid synthesis genes were not upregulated during chloroplast biogenesis in the roots, even though the galactolipids accumulated with chlorophylls, indicating the importance of post-transcriptional regulation of galactolipid synthesis during root greening. Our data suggest that plants utilize complex regulatory mechanisms to modify galactolipid synthesis with chloroplast development during plant growth.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Sho Fujii
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Daichi Sasaki
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Shinsuke Baba
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, The University of TokyoTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
| |
Collapse
|
119
|
Klecker M, Gasch P, Peisker H, Dörmann P, Schlicke H, Grimm B, Mustroph A. A Shoot-Specific Hypoxic Response of Arabidopsis Sheds Light on the Role of the Phosphate-Responsive Transcription Factor PHOSPHATE STARVATION RESPONSE1. PLANT PHYSIOLOGY 2014; 165:774-790. [PMID: 24753539 PMCID: PMC4044847 DOI: 10.1104/pp.114.237990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/17/2014] [Indexed: 05/05/2023]
Abstract
Plant responses to biotic and abiotic stresses are often very specific, but signal transduction pathways can partially or completely overlap. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the transcriptional responses to phosphate starvation and oxygen deficiency stress comprise a set of commonly induced genes. While the phosphate deficiency response is systemic, under oxygen deficiency, most of the commonly induced genes are found only in illuminated shoots. This jointly induced response to the two stresses is under control of the transcription factor PHOSPHATE STARVATION RESPONSE1 (PHR1), but not of the oxygen-sensing N-end rule pathway, and includes genes encoding proteins for the synthesis of galactolipids, which replace phospholipids in plant membranes under phosphate starvation. Despite the induction of galactolipid synthesis genes, total galactolipid content and plant survival are not severely affected by the up-regulation of galactolipid gene expression in illuminated leaves during hypoxia. However, changes in galactolipid molecular species composition point to an adaptation of lipid fluxes through the endoplasmic reticulum and chloroplast pathways during hypoxia. PHR1-mediated signaling of phosphate deprivation was also light dependent. Because a photoreceptor-mediated PHR1 activation was not detectable under hypoxia, our data suggest that a chloroplast-derived retrograde signal, potentially arising from metabolic changes, regulates PHR1 activity under both oxygen and phosphate deficiency.
Collapse
Affiliation(s)
- Maria Klecker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Philipp Gasch
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Helga Peisker
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Peter Dörmann
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Hagen Schlicke
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Bernhard Grimm
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| | - Angelika Mustroph
- Plant Physiology, University of Bayreuth, 95440 Bayreuth, Germany (M.K., P.G., A.M.);Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115 Bonn, Germany (H.P., P.D.); andPlant Physiology, Institute of Biology, Humboldt-University of Berlin, 10115 Berlin, Germany (H.S., B.G.)
| |
Collapse
|
120
|
Hardré H, Kuhn L, Albrieux C, Jouhet J, Michaud M, Seigneurin-Berny D, Falconet D, Block MA, Maréchal E. The selective biotin tagging and thermolysin proteolysis of chloroplast outer envelope proteins reveals information on protein topology and association into complexes. FRONTIERS IN PLANT SCIENCE 2014; 5:203. [PMID: 24999344 PMCID: PMC4064156 DOI: 10.3389/fpls.2014.00203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/25/2014] [Indexed: 05/27/2023]
Abstract
The understanding of chloroplast function requires the precise localization of proteins in each of its sub-compartments. High-sensitivity mass spectrometry has allowed the inventory of proteins in thylakoid, stroma, and envelope fractions. Concerning membrane association, proteins can be either integral or peripheral or even soluble proteins bound transiently to a membrane complex. We sought a method providing information at the surface of the outer envelope membrane (OEM), based on specific tagging with biotin or proteolysis using thermolysin, a non-membrane permeable protease. To evaluate this method, envelope, thylakoid, and stroma proteins were separated by two-dimensional electrophoresis and analyzed by immunostaining and mass spectrometry. A short selection of proteins associated to the chloroplast envelope fraction was checked after superficial treatments of intact chloroplasts. We showed that this method could allow the characterization of OEM embedded proteins facing the cytosol, as well as peripheral and soluble proteins associated via tight or lose interactions. Some stromal proteins were associated with biotinylated spots and analyzes are still needed to determine whether polypeptides were tagged prior import or if they co-migrated with OEM proteins. This method also suggests that some proteins associated with the inner envelope membrane (IEM) might need the integrity of a trans-envelope (IEM-OEM) protein complex (e.g., division ring-forming components) or at least an intact OEM partner. Following this evaluation, proteomic analyzes should be refined and the putative role of inter-membrane space components stabilizing trans-envelope complexes demonstrated. For future comprehensive studies, perspectives include the dynamic analyses of OEM proteins and IEM-OEM complexes in various physiological contexts and using virtually any other purified membrane organelle.
