101
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
102
|
Alam R, Imon RR, Kabir Talukder ME, Akhter S, Hossain MA, Ahammad F, Rahman MM. GC-MS analysis of phytoconstituents from Ruellia prostrata and Senna tora and identification of potential anti-viral activity against SARS-CoV-2. RSC Adv 2021; 11:40120-40135. [PMID: 35494115 PMCID: PMC9044520 DOI: 10.1039/d1ra06842c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is an etiologic agent responsible for the coronavirus disease 2019 (COVID-19) pandemic. The virus has rapidly extended globally and taken millions of lives due to the unavailability of therapeutics candidates against the virus. Till now, no specific drug candidates have been developed that can prevent or treat infections caused by the pathogen. The main protease (Mpro) of the SARS-CoV-2 plays a pivotal role in mediating viral replication and mechanistically inhibition of the protein can hinder the replication and infection process of the virus. Therefore, the study aimed to identify the natural bioactive compounds against the virus that can block the activity of the Mpro and subsequently block viral infections. Initially, a total of 96 phytochemicals from Ruellia prostrata Poir. and Senna tora (L.) Roxb. plants were identified through the gas chromatography-mass spectrometry (GC-MS) analytical method. Subsequently, the compounds were screened through molecular docking, absorption, distribution, metabolism, excretion (ADME), toxicity (T), and molecular dynamics (MD) simulation approach. The molecular docking method initially identified four molecules having a PubChem CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 with a binding affinity ranging between −6.067 to −6.53 kcal mol−1 to the active site of the target protein. All the selected compounds exhibit good pharmacokinetics and toxicity properties. Finally, the four compounds were further evaluated based on the MD simulation methods that confirmed the binding stability of the compounds to the targeted protein. The computational approaches identified the best four compounds CID: 70825, CID: 25247358, CID: 54685836 and, CID: 1983 that can be developed as a treatment option of SARS-CoV-2 disease-related complications. Although, experimental validation is suggested for further evaluation of the work. Protease (Mpro) of SARS-CoV-2 has been identified as being able to hinder the replication process of the virus. Using GC-MS analytical methods, phytochemicals were identified from different medicinal plants that resulted in inhibitory activity of the molecules against Mpro.![]()
Collapse
Affiliation(s)
- Rahat Alam
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Raihan Rahman Imon
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh .,Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh
| | - Shahina Akhter
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh .,Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC) Foy's Lake, Khulshi Chittagong-4202 Bangladesh
| | - Md Alam Hossain
- Department of Computer Science and Engineering, Jashore University of Science and Technology Jashore-7408 Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre) Jashore-7408 Bangladesh .,Department of Biology, Faculty of Science, King Abdul-Aziz University Jeddah-21589 Saudi Arabia
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology Jashore-7408 Bangladesh
| |
Collapse
|
103
|
Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: Strategies, benefits, and challenges. J Med Virol 2021; 94:1373-1390. [PMID: 34897729 DOI: 10.1002/jmv.27517] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/18/2023]
Abstract
In this era, broad-spectrum prodrugs with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activities are gaining considerable attention owing to their potential clinical benefits and role in combating the fast-spreading coronavirus disease 2019 (COVID-19) pandemic. The last 2 years have seen a surge of reports on various broad-spectrum prodrugs against SARS-CoV-2, and in in vitro studies, animal models, and clinical practice. Currently, only remdesivir (with many controversies and limitations) has been approved by the U.S. FDA for the treatment of SARS-CoV-2 infection, and additional potent anti-SARS-CoV-2 drugs are urgently required to enrich the defense arsenals. The world has ubiquitously grappled with the COVID-19 pandemic, and the availability of broad-spectrum prodrugs provides great hope for us to subdue this global threat. This article reviews promising treatment strategies, antiviral mechanisms, potential benefits, and daunting clinical challenges of anti-SARS-CoV-2 agents to provide some important guidance for future clinical treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China.,Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Tsinghua University, Beijing, P. R. China
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, P. R. China
| |
Collapse
|
104
|
Finberg RW, Ashraf M, Julg B, Ayoade F, Marathe JG, Issa NC, Wang JP, Jaijakul S, Baden LR, Epstein C. US201 Study: A Phase 2, Randomized Proof-of-Concept Trial of Favipiravir for the Treatment of COVID-19. Open Forum Infect Dis 2021; 8:ofab563. [PMID: 34888401 PMCID: PMC8651156 DOI: 10.1093/ofid/ofab563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Favipiravir is used to treat influenza, and studies demonstrate that it has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). METHODS We performed a randomized, open-label, multicenter, phase 2 proof-of-concept trial of favipiravir in hospitalized adult patients with polymerase chain reaction (PCR)-positive coronavirus disease 2019 (COVID-19). Patients were randomized to standard of care (SOC) or favipiravir treatment (1800mg per os twice a day [b.i.d.] on day 1, followed by 1000mg b.i.d. for 13 days). The primary end point was time to viral clearance on day 29. RESULTS Fifty patients were enrolled and stratified by disease severity (critical disease, severe disease, or mild to moderate disease). Nineteen patients were censored from the event of viral clearance based on being SARS-CoV-2 PCR-negative at the study outset, being PCR-positive at day 29, or because of loss to follow-up. Data from the 31 remaining patients who achieved viral clearance show enhanced viral clearance in the favipiravir group compared with the SOC group by day 29, with 72% of the favipiravir group and 52% of the SOC group being evaluable for viral clearance through day 29. The median time to viral clearance was 16.0 days (90% CI, 12.0 to 29.0) in the favipiravir group and 30.0 days (90% CI, 12.0 to 31.0) in the SOC group. A post hoc analysis revealed an effect in the subgroup of patients who were neutralizing antibody-negative at randomization. Treatment-emergent adverse events were equally distributed between the groups. CONCLUSIONS We demonstrate that favipiravir can be safely administered to hospitalized adults with COVID-19 and believe that further studies are warranted. CLINICALTRIALSGOV REGISTRATION NCT04358549.
