101
|
Affiliation(s)
- S H Orkin
- Children's Hospital, Dana Farber Cancer Institute, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
102
|
Yang HY, Evans T. Homotypic interactions of chicken GATA-1 can mediate transcriptional activation. Mol Cell Biol 1995; 15:1353-63. [PMID: 7862128 PMCID: PMC230359 DOI: 10.1128/mcb.15.3.1353] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We used a one-hybrid system to replace precisely the finger II chicken GATA-1 DNA-binding domain with the binding domain of bacterial repressor protein LexA. The LexA DNA-binding domain lacks amino acids that function for transcriptional activation, nuclear localization, or protein dimerization. This allowed us to analyze activities of GATA-1 sequences distinct from DNA binding. We found that strong transcriptional activating sequences that function independently of finger II are present in GATA-1. Sequences including finger I contain an independent nuclear localizing function. Our data are consistent with cooperative binding of two LexA-GATA-1 hybrid proteins on a palindromic operator. The sensitivity of our transcription assay provides the first evidence that GATA-1 can make homotypic interactions in vivo. The ability of a non-DNA-binding form of GATA-1 to activate gene expression by targeting to a bound GATA-1 derivative further supports the notion that GATA-1-GATA-1 interactions may have functional consequences. A coimmunoprecipitation assay was used to demonstrate that GATA-1 multimeric complexes form in solution by protein-protein interaction. The novel ability of GATA-1 to interact homotypically may be important for the formation of higher-order structures among distant regulatory elements that share binding sites for this transcription factor. We also used the system to test the ability of GATA-1 to interact heterotypically with other activators.
Collapse
Affiliation(s)
- H Y Yang
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
103
|
Gunkel N, Braddock M, Thorburn AM, Muckenthaler M, Kingsman AJ, Kingsman SM. Promoter control of translation in Xenopus oocytes. Nucleic Acids Res 1995; 23:405-12. [PMID: 7885836 PMCID: PMC306690 DOI: 10.1093/nar/23.3.405] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 promoter directs the high level production of transcripts in Xenopus oocytes. However, despite being exported to the cytoplasm, the transcripts are not translated [M. Braddock, A. M. Thorburn, A. Chambers, G. D. Elliott, G. J. Anderson, A. J. Kingsman and S. M. Kingsman (1990) Cell, 62, 1123-1133]. We have shown previously that this is a function of promoter sequences and is independent of the TAR RNA element that is normally located at the 5' end of all HIV mRNAs. We now show that a three nucleotide substitution at position -340, upstream of the RNA start site, reverses the translation inhibition. This site coincides with a sequence that can bind the haematopoietic transcription factor GATA. The inhibition of translation can also be reversed by treatment with inhibitors of casein kinase II or by injection into the nucleus of antibodies specific for the FRGY2 family of RNP proteins. We suggest that the -340 site influences the quality of the transcription complex such that transcripts are diverted to a nucleus-dependent translation inhibition pathway.
Collapse
|
104
|
Hemmati-Brivanlou A, Thomsen GH. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. DEVELOPMENTAL GENETICS 1995; 17:78-89. [PMID: 7554498 DOI: 10.1002/dvg.1020170109] [Citation(s) in RCA: 280] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We provide a comparative analysis of the expression patterns and ventral mesoderm-inducing properties of Xenopus BMP-2 and BMP-4. Transcripts for BMP-2 and BMP-4 are maternally stored in eggs, and zygotic expression of these genes is uniform in the ectoderm and mesoderm in late blastulae. During gastrulation, BMP-2 is expressed at a low level throughout the ectoderm and marginal zone, but at early neurula stages a patch of dorso-anterior cells displays enhanced expression. In contrast, BMP-4 transcripts are restricted to the ventrolateral marginal zone during gastrulation, and in late gastrula and early neurula BMP-4 is expressed in the epidermis but not the neural plate. At post-neurula stages, BMP-2 and BMP-4 transcripts are associated with a variety of mesodermal structures, including the pharyngeal pouches, heart, blood island, and blastopore. At tailbud stages, BMP-2 and BMP-4 are expressed in neural tissues including the neural tube and brain. In mesoderm induction assays, BMP-2 and BMP-4 induce Xhox3, an early ventral-posterior mesoderm marker, and larval alpha Tl globin, a marker for red blood cells. Induction of red blood cells in response to BMP-4 was demonstrated by staining with a hemoglobin-specific reagent. Little is known about factors that induce hematopoietic lineages in vertebrates, and these results provide evidence linking BMP activity and blood differentiation. Globin induction by BMP-2 and BMP-4 is blocked by co-expression of a dominant-negative activin receptor, suggesting that either endogenous activin signals are required for BMP-mediated induction, or that the truncated activin receptor interferes with signaling by BMP receptors. In assays on marginal zone explants, we demonstrate that BMP-4 respecifies dorsal mesoderm to form ventral mesoderm, consistent with its ability to induce blood and to ventralize embryos. BMP-2, however, does not display such activity. The findings extend and support evidence that BMP-2 and BMP-4 function in ventral mesoderm induction and patterning in Xenopus. Our data furthermore highlight the multiple functions these factors fulfill during early vertebrate embryogenesis.