Collapse
Affiliation(s)
- Hélène Hardré
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Lauriane Kuhn
- Laboratoire de Biologie à Grande Echelle, iRTSVCEA Grenoble, Grenoble, France
| | - Catherine Albrieux
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Maryse A. Block
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168 CNRS-CEA-INRA-Université Grenoble Alpes, iRTSVCEA Grenoble, Grenoble, France
| |
Collapse
|
121
|
Semeniuk A, Sohlenkamp C, Duda K, Hölzl G. A bifunctional glycosyltransferase from Agrobacterium tumefaciens synthesizes monoglucosyl and glucuronosyl diacylglycerol under phosphate deprivation. J Biol Chem 2014; 289:10104-14. [PMID: 24558041 PMCID: PMC3974981 DOI: 10.1074/jbc.m113.519298] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/14/2014] [Indexed: 12/31/2022] Open
Abstract
Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature.
Collapse
Affiliation(s)
- Adrian Semeniuk
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| | - Christian Sohlenkamp
- the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos CP62210, Mexico, and
| | - Katarzyna Duda
- the Division of Structural Biochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, 23845 Borstel, Germany
| | - Georg Hölzl
- From the Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
122
|
Sarkis J, Rocha J, Maniti O, Jouhet J, Vié V, Block MA, Breton C, Maréchal E, Girard‐Egrot A. The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts. FASEB J 2014; 28:3114-23. [DOI: 10.1096/fj.14-250415] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joe Sarkis
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS) TeamInstitut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS)Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 5246University of Lyon 1VilleurbanneFrance
| | - Joana Rocha
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRSUniversity of Grenoble 1GrenobleFrance
| | - Ofelia Maniti
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS) TeamInstitut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS)Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 5246University of Lyon 1VilleurbanneFrance
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRSCommissariat à l'énergie Atomique et aux énergies Alternatives (CEA)Institut National de Recherche Agronomique (INRA)University of Grenoble Alpes, UMR 5168GrenobleFrance
| | - Véronique Vié
- Institut de Physique de Rennes (IPR), UMR CNRS 6251University of Rennes 1Campus BeaulieuRennesFrance
| | - Maryse A. Block
- Laboratoire de Physiologie Cellulaire et Végétale, CNRSCommissariat à l'énergie Atomique et aux énergies Alternatives (CEA)Institut National de Recherche Agronomique (INRA)University of Grenoble Alpes, UMR 5168GrenobleFrance
| | - Christelle Breton
- Centre de Recherches sur les Macromolécules Végétales (CERMAV), CNRSUniversity of Grenoble 1GrenobleFrance
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRSCommissariat à l'énergie Atomique et aux énergies Alternatives (CEA)Institut National de Recherche Agronomique (INRA)University of Grenoble Alpes, UMR 5168GrenobleFrance
| | - Agnès Girard‐Egrot
- Equipe Génie Enzymatique, Membranes Biomimétiques et Assemblages Supramoléculaires (GEMBAS) TeamInstitut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS)Unité Mixte de Recherche (UMR) Centre National de la Recherche Scientifique (CNRS) 5246University of Lyon 1VilleurbanneFrance
| |
Collapse
|
123
|
Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E. Evolution of galactoglycerolipid biosynthetic pathways – From cyanobacteria to primary plastids and from primary to secondary plastids. Prog Lipid Res 2014; 54:68-85. [DOI: 10.1016/j.plipres.2014.02.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
|
124
|
Liao P, Chen QF, Chye ML. Transgenic Arabidopsis Flowers Overexpressing Acyl-CoA-Binding Protein ACBP6 are Freezing Tolerant. ACTA ACUST UNITED AC 2014; 55:1055-71. [DOI: 10.1093/pcp/pcu037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
125
|
Lei L, Chen L, Shi X, Li Y, Wang J, Chen D, Xie F, Li Y. A nodule-specific lipid transfer protein AsE246 participates in transport of plant-synthesized lipids to symbiosome membrane and is essential for nodule organogenesis in Chinese milk vetch. PLANT PHYSIOLOGY 2014; 164:1045-58. [PMID: 24367021 PMCID: PMC3912078 DOI: 10.1104/pp.113.232637] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Rhizobia in legume root nodules fix nitrogen in symbiosomes, organelle-like structures in which a membrane from the host plant surrounds the symbiotic bacteria. However, the components that transport plant-synthesized lipids to the symbiosome membrane remain unknown. This study identified and functionally characterized the Chinese milk vetch (Astragalus sinicus) lipid transfer protein AsE246, which is specifically expressed in nodules. It was found that AsE246 can bind lipids in vitro. More importantly, AsE246 can bind the plant-synthesized membrane lipid digalactosyldiacylglycerol in vivo. Immunofluorescence and immunoelectron microscopy showed that AsE246 and digalactosyldiacylglycerol localize in the symbiosome membrane and are present in infection threads. Overexpression of AsE246 resulted in increased nodule numbers; knockdown of AsE246 resulted in reduced nodule numbers, decreased lipids contents in nodules, diminished nitrogen fixation activity, and abnormal development of symbiosomes. AsE246 knockdown also resulted in fewer infection threads, nodule primordia, and nodules, while AsE246 overexpression resulted in more infection threads and nodule primordia, suggesting that AsE246 affects nodule organogenesis associated with infection thread formation. Taken together, these results indicate that AsE246 contributes to lipids transport to the symbiosome membrane, and this transport is required for effective legume-rhizobium symbiosis.