Collapse
Affiliation(s)
- Robert W Finberg
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Madiha Ashraf
- Houston Methodist Research Institute, Houston, Texas, USA
| | - Boris Julg
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, USA
| | - Folusakin Ayoade
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jai G Marathe
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicolas C Issa
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer P Wang
- University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | | | - Lindsey R Baden
- Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Carol Epstein
- FUJIFILM Pharmaceuticals USA, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
105
|
Plavec Z, Pöhner I, Poso A, Butcher SJ. Virus structure and structure-based antivirals. Curr Opin Virol 2021; 51:16-24. [PMID: 34564030 PMCID: PMC8460353 DOI: 10.1016/j.coviro.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/13/2021] [Accepted: 09/12/2021] [Indexed: 01/18/2023]
Abstract
Structure-based antiviral developments in the past two years have been dominated by the structure determination and inhibition of SARS-CoV-2 proteins and new lead molecules for picornaviruses. The SARS-CoV-2 spike protein has been targeted successfully with antibodies, nanobodies, and receptor protein mimics effectively blocking receptor binding or fusion. The two most promising non-structural proteins sharing strong structural and functional conservation across virus families are the main protease and the RNA-dependent RNA polymerase, for which design and reuse of broad range inhibitors already approved for use has been an attractive avenue. For picornaviruses, the increasing recognition of the transient expansion of the capsid as a critical transition towards RNA release has been targeted through a newly identified, apparently widely conserved, druggable, interprotomer pocket preventing viral entry. We summarize some of the key papers in these areas and ponder the practical uses and contributions of molecular modeling alongside empirical structure determination.
Collapse
Affiliation(s)
- Zlatka Plavec
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Ina Pöhner
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland; University Hospital Tübingen, Department of Internal Medicine VII, Tübingen, Germany
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
106
|
Zhao L, Zhong W. Mechanism of action of favipiravir against SARS-CoV-2: Mutagenesis or chain termination? Innovation (N Y) 2021; 2:100165. [PMID: 34518821 PMCID: PMC8425668 DOI: 10.1016/j.xinn.2021.100165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/06/2021] [Indexed: 11/26/2022] Open
Affiliation(s)
- Lei Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| |
Collapse
|
107
|
Seliem IA, Girgis AS, Moatasim Y, Kandeil A, Mostafa A, Ali MA, Bekheit MS, Panda SS. New Pyrazine Conjugates: Synthesis, Computational Studies, and Antiviral Properties against SARS-CoV-2. ChemMedChem 2021; 16:3418-3427. [PMID: 34352160 PMCID: PMC8426689 DOI: 10.1002/cmdc.202100476] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Indexed: 12/23/2022]
Abstract
Currently, limited therapeutic options are available for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We have developed a set of pyrazine-based small molecules. A series of pyrazine conjugates was synthesized by microwave-assisted click chemistry and benzotriazole chemistry. All the synthesized conjugates were screened against the SAR-CoV-2 virus and their cytotoxicity was determined. Computational studies were carried out to validate the biological data. Some of the pyrazine-triazole conjugates (5 d-g) and (S)-N-(1-(benzo[d]thiazol-2-yl)-2-phenylethyl)pyrazine-2-carboxamide 12 i show significant potency against SARS-CoV-2 among the synthesized conjugates. The selectivity index (SI) of potent conjugates indicates significant efficacy compared to the reference drug (Favipiravir).
Collapse
Affiliation(s)
- Israa A. Seliem
- Department of Chemistry and PhysicsAugusta UniversityAugustaGA30912USA
- Department of Pharmaceutical Organic ChemistryFaculty of PharmacyZagazig UniversityZagazig44519Egypt
| | - Adel S. Girgis
- Department of Pesticide ChemistryNational Research CentreDokkiGiza12622Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza VirusesNational Research CentreDokkiGiza12622Egypt
| | - Mohamed S. Bekheit
- Department of Pesticide ChemistryNational Research CentreDokkiGiza12622Egypt
| | - Siva S. Panda
- Department of Chemistry and PhysicsAugusta UniversityAugustaGA30912USA
| |
Collapse
|
108
|
Abstract
The ongoing Covid-19 pandemic has spurred research in the biology of the nidovirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Much focus has been on the viral RNA synthesis machinery due to its fundamental role in viral propagation. The central and essential enzyme of the RNA synthesis process, the RNA-dependent RNA polymerase (RdRp), functions in conjunction with a coterie of viral-encoded enzymes that mediate crucial nucleic acid transactions. Some of these enzymes share common features with other RNA viruses, while others play roles unique to nidoviruses or CoVs. The RdRps are proven targets for viral pathogens, and many of the other nucleic acid processing enzymes are promising targets. The purpose of this review is to summarize recent advances in our understanding of the mechanisms of RNA synthesis in CoVs. By reflecting on these studies, we hope to emphasize the remaining gaps in our knowledge. The recent onslaught of structural information related to SARS-CoV-2 RNA synthesis, in combination with previous structural, genetic and biochemical studies, have vastly improved our understanding of how CoVs replicate and process their genomic RNA. Structural biology not only provides a blueprint for understanding the function of the enzymes and cofactors in molecular detail, but also provides a basis for drug design and optimization. The concerted efforts of researchers around the world, in combination with the renewed urgency toward understanding this deadly family of viruses, may eventually yield new and improved antivirals that provide relief to the current global devastation.
Collapse
Affiliation(s)
- Brandon Malone
- The Rockefeller University, New York, New York, United States
| | | | - Seth A Darst
- The Rockefeller University, New York, New York, United States.
| |
Collapse
|
109
|
Rajabzadeh H, Sharafat A, Abbasi M, Gharaati ME, Alipourfard I. Exploring chemistry features of favipiravir in octanol/water solutions. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Favipiravir (Fav) has become a well-known drug for medication of patients by appearance of COVID-19. Heterocyclic structure and connected peptide group could make changes for Fav yielding different features from those required features. Therefore, it is indeed a challenging task to prepare a Fav compound with specific features of desired function. In this work, existence of eight Fav structures by tautomeric formations and peptide group rotations were obtained using density functional theory (DFT) optimization calculations. Gas phase, octanol solution, and water solution were employed to show impact of solution on features of Fav besides obtaining partition coefficients (LogP) for Fav compounds. Significant impacts of solutions were seen on features of Fav with the obtained LogP order: Fav-7 > Fav-8 > Fav-4 > Fav-3 > Fav-2 > Fav-5 > Fav-1 > Fav-6. As a consequence, internal changes yielded significant impacts on features of Fav affirming its carful medication of COVID-19 patients.