Collapse
|
105
|
George KM, Leonard MW, Roth ME, Lieuw KH, Kioussis D, Grosveld F, Engel JD. Embryonic expression and cloning of the murine GATA-3 gene. Development 1994; 120:2673-86. [PMID: 7956841 DOI: 10.1242/dev.120.9.2673] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the embryonic expression pattern as well as the cloning and initial transcriptional regulatory analysis of the murine (m) GATA-3 gene. In situ hybridization shows that mGATA-3 mRNA accumulation is temporally and spatially regulated during early development: although found most abundantly in the placenta prior to 10 days of embryogenesis, mGATA-3 expression becomes restricted to specific cells within the embryonic central nervous system (in the mesencephalon, diencephalon, pons and inner ear) later in gestation. GATA-3 also shows a restricted expression pattern in the peripheral nervous system, including terminally differentiating cells in the cranial and sympathetic ganglia. In addition to this distinct pattern in the nervous system, mGATA-3 is also expressed in the embryonic kidney and the thymic rudiment, and further analysis showed that it is expressed throughout T lymphocyte differentiation. To begin to investigate how this complex gene expression pattern is elicited, cloning and transcriptional regulatory analyses of the mGATA-3 gene were initiated. At least two regulatory elements (one positive and one negative) appear to be required for appropriate tissue-restricted regulation after transfection of mGATA-3-directed reporter genes into cells that naturally express GATA-3 (T lymphocytes and neuroblastoma cells). Furthermore, this same region of the locus confers developmentally appropriate expression in transgenic mice, but only in a subset of the tissues that naturally express the gene.
Collapse
Affiliation(s)
- K M George
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Il 60208-3500
| | | | | | | | | | | | | |
Collapse
|
106
|
|
107
|
Positive regulators of the lineage-specific transcription factor GATA-1 in differentiating erythroid cells. Mol Cell Biol 1994. [PMID: 8164666 DOI: 10.1128/mcb.14.5.3108] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.
Collapse
|
108
|
Weiss MJ, Keller G, Orkin SH. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev 1994; 8:1184-97. [PMID: 7926723 DOI: 10.1101/gad.8.10.1184] [Citation(s) in RCA: 470] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mouse embryonic stem (ES) cells lacking the transcription factor GATA-1 do not produce mature red blood cells either in vivo or in vitro. To define the consequences of GATA-1 loss more precisely, we used an in vitro ES cell differentiation assay that permits enumeration of primitive (EryP) and definitive (EryD) erythroid precursors and recovery of pure erythroid colonies. In contrast to normal ES cells, GATA-1- ES cells fail to generate EryP precursors. EryD precursors, however, are normal in number but undergo developmental arrest and death at the proerythroblast stage. Contrary to initial expectations, arrested GATA-1(-)-definitive proerythroblasts express GATA target genes at normal levels. Transcripts of the related factor GATA-2 are remarkably elevated in GATA-1- proerythroblasts. These findings imply substantial interchangeability of GATA factors in vivo and suggest that GATA-1 normally serves to repress GATA-2 during erythropoiesis. The approach used here is a paradigm for the phenotypic analysis of targeted mutations affecting hematopoietic development.
