101
|
Kang B, Zhou Y, Zheng M, Wang YJ. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment. GENOMICS DATA 2015; 5:281-3. [PMID: 26484269 PMCID: PMC4583679 DOI: 10.1016/j.gdata.2015.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.
Collapse
|
102
|
DeGroot DE, Franks DG, Higa T, Tanaka J, Hahn ME, Denison MS. Naturally occurring marine brominated indoles are aryl hydrocarbon receptor ligands/agonists. Chem Res Toxicol 2015; 28:1176-85. [PMID: 26001051 PMCID: PMC4469569 DOI: 10.1021/acs.chemrestox.5b00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as brominated indoles) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat, and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [(3)H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these results indicate that marine-derived brominated indoles are members of a new class of naturally occurring AhR agonists.
Collapse
Affiliation(s)
- Danica E. DeGroot
- Department of Environmental Toxicology, University of California, Davis, CA USA
| | - Diana G. Franks
- Department of Biology and the Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Tatsuo Higa
- Department of Chemistry, Biology and Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, JAPAN
| | - Junichi Tanaka
- Department of Chemistry, Biology and Marine Sciences, University of the Ryukyus, Nishihara, Okinawa, JAPAN
| | - Mark E. Hahn
- Department of Biology and the Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA USA
| |
Collapse
|
103
|
Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells. Nat Commun 2015; 6:7209. [PMID: 26059097 PMCID: PMC4490363 DOI: 10.1038/ncomms8209] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.
Collapse
|
104
|
Brown DR, Clark BW, Van Tiem Garner L, Di Giulio RT. Zebrafish cardiotoxicity: the effects of CYP1A inhibition and AHR2 knockdown following exposure to weak aryl hydrocarbon receptor agonists. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8329-38. [PMID: 25532870 PMCID: PMC4442063 DOI: 10.1007/s11356-014-3969-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/08/2014] [Indexed: 04/12/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates many of the toxic effects of dioxin-like compounds (DLCs) and some polycyclic aromatic hydrocarbons (PAHs). Strong AHR agonists, such as certain polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), cause severe cardiac teratogenesis in fish embryos. Moderately strong AHR agonists, such as benzo[a]pyrene and β-naphthoflavone, have been shown to cause similar cardiotoxic effects when coupled with a cytochrome P450 1A (CYP1A) inhibitor, such as fluoranthene (FL). We sought to determine if weak AHR agonists, when combined with a CYP1A inhibitor (FL) or CYP1A morpholino gene knockdown, are capable of causing cardiac deformities similar to moderately strong AHR agonists (Wassenberg and Di Giulio Environ Health Perspect 112(17):1658-1664, 2004a; Wassenberg and Di Giulio Res 58(2-5):163-168, 2004b; Billiard et al. Toxicol Sci 92(2):526-536, 2006; Van Tiem and Di Giulio Toxicol Appl Pharmacol 254(3):280-287, 2011). The weak AHR agonists included the following: carbaryl, phenanthrene, 2-methylindole, 3-methylindole, indigo, and indirubin. Danio rerio (zebrafish) embryos were first exposed to weak AHR agonists at equimolar concentrations. The agonists were assessed for their relative potency as inducers of CYP1 enzyme activity, measured by the ethoxyresorufin-O-deethylase (EROD) assay, and cardiac deformities. Carbaryl, 2-methylindole, and 3-methylindole induced the highest CYP1A activity in zebrafish. Experiments were then conducted to determine the individual cardiotoxicity of each compound. Next, zebrafish were coexposed to each agonist (at concentrations below those determined to be cardiotoxic) and FL in combination to assess if CYP1A inhibition could induce cardiac deformities. Carbaryl, 2-methylindole, 3-methylindole, and phenanthrene significantly increased pericardial edema relative to controls when combined with FL. To further evaluate the interaction of the weak AHR agonists and CYP1A inhibition, a morpholino was used to knockdown CYP1A expression, and embryos were then exposed to each agonist individually. In embryos exposed to 2-methylindole, CYP1A knockdown caused a similar level of pericardial edema to that caused by exposure to 2-methylindole and FL. The results showed a complex pattern of cardiotoxic response to weak agonist inhibitor exposure and morpholino-knockdown. However, CYP1A knockdown in phenanthrene and 3-methylindole only moderately increased pericardial edema relative to coexposure to FL. AHR2 expression was also knocked down using a morpholino to determine its role in mediating the observed cardiac teratogenesis. Knockdown of AHR2 did not rescue the pericardial edema as previously observed with strong AHR agonists. While some of the cardiotoxicity observed may be attributed to the combination of weak AHR agonism and CYP1A inhibition, other weak AHR agonists appear to be causing cardiotoxicity through an AHR2-independent mechanism. The data show that CYP1A is protective of the cardiac toxicity associated with weak AHR agonists and that knockdown can generate pericardial edema, but these findings are also suggestive of differing mechanisms of cardiac toxicity among known AHR agonists.
Collapse
Affiliation(s)
- Daniel Ross Brown
- Doctoral Candidate, Duke University Superfund Basic Research Center, Duke University, Durham, North Carolina, 828-244-5499
| | - Bryan William Clark
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, 27 Tarzwell Drive, Narrangansett, Rhode Island 02852
| | | | - Richard Thomas Di Giulio
- Professor of Environmental Toxicology, Director of the Superfund Basic Research Center, and Director Integrated Toxicology and Environmental Health Program, Durham, North Carolina
| |
Collapse
|
105
|
Awji EG, Chand H, Bruse S, Smith KR, Colby JK, Mebratu Y, Levy BD, Tesfaigzi Y. Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 2015; 52:377-86. [PMID: 25137396 DOI: 10.1165/rcmb.2014-0142oc] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Our previous studies showed that cigarette smokers who are exposed to wood smoke (WS) are at an increased risk for chronic bronchitis and reduced lung function. The present study was undertaken to determine the mechanisms for WS-induced adverse effects. We studied the effect of WS exposure using four cohorts of mice. C57Bl/6 mice were exposed for 4 or 12 weeks to filtered air, to 10 mg/m(3) WS for 2 h/d, to 250 mg/m(3) cigarette smoke (CS) for 6 h/d, or to CS followed by WS (CW). Inflammation was absent in the filtered air and WS groups, but enhanced by twofold in the bronchoalveolar lavage of the CW compared with CS group as measured by neutrophil numbers and levels of the neutrophil chemoattractant, keratinocyte-derived chemokine. The levels of the anti-inflammatory lipoxin, lipoxin A4, were reduced by threefold along with cyclo-oxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 in airway epithelial cells and PGE2 levels in the bronchoalveolar lavage of CW compared with CS mice. We replicated, in primary human airway epithelial cells, the changes observed in mice. Immunoprecipitations showed that WS blocked the interaction of aryl hydrocarbon receptor (AHR) with AHR nuclear transporter to reduce expression of COX-2 and mPGES-1 by increasing expression of AHR repressor (AHRR). Collectively, these studies show that exposure to low concentrations of WS enhanced CS-induced inflammation by inducing AHRR expression to suppress AHR, COX-2, and mPGES-1 expression, and levels of PGE2 and lipoxin A4. Therefore, AHRR is a potential therapeutic target for WS-associated exacerbations of CS-induced inflammation.