Collapse
Affiliation(s)
- Halimeh Rajabzadeh
- Department of Chemistry, Dezful Branch, Islamic Azad University, Dezful, Iran
| | - Ayla Sharafat
- Department of Chemistry, Payame Noor University, Bandar Abbas, Iran
| | - Maryam Abbasi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Maryam Eslami Gharaati
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Iraj Alipourfard
- Institutitue of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
110
|
Interactions between favipiravir and a BNC cage towards drug delivery applications. Struct Chem 2021; 33:159-167. [PMID: 34511844 PMCID: PMC8424618 DOI: 10.1007/s11224-021-01833-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022]
Abstract
Electronic structure analysis of bimolecular formation of favipiravir (Fav) and a representative model of boron-nitrogen-carbon (BNC) cage was performed in this work for providing more insightful information regarding the drug delivery purposes by the importance of Fav drug for medication of COVID-19. To achieve the purpose of this work, density functional theory (DFT) calculations were carried out to obtain the stabilized structures and corresponding molecular and atomic scale descriptors. Six models of BNC-Fav complexes were obtained reading the participation of different atomic positions of Fav to interactions with the BNC cage surface. The results yielded BNC-Fav2 at the highest strength and BNC-Fav4 at the lowest strength of bimolecular formations. Molecular orbital–related features and atomic scale quadrupole coping constants all revealed that BNC-Fav2 complex could be proposed for employing in drug delivery process by managing the loaded Fav contribution to future interactions.
Collapse
|
111
|
Wang B, Svetlov D, Artsimovitch I. NMPylation and de-NMPylation of SARS-CoV-2 nsp9 by the NiRAN domain. Nucleic Acids Res 2021; 49:8822-8835. [PMID: 34352100 PMCID: PMC8385902 DOI: 10.1093/nar/gkab677] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
112
|
Tanimoto S, Itoh SG, Okumura H. "Bucket brigade" using lysine residues in RNA-dependent RNA polymerase of SARS-CoV-2. Biophys J 2021; 120:3615-3627. [PMID: 34339634 PMCID: PMC8324383 DOI: 10.1016/j.bpj.2021.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/07/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising drug target for coronavirus disease 2019 (COVID-19) because it plays the most important role in the replication of the RNA genome. Nucleotide analogs such as remdesivir and favipiravir are thought to interfere with the RNA replication by RdRp. More specifically, they are expected to compete with nucleoside triphosphates, such as ATP. However, the process in which these drug molecules and nucleoside triphosphates are taken up by RdRp remains unknown. In this study, we performed all-atom molecular dynamics simulations to clarify the recognition mechanism of RdRp for these drug molecules and ATP that were at a distance. The ligand recognition ability of RdRp decreased in the order of remdesivir, favipiravir, and ATP. We also identified six recognition paths. Three of them were commonly found in all ligands, and the remaining three paths were ligand-dependent ones. In the common two paths, it was observed that the multiple lysine residues of RdRp carried the ligands to the binding site like a "bucket brigade." In the remaining common path, the ligands directly reached the binding site. Our findings contribute to the understanding of the efficient ligand recognition by RdRp at the atomic level.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Satoru G Itoh
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Hisashi Okumura
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, Japan; Department of Structural Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
113
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 DOI: 10.1101/2021.05.11.443555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 05/20/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
114
|
Kabinger F, Stiller C, Schmitzová J, Dienemann C, Kokic G, Hillen HS, Höbartner C, Cramer P. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol 2021; 28:740-746. [PMID: 34381216 PMCID: PMC8437801 DOI: 10.1038/s41594-021-00651-0] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β-D-N4-hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp-RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir.
Collapse
Affiliation(s)
- Florian Kabinger
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Carina Stiller
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany
| | - Jana Schmitzová
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Christian Dienemann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Goran Kokic
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Research Group Structure and Function of Molecular Machines, Göttingen, Germany
| | - Claudia Höbartner
- Universität Würzburg, Lehrstuhl für Organische Chemie I, Würzburg, Germany.
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany.
| |
Collapse
|
115
|
Padhi AK, Dandapat J, Saudagar P, Uversky VN, Tripathi T. Interface-based design of the favipiravir-binding site in SARS-CoV-2 RNA-dependent RNA polymerase reveals mutations conferring resistance to chain termination. FEBS Lett 2021; 595:2366-2382. [PMID: 34409597 PMCID: PMC8426738 DOI: 10.1002/1873-3468.14182] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023]
Abstract
Favipiravir is a broad-spectrum inhibitor of viral RNA-dependent RNA polymerase (RdRp) currently being used to manage COVID-19. Accumulation of mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RdRp may facilitate antigenic drift, generating favipiravir resistance. Focussing on the chain-termination mechanism utilized by favipiravir, we used high-throughput interface-based protein design to generate > 100 000 designs of the favipiravir-binding site of RdRp and identify mutational hotspots. We identified several single-point mutants and designs having a sequence identity of 97%-98% with wild-type RdRp, suggesting that SARS-CoV-2 can develop favipiravir resistance with few mutations. Out of 134 mutations documented in the CoV-GLUE database, 63 specific mutations were already predicted as resistant in our calculations, thus attaining ˜ 47% correlation with the sequencing data. These findings improve our understanding of the potential signatures of adaptation in SARS-CoV-2 against favipiravir.