Collapse
Affiliation(s)
- M J Weiss
- Division of Hematology-Oncology, Children's Hospital, Dana Farber Cancer Institute, Boston, Massachusetts
| | | | | |
Collapse
|
109
|
Baron MH, Farrington SM. Positive regulators of the lineage-specific transcription factor GATA-1 in differentiating erythroid cells. Mol Cell Biol 1994; 14:3108-14. [PMID: 8164666 PMCID: PMC358678 DOI: 10.1128/mcb.14.5.3108-3114.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The zinc finger transcription factor GATA-1 is a major regulator of gene expression in erythroid, megakaryocyte, and mast cell lineages. GATA-1 binds to WGATAR consensus motifs in the regulatory regions of virtually all erythroid cell-specific genes. Analyses with cultured cells and cell-free systems have provided strong evidence that GATA-1 is involved in control of globin gene expression during erythroid differentiation. Targeted mutagenesis of the GATA-1 gene in embryonic stem cells has demonstrated its requirement in normal erythroid development. Efficient rescue of the defect requires an intact GATA element in the distal promoter, suggesting autoregulatory control of GATA-1 transcription. To examine whether GATA-1 expression involves additional regulatory factors or is maintained entirely by an autoregulatory loop, we have used a transient heterokaryon system to test the ability of erythroid factors to activate the GATA-1 gene in nonerythroid nuclei. We show here that proerythroblasts and mature erythroid cells contain a diffusible activity (TAG) capable of transcriptional activation of GATA-1 and that this activity decreases during the terminal differentiation of erythroid cells. Nuclei from GATA-1- mutant embryonic stem cells can still be reprogrammed to express their globin genes in erythroid heterokaryons, indicating that de novo induction of GATA-1 is not required for globin gene activation following cell fusion.
Collapse
Affiliation(s)
- M H Baron
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
110
|
Anagnostou A, Liu Z, Steiner M, Chin K, Lee ES, Kessimian N, Noguchi CT. Erythropoietin receptor mRNA expression in human endothelial cells. Proc Natl Acad Sci U S A 1994; 91:3974-8. [PMID: 8171022 PMCID: PMC43705 DOI: 10.1073/pnas.91.9.3974] [Citation(s) in RCA: 438] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A previous report demonstrated that endothelial cells have erythropoietin receptors and respond to this hormone with enhanced proliferation. The present study demonstrates the existence of mRNA for erythropoietin receptor in human umbilical vein endothelial cells. We have reverse transcribed mRNA of endothelial cells and then used different PCR primers to amplify erythropoietin receptor target cDNA between exons 5 and 6 as well as 3-5 in addition to an internal standard DNA fragment. Correspondence of size as well as location of restriction endonuclease scission (Ava II) was used in comparing the amplified fragments of human endothelial cell erythropoietin receptor to those of two human erythroleukemia cell lines, OCIM1 and K562. No alpha- or gamma-globin mRNA was detected in endothelial cells but was readily demonstrable in OCIM1 cells. In addition, to determine whether the expression of human erythropoietin receptor on endothelial cells occurs in vivo, sections of umbilical cord and placenta were immunostained with antibodies against the extracellular portion of the receptor; the results showed strong positive staining of the vascular endothelium.
Collapse
|
111
|
Hess SM, Stanford DR, Hopper AK. SRD1, a S. cerevisiae gene affecting pre-rRNA processing contains a C2/C2 zinc finger motif. Nucleic Acids Res 1994; 22:1265-71. [PMID: 8165142 PMCID: PMC523652 DOI: 10.1093/nar/22.7.1265] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Saccharomyces cerevisiae genes, RRP1 and SRD1, are involved in processing rRNA precursor species to mature rRNAs. We reported previously that the rrp1-1 mutation caused temperature-sensitive lethality, hypersensitivity to aminoglycoside antibiotics, and defective processing of 27S pre-rRNA to 25S and 5.8S mature rRNAs. A second-site suppressor of the rrp1-1 mutation, srd1, corrects all three rrp1 mutant phenotypes. In order to learn more about the roles of the SRD1 and RRP1 genes in rRNA processing, we cloned and characterized the SRD1 gene. We identified an ORF, YCR18C, that complements srd1-2 suppression of rrp1-1. The DNA is physically located at the region of chromosome III where SRD1 has been genetically mapped. SRD1 encodes a putative 225 amino acid, 26 kDa protein containing a C2/C2 zinc finger motif that is also found in some transcription regulators and the eIF-2 beta translation initiating factors. The similarity of SRD1 to transcription regulators led us to test the model that srd1 mutations suppress rrp1 defects by altering the level of the RRP1 transcript. However, we found that SRD1 has no detectable effect on the steady state levels of RRP1 mRNA. We describe alternative models to explain the role of Srd1p in pre-rRNA processing.