Collapse
Affiliation(s)
- Elias G Awji
- 1 COPD Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Li Y, Wang K, Zou QY, Zhou C, Magness RR, Zheng J. A possible role of aryl hydrocarbon receptor in spontaneous preterm birth. Med Hypotheses 2015; 84:494-7. [PMID: 25697115 DOI: 10.1016/j.mehy.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 01/03/2023]
Abstract
Preterm birth (PTB) is defined as birth before 37 weeks of gestation and is a leading cause of neonatal mortality and morbidity. To date, the etiology of spontaneous PTB (sPTB) remains unclear; however, intrauterine bacterial infection-induced inflammation is considered to be one of the major triggers. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon activation, AhR signaling mediates many biological processes. AhR is abundantly expressed in human placentas, primarily in trophoblasts, and several fetal organs and tissues. The activation of AhR signaling can modulate inflammatory responses via promoting production of pro-inflammatory cytokines by the placenta and fetal membranes. These cytokines could enhance expression and/or activity of cyclooxygenase-2 (COX2) in human trophoblasts and amniotic epithelia, which in turn stimulate synthesis and release of prostaglandins (PGs; e.g., PGE2 and PGF2α). Given the discovery of a number of natural and endogenous AhR ligands in human, we hypothesize that in a subset of patients with high AhR expression in placentas and fetal membranes, repeated exposure to these AhR ligands hyperactivates AhR, inducing hyperactivation of the cytokines/COX2/PGs pathway, resulting in myometrial contractions, ultimately leading to sPTB. We further hypothesize that hyperactivation of this AhR pathway can induce sPTB either directly or in synergy with the bacterial infection. Proof of this hypothesis may provide a novel mechanism underlying sPTB.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | - Qing-Yun Zou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Chi Zhou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53715, United States; Department of Animal Sciences, University of Wisconsin, Madison, WI 53715, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
107
|
Induction of Immune Tolerance to Dietary Antigens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 850:93-118. [DOI: 10.1007/978-3-319-15774-0_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
108
|
Li Y, Wang K, Jiang YZ, Chang XW, Dai CF, Zheng J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell Oncol (Dordr) 2014; 37:429-37. [PMID: 25404385 DOI: 10.1007/s13402-014-0206-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates a broad spectrum of biological processes, including ovarian growth and ovulation. Recently, we found that an endogenous AhR ligand (ITE) can inhibit ovarian cancer proliferation and migration via the AhR. Here, we tested whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an exogenous AhR ligand) may exert similar anti-ovarian cancer activities using human ovarian cancer and non-cancerous human ovarian surface epithelial cells. METHODS Two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) and one human ovarian surface epithelial cell line (IOSE-385) were used. Cell proliferation and migration activities were determined using crystal violet and FluoroBlok insert system assays, respectively. AhR protein expression was assessed by Western blotting. Expression of cytochrome P450, family 1, member A1 (CYP1A1) and member B1 (CYP1B1) mRNA was assessed by qPCR. Small interfering RNAs (siRNAs) were used to knock down AhR expression. RESULTS We found that TCDD dose-dependently suppressed OVCAR-3 cell proliferation, with a maximum effect (~70% reduction) at 100 nM. However, TCDD did not affect SKOV-3 and IOSE-385 cell proliferation and migration. The estimated IC50 of TCDD for inhibiting OVCAR-3 cell proliferation was 4.6 nM. At 10 nM, TCDD time-dependently decreased AhR protein levels, while it significantly increased CYP1A1 and CYP1B1 mRNA levels in SKOV-3, OVCAR-3 and IOSE-385 cells, indicating activation of AhR signaling. siRNA-mediated AhR knockdown readily blocked TCDD-mediated suppression of OVCAR-3 cell proliferation. CONCLUSION Our data indicate that TCDD can suppress human ovarian cancer cell proliferation via the AhR signaling pathway and that TCDD exhibits an anti-proliferative activity in at least a subset of human ovarian cancer cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, 202 S. Park St., Madison, WI, 53715, USA
| | | | | | | | | | | |
Collapse
|
109
|
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol 2014; 32:403-32. [PMID: 24655296 DOI: 10.1146/annurev-immunol-032713-120245] [Citation(s) in RCA: 648] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aryl hydrocarbon receptor (AhR), for many years almost exclusively studied by the pharmacology/toxicology field for its role in mediating the toxicity of xenobiotics such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), has more recently attracted the attention of immunologists. The evolutionary conservation of this transcription factor and its widespread expression in the immune system point to important physiological functions that are slowly being unraveled. In particular, the emphasis is now shifting from the role of AhR in the xenobiotic pathway toward its mode of action in response to physiological ligands. In this article, we review the current understanding of the molecular interactions and functions of AhR in the immune system in steady state and in the presence of infection and inflammation, with a focus on barrier organs such as the skin, the gut, and the lung.
Collapse
Affiliation(s)
- Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom; , , ,
| | | | | | | |
Collapse
|
110
|
Wang C, Ye Z, Kijlstra A, Zhou Y, Yang P. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells. Clin Exp Immunol 2014; 177:521-30. [PMID: 24749687 DOI: 10.1111/cei.12352] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2014] [Indexed: 12/18/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases.
Collapse
Affiliation(s)
- C Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, P. R. China
| | | | | | | | | |
Collapse
|
111
|
Hecht E, Zago M, Sarill M, Rico de Souza A, Gomez A, Matthews J, Hamid Q, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation. Toxicol Appl Pharmacol 2014; 280:511-25. [PMID: 25178717 DOI: 10.1016/j.taap.2014.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 12/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR(-/-)) and wild-type (AhR(+/+)) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR(-/-) cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR(-/-) compared to AhR(+/+) cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR(+/+) fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR(+/+) lung fibroblasts in response to serum, corresponding to a decrease in p27(KIP1) protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27(KIP1) in AhR(-/-) fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR.
Collapse
Affiliation(s)
- Emelia Hecht
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Michela Zago
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Miles Sarill
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Alvin Gomez
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Jason Matthews
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
112
|
New 2-(1′H-indole-3′-carbonyl)-thiazoles derived from the thermophilic bacterium Thermosporothrix hazakensis SK20-1T. J Antibiot (Tokyo) 2014; 68:60-2. [DOI: 10.1038/ja.2014.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/15/2014] [Accepted: 05/30/2014] [Indexed: 11/08/2022]
|
113
|
Jansen R, Mohr KI, Bernecker S, Stadler M, Müller R. Indothiazinone, an indolyl thiazolyl ketone from a novel myxobacterium belonging to the Sorangiineae. JOURNAL OF NATURAL PRODUCTS 2014; 77:1054-1060. [PMID: 24697522 DOI: 10.1021/np500144t] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Indothiazinone (1), an indolyl thiazolyl ketone, was discovered in cultures of novel myxobacterial strain 706, recently isolated from compost in Germany. Molecular phylogenetic studies based on 16S rRNA gene sequences revealed strain 706 to be a representative of a new family of the Sorangiineae. A screening of the culture broth for antimicrobial metabolites followed by isolation and characterization of these compounds revealed six indole derivatives and a 1,4-naphthoquinone derivative. The structures were determined to be indothiazinone (1; 1H-indol-3-yl(1,3-thiazol-2-yl)methanone) and three 3-methylbuta-1,3-dien-1-yl-substituted indoles, indolyl ethanol 2 and the E- and Z-isomers of indolyl ethylidenehydroxylamine 4 and 5 by MS and NMR spectroscopic analyses. In the indolyl ethanol derivative 3 the unsaturated methylene group of the butadienyl residue was replaced by an oxygen atom to give the keto group of the butanone side chain. Further 1H-indol-3-ylacetonitrile (6) was identified, which was already known as a myxobacterial metabolite. 2-Hydroxyethyl-3-methyl-1,4-naphthoquinone (7) was recognized during dereplication as an antibiotic previously isolated from Actinoplanes capillaceus. Whereas 1, 4, 5, and 7 showed weak activity against yeasts and filamentous fungi, isomers 4 and 5 were weakly active against Gram-positive bacteria and mouse fibroblasts. Compound 6 is volatile, and 2 and 3 showed no activity in a number of assays.