Collapse
|
126
|
Botté CY, Maréchal E. Plastids with or without galactoglycerolipids. TRENDS IN PLANT SCIENCE 2014; 19:71-78. [PMID: 24231068 DOI: 10.1016/j.tplants.2013.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
In structural, functional, and evolutionary terms, galactoglycerolipids are signature lipids of chloroplasts. Their presence in nongreen plastids has been demonstrated in angiosperms and diatoms. Thus, galactoglycerolipids are considered as a landmark of green and nongreen plastids, deriving from either a primary or secondary endosymbiosis. The discovery of a plastid in Plasmodium falciparum, the causative agent of malaria, fueled the search for galactoglycerolipids as possible targets for treatments. However, recent data have provided evidence that the Plasmodium plastid does not contain any galactoglycerolipids. In this opinion article, we discuss questions raised by the loss of galactoglycerolipids during evolution: how have galactoglycerolipids been lost? How does the Plasmodium plastid maintain four membranes without these lipids? What are the main constituents instead of galactoglycerolipids?
Collapse
Affiliation(s)
- Cyrille Y Botté
- ApicoLipid Group, Laboratoire Adapation et Pathogenie des Microorganismes; CNRS, Université de Grenoble-Alpes, UMR 5163, Institut Jean Roget, F-38042 Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale; CNRS, CEA, INRA, Université de Grenoble-Alpes, UMR 5168, Institut de Recherches en Sciences et Technologies pour le Vivant, CEA Grenoble, F-38054 Grenoble, France.
| |
Collapse
|
127
|
NPC: Nonspecific Phospholipase Cs in Plant Functions. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
128
|
Nakamura Y. Galactolipid biosynthesis in flowers. BOTANICAL STUDIES 2013; 54:29. [PMID: 28510864 PMCID: PMC5432751 DOI: 10.1186/1999-3110-54-29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/27/2012] [Indexed: 06/07/2023]
Abstract
Phospholipids represent the highly conserved structural basis of biological membranes from bacteria to humans. However, plants and other photoautotrophic organisms are unique in using non-phosphorus galactolipids as primary components of their photosynthetic membranes. In light of the biomass of green tissues as compared with that of the overall plant body and the highly stacked thylakoid membrane structures in chloroplasts, galactolipids are the most abundant membrane lipids on the earth. Historically, the roles of galactolipids have been studied mainly in relation to photosynthesis, and recent advances in molecular biology with Arabidopsis and other model organisms have revealed an essential role of galactolipids in photosynthesis. However, these galactolipids are also abundant in non-photosynthetic organs, especially flowers, which suggests their distinct role apart from photosynthesis. The aim of this mini-review is to describe distinct biochemical properties of flower galactolipids and possible new roles, with a summary of the current understanding of galactolipid biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
| |
Collapse
|
129
|
Afitlhile M, Workman S, Duffield K, Sprout D, Berhow M. A mutant of the Arabidopsis thaliana TOC159 gene accumulates reduced levels of linolenic acid and monogalactosyldiacylglycerol. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:344-350. [PMID: 24184455 DOI: 10.1016/j.plaphy.2013.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 10/14/2013] [Indexed: 06/02/2023]
Abstract
Previous studies have shown that a mutant of Arabidopsis that lacks the Toc159 receptor is impaired in chloroplast biogenesis. The mutant is referred as plastid protein import 2 or ppi2 and has an albino phenotype due to its inability to import the photosynthetic proteins. In this study, we measured fatty acid composition and transcript levels of plastid-localized fatty acid desaturases in the wild type and ppi2 mutant. The objective was to evaluate whether the Toc159 receptor was critical in the import of lipid-synthesizing enzymes. The ppi2 mutant accumulated decreased levels of oleic acid (18:1) and α-linolenic acid (18:3). The mutant accumulated drastically reduced amounts of the chloroplast lipid monogalactosyldiacylglycerol (MGDG), which contains more than 80% of 18:3. The expression of genes that encode stearoyl-ACP desaturase and MGD1 synthase were down-regulated in the ppi2 mutant, and this corresponded to decreased levels of 18:1 and MGDG, respectively. We conclude that in the ppi2 mutant the impaired synthesis of MGDG resulted in decreased amounts of 18:3. The mutant however, had a 30-fold increase in fad5 transcript levels; this increase was mirrored by a 16- to 50-fold accumulation of hexadecatrienoic acid (16:3), a fatty acid found exclusively in MGDG. Taken together, these data suggest that the Toc159 receptor is required in the import of stearoyl-ACP desaturase and MGD1 synthase into the chloroplasts. Since the expression of fad5 gene was up-regulated in the ppi2 mutant, we propose that fad5 desaturase is imported into plastids through the atToc132/atToc120 protein import pathway.