Collapse
Affiliation(s)
- Aditya K. Padhi
- Laboratory for Structural BioinformaticsCenter for Biosystems Dynamics ResearchRIKENYokohamaJapan
| | - Jagneshwar Dandapat
- Centre of Excellence in Integrated Omics and Computational BiologyUtkal UniversityBhubaneswarIndia
- Post Graduate Department of BiotechnologyUtkal UniversityBhubaneswarIndia
| | - Prakash Saudagar
- Department of BiotechnologyNational Institute of Technology‐WarangalIndia
| | - Vladimir N. Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research InstituteMorsani College of MedicineUniversity of South FloridaTampaFLUSA
| | - Timir Tripathi
- Molecular and Structural Biophysics LaboratoryDepartment of BiochemistryNorth‐Eastern Hill UniversityShillongIndia
| |
Collapse
|
116
|
O’Donoghue SI, Schafferhans A, Sikta N, Stolte C, Kaur S, Ho BK, Anderson S, Procter JB, Dallago C, Bordin N, Adcock M, Rost B. SARS-CoV-2 structural coverage map reveals viral protein assembly, mimicry, and hijacking mechanisms. Mol Syst Biol 2021; 17:e10079. [PMID: 34519429 PMCID: PMC8438690 DOI: 10.15252/msb.202010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/18/2023] Open
Abstract
We modeled 3D structures of all SARS-CoV-2 proteins, generating 2,060 models that span 69% of the viral proteome and provide details not available elsewhere. We found that ˜6% of the proteome mimicked human proteins, while ˜7% was implicated in hijacking mechanisms that reverse post-translational modifications, block host translation, and disable host defenses; a further ˜29% self-assembled into heteromeric states that provided insight into how the viral replication and translation complex forms. To make these 3D models more accessible, we devised a structural coverage map, a novel visualization method to show what is-and is not-known about the 3D structure of the viral proteome. We integrated the coverage map into an accompanying online resource (https://aquaria.ws/covid) that can be used to find and explore models corresponding to the 79 structural states identified in this work. The resulting Aquaria-COVID resource helps scientists use emerging structural data to understand the mechanisms underlying coronavirus infection and draws attention to the 31% of the viral proteome that remains structurally unknown or dark.
Collapse
MESH Headings
- Amino Acid Transport Systems, Neutral/chemistry
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Angiotensin-Converting Enzyme 2/chemistry
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Binding Sites
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Computational Biology/methods
- Coronavirus Envelope Proteins/chemistry
- Coronavirus Envelope Proteins/genetics
- Coronavirus Envelope Proteins/metabolism
- Coronavirus Nucleocapsid Proteins/chemistry
- Coronavirus Nucleocapsid Proteins/genetics
- Coronavirus Nucleocapsid Proteins/metabolism
- Host-Pathogen Interactions/genetics
- Humans
- Mitochondrial Membrane Transport Proteins/chemistry
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Precursor Protein Import Complex Proteins
- Models, Molecular
- Molecular Mimicry
- Neuropilin-1/chemistry
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Interaction Mapping/methods
- Protein Multimerization
- Protein Processing, Post-Translational
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/metabolism
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Matrix Proteins/chemistry
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
- Viroporin Proteins/chemistry
- Viroporin Proteins/genetics
- Viroporin Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Seán I O’Donoghue
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- CSIRO Data61CanberraACTAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Andrea Schafferhans
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- Department of Bioengineering SciencesWeihenstephan‐Tr. University of Applied SciencesFreisingGermany
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Neblina Sikta
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | - Sandeep Kaur
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
- School of Biotechnology and Biomolecular Sciences (UNSW)KensingtonNSWAustralia
| | - Bosco K Ho
- Garvan Institute of Medical ResearchDarlinghurstNSWAustralia
| | | | | | - Christian Dallago
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| | - Nicola Bordin
- Institute of Structural and Molecular BiologyUniversity College LondonLondonUK
| | | | - Burkhard Rost
- Department of InformaticsBioinformatics & Computational BiologyTechnical University of MunichMunichGermany
| |
Collapse
|
117
|
KOCABAŞ F, USLU M. The current state of validated small molecules inhibiting SARS-CoV-2 nonstructural proteins. Turk J Biol 2021; 45:469-483. [PMID: 34803448 PMCID: PMC8573838 DOI: 10.3906/biy-2106-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/06/2021] [Indexed: 11/03/2022] Open
Abstract
The current COVID-19 outbreak has had a profound influence on public health and daily life. Despite all restrictions and vaccination programs, COVID-19 still can lead to fatality due to a lack of COVID-19-specific treatments. A number of studies have demonstrated the feasibility to develop therapeutics by targeting underlying components of the viral proteome. Here we reviewed recently developed and validated small molecule inhibitors of SARS-CoV-2's nonstructural proteins. We described the validation level of identified compounds specific for SARS-CoV-2 in the presence of in vitro and in vivo supporting data. The mechanisms of pharmacological activity, as well as approaches for developing improved SARS-CoV-2 NSP inhibitors have been emphasized.
Collapse
Affiliation(s)
- Fatih KOCABAŞ
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbulTurkey
| | - Merve USLU
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, İstanbulTurkey
| |
Collapse
|
118
|
Goswami D. Comparative assessment of RNA-dependent RNA polymerase (RdRp) inhibitors under clinical trials to control SARS-CoV2 using rigorous computational workflow. RSC Adv 2021; 11:29015-29028. [PMID: 35478553 PMCID: PMC9038185 DOI: 10.1039/d1ra04460e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The devastating effect of SARS-CoV2 continues and the scientific community is pursuing to find the strategy to combat the spread of the virus. The approach is adapted to target this virus with medicine in combination with existing vaccines. For this, the medications that can specifically inhibit an enzyme essential for viral replication 'RNA-dependant-RNA polymerase (RdRp)' of SARS-CoV2 are being developed. RdRp is the enzyme commonly found in all RNA viruses but is absent in humans. There are in total 60 different RdRp inhibitors already under clinical trials for combating other RNA viruses, which are sought to even work for SARS-CoV2. These inhibitors are classified as nucleoside/nucleotide analogues and nonnucleoside/nonnucleotide analogues. In this study, all the known RdRp inhibitors were computationally targeted in the native form and their active form making the use of molecular docking, MM-GBSA and molecular dynamics (MD) simulations to find the top two of each nucleoside/nucleotide analogues and nonnucleoside/nonnucleotide analogues. The results showed ribavirin 5'-triphosphate and favipiravir ribonucleoside triphosphate (favipiravir-RTP) to be the top two nucleotide analogues while pimodivir and dihydropyrazolopyridinone analogue 8d were the top two nonnucleosides/non-nucleotide analogues.
Collapse
Affiliation(s)
- Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University Ahmedabad 380009 Gujarat India
| |
Collapse
|
119
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
120
|
Cox RM, Plemper RK. The impact of high-resolution structural data on stemming the COVID-19 pandemic. Curr Opin Virol 2021; 49:127-138. [PMID: 34130040 PMCID: PMC8173484 DOI: 10.1016/j.coviro.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had a catastrophic impact on human health and the world economy. The response of the scientific community was unparalleled, and a combined global effort has resulted in the creation of vaccines in a shorter time frame than previously unimaginable. Reflecting this concerted effort, the structural analysis of the etiological agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed with an unprecedented pace. Since the onset of the pandemic, over 1000 high-resolution structures of a broad range of SARS-CoV-2 proteins have been solved and made publicly available. These structures have aided in the identification of numerous potential druggable targets and have contributed to the design of different vaccine candidates. This opinion article will discuss the impact of high-resolution structures in understanding SARS-CoV-2 biology and explore their role in the development of vaccines and antivirals.