Collapse
Affiliation(s)
- S M Hess
- Cell and Molecular Biology Program, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | |
Collapse
|
112
|
Drevet J, Skeiky Y, Iatrou K. GATA-type zinc finger motif-containing sequences and chorion gene transcription factors of the silkworm Bombyx mori. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)34110-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
113
|
Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 1994. [PMID: 8114750 DOI: 10.1128/mcb.14.3.2201] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.
Collapse
|
114
|
Yang Z, Gu L, Romeo PH, Bories D, Motohashi H, Yamamoto M, Engel JD. Human GATA-3 trans-activation, DNA-binding, and nuclear localization activities are organized into distinct structural domains. Mol Cell Biol 1994; 14:2201-12. [PMID: 8114750 PMCID: PMC358580 DOI: 10.1128/mcb.14.3.2201-2212.1994] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.
Collapse
Affiliation(s)
- Z Yang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500
| | | | | | | | | | | | | |
Collapse
|
115
|
Mushiake S, Etani Y, Shimada S, Tohyama M, Hasebe M, Futai M, Maeda M. Genes for members of the GATA-binding protein family (GATA-GT1 and GATA-GT2) together with H+/K(+)-ATPase are specifically transcribed in gastric parietal cells. FEBS Lett 1994; 340:117-20. [PMID: 8119393 DOI: 10.1016/0014-5793(94)80184-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
mRNAs for novel DNA-binding proteins (GATA-GT1 and GATA-GT2) recognizing the (G/C)PuPu(G/C)NGAT(A/T)PuPy sequence and H+/K(+)-ATPase (proton pump) alpha subunit were detected in parietal cells of the rat gastric body mucosa by in situ hybridization. These results suggest that GATA-GT1 and GATA-GT2 together with H+/K(+)-ATPase are transcribed specifically in gastric parietal cells and that the two DNA-binding proteins may have important roles in cell specific gene regulation. Furthermore, we could detect parietal cells in different states of gene expression.
Collapse
Affiliation(s)
- S Mushiake
- Department of Pediatrics, Osaka University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
116
|
|
117
|
Abstract
Nitrogen regulation has been extensively studied in fungi revealing a complex array of interacting regulatory genes. The general characterisation of the systems in Aspergillus nidulans and Neurospora crassa shall be briefly described, but much of this paper will concentrate specifically on the recent molecular characterisation of areA, the principle regulatory gene from A. nidulans which mediates nitrogen metabolite repression. Three areas shall be explored in detail, firstly the DNA binding domain, which has been characterised extensively by both molecular and genetic analysis. Secondly we shall report recent analysis which has revealed the presence of related DNA binding activities in A. nidulans. Finally we shall discuss the mechanism by which the nitrogen state of the cell is monitored by the areA product, in particular localisation of the domain within the areA product which mediates the regulatory response within the protein.
Collapse
Affiliation(s)
- M X Caddick
- Department of Genetics and Microbiology, Donnan Laboratories, University of Liverpool, UK
| | | | | |
Collapse
|
118
|
Tamura S, Wang XH, Maeda M, Futai M. Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc Natl Acad Sci U S A 1993; 90:10876-80. [PMID: 8248184 PMCID: PMC47881 DOI: 10.1073/pnas.90.22.10876] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Polymerase chain reaction amplification of cDNA from pig gastric mucosa demonstrated the presence of zinc-finger proteins called GATA-GT1, GATA-GT2, and GATA-GT3, each having zinc-finger sequences similar to previously characterized GATA-binding proteins. Subsequently, full-length cDNAs of GATA-GT1 and GATA-GT2 were obtained from rat stomach. The zinc-finger domains of GATA-GT1 and -GT2 were 66-86% identical on the amino acid level with each other and with other GATA-binding proteins. Potential protein kinase phosphorylation sites were present in the zinc-finger region. In contrast, regions outside the zinc fingers shared significantly lower similarities. GATA-GT2 was found to bind to the upstream sequence of the H+/K(+)-ATPase beta gene and to a sequence containing the GATA motif. GATA-GT1 and -GT2 were expressed predominantly in the gastric mucosa and at much lower levels in the intestine (GATA-GT2, also in testis), their tissue distributions being distinct from those of GATA-1, -2, or -3. These results clearly suggest that GATA-GT1 and GATA-GT2 are involved in gene regulation specifically in the gastric epithelium and represent two additional members of the GATA-binding protein family.