Collapse
Affiliation(s)
- Meshack Afitlhile
- Department of Biological Sciences, Western Illinois University, Waggoner Hall 311, Macomb, IL 61455, USA.
| | | | | | | | | |
Collapse
|
130
|
Fan J, Yan C, Xu C. Phospholipid:diacylglycerol acyltransferase-mediated triacylglycerol biosynthesis is crucial for protection against fatty acid-induced cell death in growing tissues of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:930-42. [PMID: 24118513 DOI: 10.1111/tpj.12343] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 05/11/2023]
Abstract
Phospholipid:diacylglycerol acyltransferase (PDAT) and diacylglycerol:acyl CoA acyltransferase play overlapping roles in triacylglycerol (TAG) assembly in Arabidopsis, and are essential for seed and pollen development, but the functional importance of PDAT in vegetative tissues remains largely unknown. Taking advantage of the Arabidopsis tgd1-1 mutant that accumulates oil in vegetative tissues, we demonstrate here that PDAT1 is crucial for TAG biosynthesis in growing tissues. We show that disruption of PDAT1 in the tgd1-1 mutant background causes serious growth retardation, gametophytic defects and premature cell death in developing leaves. Lipid analysis data indicated that knockout of PDAT1 results in increases in the levels of free fatty acids (FFAs) and diacylglycerol. In vivo ¹⁴C-acetate labeling experiments showed that, compared with wild-type, tgd1-1 exhibits a 3.8-fold higher rate of fatty acid synthesis (FAS), which is unaffected by disruption or over-expression of PDAT1, indicating a lack of feedback regulation of FAS in tgd1-1. We also show that detached leaves of both pdat1-2 and tgd1-1 pdat1-2 display increased sensitivity to FFA but not to diacylglycerol. Taken together, our results reveal a critical role for PDAT1 in mediating TAG synthesis and thereby protecting against FFA-induced cell death in fast-growing tissues of plants.
Collapse
Affiliation(s)
- Jilian Fan
- Biosciences Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | | | | |
Collapse
|
131
|
Boudière L, Michaud M, Petroutsos D, Rébeillé F, Falconet D, Bastien O, Roy S, Finazzi G, Rolland N, Jouhet J, Block MA, Maréchal E. Glycerolipids in photosynthesis: composition, synthesis and trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:470-80. [PMID: 24051056 DOI: 10.1016/j.bbabio.2013.09.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
Glycerolipids constituting the matrix of photosynthetic membranes, from cyanobacteria to chloroplasts of eukaryotic cells, comprise monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol and phosphatidylglycerol. This review covers our current knowledge on the structural and functional features of these lipids in various cellular models, from prokaryotes to eukaryotes. Their relative proportions in thylakoid membranes result from highly regulated and compartmentalized metabolic pathways, with a cooperation, in the case of eukaryotes, of non-plastidic compartments. This review also focuses on the role of each of these thylakoid glycerolipids in stabilizing protein complexes of the photosynthetic machinery, which might be one of the reasons for their fascinating conservation in the course of evolution. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Laurence Boudière
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Dimitris Petroutsos
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Olivier Bastien
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Sylvaine Roy
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France
| | - Maryse A Block
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire, Végétale, CNRS UMR 5168, CEA iRTSV, Univ. Grenoble Alpes, INRA USC 1359, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9, France.
| |
Collapse
|
132
|
A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 2013; 4:1510. [PMID: 23443538 PMCID: PMC3586718 DOI: 10.1038/ncomms2512] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 01/17/2013] [Indexed: 11/21/2022] Open
Abstract
Phosphorus supply is a major factor responsible for reduced crop yields. As a result, plants utilize various adaptive mechanisms against phosphorus depletion, including lipid remodelling. Here we report the involvement of a novel plant lipid, glucuronosyldiacylglycerol, against phosphorus depletion. Lipidomic analysis of Arabidopsis plants cultured in phosphorus-depleted conditions revealed inducible accumulation of glucuronosyldiacylglycerol. Investigation using a series of sulfolipid sulfoquinovosyldiacylglycerol synthesis-deficient mutants of Arabidopsis determined that the biosynthesis of glucuronosyldiacylglycerol shares the pathway of sulfoquinovosyldiacylglycerol synthesis in chloroplasts. Under phosphorus-depleted conditions, the Arabidopsis sqd2 mutant, which does not accumulate either sulfoquinovosyldiacylglycerol or glucuronosyldiacylglycerol, was the most severely damaged of three sulfoquinovosyldiacylglycerol-deficient mutants. As glucuronosyldiacylglycerol is still present in the other two mutants, this result indicates that glucuronosyldiacylglycerol has a role in the protection of plants against phosphorus limitation stress. Glucuronosyldiacylglycerol was also found in rice, and its concentration increased significantly following phosphorus limitation, suggesting a shared physiological significance of this novel lipid against phosphorus depletion in plants. Phosphorus supply is one of the major factors responsible for reduced crop yields. Here Okazaki et al. use untargeted lipidomics to elucidate the biosynthetic pathway of a novel plant lipid, glucuronosyldiacylglycerol, which is essential for the protection of plants against phosphorus depletion.