Collapse
Affiliation(s)
- Robert M Cox
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
121
|
Wang X, Sacramento CQ, Jockusch S, Chaves OA, Tao C, Fintelman-Rodrigues N, Chien M, Temerozo JR, Li X, Kumar S, Xie W, Patel DJ, Meyer C, Garzia A, Tuschl T, Bozza PT, Russo JJ, Souza TML, Ju J. Combination of Antiviral Drugs to Inhibit SARS-CoV-2 Polymerase and Exonuclease as Potential COVID-19 Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.21.453274. [PMID: 34312622 PMCID: PMC8312893 DOI: 10.1101/2021.07.21.453274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors. In the presence of Pibrentasvir, RNAs terminated with the active forms of the prodrugs Sofosbuvir, Remdesivir, Favipiravir, Molnupiravir and AT-527 were largely protected from excision by the exonuclease, while in the absence of Pibrentasvir, there was rapid excision. Due to its unique structure, Tenofovir-terminated RNA was highly resistant to exonuclease excision even in the absence of Pibrentasvir. Viral cell culture studies also demonstrate significant synergy using this combination strategy. This study supports the use of combination drugs that inhibit both the SARS-CoV-2 polymerase and exonuclease for effective COVID-19 treatment.
Collapse
Affiliation(s)
- Xuanting Wang
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Carolina Q. Sacramento
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Steffen Jockusch
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemistry, Columbia University, New York, NY 10027
| | - Otávio Augusto Chaves
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Chuanjuan Tao
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Natalia Fintelman-Rodrigues
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Minchen Chien
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Jairo R. Temerozo
- Laboratory on Thymus Research, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology on Neuroimmunomodulation (INCT/NIM), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Xiaoxu Li
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Shiv Kumar
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Wei Xie
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Dinshaw J. Patel
- Laboratory of Structural Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY 10065
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY 10065
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, NY 10065
| | - Patrícia T. Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - James J. Russo
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
| | - Thiago Moreno L. Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
- National Institute for Science and Technology for Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Jingyue Ju
- Center for Genome Technology and Biomolecular Engineering, Columbia University, New York, NY 10027
- Department of Chemical Engineering, Columbia University, New York, NY 10027
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032
| |
Collapse
|
122
|
Brant AC, Tian W, Majerciak V, Yang W, Zheng ZM. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci 2021; 11:136. [PMID: 34281608 PMCID: PMC8287290 DOI: 10.1186/s13578-021-00643-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is an extremely contagious respiratory virus causing adult atypical pneumonia COVID-19 with severe acute respiratory syndrome (SARS). SARS-CoV-2 has a single-stranded, positive-sense RNA (+RNA) genome of ~ 29.9 kb and exhibits significant genetic shift from different isolates. After entering the susceptible cells expressing both ACE2 and TMPRSS2, the SARS-CoV-2 genome directly functions as an mRNA to translate two polyproteins from the ORF1a and ORF1b region, which are cleaved by two viral proteases into sixteen non-structural proteins (nsp1-16) to initiate viral genome replication and transcription. The SARS-CoV-2 genome also encodes four structural (S, E, M and N) and up to six accessory (3a, 6, 7a, 7b, 8, and 9b) proteins, but their translation requires newly synthesized individual subgenomic RNAs (sgRNA) in the infected cells. Synthesis of the full-length viral genomic RNA (gRNA) and sgRNAs are conducted inside double-membrane vesicles (DMVs) by the viral replication and transcription complex (RTC), which comprises nsp7, nsp8, nsp9, nsp12, nsp13 and a short RNA primer. To produce sgRNAs, RTC starts RNA synthesis from the highly structured gRNA 3' end and switches template at various transcription regulatory sequence (TRSB) sites along the gRNA body probably mediated by a long-distance RNA-RNA interaction. The TRS motif in the gRNA 5' leader (TRSL) is responsible for the RNA-RNA interaction with the TRSB upstream of each ORF and skipping of the viral genome in between them to produce individual sgRNAs. Abundance of individual sgRNAs and viral gRNA synthesized in the infected cells depend on the location and read-through efficiency of each TRSB. Although more studies are needed, the unprecedented COVID-19 pandemic has taught the world a painful lesson that is to invest and proactively prepare future emergence of other types of coronaviruses and any other possible biological horrors.
Collapse
Affiliation(s)
- Ayslan Castro Brant
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Tian
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA
| | - Wei Yang
- Mechanism of DNA Repair, Replication, and Recombination Section, Laboratory of Molecular Biology, NIDDK, Bethesda, MD, USA.
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV DRP, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
123
|
Verma R, Kim E, Martínez-Colón GJ, Jagannathan P, Rustagi A, Parsonnet J, Bonilla H, Khosla C, Holubar M, Subramanian A, Singh U, Maldonado Y, Blish CA, Andrews JR. SARS-CoV-2 Subgenomic RNA Kinetics in Longitudinal Clinical Samples. Open Forum Infect Dis 2021; 8:ofab310. [PMID: 34295944 PMCID: PMC8291522 DOI: 10.1093/ofid/ofab310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Given the persistence of viral RNA in clinically recovered coronavirus disease 2019 (COVID-19) patients, subgenomic RNAs (sgRNAs) have been reported as potential molecular viability markers for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, few data are available on their longitudinal kinetics, compared with genomic RNA (gRNA), in clinical samples. METHODS We analyzed 536 samples from 205 patients with COVID-19 from placebo-controlled, outpatient trials of peginterferon Lambda-1a (Lambda; n = 177) and favipiravir (n = 359). Nasal swabs were collected at 3 time points in the Lambda (days 1, 4, and 6) and favipiravir (days 1, 5, and 10) trials. N-gene gRNA and sgRNA were quantified by quantitative reverse transcription polymerase chain reaction. To investigate the decay kinetics in vitro, we measured gRNA and sgRNA in A549ACE2+ cells infected with SARS-CoV-2, following treatment with remdesivir or dimethylsulfoxide control. RESULTS At 6 days in the Lambda trial and 10 days in the favipiravir trial, sgRNA remained detectable in 51.6% (32/62) and 49.5% (51/106) of the samples, respectively. Cycle threshold (Ct) values for gRNA and sgRNA were highly linearly correlated (marginal R 2 = 0.83), and the rate of increase did not differ significantly in the Lambda trial (1.36 cycles/d vs 1.36 cycles/d; P = .97) or the favipiravir trial (1.03 cycles/d vs 0.94 cycles/d; P = .26). From samples collected 15-21 days after symptom onset, sgRNA was detectable in 48.1% (40/83) of participants. In SARS-CoV-2-infected A549ACE2+ cells treated with remdesivir, the rate of Ct increase did not differ between gRNA and sgRNA. CONCLUSIONS In clinical samples and in vitro, sgRNA was highly correlated with gRNA and did not demonstrate different decay patterns to support its application as a viability marker.