Collapse
Affiliation(s)
- Rolf Jansen
- Department Microbial Drugs, Helmholtz Centre for Infection Research , Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
114
|
de Souza AR, Zago M, Eidelman DH, Hamid Q, Baglole CJ. Aryl hydrocarbon receptor (AhR) attenuation of subchronic cigarette smoke-induced pulmonary neutrophilia is associated with retention of nuclear RelB and suppression of intercellular adhesion molecule-1 (ICAM-1). Toxicol Sci 2014; 140:204-23. [PMID: 24752502 DOI: 10.1093/toxsci/kfu068] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cigarette smoke is associated with chronic and enhanced pulmonary inflammation characterized by increased cytokine production and leukocyte recruitment to the lung. Although the aryl hydrocarbon receptor (AhR) is well-known to mediate toxic effects of manmade environmental contaminants, the AhR has emerged as a suppressor of acute cigarette smoke-induced neutrophilia by a mechanism involving the NF-κB protein RelB. Yet individuals who smoke often smoke for many years and vary in their cigarette consumption. As there is currently no information on the AhR prevention of lung inflammation, including neutrophilia, due to varied and prolonged exposure regimes, we exposed control and AhR(-/-) mice to cigarette smoke for 2 weeks (subchronic exposure) utilizing low and high exposure protocols and evaluated pulmonary inflammation. Subchronic cigarette smoke exposure significantly increased pulmonary neutrophilia dose-dependently in AhR(-/-) mice. Surprisingly, there was no difference between smoke-exposed AhR(+/-) and AhR(-/-) mice in the expression of cytokines associated with neutrophil recruitment. Expression of pulmonary intercellular adhesion molecule-1 (ICAM-1), an adhesion molecule involved in neutrophil migration and retention, was higher in pulmonary endothelial cells from AhR(-/-) mice. Although total lung RelB expression was increased by cigarette smoke, nuclear RelB was significantly lower in subchronically exposed AhR(-/-) mice. Inhibition of AhR activity by CH-223191 in endothelial cells potentiated ICAM-1 expression and prevented RelB nuclear translocation but had no effect on neutrophil adhesion. These data support that genetic absence of the AhR contributes to heightened pulmonary neutrophilia in response to ongoing cigarette smoke exposure. Interindividual variations in AhR expression may enhance the susceptibility to cigarette smoke-induced diseases.
Collapse
Affiliation(s)
| | - Michela Zago
- Research Institute of the McGill University Health Centre
| | - David H Eidelman
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada H2X 2P2
| |
Collapse
|
115
|
Aryl hydrocarbon receptor (AhR) agonists increase airway epithelial matrix metalloproteinase activity. J Mol Med (Berl) 2014; 92:615-28. [PMID: 24469321 DOI: 10.1007/s00109-014-1121-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 12/23/2022]
Abstract
UNLABELLED The aryl hydrocarbon receptor (AhR) agonists may upregulate matrix metalloproteinases (MMPs) and contribute to many airway diseases, such as asthma and chronic obstructive pulmonary disease. Elucidation of the detailed molecular mechanisms regulating MMPs may provide the scientific basis for diagnostic and therapeutic opportunities to improve the care of various pulmonary diseases, especially those related to xenobiotic agents. In this study, we investigated the detailed mechanisms of how AhR agonists modulated the expressions and activities of MMPs in bronchial epithelial cells. Treating the cells (Beas-2B or HBE135-E6E7) with 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester or 2,3,7,8-tetrachlorodibenzo-p-dioxin, we found these AhR agonists increased the expression and activity of MMP-1 via a noncanonical AhR pathway and increased the activity of MMP-2 and MMP-9 in an MMP-1-dependent manner. AhR agonists increased the expression of MMP-1 via the activation of mitogen-activated protein kinase (MAPK) pathways by increased cytosolic calcium level and activated calcium/calmodulin-dependent protein kinase II (CaMKII). The activated MAPK pathways phosphorylated c-Jun, c-Fos, and ATF-2, resulting in their nuclear translocation and binding to the activator protein-1 (AP-1) elements of the MMP-1 promoter region. These findings correlated clinically to the significantly higher plasma/serum MMP-1 level in asthmatic patients. In conclusion, the present study demonstrated a novel signaling pathway by which AhR agonists elevated intracellular calcium levels, which activated CaMKII, leading to increased MMP-1 expression through MAPK pathways in bronchial epithelial cell lines. This novel regulatory pathway may serve as a potential target for the treatment of airway remodeling of many pulmonary diseases, such as asthma. KEY MESSAGE AhR agonists increase MMP-1 expression in bronchial epithelial cells. The underlying AhR pathway involves CaMKII, MAPKs, and AP-1 elements. The upregulated MMP-1 further activated MMP-2 and MMP-9. Asthmatic patients have higher serum MMP-1 level. This novel regulatory pathway is a potential target for treating asthma.
Collapse
|
116
|
ITE and TCDD differentially regulate the vascular remodeling of rat placenta via the activation of AhR. PLoS One 2014; 9:e86549. [PMID: 24475139 PMCID: PMC3901702 DOI: 10.1371/journal.pone.0086549] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023] Open
Abstract
Vascular remodeling in the placenta is essential for normal fetal development. The previous studies have demonstrated that in utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an environmental toxicant) induces the intrauterine fetal death in many species via the activation of aryl hydrocarbon receptor (AhR). In the current study, we compared the effects of 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) and TCDD on the vascular remodeling of rat placentas. Pregnant rats on gestational day (GD) 15 were randomly assigned into 5 groups, and were exposed to a single dose of 1.6 and 8.0 mg/kg body weight (bw) ITE, 1.6 and 8.0 µg/kg bw TCDD, or an equivalent volume of the vehicle, respectively. The dams were sacrificed on GD20 and the placental tissues were gathered. The intrauterine fetal death was observed only in 8.0 µg/kg bw TCDD-exposed group and no significant difference was seen in either the placental weight or the fetal weight among all these groups. The immunohistochemical and histological analyses revealed that as compared with the vehicle-control, TCDD, but not ITE, suppressed the placental vascular remodeling, including reduced the ratio of the placental labyrinth zone to the basal zone thickness (at least 0.71 fold of control), inhibited the maternal sinusoids dilation and thickened the trophoblastic septa. However, no marked difference was observed in the density of fetal capillaries in the labyrinth zone among these groups, although significant differences were detected in the expression of angiogenic growth factors between ITE and TCDD-exposed groups, especially Angiopoietin-2 (Ang-2), Endoglin, Interferon-γ (IFN-γ) and placenta growth factor (PIGF). These results suggest ITE and TCDD differentially regulate the vascular remodeling of rat placentas, as well as the expression of angiogenic factors and their receptors, which in turn may alter the blood flow in the late gestation and partially resulted in intrauterine fetal death.
Collapse
|
117
|
Shiizaki K, Ohsako S, Kawanishi M, Yagi T. Identification of amino acid residues in the ligand-binding domain of the aryl hydrocarbon receptor causing the species-specific response to omeprazole: possible determinants for binding putative endogenous ligands. Mol Pharmacol 2013; 85:279-89. [PMID: 24265133 DOI: 10.1124/mol.113.088856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Omeprazole (OME) induces the expression of genes encoding drug-metabolizing enzymes, such as CYP1A1, via activation of the aryl hydrocarbon receptor (AhR) both in vivo and in vitro. However, the precise mechanism of OME-mediated AhR activation is still under investigation. While elucidating species-specific susceptibility to dioxin, we found that OME-mediated AhR activation was mammalian species specific. Moreover, we previously reported that OME has inhibitory activity toward CYP1A1 enzymes. From these observations, we speculated that OME-mediated AhR target gene transcription is due to AhR activation by increasing amounts of putative AhR ligands in serum by inhibition of CYP1A1 activity. We compared the amino acid sequences of OME-sensitive rabbit AhR and nonsensitive mouse AhR to identify the residues responsible for the species-specific response. Chimeric AhRs were constructed by exchanging domains between mouse and rabbit AhRs to define the region required for the response to OME. OME-mediated transactivation was observed only with the chimeric AhR that included the ligand-binding domain (LBD) of the rabbit AhR. Site-directed mutagenesis revealed three amino acids (M328, T353, and F367) in the rabbit AhR that were responsible for OME-mediated transactivation. Replacing these residues with those of the mouse AhR abolished the response of the rabbit AhR. In contrast, substitutions of these amino acids with those of the rabbit AhR altered nonsensitive mouse AhR to become sensitive to OME. These results suggest that OME-mediated AhR activation requires a specific structure within LBD that is probably essential for binding with enigmatic endogenous ligands.