Collapse
Affiliation(s)
- S Tamura
- Department of Organic Chemistry and Biochemistry, Osaka University, Japan
| | | | | | | |
Collapse
|
119
|
Leonard MW, Lim KC, Engel JD. Expression of the chicken GATA factor family during early erythroid development and differentiation. Development 1993; 119:519-31. [PMID: 8287800 DOI: 10.1242/dev.119.2.519] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The DNA motif WGATAR has been identified within transcriptional regulatory domains of globin and other erythroid-specific genes and the activator proteins that bind to this regulatory element, the GATA factors, belong to a multi-gene family that is expressed in chicken erythroid cells. Here we show that, as in chickens, multiple members of the GATA factor family are expressed in human and murine erythroid cells. During the early stages of chicken embryogenesis (well before blood island formation), each of the GATA family members is transcribed with a unique temporal and spatial pattern. In the primitive erythroid lineage, transcription of the embryonic epsilon-globin gene parallels GATA-1 expression while the switch to beta-globin transcription in definitive erythroid cells is directly preceded by a pronounced increase in GATA-3 accumulation. The timing and pattern of expression of these different mRNAs during avian erythroid development and differentiation suggests that temporally regulated changes in GATA factor expression are required for vertebrate hematopoiesis.
Collapse
Affiliation(s)
- M W Leonard
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | | | | |
Collapse
|
120
|
Abstract
GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.
Collapse
|
121
|
Abstract
GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.
Collapse
Affiliation(s)
- M Merika
- Division of Hematology/Oncology, Children's Hospital, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
122
|
Kelley C, Blumberg H, Zon LI, Evans T. GATA-4 is a novel transcription factor expressed in endocardium of the developing heart. Development 1993; 118:817-27. [PMID: 8076520 DOI: 10.1242/dev.118.3.817] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have isolated and characterized Xenopus cDNA clones for a new transcription factor that represents an early marker for the developing heart. The cDNAs encode a protein that we have designated GATA-4; it contains the highly conserved DNA-binding domain that characterizes this family of cell-type restricted transcriptional activators. Whole-embryo in situ analysis of Xenopus embryos demonstrates that the GATA-4 gene is transcribed in presumptive cardiac ventral mesoderm at the time that bilateral progenitors fuse and form the cardiac tube. GATA-4 is therefore the earliest molecular marker of cardiogenesis yet characterized. By stage 30, the GATA-4 mRNA is expressed in the developing atria and ventricles; at stage 38, cross-sections reveal that the gene is active in the endocardial layer, but not in myocardium. By stage 40, GATA-4 message is detected in the great vessels. In the adult frog, the GATA-4 gene is highly transcribed in heart and gut; lower levels of message are detected in various endoderm-derived tissues and gonads. Expression in the stomach is largely confined to the epithelium. The GATA-4 gene is first activated at stage 11; mRNA is initially present throughout the marginal zone of explants and later partially localized to the ventral marginal zone. GATA-4 mRNA is also detected at high levels in cultured endodermal explants derived from the vegetal region of early embryos. In mesoderm induction experiments, GATA-4 transcription is not induced in animal caps treated with activin or bFGF. The GATA-4 gene may provide a new early marker for studying the inductive processes that lead to the formation of the cardiovascular system and for the specification of the endocardial lineage.