Collapse
Affiliation(s)
- Renu Verma
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Eugene Kim
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Giovanny Joel Martínez-Colón
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arjun Rustagi
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Chaitan Khosla
- Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, California, USA
| | - Marisa Holubar
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Aruna Subramanian
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Upinder Singh
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Yvonne Maldonado
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Catherine A Blish
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
124
|
Palko N, Grishina M, Potemkin V. Electron Density Analysis of SARS-CoV-2 RNA-Dependent RNA Polymerase Complexes. Molecules 2021; 26:3960. [PMID: 34203564 PMCID: PMC8272208 DOI: 10.3390/molecules26133960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
The work is devoted to the study of the complementarity of the electronic structures of the ligands and SARS-CoV-2 RNA-dependent RNA polymerase. The research methodology was based on determining of 3D maps of electron densities of complexes using an original quantum free-orbital AlteQ approach. We observed a positive relationship between the parameters of the electronic structure of the enzyme and ligands. A complementarity factor of the enzyme-ligand complexes has been proposed. The console applications of the AlteQ complementarity assessment for Windows and Linux (alteq_map_enzyme_ligand_4_win.exe and alteq_map_enzyme_ligand_4_linux) are available for free at the ChemoSophia webpage.
Collapse
Affiliation(s)
- Nadezhda Palko
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
125
|
Wang J, Reiss K, Shi Y, Lolis E, Lisi GP, Batista VS. Mechanism of Inhibition of the Reproduction of SARS-CoV-2 and Ebola Viruses by Remdesivir. Biochemistry 2021; 60:1869-1875. [PMID: 34110129 PMCID: PMC8204756 DOI: 10.1021/acs.biochem.1c00292] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/28/2021] [Indexed: 01/18/2023]
Abstract
Remdesivir is an antiviral drug initially designed against the Ebola virus. The results obtained with it both in biochemical studies in vitro and in cell line assays in vivo were very promising, but it proved to be ineffective in clinical trials. Remdesivir exhibited far better efficacy when repurposed against SARS-CoV-2. The chemistry that accounts for this difference is the subject of this study. Here, we examine the hypothesis that remdesivir monophosphate (RMP)-containing RNA functions as a template at the polymerase site for the second run of RNA synthesis, and as mRNA at the decoding center for protein synthesis. Our hypothesis is supported by the observation that RMP can be incorporated into RNA by the RNA-dependent RNA polymerases (RdRps) of both viruses, although some of the incorporated RMPs are subsequently removed by exoribonucleases. Furthermore, our hypothesis is consistent with the fact that RdRp of SARS-CoV-2 selects RMP for incorporation over AMP by 3-fold in vitro, and that RMP-added RNA can be rapidly extended, even though primer extension is often paused when the added RMP is translocated at the i + 3 position (with i the nascent base pair at an initial insertion site of RMP) or when the concentrations of the subsequent nucleoside triphosphates (NTPs) are below their physiological concentrations. These observations have led to the hypothesis that remdesivir might be a delayed chain terminator. However, that hypothesis is challenged under physiological concentrations of NTPs by the observation that approximately three-quarters of RNA products efficiently overrun the pause.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, United States
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Yuanjun Shi
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| | - Elias Lolis
- Department of Pharmacology, Yale University, New Haven, Connecticut 06520-8066, United States
| | - George P Lisi
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, Connecticut 06511-8499, United States
| |
Collapse
|
126
|
Allosteric Activation of SARS-CoV-2 RNA-Dependent RNA Polymerase by Remdesivir Triphosphate and Other Phosphorylated Nucleotides. mBio 2021; 12:e0142321. [PMID: 34154407 PMCID: PMC8262916 DOI: 10.1128/mbio.01423-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors.
Collapse
|
127
|
Qu C, Fuhler GM, Pan Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int J Mol Sci 2021; 22:5672. [PMID: 34073529 PMCID: PMC8199351 DOI: 10.3390/ijms22115672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 has rapidly become a pandemic worldwide, causing extensive and long-term health issues. There is an urgent need to identify therapies that limit SARS-CoV-2 infection and improve the outcome of COVID-19 patients. Unbalanced lung inflammation is a common feature in severe COVID-19 patients; therefore, reducing lung inflammation can undoubtedly benefit the clinical manifestations. Histamine H1 receptor (H1 receptor) antagonists are widely prescribed medications to treat allergic diseases, while recently it has emerged that they show significant promise as anti-SARS-CoV-2 agents. Here, we briefly summarize the novel use of H1 receptor antagonists in combating SARS-CoV-2 infection. We also describe the potential antiviral mechanisms of H1 receptor antagonists on SARS-CoV-2. Finally, the opportunities and challenges of the use of H1 receptor antagonists in managing COVID-19 are discussed.