Collapse
Affiliation(s)
- Kazuhiro Shiizaki
- Division of Cancer Development System, National Cancer Center Research Institute, Tokyo, Japan (K.S.); Division of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (S.O.); Department of Life Science, Dongguk University, Seoul, Korea (T.Y.); and Department of Biology, Graduate School of Science, Osaka Prefecture University, Osaka, Japan (M.K., T.Y.)
| | | | | | | |
Collapse
|
118
|
Budinsky RA, Schrenk D, Simon T, Van den Berg M, Reichard JF, Silkworth JB, Aylward LL, Brix A, Gasiewicz T, Kaminski N, Perdew G, Starr TB, Walker NJ, Rowlands JC. Mode of action and dose–response framework analysis for receptor-mediated toxicity: The aryl hydrocarbon receptor as a case study. Crit Rev Toxicol 2013; 44:83-119. [DOI: 10.3109/10408444.2013.835787] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
119
|
Nugent LF, Shi G, Vistica BP, Ogbeifun O, Hinshaw SJH, Gery I. ITE, a novel endogenous nontoxic aryl hydrocarbon receptor ligand, efficiently suppresses EAU and T-cell-mediated immunity. Invest Ophthalmol Vis Sci 2013; 54:7463-9. [PMID: 24150760 PMCID: PMC3828045 DOI: 10.1167/iovs.12-11479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 10/09/2013] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. METHODS EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 μg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. RESULTS Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. CONCLUSIONS ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.
Collapse
Affiliation(s)
- Lindsey F Nugent
- Experimental Immunology Section, Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | |
Collapse
|
120
|
Quintana FJ. Regulation of central nervous system autoimmunity by the aryl hydrocarbon receptor. Semin Immunopathol 2013; 35:627-35. [PMID: 23999753 PMCID: PMC3819215 DOI: 10.1007/s00281-013-0397-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor controls the activity of several components of the immune system, many of which play an important role in neuroinflammation. This review discusses the role of AhR in T cells and dendritic cells, its relevance for the control of autoimmunity in the central nervous system, and its potential as a therapeutic target for immune-mediated disorders.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA,
| |
Collapse
|
121
|
Beamer CA, Shepherd DM. Role of the aryl hydrocarbon receptor (AhR) in lung inflammation. Semin Immunopathol 2013; 35:693-704. [PMID: 23963493 PMCID: PMC3821999 DOI: 10.1007/s00281-013-0391-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/01/2013] [Indexed: 12/23/2022]
Abstract
Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disease, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the AhR in regulating inflammation during acute and chronic respiratory diseases.
Collapse
Affiliation(s)
- Celine A Beamer
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, Skaggs School of Pharmacy and Allied Health Sciences, The University of Montana, 32 Campus Drive, Skaggs Building Room 284, Missoula, MT, 59812, USA
| | | |
Collapse
|
122
|
Zago M, Sheridan JA, Nair P, Rico de Souza A, Gallouzi IE, Rousseau S, Di Marco S, Hamid Q, Eidelman DH, Baglole CJ. Aryl hydrocarbon receptor-dependent retention of nuclear HuR suppresses cigarette smoke-induced cyclooxygenase-2 expression independent of DNA-binding. PLoS One 2013; 8:e74953. [PMID: 24086407 PMCID: PMC3785509 DOI: 10.1371/journal.pone.0074953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/07/2013] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to man-made environmental toxicants, has emerged as an endogenous regulator of cyclooxygenase-2 (Cox-2) by a mechanism that is poorly understood. In this study, we first used AhR-deficient (AhR−/−) primary pulmonary cells, together with pharmacological tools to inhibit new RNA synthesis, to show that the AhR is a prominent factor in the destabilization of Cox-2 mRNA. The destabilization of Cox-2 mRNA and subsequent suppression of cigarette smoke-induced COX-2 protein expression by the AhR was independent of its ability to bind the dioxin response element (DRE), thereby differentiating the DRE-driven toxicological AhR pathway from its anti-inflammatory abilities. We further describe that the AhR destabilizes Cox-2 mRNA by sequestering HuR within the nucleus. The role of HuR in AhR stabilization of Cox-2 mRNA was confirmed by knockdown of HuR, which resulted in rapid Cox-2 mRNA degradation. Finally, in the lungs of AhR−/− mice exposed to cigarette smoke, there was little Cox-2 mRNA despite robust COX-2 protein expression, a finding that correlates with almost exclusive cytoplasmic HuR within the lungs of AhR−/− mice. Therefore, we propose that the AhR plays an important role in suppressing the expression of inflammatory proteins, a function that extends beyond the ability of the AhR to respond to man-made toxicants. These findings open the possibility that a DRE-independent AhR pathway may be exploited therapeutically as an anti-inflammatory target.
Collapse
MESH Headings
- Animals
- Azo Compounds/pharmacology
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- DNA/metabolism
- ELAV Proteins/metabolism
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Fibroblasts/pathology
- Humans
- Lung/pathology
- Mice
- Models, Biological
- Prostaglandins/biosynthesis
- Protein Binding/drug effects
- Protein Structure, Tertiary
- Protein Transport/drug effects
- Pyrazoles/pharmacology
- RNA Stability/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Receptors, Aryl Hydrocarbon/antagonists & inhibitors
- Receptors, Aryl Hydrocarbon/chemistry
- Receptors, Aryl Hydrocarbon/deficiency
- Receptors, Aryl Hydrocarbon/metabolism
- Smoking/adverse effects
Collapse
Affiliation(s)
- Michela Zago
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Parameswaran Nair
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Angela Rico de Souza
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry and the Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry and the Goodman Cancer Centre, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Carolyn J. Baglole
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
123
|
Induction of a chloracne phenotype in an epidermal equivalent model by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on aryl hydrocarbon receptor activation and is not reproduced by aryl hydrocarbon receptor knock down. J Dermatol Sci 2013; 73:10-22. [PMID: 24161567 PMCID: PMC3885976 DOI: 10.1016/j.jdermsci.2013.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/22/2013] [Accepted: 09/02/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent activator of the aryl hydrocarbon receptor (AhR) and causes chloracne in humans. The pathogenesis and role of AhR in chloracne remains incompletely understood. OBJECTIVE To elucidate the mechanisms contributing to the development of the chloracne-like phenotype in a human epidermal equivalent model and identify potential biomarkers. METHODS Using primary normal human epidermal keratinocytes (NHEK), we studied AhR activation by XRE-luciferase, AhR degradation and CYP1A1 induction. We treated epidermal equivalents with high affinity TCDD or two non-chloracnegens: β-naphthoflavone (β-NF) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Using Western blotting and immunochemistry for filaggrin (FLG), involucrin (INV) and transglutaminase-1 (TGM-1), we compared the effects of the ligands on keratinocyte differentiation and development of the chloracne-like phenotype by H&E. RESULTS In NHEKs, activation of an XRE-luciferase and CYP1A1 protein induction correlated with ligand binding affinity: TCDD>β-NF>ITE. AhR degradation was induced by all ligands. In epidermal equivalents, TCDD induced a chloracne-like phenotype, whereas β-NF or ITE did not. All three ligands induced involucrin and TGM-1 protein expression in epidermal equivalents whereas FLG protein expression decreased following treatment with TCDD and β-NF. Inhibition of AhR by α-NF blocked TCDD-induced AhR activation in NHEKs and blocked phenotypic changes in epidermal equivalents; however, AhR knock down did not reproduce the phenotype. CONCLUSION Ligand-induced CYP1A1 and AhR degradation did not correlate with their chloracnegenic potential, indicating that neither CYP1A1 nor AhR are suitable biomarkers. Mechanistic studies showed that the TCDD-induced chloracne-like phenotype depends on AhR activation whereas AhR knock down did not appear sufficient to induce the phenotype.