Collapse
Affiliation(s)
- C Kelley
- Children's Hospital, Harvard Medical School, Boston, MA 02115
| | | | | | | |
Collapse
|
123
|
Abstract
A family of transcriptional activating proteins, the GATA factors, has been shown to bind to a consensus motif through a highly conserved C4 zinc finger DNA binding domain. One member of this multigene family, GATA-3, is most abundantly expressed in T lymphocytes, a cellular target for human immunodeficiency virus type 1 (HIV-1) infection and replication. In vitro DNase I footprinting analysis revealed six hGATA-3 binding sites in the U3 region (the transcriptional regulatory domain) of the HIV-1 LTR. Cotransfection of an hGATA-3 expression plasmid with a reporter plasmid whose transcription is directed by the HIV-1 LTR resulted in 6- to 10-fold stimulation of LTR-mediated transcription, whereas site specific mutation of these GATA sites resulted in virtual abrogation of the activation by hGATA-3. Further, deletion of the hGATA-3 transcriptional activation domain abolished GATA-dependent HIV-1 trans-activation, showing that the stimulation of viral transcription observed is a direct effect of cotransfected hGATA-3. Introduction of the HIV-1 plasmids in which the GATA sites have been mutated into human T lymphocytes also caused a significant reduction in LTR-mediated transcription at both the basal level and in (PHA- plus PMA-) stimulated T cells. These observations suggest that in addition to its normal role in T lymphocyte gene regulation, hGATA-3 may also play a significant role in HIV-1 transcriptional activation.
Collapse
Affiliation(s)
- Z Yang
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500
| | | |
Collapse
|
124
|
Briegel K, Lim KC, Plank C, Beug H, Engel JD, Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev 1993; 7:1097-109. [PMID: 8504932 DOI: 10.1101/gad.7.6.1097] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The GATA factors are a family of transcriptional regulatory proteins in eukaryotes that share extensive homology in their DNA-binding domains. One enigmatic aspect of GATA factor expression is that several GATA proteins, which ostensibly share the same DNA-binding site specificity, are coexpressed in erythroid cells. To elucidate the roles of individual GATA factors in erythropoiesis, conditional alleles of GATA-1, GATA-2, and GATA-3 were prepared by fusing each of the factors to the hormone-binding domain of the human estrogen receptor (ER). These GATA/ER chimeric factors were shown to be hormone-inducible trans-activating proteins in transient transfection assays. When stably introduced into primary erythroblasts or conditionally transformed erythroid progenitors cells, exogenous GATA-2/ER promoted proliferation and inhibited terminal differentiation in an estrogen-dependent manner. These phenotypic effects are specifically attributable to the action of ectopically expressed GATA-2/ER because erythroblasts expressing exogenous GATA-2 are constitutively arrested in differentiation and because erythroid progenitors expressing either Gal/ER or GATA-3/ER do not display a hormone-responsive block in differentiation. Thus, the GATA-2 transcription factor appears to play a role in regulating the self-renewal capacity of early erythroid progenitor cells.
Collapse
Affiliation(s)
- K Briegel
- Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | | | | | | |
Collapse
|
125
|
Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 1993. [PMID: 8455608 DOI: 10.1128/mcb.13.4.2235] [Citation(s) in RCA: 480] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
We report the cDNA cloning and characterization of mouse GATA-4, a new member of the family of zinc finger transcription factors that bind a core GATA motif. GATA-4 cDNA was identified by screening a 6.5-day mouse embryo library with oligonucleotide probes corresponding to a highly conserved region of the finger domains. Like other proteins of the family, GATA-4 is approximately 50 kDa in size and contains two zinc finger domains of the form C-X-N-C-(X17)-C-N-X-C. Cotransfection assays in heterologous cells demonstrate that GATA-4 trans activates reporter constructs containing GATA promoter elements. Northern (RNA) analysis and in situ hybridization show that GATA-4 mRNA is expressed in the heart, intestinal epithelium, primitive endoderm, and gonads. Retinoic acid-induced differentiation of mouse F9 cells into visceral or parietal endoderm is accompanied by increased expression of GATA-4 mRNA and protein. In vitro differentiation of embryonic stem cells into embryoid bodies is also associated with increased GATA-4 expression. We conclude that GATA-4 is a tissue-specific, retinoic acid-inducible, and developmentally regulated transcription factor. On the basis of its tissue distribution, we speculate that GATA-4 plays a role in gene expression in the heart, intestinal epithelium, primitive endoderm, and gonads.