Collapse
Affiliation(s)
- Changbo Qu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
128
|
Global Genomic Analysis of SARS-CoV-2 RNA Dependent RNA Polymerase Evolution and Antiviral Drug Resistance. Microorganisms 2021; 9:microorganisms9051094. [PMID: 34069681 PMCID: PMC8160703 DOI: 10.3390/microorganisms9051094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/09/2021] [Accepted: 05/15/2021] [Indexed: 01/18/2023] Open
Abstract
A variety of antiviral treatments for COVID-19 have been investigated, involving many repurposed drugs. Currently, the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp, encoded by nsp12-nsp7-nsp8) has been targeted by numerous inhibitors, e.g., remdesivir, the only provisionally approved treatment to-date, although the clinical impact of these interventions remains inconclusive. However, the potential emergence of antiviral resistance poses a threat to the efficacy of any successful therapies on a wide scale. Here, we propose a framework to monitor the emergence of antiviral resistance, and as a proof of concept, we address the interaction between RdRp and remdesivir. We show that SARS-CoV-2 RdRp is under purifying selection, that potential escape mutations are rare in circulating lineages, and that those mutations, where present, do not destabilise RdRp. In more than 56,000 viral genomes from 105 countries from the first pandemic wave, we found negative selective pressure affecting nsp12 (Tajima’s D = −2.62), with potential antiviral escape mutations in only 0.3% of sequenced genomes. Potential escape mutations included known key residues, such as Nsp12:Val473 and Nsp12:Arg555. Of the potential escape mutations involved globally, in silico structural models found that they were unlikely to be associated with loss of stability in RdRp. No potential escape mutation was found in a local cohort of remdesivir treated patients. Collectively, these findings indicate that RdRp is a suitable drug target, and that remdesivir does not seem to exert high selective pressure. We anticipate our framework to be the starting point of a larger effort for a global monitoring of drug resistance throughout the COVID-19 pandemic.
Collapse
|
129
|
Rabie AM. RETRACTED ARTICLE: Discovery of ( E)- N-(4-cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxamide (cyanorona-20): the first potent and specific anti-COVID-19 drug. CHEMICKE ZVESTI 2021; 75:4669-4685. [PMID: 34025012 PMCID: PMC8126404 DOI: 10.1007/s11696-021-01640-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/02/2021] [Indexed: 01/18/2023]
Abstract
ABSTRACT Specific inhibition of the viral RNA-dependent RNA polymerase (RdRp) of the newly-emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a very promising strategy for developing highly potent medicines for coronavirus disease 2019 (COVID-19). However, almost all of the reported viral RdRp inhibitors (either repurposed drugs or new antiviral agents) lack selectivity against the SARS-CoV-2 RdRp. Herein, I discovered a new favipiravir derivative, (E)-N-(4-cyanobenzylidene)-6-fluoro-3-hydroxypyrazine-2-carboxamide (cyanorona-20), as the first potent SARS-CoV-2 inhibitor with very high selectivity (209- and 45-fold more potent than favipiravir and remdesivir, respectively). Based on the significant reduction in the in vitro SARS-CoV-2 replication/copies, strong computational cyanorona-20 ligand-RdRp protein interactions, and anti-RdRp activity of the parent favipiravir drug, SARS-CoV-2 inhibition is thought to be mediated through the coronaviral-2 RdRp inhibition. This promising selective anti-COVID-19 compound is also, to the best of our knowledge, the first bioactive derivative of favipiravir, the known antiinfluenza and antiviral drug. This new nucleoside analog was designed, synthesized, characterized, computationally studied (through pharmacokinetic calculations along with computational molecular modeling and prediction), and biologically evaluated for its anti-COVID-19 activities (through a validated in vitro anti-COVID-19 assay). The results of the biological assay showed that cyanorona-20 surprisingly exhibited very significant anti-COVID-19 activity (anti-SARS-CoV-2 EC50 = 0.45 μM), and, in addition, it could be also a very promising lead compound for the design of new anti-COVID-19 agents. Cyanorona-20 is a new favipiravir derivative with promise for the treatment of SARS-CoV-2 infection. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11696-021-01640-9.
Collapse
Affiliation(s)
- Amgad M. Rabie
- Dr. Amgad Rabie’s Research Lab. for Drug Discovery (DARLD), Mansoura, Egypt
| |
Collapse
|
130
|
Madru C, Tekpinar AD, Rosario S, Czernecki D, Brûlé S, Sauguet L, Delarue M. Fast and efficient purification of SARS-CoV-2 RNA dependent RNA polymerase complex expressed in Escherichia coli. PLoS One 2021; 16:e0250610. [PMID: 33914787 PMCID: PMC8084133 DOI: 10.1371/journal.pone.0250610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
To stop the COVID-19 pandemic due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which caused more than 2.5 million deaths to date, new antiviral molecules are urgently needed. The replication of SARS-CoV-2 requires the RNA-dependent RNA polymerase (RdRp), making RdRp an excellent target for antiviral agents. RdRp is a multi-subunit complex composed of 3 viral proteins named nsp7, nsp8 and nsp12 that ensure the ~30 kb RNA genome’s transcription and replication. The main strategies employed so far for the overproduction of RdRp consist of expressing and purifying the three subunits separately before assembling the complex in vitro. However, nsp12 shows limited solubility in bacterial expression systems and is often produced in insect cells. Here, we describe an alternative strategy to co-express the full SARS-CoV-2 RdRp in E. coli, using a single plasmid. Characterization of the purified recombinant SARS-CoV-2 RdRp shows that it forms a complex with the expected (nsp7)(nsp8)2(nsp12) stoichiometry. RNA polymerization activity was measured using primer-extension assays showing that the purified enzyme is functional. The purification protocol can be achieved in one single day, surpassing in speed all other published protocols. Our construct is ideally suited for screening RdRp and its variants against very large chemical compounds libraries and has been made available to the scientific community through the Addgene plasmid depository (Addgene ID: 165451).