Collapse
|
124
|
Quintana FJ, Sherr DH. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol Rev 2013; 65:1148-61. [PMID: 23908379 DOI: 10.1124/pr.113.007823] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
125
|
Wang K, Li Y, Jiang YZ, Dai CF, Patankar MS, Song JS, Zheng J. An endogenous aryl hydrocarbon receptor ligand inhibits proliferation and migration of human ovarian cancer cells. Cancer Lett 2013; 340:63-71. [PMID: 23851185 DOI: 10.1016/j.canlet.2013.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/20/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor mediates many biological processes. Herein, we investigated if 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE, an endogenous AhR ligand) regulated proliferation and migration of human ovarian cancer cells via AhR. We found that AhR was widely present in many histotypes of ovarian cancer tissues. ITE suppressed OVCAR-3 cell proliferation and SKOV-3 cell migration in vitro, which were blocked by AhR knockdown. ITE also suppressed OVCAR-3 cell growth in mice. These data suggest that the ITE might potentially be used for therapeutic intervention for at least a subset of human ovarian cancer.
Collapse
Affiliation(s)
- Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China.,Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Yi-Zhou Jiang
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Cai-Feng Dai
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States
| | - Jia-Sheng Song
- AhR Pharmaceuticals, Inc., Madison, WI 53719, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53715, United States.,Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China
| |
Collapse
|
126
|
Quintana FJ. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology 2013. [PMID: 23190340 DOI: 10.1111/imm.12046] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Environmental factors have significant effects on the development of autoimmune diseases. The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) is controlled by endogenous and environmental small molecules. Hence, AHR provides a molecular pathway by which endogenous and environmental signals can influence the immune response and the development of autoimmune diseases. AHR also provides a target for therapeutic intervention in immune-mediated disorders. In this review, we discuss the role of AHR in the regulation of T-cell differentiation and autoimmunity.
Collapse
Affiliation(s)
- Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
127
|
Li L, Huang L, Lemos HP, Mautino M, Mellor AL. Altered tryptophan metabolism as a paradigm for good and bad aspects of immune privilege in chronic inflammatory diseases. Front Immunol 2012; 3:109. [PMID: 22593757 PMCID: PMC3350084 DOI: 10.3389/fimmu.2012.00109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/17/2012] [Indexed: 01/01/2023] Open
Abstract
The term "immune privilege" was coined to describe weak immunogenicity (hypo-immunity) that manifests in some transplant settings. We extended this concept to encompass hypo-immunity that manifests at local sites of inflammation relevant to clinical diseases. Here, we focus on emerging evidence that enhanced tryptophan catabolism is a key metabolic process that promotes and sustains induced immune privilege, and discuss the implications for exploiting this knowledge to improve treatments for hypo-immune and hyper-immune syndromes using strategies to manipulate tryptophan metabolism.
Collapse
Affiliation(s)
- Lingqian Li
- Immunotherapy Center, Georgia Health Sciences University Augusta, GA, USA
| | | | | | | | | |
Collapse
|
128
|
Spink BC, Bennett JA, Lostritto N, Cole JR, Spink DC. Expression of the aryl hydrocarbon receptor is not required for the proliferation, migration, invasion, or estrogen-dependent tumorigenesis of MCF-7 breast cancer cells. Mol Carcinog 2012; 52:544-54. [PMID: 22388733 DOI: 10.1002/mc.21889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 01/12/2012] [Accepted: 01/26/2012] [Indexed: 11/05/2022]
Abstract
The AhR was initially identified as a ligand-activated transcription factor mediating effects of chlorinated dioxins and polycyclic aromatic hydrocarbons on cytochrome P450 1 (CYP1) expression. Recently, evidence supporting involvement of the AhR in cell-cycle regulation and tumorigenesis has been presented. To further define the roles of the AhR in cancer, we investigated the effects of AhR expression on cell proliferation, migration, invasion, and tumorigenesis of MCF-7 human breast cancer cells. In these studies, the properties of MCF-7 cells were compared with those of two MCF-7-derived sublines: AH(R100) , which express minimal AhR, and AhR(exp) , which overexpress AhR. Quantitative PCR, Western immunoblots, 17β-estradiol (E2 ) metabolism assays, and ethoxyresorufin O-deethylase assays showed the lack of AhR expression and AhR-regulated CYP1 expression in AH(R100) cells, and enhanced AhR and CYP1 expression in AhR(exp) cells. In the presence of 1 nM E2 , rates of cell proliferation of the three cell lines showed an inverse correlation with the levels of AhR mRNA. In comparison with MCF-7 and AhR(exp) cells, AH(R100) cells produced more colonies in soft agar and showed enhanced migration and invasion in chamber assays with E2 as the chemoattractant. Despite the lack of significant AhR expression, AH(R100) cells retained the ability to form tumors in severe combined immunodeficient mice when supplemented with E2 , producing mean tumor volumes comparable to those observed with MCF-7 cells. These studies indicate that, while CYP1 expression and inducibility are highly dependent on AhR expression, the proliferation, invasion, migration, anchorage-independent growth, and estrogen-stimulated tumor formation of MCF-7 cells do not require the AhR.
Collapse
Affiliation(s)
- Barbara C Spink
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA
| | | | | | | | | |
Collapse
|
129
|
Lee JS, Cella M, Colonna M. AHR and the Transcriptional Regulation of Type-17/22 ILC. Front Immunol 2012; 3:10. [PMID: 22566896 PMCID: PMC3342302 DOI: 10.3389/fimmu.2012.00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/16/2012] [Indexed: 12/30/2022] Open
Abstract
Mucosal innate lymphoid cells (ILCs) are an emerging population of diverse and heterogeneous immune cells, all with the unique ability to mount a rapid response against invading pathogens. They are further divided into subsets based on their differing cell surface markers as well as in their functional specialization. In this review, we summarize recent reports describing the importance of the transcription factor aryl hydrocarbon receptor (AHR) in regulating the development of one of these subsets, the Type-17/22 ILCs, as well as in the organization of postnatal lymphoid structures. We discuss the mechanisms behind the AHR dependence for development in Type-17/22 ILCs as well as reviewing the proposed physiological ligands that are mediating this effect.
Collapse
Affiliation(s)
- Jacob S Lee
- Department of Pathology and Immunology, Washington University School of Medicine St. Louis, MO, USA
| | | | | |
Collapse
|
130
|
Rico de Souza A, Zago M, Pollock SJ, Sime PJ, Phipps RP, Baglole CJ. Genetic ablation of the aryl hydrocarbon receptor causes cigarette smoke-induced mitochondrial dysfunction and apoptosis. J Biol Chem 2011; 286:43214-28. [PMID: 21984831 PMCID: PMC3234839 DOI: 10.1074/jbc.m111.258764] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 10/06/2011] [Indexed: 12/13/2022] Open
Abstract
Cigarette smoke is the primary risk factor for chronic obstructive pulmonary disease (COPD). Alterations in the balance between apoptosis and proliferation are involved in the etiology of COPD. Fibroblasts and epithelial cells are sensitive to the oxidative properties of cigarette smoke, and whose loss may precipitate the development of COPD. Fibroblasts express the aryl hydrocarbon receptor (AhR), a transcription factor that attenuates pulmonary inflammation and may also regulate apoptosis. We hypothesized the AhR would prevent apoptosis caused by cigarette smoke. Using genetically deleted in vitro AhR expression models and an established method of cigarette smoke exposure, we report that AhR expression regulates fibroblasts proliferation and prevents morphological features of apoptosis, including membrane blebbing and chromatin condensation caused by cigarette smoke extract (CSE). Absence of AhR expression results in cleavage of PARP, lamin, and caspase-3. Mitochondrial dysfunction, including cytochrome c release, was associated with loss of AhR expression, indicating activation of the intrinsic apoptotic cascade. Heightened sensitivity of AhR-deficient fibroblasts was not the result of alterations in GSH, Nrf2, or HO-1 expression. Instead, AhR(-/-) cells had significantly less MnSOD and CuZn-SOD expression, enzymes that protects against oxidative stress. The ability of the AhR to suppress apoptosis was not restricted to fibroblasts, as siRNA-mediated knockdown of the AhR in lung epithelial cells also increased sensitivity to smoke-induced apoptosis. Collectively, these results suggest that cigarette smoke induced loss of lung structural support (i.e. fibroblasts, epithelial cells) caused by aberrations in AhR expression may explain why some smokers develop lung diseases such as COPD.