Collapse
|
133
|
Wu W, Ping W, Wu H, Li M, Gu D, Xu Y. Monogalactosyldiacylglycerol deficiency in tobacco inhibits the cytochrome b6f-mediated intersystem electron transport process and affects the photostability of the photosystem II apparatus. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:709-22. [PMID: 23466336 DOI: 10.1016/j.bbabio.2013.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
Abstract
Monogalactosyldiacylglycerol (MGDG) is the most abundant lipid component of the thylakoid membrane. Although MGDG is believed to be important in sustaining the structure and function of the photosynthetic membrane, its exact role in photosynthesis in vivo requires further investigation. In this study, the transgenic tobacco plant M18, which has an MGDG deficiency of approximately 53%, and which contains many fewer thylakoid membranes and exhibits retarded growth and a chlorotic phenotype, was used to investigate the role of MGDG. Chlorophyll fluorescence analysis of the M18 line revealed that PSII activity was inhibited when the plants were exposed to light. The inactive linear electron transport found in M18 plants was mainly attributed to a block in the intersystem electron transport process that was revealed by P700 redox kinetics and PSI light response analysis. Immunoblotting and Blue Native SDS-PAGE analysis suggested that a reduction in the accumulation of cytochrome b6f in M18 plants is a direct structural effect of MGDG deficiency, and this is likely to be responsible for the inefficiency observed in intersystem electron transport. Although drastic impairments of PSII subunits were detected in M18 plants grown under normal conditions, further investigations of low-light-grown M18 plants indicated that the impairments are not direct structural effects. Instead, they are likely to result from the cumulative photodamage that occurs due to impaired photostability under long-term exposure to relatively high light levels. The study suggests that MGDG plays important roles in maintaining both the linear electron transport process and the photostability of the PSII apparatus.
Collapse
Affiliation(s)
- Wang Wu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
134
|
Ha S, Tran LS. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit Rev Biotechnol 2013; 34:16-30. [PMID: 23586682 DOI: 10.3109/07388551.2013.783549] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University , Buk-Gu, Gwangju , Korea and
| | | |
Collapse
|
135
|
Rocha J, Audry M, Pesce G, Chazalet V, Block MA, Maréchal E, Breton C. Revisiting the expression and purification of MGD1, the major galactolipid synthase in Arabidopsis to establish a novel standard for biochemical and structural studies. Biochimie 2013. [DOI: 10.1016/j.biochi.2012.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
136
|
Chen M, Thelen JJ. ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. THE PLANT CELL 2013; 25:1430-44. [PMID: 23585650 PMCID: PMC3663278 DOI: 10.1105/tpc.113.111179] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 03/02/2013] [Accepted: 04/02/2013] [Indexed: 05/20/2023]
Abstract
Fatty acid desaturation of membrane lipids is a strategy for plants to survive chilling or freezing temperature. To further characterize enzymes involved in this stress response pathway, ACYL-LIPID DESATURASE2 (ADS2; Enzyme Commission 1.14.99) was studied using genetic, cell, and biochemical approaches. ads2 mutant plants appear similar to the wild type under standard growth conditions but display a dwarf and sterile phenotype when grown at 6°C and also show increased sensitivity to freezing temperature. Fatty acid composition analysis demonstrated that ads2 mutant plants at 6°C have reduced levels of 16:1, 16:2, 16:3, and 18:3 and higher levels of 16:0 and 18:0 fatty acids compared with the wild type. Lipid profiling revealed that 34C species of phosphatidylglycerol (PG) and monogalactosyl diacylglycerol (MGDG) content in ads2 mutants were lower and phosphatidic acid, phosphatidylinositol, phosphatidylethanolamine, phosphatidylcholine, lyso-phosphatidylcholine, and phosphatidylserine were higher than the wild type. Subcellular localization of C- and N-terminal enhanced fluorescence fusion proteins indicated that ADS2 localized primarily to the endoplasmic reticulum, although signal was also confirmed in Golgi and plastids. A double mutation with a putative plastid ADS3 paralog exacerbates the growth defects of ads2 mutant plants under low temperature. These observations suggest that ADS2 encodes a 16:0 desaturase of MGDG and PG. We hypothesize that a low temperature-induced shift from the plastid to endoplasmic reticulum pathway for membrane lipid biosynthesis is required for the cold stress response in Arabidopsis thaliana, and ADS2 is essential to adjust the acyl composition of organelle membrane lipid composition in response to cold stress.