Collapse
Affiliation(s)
- Clément Madru
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
| | - Ayten Dizkirici Tekpinar
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van, Turkey
| | - Sandrine Rosario
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
| | - Dariusz Czernecki
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- École Doctorale Complexité du Vivant, Sorbonne Université, Paris, France
| | - Sébastien Brûlé
- Molecular Biophysics Platform, C2RT, Institut Pasteur, CNRS UMR, Paris, France
| | - Ludovic Sauguet
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- * E-mail: (LS); (MD)
| | - Marc Delarue
- Unit of Structural Dynamics of Macromolecules, Institut Pasteur & CNRS UMR, Paris, France
- * E-mail: (LS); (MD)
| |
Collapse
|
131
|
Wang B, Svetlov V, Wolf YI, Koonin EV, Nudler E, Artsimovitch I. Allosteric activation of SARS-CoV-2 RdRp by remdesivir triphosphate and other phosphorylated nucleotides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.24.428004. [PMID: 33948598 PMCID: PMC8095223 DOI: 10.1101/2021.01.24.428004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), Nsp12, has a unique NiRAN domain that transfers nucleoside monophosphates to the Nsp9 protein. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation) Nsp12 exists in inactive state in which NiRAN/RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or NTPs partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN/RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically-linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and design of its inhibitors. HIGHLIGHTS Codon-optimization of Nsp12 triggers misfolding and activity lossSlow translation, accessory Nsp7 and Nsp8 subunits, and NTPs rescue Nsp12Non-substrate nucleotides activate RNA chain synthesis, likely via NiRAN domainCrosstalk between two Nsp12 active sites that bind the same ligands.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
132
|
Lo Cascio E, Toto A, Babini G, De Maio F, Sanguinetti M, Mordente A, Della Longa S, Arcovito A. Structural determinants driving the binding process between PDZ domain of wild type human PALS1 protein and SLiM sequences of SARS-CoV E proteins. Comput Struct Biotechnol J 2021; 19:1838-1847. [PMID: 33758649 PMCID: PMC7970798 DOI: 10.1016/j.csbj.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/21/2022] Open
Abstract
Short Linear Motifs (SLiMs) are functional protein microdomains that typically mediate interactions between a short linear region in one protein and a globular domain in another. Surface Plasmon Resonance assays have been performed to determine the binding affinity between PDZ domain of wild type human PALS1 protein and tetradecapeptides representing the SLiMs sequences of SARS-CoV-1 and SARS-CoV-2 E proteins (E-SLiMs). SARS-CoV-2 E-SLiM binds to the human target protein with a higher affinity compared to SARS-CoV-1, showing a difference significantly greater than previously reported using the F318W mutant of PALS1 protein and shorter target peptides. Moreover, molecular dynamics simulations have provided clear evidence of the structural determinants driving this binding process. Specifically, the Arginine 69 residue in the SARS-CoV-2 E-SLiM is the key residue able to both enhance the specific polar interaction with negatively charged pockets of the PALS1 PDZ domain and reduce significantly the mobility of the viral peptide. These experimental and computational data are reinforced by the comparison of the interaction between the PALS1 PDZ domain with the natural ligand CRB1, as well as the corresponding E-SLiMs of other coronavirus members such as MERS and OCF43. Our results provide a model at the molecular level of the strategies used to mimic the endogenous SLiM peptide in the binding of the tight junctions of the host cell, explaining one of the possible reasons of the severity of the infection and pulmonary inflammation by SARS-CoV-2.
Collapse
Affiliation(s)
- Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Angelo Toto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185 Rome, Italy
| | - Gabriele Babini
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Flavio De Maio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Alvaro Mordente
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
133
|
Walsh MA, Grimes JM, Stuart DI. Diamond Light Source: contributions to SARS-CoV-2 biology and therapeutics. Biochem Biophys Res Commun 2021; 538:40-46. [PMID: 33248689 PMCID: PMC7676326 DOI: 10.1016/j.bbrc.2020.11.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023]
Abstract
The impact of COVID-19 on public health and the global economy has led to an unprecedented research response, with a major emphasis on the development of safe vaccines and drugs. However, effective, safe treatments typically take over a decade to develop and there are still no clinically approved therapies to treat highly pathogenic coronaviruses. Repurposing of known drugs can speed up development and this strategy, along with the use of biologicals (notably monoclonal antibody therapy) and vaccine development programmes remain the principal routes to dealing with the immediate impact of COVID-19. Nevertheless, the development of broadly-effective highly potent antivirals should be a major longer term goal. Structural biology has been applied with enormous effect, with key proteins structurally characterised only weeks after the SARS-CoV-2 sequence was released. Open-access to advanced infrastructure for structural biology techniques at synchrotrons and high-end cryo-EM and NMR centres has brought these technologies centre-stage in drug discovery. We summarise the role of Diamond Light Source in responses to the pandemic and note the impact of the immediate release of results in fuelling an open-science approach to early-stage drug discovery.
Collapse
Affiliation(s)
- Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Jonathan M Grimes
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7BN, UK
| | - David I Stuart
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK; Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, Headington, Oxford, OX3 7BN, UK; Instruct-ERIC, Oxford House, Parkway Court, John Smith Drive, Oxford, OX4 2JY, UK.
| |
Collapse
|
134
|
Maheden K, Todd B, Gordon CJ, Tchesnokov EP, Götte M. Inhibition of viral RNA-dependent RNA polymerases with clinically relevant nucleotide analogs. Enzymes 2021; 49:315-354. [PMID: 34696837 PMCID: PMC8517576 DOI: 10.1016/bs.enz.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The treatment of viral infections remains challenging, in particular in the face of emerging pathogens. Broad-spectrum antiviral drugs could potentially be used as a first line of defense. The RNA-dependent RNA polymerase (RdRp) of RNA viruses serves as a logical target for drug discovery and development efforts. Herein we discuss compounds that target RdRp of poliovirus, hepatitis C virus, influenza viruses, respiratory syncytial virus, and the growing data on coronaviruses. We focus on nucleotide analogs and mechanisms of action and resistance.
Collapse
Affiliation(s)
- Kieran Maheden
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Brendan Todd
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology at University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
135
|
Groaz E, De Clercq E, Herdewijn P. Anno 2021: Which antivirals for the coming decade? ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2021; 57:49-107. [PMID: 34744210 PMCID: PMC8563371 DOI: 10.1016/bs.armc.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite considerable progress in the development of antiviral drugs, among which anti-immunodeficiency virus (HIV) and anti-hepatitis C virus (HCV) medications can be considered real success stories, many viral infections remain without an effective treatment. This not only applies to infectious outbreaks caused by zoonotic viruses that have recently spilled over into humans such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), but also ancient viral diseases that have been brought under control by vaccination such as variola (smallpox), poliomyelitis, measles, and rabies. A largely unsolved problem are endemic respiratory infections due to influenza, respiratory syncytial virus (RSV), and rhinoviruses, whose associated morbidity will likely worsen with increasing air pollution. Furthermore, climate changes will expose industrialized countries to a dangerous resurgence of viral hemorrhagic fevers, which might also become global infections. Herein, we summarize the recent progress that has been made in the search for new antivirals against these different threats that the world population will need to confront with increasing frequency in the next decade.
Collapse
Affiliation(s)
- Elisabetta Groaz
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium,Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy,Corresponding author:
| | - Erik De Clercq
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Piet Herdewijn
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|