Collapse
Affiliation(s)
| | - Michela Zago
- From the Research Institute of the McGill University Health Centre
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec H2X 2P2, Canada and
| | | | | | - Richard P. Phipps
- the Departments of Environmental Medicine
- Ophthalmology, and
- Lung Biology and Disease Program, University of Rochester, Rochester, New York 14642
| | - Carolyn J. Baglole
- Department of Medicine, Meakins-Christie Laboratories, McGill University, Montreal, Quebec H2X 2P2, Canada and
| |
Collapse
|
131
|
Forrester AR, Lovat PE, Graham M, Williams FM, Reynolds NJ. Differential activation of the aryl hydrocarbon receptor and regulation of differentiation in the epidermal equivalent model. Toxicology 2011. [DOI: 10.1016/j.tox.2011.09.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
132
|
Brooks J, Eltom SE. Malignant transformation of mammary epithelial cells by ectopic overexpression of the aryl hydrocarbon receptor. Curr Cancer Drug Targets 2011; 11:654-69. [PMID: 21486221 DOI: 10.2174/156800911795655967] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 01/13/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand activated basic helix-loop-helix transcription factor that binds to environmental poly aromatic hydrocarbons (PAH) and mediates their toxic and carcinogenic responses. There is ample documentation for the role of AhR in PAH-induced carcinogenicity. However, in this report we addressed whether overexpression of AhR alone is sufficient to induce carcinogenic transformation in human mammary epithelial cells (HMEC). Retroviral expression vectors were used to develop a series of stable cell lines expressing varying levels of AhR protein in an immortalized normal HMEC with relatively low endogenous AhR expression. The resulting increase in AhR expression and activity correlated with the development of cellular malignant phenotypes, most significantly epithelial-to-mesenchymal transition. Clones overexpressing AhR by more than 3-fold, exhibited a 50% decrease in population doubling time. Cell cycle analysis revealed that this increase in proliferation rates was due to an enhanced cell cycle progression by increasing the percentage of cells transiting into S- and G2/M phases. Cells overexpressing AhR exhibited enhanced motility and migration. Importantly, these cells acquired the ability to invade matrigel matrix, where more than 80% of plated cells invaded the matrigel matrix within 24 h, whereas none of parental or the vector control HMEC were able to invade matrigel. Collectively, these data provide evidence for a direct role of AhR in the progression of breast carcinoma. The results suggest a novel therapeutic target that could be considered for treatment and prevention of breast cancer progression.
Collapse
Affiliation(s)
- J Brooks
- Graduate Program in Pharmacology, Department of Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | | |
Collapse
|
133
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
134
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
135
|
He G, Tsutsumi T, Zhao B, Baston DS, Zhao J, Heath-Pagliuso S, Denison MS. Third-generation Ah receptor-responsive luciferase reporter plasmids: amplification of dioxin-responsive elements dramatically increases CALUX bioassay sensitivity and responsiveness. Toxicol Sci 2011; 123:511-22. [PMID: 21775728 DOI: 10.1093/toxsci/kfr189] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD, dioxin) and related dioxin-like chemicals are widespread and persistent environmental contaminants that produce diverse toxic and biological effects through their ability to bind to and activate the Ah receptor (AhR) and AhR-dependent gene expression. The chemically activated luciferase expression (CALUX) system is an AhR-responsive recombinant luciferase reporter gene-based cell bioassay that has been used in combination with chemical extraction and cleanup methods for the relatively rapid and inexpensive detection and relative quantitation of dioxin and dioxin-like chemicals in a wide variety of sample matrices. Although the CALUX bioassay has been validated and used extensively for screening purposes, it has some limitations when screening samples with very low levels of dioxin-like chemicals or when there is only a small amount of sample matrix for analysis. Here, we describe the development of third-generation (G3) CALUX plasmids with increased numbers of dioxin-responsive elements, and stable transfection of these new plasmids into mouse hepatoma (Hepa1c1c7) cells has produced novel amplified G3 CALUX cell bioassays that respond to TCDD with a dramatically increased magnitude of luciferase induction and significantly lower minimal detection limit than existing CALUX-type cell lines. The new G3 CALUX cell lines provide a highly responsive and sensitive bioassay system for the detection and relative quantitation of very low levels of dioxin-like chemicals in sample extracts.
Collapse
Affiliation(s)
- Guochun He
- Department of Environmental Toxicology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Powis M, Celius T, Matthews J. Differential ligand-dependent activation and a role for Y322 in aryl hydrocarbon receptor-mediated regulation of gene expression. Biochem Biophys Res Commun 2011; 410:859-65. [PMID: 21703235 DOI: 10.1016/j.bbrc.2011.06.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/09/2011] [Indexed: 01/23/2023]
Abstract
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of halogenated aromatic hydrocarbons (HAHs), such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 2,3,4,7,8-pentachlorodibenzofuran (2,3,4,7,8-PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF). Non-traditional activators, including omeprazole (Omp), are thought to regulate AHR action through phosphorylation rather than binding to the receptor. In this study, we examined the ability of these compounds to induce AHR-dependent regulation of cytochrome P450 1A1 (CYP1A1) and CYP1B1 in T-47D human breast cancer cells. The role of Y322, a residue implicated in Omp-dependent activation of AHR was also investigated. All four compounds induced CYP1A1 and CYP1B1 mRNA expression, with Omp differing from the HAHs. Chromatin immunoprecipitation assays revealed ligand- and gene-selectivity in the recruitment patterns of AHR coactivators. We also found that residue Y322 of human AHR was important for maximum activation of AHR by 2,3,7,8-TCDD and 2,3,4,7,8-PeCDF, but required for 2,3,7,8-TCDF and Omp in an AHR-deficient MCF-7 human breast cancer cell line. In summary, this study provides evidence for context- and ligand-selective differences in coactivator recruitment in AHR-regulated gene expression and reveal an important role of Y322 in AHR activation.
Collapse
Affiliation(s)
- Melanie Powis
- Department of Pharmacology and Toxicology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
137
|
Lehmann GM, Xi X, Kulkarni AA, Olsen KC, Pollock SJ, Baglole CJ, Gupta S, Casey AE, Huxlin KR, Sime PJ, Feldon SE, Phipps RP. The aryl hydrocarbon receptor ligand ITE inhibits TGFβ1-induced human myofibroblast differentiation. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1556-67. [PMID: 21406171 DOI: 10.1016/j.ajpath.2010.12.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/15/2010] [Accepted: 12/13/2010] [Indexed: 11/29/2022]
Abstract
Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR(-/-) fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent.
Collapse
Affiliation(s)
- Geniece M Lehmann
- Department of Environmental Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
External influences on the immune system via activation of the aryl hydrocarbon receptor. Semin Immunol 2011; 23:99-105. [PMID: 21288737 DOI: 10.1016/j.smim.2011.01.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/10/2011] [Indexed: 02/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR), subject of intensive research over three decades by the pharmacology/toxicology field has recently made its entry into mainstream immunology research and is set to continue to intrigue with ever more complex modes of modulating immune responses. The discovery of high and selective AhR expression on Th17 cells and its role in induction of the cytokine IL-22 attributed new immunological functions to this transcription factor and stimulated further research into physiological functions of the AhR in the immune system. A number of recent reviews have highlighted potential new avenues of research. This review addresses recent new insight into physiological roles of AhR in the immune system.