Collapse
|
137
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013; 11:e0161. [PMID: 23505340 PMCID: PMC3563272 DOI: 10.1199/tab.0161] [Citation(s) in RCA: 759] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
138
|
Shi T, Li R, Zhao Z, Ding G, Long Y, Meng J, Xu F, Shi L. QTL for yield traits and their association with functional genes in response to phosphorus deficiency in Brassica napus. PLoS One 2013; 8:e54559. [PMID: 23382913 PMCID: PMC3557265 DOI: 10.1371/journal.pone.0054559] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 12/14/2012] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oilseed rape (Brassica napus L.) is one of the most important oil crops. A primary limitation to the cultivation of this crop is the lack of available phosphorus (P) in soils. To elucidate the genetic control of P deficiency tolerance in Brassica napus, quantitative trait locus (QTL) for seed yield and yield related-traits in response to P deficiency were identified using a double haploid mapping population (TN DH) derived from a cross between a P-efficient cultivar, Ningyou 7 and a P-inefficient cultivar, Tapidor. RESULTS Three field trials were conducted to determine seed yield (SY), plant height (PH), number of primary branches (BN), height to the first primary branch (FBH), relative first primary branch height (RBH), pod number per plant (PN), seed number per pod (SN) and seed weight of 1,000 seeds (SW) in 188 lines of TN DH population exposed to low P (LP) and optimal P (OP) conditions. P deficiency decreased PH, BN, SN, PN and SY, and increased FBH and RBH with no effect on SW. Three reproducible LP-specific QTL regions were identified on chromosomes A2, A3 and A5 that controlled SN, PN and SW respectively. In addition, six reproducible constitutive regions were also mapped with two each for SY-LP on A2, and FBH-LP on C6 and one each for PH-LP and SW-LP on A3. About 30 markers derived from 19 orthologous genes involved in Arabidopsis P homeostasis were mapped on 24 QTL regions by comparative mapping between Arabidopsis and Brassica napus. Among these genes, GPT1, MGD2 and SIZ1 were associated with two major loci regulating SY-LP and other yield-related traits on A2 between 77.1 and 95.0 cM. CONCLUSION The stable QTLs detected under LP conditions and their candidate genes may provide useful information for marker-assisted selection in breeding high-yield B. napus varieties with improved P efficiency.
Collapse
Affiliation(s)
- Taoxiong Shi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Ruiyuan Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Zunkang Zhao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
139
|
Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J. Acyl-lipid metabolism. THE ARABIDOPSIS BOOK 2013. [PMID: 23505340 DOI: 10.1199/tab.0161m] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables.
Collapse
|
140
|
Kobayashi K, Narise T, Sonoike K, Hashimoto H, Sato N, Kondo M, Nishimura M, Sato M, Toyooka K, Sugimoto K, Wada H, Masuda T, Ohta H. Role of galactolipid biosynthesis in coordinated development of photosynthetic complexes and thylakoid membranes during chloroplast biogenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:250-61. [PMID: 22978702 DOI: 10.1111/tpj.12028] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 08/21/2012] [Accepted: 09/10/2012] [Indexed: 05/17/2023]
Abstract
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd1-2), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient-sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi-starved mgd1-2 leaves, biogenesis of thylakoid-like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress-induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light-harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1-2 mutant. Moreover, the reduced expression of nuclear- and plastid-encoded photosynthetic genes observed in the mgd1-2 mutant under Pi-sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid- and nuclear-encoded photosynthetic genes, independently of photosynthesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Takafumi Narise
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Tokyo, 162-8480, Shinjuku-ku, Japan
| | - Haruki Hashimoto
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Naoki Sato
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Maki Kondo
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mikio Nishimura
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Mayuko Sato
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Wada
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Tatsuru Masuda
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Yokohama, 226-8501, Midori-ku, Japan
| |
Collapse
|
141
|
Shimojima M, Watanabe T, Madoka Y, Koizumi R, Yamamoto MP, Masuda K, Yamada K, Masuda S, Ohta H. Differential regulation of two types of monogalactosyldiacylglycerol synthase in membrane lipid remodeling under phosphate-limited conditions in sesame plants. FRONTIERS IN PLANT SCIENCE 2013; 4:469. [PMID: 24312111 PMCID: PMC3832787 DOI: 10.3389/fpls.2013.00469] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/30/2013] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) limitation causes drastic lipid remodeling in plant membranes. Glycolipids substitute for the phospholipids that are degraded, thereby supplying Pi needed for essential biological processes. Two major types of remodeling of membrane lipids occur in higher plants: whereas one involves an increase in the concentration of sulfoquinovosyldiacylglycerol in plastids to compensate for a decreased concentration of phosphatidylglycerol, the other involves digalactosyldiacylglycerol (DGDG) synthesis in plastids and the export of DGDG to extraplastidial membranes to compensate for reduced abundances of phospholipids. Lipid remodeling depends on an adequate supply of monogalactosyldiacylglycerol (MGDG), which is a substrate that supports the elevated rate of DGDG synthesis that is induced by low Pi availability. Regulation of MGDG synthesis has been analyzed most extensively using the model plant Arabidopsis thaliana, although orthologous genes that encode putative MGDG synthases exist in photosynthetic organisms from bacteria to higher plants. We recently hypothesized that two types of MGDG synthase diverged after the appearance of seed plants. This divergence might have both enabled plants to adapt to a wide range of Pi availability in soils and contributed to the diversity of seed plants. In the work presented here, we found that membrane lipid remodeling also takes place in sesame, which is one of the most common traditional crops grown in Asia. We identified two types of MGDG synthase from sesame (encoded by SeMGD1 and SeMGD2) and analyzed their enzymatic properties. Our results show that both genes correspond to the Arabidopsis type-A and -B isoforms of MGDG synthase. Notably, whereas Pi limitation up-regulates only the gene encoding the type-B isoform of Arabidopsis, low Pi availability up-regulates the expression of both SeMGD1 and SeMGD2. We discuss the significance of the different responses to low Pi availability in sesame and Arabidopsis.