Collapse
|
126
|
Arceci RJ, King AA, Simon MC, Orkin SH, Wilson DB. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol Cell Biol 1993; 13:2235-46. [PMID: 8455608 PMCID: PMC359544 DOI: 10.1128/mcb.13.4.2235-2246.1993] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the cDNA cloning and characterization of mouse GATA-4, a new member of the family of zinc finger transcription factors that bind a core GATA motif. GATA-4 cDNA was identified by screening a 6.5-day mouse embryo library with oligonucleotide probes corresponding to a highly conserved region of the finger domains. Like other proteins of the family, GATA-4 is approximately 50 kDa in size and contains two zinc finger domains of the form C-X-N-C-(X17)-C-N-X-C. Cotransfection assays in heterologous cells demonstrate that GATA-4 trans activates reporter constructs containing GATA promoter elements. Northern (RNA) analysis and in situ hybridization show that GATA-4 mRNA is expressed in the heart, intestinal epithelium, primitive endoderm, and gonads. Retinoic acid-induced differentiation of mouse F9 cells into visceral or parietal endoderm is accompanied by increased expression of GATA-4 mRNA and protein. In vitro differentiation of embryonic stem cells into embryoid bodies is also associated with increased GATA-4 expression. We conclude that GATA-4 is a tissue-specific, retinoic acid-inducible, and developmentally regulated transcription factor. On the basis of its tissue distribution, we speculate that GATA-4 plays a role in gene expression in the heart, intestinal epithelium, primitive endoderm, and gonads.
Collapse
Affiliation(s)
- R J Arceci
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Massachusetts
| | | | | | | | | |
Collapse
|
127
|
André B, Hein C, Grenson M, Jauniaux JC. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1993; 237:17-25. [PMID: 8455553 DOI: 10.1007/bf00282779] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transport of 4-aminobutyric acid (GABA) in Saccharomyces cerevisiae is mediated by three transport systems: the general amino acid permease (GAP1 gene), the proline permease (PUT4 gene), and a specific GABA permease (UGA4 gene) which is induced in the presence of GABA. The UGA4 gene encoding the inducible GABA-specific transporter was cloned and sequenced and its expression analyzed. The predicted amino acid sequence shows that UGA4 encodes a 62 kDa protein having 9-12 putative membrane-spanning regions. The predicted UGA4 protein shares significant sequence similarity with the yeast choline transporter (CTR gene), exhibiting but limited similarity to the previously reported GABA transporters, i.e. the yeast GAP1 and PUT4 permeases and the rat brain GAT-1 transporter. Induction of UGA4 in the presence of GABA is exerted at the level of UGA4 mRNA accumulation, most probably at the level of transcription itself. This induction is conferred by the 5' flanking region and requires the integrity of two positive regulatory proteins, the inducer-specific factor UGA3 and the pleiotropic factor UGA35/DURL/DAL81. In the absence of the pleiotropic UGA43/DAL80 repressor, UGA4 is constitutively expressed at high level.
Collapse
Affiliation(s)
- B André
- Laboratoire de Physiologie Cellulaire et de Génétique des Levures, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
128
|
Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993. [PMID: 8417345 DOI: 10.1128/mcb.13.1.473] [Citation(s) in RCA: 584] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report that embryonic stem cells efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells and that this in vitro system recapitulates days 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiation, and by day 6, more than 85% of EBs contain such cells. A comparative reverse transcriptase-mediated polymerase chain reaction profile of marker genes for primitive endoderm (collagen alpha IV) and mesoderm (Brachyury) indicates that both cell types are present in the developing EBs as well in normal embryos prior to the onset of hematopoiesis. GATA-1, GATA-3, and vav are expressed in both the EBs and embryos just prior to and/or during the early onset of hematopoiesis, indicating that they could play a role in the early stages of hematopoietic development both in vivo and in vitro. The initial stages of hematopoietic development within the EBs occur in the absence of added growth factors and are not significantly influenced by the addition of a broad spectrum of factors, including interleukin-3 (IL-3), IL-1, IL-6, IL-11, erythropoietin, and Kit ligand. At days 10 and 14 of differentiation, EB hematopoiesis is significantly enhanced by the addition of both Kit ligand and IL-11 to the cultures. Kinetic analysis indicates that hematopoietic precursors develop within the EBs in an ordered pattern. Precursors of the primitive erythroid lineage appear first, approximately 24 h before precursors of the macrophage and definitive erythroid lineages. Bipotential neutrophil/macrophage and multilineage precursors appear next, and precursors of the mast cell lineage develop last. The kinetics of precursor development, as well as the growth factor responsiveness of these early cells, is similar to that found in the yolk sac and early fetal liver, indicating that the onset of hematopoiesis within the EBs parallels that found in the embryo.