Collapse
|
139
|
Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2011; 391:1235-48. [PMID: 20868221 DOI: 10.1515/bc.2010.128] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Collapse
Affiliation(s)
- Josef Abel
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, Düsseldorf, Germany
| | | |
Collapse
|
140
|
An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2010; 107:20768-73. [PMID: 21068375 DOI: 10.1073/pnas.1009201107] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) participates in the differentiation of FoxP3(+) T(reg), Tr1 cells, and IL-17-producing T cells (Th17). Most of our understanding on the role of AHR on the FoxP3(+) T(reg) compartment results from studies using the toxic synthetic chemical 2,3,7,8-tetrachlorodibenzo-p-dioxin. Thus, the physiological relevance of AHR signaling on FoxP3(+) T(reg) in vivo is unclear. We studied mice that carry a GFP reporter in the endogenous foxp3 locus and a mutated AHR protein with reduced affinity for its ligands, and found that AHR signaling participates in the differentiation of FoxP3(+) T(reg) in vivo. Moreover, we found that treatment with the endogenous AHR ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) given parenterally or orally induces FoxP3(+) T(reg) that suppress experimental autoimmune encephalomyelitis. ITE acts not only on T cells, but also directly on dendritic cells to induce tolerogenic dendritic cells that support FoxP3(+) T(reg) differentiation in a retinoic acid-dependent manner. Thus, our work demonstrates that the endogenous AHR ligand ITE promotes the induction of active immunologic tolerance by direct effects on dendritic and T cells, and identifies nontoxic endogenous AHR ligands as potential unique compounds for the treatment of autoimmune disorders.
Collapse
|
141
|
Zhou SF, Wang B, Yang LP, Liu JP. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 2010; 42:268-354. [PMID: 19961320 DOI: 10.3109/03602530903286476] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human CYP1A2 is one of the major CYPs in human liver and metabolizes a number of clinical drugs (e.g., clozapine, tacrine, tizanidine, and theophylline; n > 110), a number of procarcinogens (e.g., benzo[a]pyrene and aromatic amines), and several important endogenous compounds (e.g., steroids). CYP1A2 is subject to reversible and/or irreversible inhibition by a number of drugs, natural substances, and other compounds. The CYP1A gene cluster has been mapped on to chromosome 15q24.1, with close link between CYP1A1 and 1A2 sharing a common 5'-flanking region. The human CYP1A2 gene spans almost 7.8 kb comprising seven exons and six introns and codes a 515-residue protein with a molecular mass of 58,294 Da. The recently resolved CYP1A2 structure has a relatively compact, planar active site cavity that is highly adapted for the size and shape of its substrates. The architecture of the active site of 1A2 is characterized by multiple residues on helices F and I that constitutes two parallel substrate binding platforms on either side of the cavity. A large interindividual variability in the expression and activity of CYP1A2 has been observed, which is largely caused by genetic, epigenetic and environmental factors (e.g., smoking). CYP1A2 is primarily regulated by the aromatic hydrocarbon receptor (AhR) and CYP1A2 is induced through AhR-mediated transactivation following ligand binding and nuclear translocation. Induction or inhibition of CYP1A2 may provide partial explanation for some clinical drug interactions. To date, more than 15 variant alleles and a series of subvariants of the CYP1A2 gene have been identified and some of them have been associated with altered drug clearance and response and disease susceptibility. Further studies are warranted to explore the clinical and toxicological significance of altered CYP1A2 expression and activity caused by genetic, epigenetic, and environmental factors.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- Discpline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
142
|
Chowdhury G, Dostalek M, Hsu EL, Nguyen LP, Stec DF, Bradfield CA, Guengerich FP. Structural identification of Diindole agonists of the aryl hydrocarbon receptor derived from degradation of indole-3-pyruvic acid. Chem Res Toxicol 2010; 22:1905-12. [PMID: 19860413 DOI: 10.1021/tx9000418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aerobic incubation of the tryptophan transamination/oxidation product indole-3-pyruvic acid (I3P) at pH 7.4 and 37 degrees C yielded products with activity as Ah receptor (AHR) agonists. The extracts were fractionated using HPLC and screened for AHR agonist activity. Two compounds were identified as agonists: 1,3-di(1H-indol-3-yl)propan-2-one (1) and 1-(1H-indol-3-yl)-3-(3H-indol-3-ylidene) propan-2-one (2), with the potency of 2 being 100-fold > 1 [ Nguyen et al. ( 2009 ) Chem. Res. Toxicol. , DOI: 10.1021/tx900043s . ]. Both 1 and 2 showed UV spectra indicative of indole. The molecular formulas were established by high-resolution mass spectrometry (HRMS), and the structures were determined by a combination of NMR methods, including (1)H, natural abundance (13)C, and two-dimensional methods. An intermediate in the oxidation of I3P to 1 is 3-hydroxy-2,4-di(1H-indol-3-yl)butanal (HRMS established the presence of a compound with the formula C(20)H(19)N(2)O(2)). Compound 1 was converted to 2 in air or (faster) with mild oxidants, and 2 could be further oxidized to 1,3-di(3H-indol-3-ylidene)propan-2-one. Determination of the structures allowed estimation of the molar Ah receptor agonist activity of these natural products, similar in potency to known classical AHR inducers.
Collapse
Affiliation(s)
- Goutam Chowdhury
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Potential health-modulating effects of isoflavones and metabolites via activation of PPAR and AhR. Nutrients 2010; 2:241-79. [PMID: 22254019 PMCID: PMC3257647 DOI: 10.3390/nu2030241] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/23/2010] [Indexed: 12/24/2022] Open
Abstract
Isoflavones have multiple actions on cell functions. The most prominent one is the activation of estrogen receptors. Other functions are often overlooked, but are equally important and explain the beneficial health effects of isoflavones. Isoflavones are potent dual PPARα/γ agonists and exert anti-inflammatory activity, which may contribute to the prevention of metabolic syndrome, atherosclerosis and various other inflammatory diseases. Some isoflavones are potent aryl hydrocarbon receptor (AhR) agonists and induce cell cycle arrest, chemoprevention and modulate xenobiotic metabolism. This review discusses effects mediated by the activation of AhR and PPARs and casts a light on the concerted action of isoflavones.
Collapse
|
144
|
Henry EC, Welle SL, Gasiewicz TA. TCDD and a putative endogenous AhR ligand, ITE, elicit the same immediate changes in gene expression in mouse lung fibroblasts. Toxicol Sci 2009; 114:90-100. [PMID: 19933214 DOI: 10.1093/toxsci/kfp285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5muM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible.
Collapse
Affiliation(s)
- Ellen C Henry
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | |
Collapse
|
145
|
Boutros PC, Bielefeld KA, Pohjanvirta R, Harper PA. Dioxin-dependent and dioxin-independent gene batteries: comparison of liver and kidney in AHR-null mice. Toxicol Sci 2009; 112:245-56. [PMID: 19759094 PMCID: PMC2769058 DOI: 10.1093/toxsci/kfp191] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 08/08/2009] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a widely expressed ligand-dependent transcription factor that mediates cellular responses to dioxins and other planar aromatic hydrocarbons. Ahr-null mice are refractory to the toxic effects of dioxin exposure. Although some mechanistic aspects of AHR activity are well understood, the tissue specificity of AHR effects remains unclear, both during development and following administration of exogenous ligands. To address the latter issue, we defined and compared transcriptional responses to dioxin exposure in the liver and kidney of wild-type and Ahr-null adult C57BL/6J mice treated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin or corn-oil vehicle. In both tissues, essentially all effects of dioxin on hepatic mRNA levels were mediated by the AHR. Although 297 genes were altered by dioxin exposure in the liver, only 17 were changed in the kidney, including a number of well-established AHR target genes. Ahr genotype had a large effect in both tissues, profoundly remodeling both the renal and hepatic transcriptomes. Surprisingly, a large number of genes were affected by Ahr genotype in both tissues, suggesting the presence of a basal AHR gene battery. Alterations of the renal transcriptome in Ahr-null animals were associated with perturbation of specific functional pathways and enrichment of specific DNA motifs. Our results demonstrate the importance of intertissue comparisons, highlight the basal role of the AHR in liver and kidney, and support a role in development or normal physiology.