Collapse
Affiliation(s)
- Mie Shimojima
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Takahide Watanabe
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | - Yuka Madoka
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
| | - Ryota Koizumi
- Graduate School of Biological Sciences, Tokyo Institute of TechnologyYokohama, Japan
| | | | - Kyojiro Masuda
- Department of Biology, Faculty of Science, University of ToyamaToyama, Japan
| | - Kyoji Yamada
- Graduate School of Science and Engineering, University of ToyamaToyama, Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Tokyo Institute of TechnologyYokohama, Japan
- Earth-Life Science Institute, Tokyo Institute of TechnologyTokyo, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology AgencyTokyo, Japan
- *Correspondence: Hiroyuki Ohta, Center for Biological Resources and Informatics, Tokyo Institute of Technology, 4249-B65 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan e-mail:
| |
Collapse
|
142
|
Simm S, Papasotiriou DG, Ibrahim M, Leisegang MS, Müller B, Schorge T, Karas M, Mirus O, Sommer MS, Schleiff E. Defining the core proteome of the chloroplast envelope membranes. FRONTIERS IN PLANT SCIENCE 2013; 4:11. [PMID: 23390424 PMCID: PMC3565376 DOI: 10.3389/fpls.2013.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/15/2013] [Indexed: 05/20/2023]
Abstract
High-throughput protein localization studies require multiple strategies. Mass spectrometric analysis of defined cellular fractions is one of the complementary approaches to a diverse array of cell biological methods. In recent years, the protein content of different cellular (sub-)compartments was approached. Despite of all the efforts made, the analysis of membrane fractions remains difficult, in that the dissection of the proteomes of the envelope membranes of chloroplasts or mitochondria is often not reliable because sample purity is not always warranted. Moreover, proteomic studies are often restricted to single (model) species, and therefore limited in respect to differential individual evolution. In this study we analyzed the chloroplast envelope proteomes of different plant species, namely, the individual proteomes of inner and outer envelope (OE) membrane of Pisum sativum and the mixed envelope proteomes of Arabidopsis thaliana and Medicago sativa. The analysis of all three species yielded 341 identified proteins in total, 247 of them being unique. 39 proteins were genuine envelope proteins found in at least two species. Based on this and previous envelope studies we defined the core envelope proteome of chloroplasts. Comparing the general overlap of the available six independent studies (including ours) revealed only a number of 27 envelope proteins. Depending on the stringency of applied selection criteria we found 231 envelope proteins, while less stringent criteria increases this number to 649 putative envelope proteins. Based on the latter we provide a map of the outer and inner envelope core proteome, which includes many yet uncharacterized proteins predicted to be involved in transport, signaling, and response. Furthermore, a foundation for the functional characterization of yet unidentified functions of the inner and OE for further analyses is provided.
Collapse
Affiliation(s)
- Stefan Simm
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | | | - Mohamed Ibrahim
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | | | - Bernd Müller
- Department of Biology I, Ludwig-Maximilians-UniversityMunich, Germany
| | - Tobias Schorge
- Institute of Pharmaceutical Chemistry, Goethe UniversityFrankfurt, Germany
| | - Michael Karas
- Institute of Pharmaceutical Chemistry, Goethe UniversityFrankfurt, Germany
- Center of Membrane Proteomics, Goethe UniversityFrankfurt, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe UniversityFrankfurt, Germany
| | - Oliver Mirus
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | - Maik S. Sommer
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
| | - Enrico Schleiff
- Institute of Molecular Cell Biology of Plants, Goethe UniversityFrankfurt, Germany
- Center of Membrane Proteomics, Goethe UniversityFrankfurt, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe UniversityFrankfurt, Germany
- *Correspondence: Enrico Schleiff, Center of Membrane Proteomics, Cluster of Excellence ’Macromolecular Complexes’, Institute of Molecular Cell Biology of Plants, Goethe University, Max-von-Laue Strasse 9, Frankfurt 60438, Germany. e-mail:
| |
Collapse
|
143
|
Rolland N, Curien G, Finazzi G, Kuntz M, Maréchal E, Matringe M, Ravanel S, Seigneurin-Berny D. The Biosynthetic Capacities of the Plastids and Integration Between Cytoplasmic and Chloroplast Processes. Annu Rev Genet 2012; 46:233-64. [DOI: 10.1146/annurev-genet-110410-132544] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Gilles Curien
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Michel Matringe
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| | - Daphné Seigneurin-Berny
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Université Joseph Fourier Grenoble I/INRA/CEA, 38054 Grenoble Cedex 9, France; , , , , , , ,
| |
Collapse
|
144
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
145
|