Collapse
Affiliation(s)
- Paul C Boutros
- Bioinformatics & Biocomputing Platform, Ontario Institute for Cancer Research, Toronto M5G 0A3 Canada.
| | | | | | | |
Collapse
|
146
|
Cooper KR, Wintermyer M. A critical review: 2,3,7,8 -tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) effects on gonad development in bivalve mollusks. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2009; 27:226-245. [PMID: 19953397 DOI: 10.1080/10590500903310112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bivalve mollusks are equally sensitive to 2,3,7,8-tetrachlorodibenzo-p-dioxin's (2,3,7,8-TCDD) effect on gonad development, embryonic development, and epithelial lesion occurrence as higher vertebrates. 2,3,7,8-TCDD alters normal development of reproductive organs and early development in bivalve mollusks at 2 to 20 pg/g wet weight. In both Crassostria virginica and Mya arenaria, 2,3,7,8-TCDD preferentially accumulates into the gonads. The sensitivity of gonad maturation is likely due to disruption of cross-talk between highly conserved steroid, insulin, and metabolic pathways involved in gonad differentiation. The altered gonad development and decreased veliger larval survival can partially explain the lack of self-sustaining bivalve populations in 2,3,7,8-TCDD contaminated estuaries.
Collapse
Affiliation(s)
- Keith R Cooper
- Department of Biochemistry and Microbiology, Rutgers University, School of Environmental and Biological Sciences, New Brunswick, New Jersey, USA.
| | | |
Collapse
|
147
|
Furness SGB, Whelan F. The pleiotropy of dioxin toxicity--xenobiotic misappropriation of the aryl hydrocarbon receptor's alternative physiological roles. Pharmacol Ther 2009; 124:336-53. [PMID: 19781569 DOI: 10.1016/j.pharmthera.2009.09.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 10/20/2022]
Abstract
The aryl hydrocarbon receptor is a signal regulated transcription factor that has best been characterised as regulating the xenobiotic response to a variety of planar aromatic hydrocarbons. There is compelling evidence that it mediates most, if not all, of the toxic effects of dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin). Dioxin exposure results in a wide variety of toxic outcomes including severe wasting syndrome, chloracne, thymic involution, severe immune suppression, reduced fertility, hepatotoxicity, teratogenicity, tumour promotion and death. The pleiotropy of toxic outcomes implies the disruption of a wide range of normal physiological functions. The aryl hydrocarbon receptor has developmentally restricted expression as well as developmental defects in gene-targeted mice. It has a wide range of target genes that do not fit into the classical xenobiotic metabolising gene battery and has recently been shown to interact with NF-kappa B and the estrogen receptor. There is also evidence for its activation in the absence of exogenous ligand, all of which point to various roles outside xenobiotic metabolism. Ligands so far identified display differential activation potential with respect to receptor activity. This article addresses activities of the aryl hydrocarbon receptor that are outside the xenobiotic response. Known physiological roles are discussed as well as how their disruption contributes to the pleiotropic toxicity of TCDD.
Collapse
Affiliation(s)
- Sebastian G B Furness
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
148
|
Shi LZ, Czuprynski CJ. Beta-naphthoflavone causes an AhR-independent inhibition of invasion and intracellular multiplication of Listeria monocytogenes in murine hepatocytes. Microb Pathog 2009; 47:258-66. [PMID: 19715752 DOI: 10.1016/j.micpath.2009.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 12/19/2022]
Abstract
We recently reported a heretofore unknown role for the aryl hydrocarbon receptor in host resistance to listeriosis in mice. Hepatocytes are an important site for Listeria monocytogenes multiplication in vivo. In this study, we investigated whether activation of AhR in TIB73 murine embryonic hepatocytes affects the ingestion and intracellular multiplication of L. monocytogenes. Treatment of TIB73 cells with the AhR agonist beta-naphthoflavone (BNF) significantly inhibited the ingestion and intracellular growth of L. monocytogenes. The inhibitory effects of BNF were dose-dependent and correlated with up-regulation of CYP1A1. Surprisingly, pretreatment with AhR antagonists (3'-MNF or alpha-naphthoflavone) or knocking-down of AhR with siRNA did not abolish the inhibitory effects of BNF. Moreover, the inhibitory effects of BNF on invasion and intracellular growth of L. monocytogenes by BNF were observed in AhR-deficient (CRL-2710), or ARNT-dysfunctional (CRL-2717) Hepa cells. We also observed similar inhibitory effects of BNF treatment using primary hepatocytes recovered from AhR(+/-) or AhR(-/-) mice. Moreover, the prototypic AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) did not inhibit the invasion and intracellular growth of L. monocytogenes in TIB73 cells. Mechanistic studies demonstrated that ROS, but not TNF-alpha or iNOS, plays an important role in mediating BNF-induced inhibition. In conclusion, BNF caused an AhR-independent inhibition of ingestion and intracellular multiplication of L. monocytogenes in murine hepatocytes, mediated in part by production of ROS.
Collapse
Affiliation(s)
- Lewis Zhichang Shi
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
149
|
Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology 2009; 127:299-311. [PMID: 19538249 DOI: 10.1111/j.1365-2567.2009.03054.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a protein best known for its role in mediating toxicity. Over 30 years of research has uncovered additional roles for the AHR in xenobiotic metabolism and normal vascular development. Activation of the AHR has long been known to cause immunotoxicity, including thymic involution. Recent data suggesting a role for the AHR in regulatory T-cell (Treg) and T-helper 17 (Th17) cell development have only added to the excitement about this biology. In this review, we will attempt to illustrate what is currently known about AHR biology in the hope that data from fields as diverse as evolutionary biology and pharmacology will help elucidate the mechanism by which AHR modifies immune responses. We also will discuss the complexities of AHR pharmacology and genetics that may influence future studies of AHR in the immune system.
Collapse
Affiliation(s)
- Emily A Stevens
- University of Wisconsin School of Medicine and Public Health, Madison, WI 53706-1599, USA
| | | | | |
Collapse
|
150
|
Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A. Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1139-46. [PMID: 19654925 PMCID: PMC2717142 DOI: 10.1289/ehp.0800485] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Accepted: 03/24/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND The vertebrate aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular responses to environmental polycyclic and halogenated compounds. The naive receptor is believed to reside in an inactive cytosolic complex that translocates to the nucleus and induces transcription of xenobiotic detoxification genes after activation by ligand. OBJECTIVES We conducted an integrative genomewide analysis of AHR gene targets in mouse hepatoma cells and determined whether AHR regulatory functions may take place in the absence of an exogenous ligand. METHODS The network of AHR-binding targets in the mouse genome was mapped through a multipronged approach involving chromatin immunoprecipitation/chip and global gene expression signatures. The findings were integrated into a prior functional knowledge base from Gene Ontology, interaction networks, Kyoto Encyclopedia of Genes and Genomes pathways, sequence motif analysis, and literature molecular concepts. RESULTS We found the naive receptor in unstimulated cells bound to an extensive array of gene clusters with functions in regulation of gene expression, differentiation, and pattern specification, connecting multiple morphogenetic and developmental programs. Activation by the ligand displaced the receptor from some of these targets toward sites in the promoters of xenobiotic metabolism genes. CONCLUSIONS The vertebrate AHR appears to possess unsuspected regulatory functions that may be potential targets of environmental injury.
Collapse
Affiliation(s)
| | - Michael Schnekenburger
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer L. Marlowe
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John F. Reichard
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ying Wang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yunxia Fan
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ci Ma
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Saikumar Karyala
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Halbleib
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xiangdong Liu
- Laboratory for Statistical Genomics and Systems Biology and
| | | | - Alvaro Puga
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Address correspondence to A. Puga, Department of Environmental Health, University of Cincinnati College of Medicine, 3223 Eden Ave., Cincinnati, OH 45220 USA. Telephone: (513) 558-0916. Fax: (513) 558-0925. E-mail:
| |
Collapse
|