Wang Z, Xu C, Benning C. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:614-23. [PMID: 22269056 DOI: 10.1111/j.1365-313x.2012.04900.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The synthesis of galactoglycerolipids, which are prevalent in photosynthetic membranes, involves enzymes at the endoplasmic reticulum (ER) and the chloroplast envelope membranes. Genetic analysis of trigalactosyldiacylglycerol (TGD) proteins in Arabidopsis has demonstrated their role in polar lipid transfer from the ER to the chloroplast. The TGD1, 2, and 3 proteins resemble components of a bacterial-type ATP-binding cassette (ABC) transporter, with TGD1 representing the permease, TGD2 the substrate binding protein, and TGD3 the ATPase. However, the function of the TGD4 protein in this process is less clear and its location in plant cells remains to be firmly determined. The predicted C-terminal β-barrel structure of TGD4 is weakly similar to proteins of the outer cell membrane of Gram-negative bacteria. Here, we show that, like TGD2, the TGD4 protein when fused to DsRED specifically binds phosphatidic acid (PtdOH). As previously shown for tgd1 mutants, tgd4 mutants have elevated PtdOH content, probably in extraplastidic membranes. Using highly purified and specific antibodies to probe different cell fractions, we demonstrated that the TGD4 protein was present in the outer envelope membrane of chloroplasts, where it appeared to be deeply buried within the membrane except for the N-terminus, which was found to be exposed to the cytosol. It is proposed that TGD4 is either directly involved in the transfer of polar lipids, possibly PtdOH, from the ER to the outer chloroplast envelope membrane or in the transfer of PtdOH through the outer envelope membrane.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
146
|
Andrés E, Biarnés X, Faijes M, Planas A. Bacterial glycoglycerolipid synthases: processive and non-processive glycosyltransferases in mycoplasma. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.674733] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
147
|
Oropeza-Aburto A, Cruz-Ramírez A, Acevedo-Hernández GJ, Pérez-Torres CA, Caballero-Pérez J, Herrera-Estrella L. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2189-202. [PMID: 22210906 PMCID: PMC3295404 DOI: 10.1093/jxb/err446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 05/18/2023]
Abstract
Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element.
Collapse
|
148
|
Cenzano AM, Cantoro R, Teresa Hernandez-Sotomayor SM, Abdala GI, Racagni GE. Lipid profiling by electrospray ionization tandem mass spectrometry and the identification of lipid phosphorylation by kinases in potato stolons. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:418-26. [PMID: 22142228 PMCID: PMC3580764 DOI: 10.1021/jf204269y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is limited information about the involvement of lipids and esterified fatty acids in signaling pathways during plant development. The purpose of this study was to evaluate the lipid composition and molecular species of potato (Solanum tuberosum L., cv. Spunta) stolons and to identify phosphorylated lipids in the first two developmental stages of tuber formation. Lipid profiling was determined using ESI-MS/MS, a useful method for the determination of the biosynthesis and catabolism of lipids based on their fatty acid composition. The most prevalent compound identified in this study was phosphatidic acid (PA); digalactosyldiacylglycerol (DGDG) was the second most abundant compound. A 34:2 species was identified in PA, phosphatidylcholine (PC), phosphatidylinositol (PI), and phosphatidylethanolamine (PE). The identification of lipid phosphorylation by kinases was revealed by the presence of the phosphorylated lipids. PA was metabolized to diacylglycerol pyrophosphate (DGPP) by phosphatidic acid kinase (PAK). This work establishes a correlation between lipid fatty acid composition and lipid metabolism enzymes at the beginning of tuber formation and is the first report of PAK activity in the early events of potato tuber formation.
Collapse
Affiliation(s)
- Ana M. Cenzano
- Unidad de Investigación Ecología Terrestre. Centro Nacional Patagónico, (CENPAT-CONICET). Boulevard Brown 2915. 9120 Puerto Madryn, Chubut, Argentina
| | - Renata Cantoro
- Cátedra de Cultivos Fisiologia Vegetal - Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Facultad de Agronomía, Universidad de Buenos Aires. Av. San Martin 4453. C1417DSE Buenos Aires, Argentina
| | - S. M. Teresa Hernandez-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY). Calle 43 N° 130, Col. Chuburná de Hidalgo. 97200 Mérida, Yucatán, México
| | - Guillermina I. Abdala
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto. Ruta 36, Km 601. 5800 Rio Cuarto, Córdoba, Argentina
| | - Graciela E. Racagni
- Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Universidad Nacional de Río Cuarto. Ruta 36, Km 601. 5800 Rio Cuarto, Córdoba, Argentina
| |
Collapse
|
149
|
Boudière L, Botté CY, Saidani N, Lajoie M, Marion J, Bréhélin L, Yamaryo-Botté Y, Satiat-Jeunemaître B, Breton C, Girard-Egrot A, Bastien O, Jouhet J, Falconet D, Block MA, Maréchal E. Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. MOLECULAR BIOSYSTEMS 2012; 8:2023-35, 2014. [DOI: 10.1039/c2mb25067e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
150
|
The role of lipids in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:194-208. [DOI: 10.1016/j.bbabio.2011.04.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 11/22/2022]
|