Collapse
|
129
|
|
130
|
Keller G, Kennedy M, Papayannopoulou T, Wiles MV. Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 1993; 13:473-86. [PMID: 8417345 PMCID: PMC358927 DOI: 10.1128/mcb.13.1.473-486.1993] [Citation(s) in RCA: 240] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report that embryonic stem cells efficiently undergo differentiation in vitro to mesoderm and hematopoietic cells and that this in vitro system recapitulates days 6.5 to 7.5 of mouse hematopoietic development. Embryonic stem cells differentiated as embryoid bodies (EBs) develop erythroid precursors by day 4 of differentiation, and by day 6, more than 85% of EBs contain such cells. A comparative reverse transcriptase-mediated polymerase chain reaction profile of marker genes for primitive endoderm (collagen alpha IV) and mesoderm (Brachyury) indicates that both cell types are present in the developing EBs as well in normal embryos prior to the onset of hematopoiesis. GATA-1, GATA-3, and vav are expressed in both the EBs and embryos just prior to and/or during the early onset of hematopoiesis, indicating that they could play a role in the early stages of hematopoietic development both in vivo and in vitro. The initial stages of hematopoietic development within the EBs occur in the absence of added growth factors and are not significantly influenced by the addition of a broad spectrum of factors, including interleukin-3 (IL-3), IL-1, IL-6, IL-11, erythropoietin, and Kit ligand. At days 10 and 14 of differentiation, EB hematopoiesis is significantly enhanced by the addition of both Kit ligand and IL-11 to the cultures. Kinetic analysis indicates that hematopoietic precursors develop within the EBs in an ordered pattern. Precursors of the primitive erythroid lineage appear first, approximately 24 h before precursors of the macrophage and definitive erythroid lineages. Bipotential neutrophil/macrophage and multilineage precursors appear next, and precursors of the mast cell lineage develop last. The kinetics of precursor development, as well as the growth factor responsiveness of these early cells, is similar to that found in the yolk sac and early fetal liver, indicating that the onset of hematopoiesis within the EBs parallels that found in the embryo.
Collapse
Affiliation(s)
- G Keller
- National Jewish Center, Denver, Colorado 80206
| | | | | | | |
Collapse
|
131
|
Abstract
We have generated and analyzed by functional assays mutations of the chicken erythroid transcription factor GATA-1. The cGATA-1 protein contains two related finger domains highly conserved across species and characteristic of the family of GATA-binding factors. We find that mutations in the C-terminal finger or adjacent basic region abolish sequence-specific DNA binding, confirming that this region constitutes a novel DNA-binding domain sufficient to recognize the consensus WGATAR motif. At least three separate regions outside of this finger II domain contribute in a cooperative manner to the trans-activation potential of the protein. As expected from previous results analyzing the mouse homolog, we find that the N-terminal finger plays a role in DNA binding by affecting the stability of the DNA-protein complex. In addition, we find mutations of finger I subtly altered in DNA-binding function which greatly diminish trans-activation. Our results support the notion that the GATA-1 protein must be positioned precisely on the GATA cis element to enable the activation of target genes.
Collapse
|
132
|
Abstract
We have generated and analyzed by functional assays mutations of the chicken erythroid transcription factor GATA-1. The cGATA-1 protein contains two related finger domains highly conserved across species and characteristic of the family of GATA-binding factors. We find that mutations in the C-terminal finger or adjacent basic region abolish sequence-specific DNA binding, confirming that this region constitutes a novel DNA-binding domain sufficient to recognize the consensus WGATAR motif. At least three separate regions outside of this finger II domain contribute in a cooperative manner to the trans-activation potential of the protein. As expected from previous results analyzing the mouse homolog, we find that the N-terminal finger plays a role in DNA binding by affecting the stability of the DNA-protein complex. In addition, we find mutations of finger I subtly altered in DNA-binding function which greatly diminish trans-activation. Our results support the notion that the GATA-1 protein must be positioned precisely on the GATA cis element to enable the activation of target genes.
Collapse
Affiliation(s)
- H Y Yang
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | | |
Collapse
|
133
|
A comparative structural characterization of the human NSCL-1 and NSCL-2 genes. Two basic helix-loop-helix genes expressed in the developing nervous system. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36798-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
134
|
Schwartzbauer G, Schlesinger K, Evans T. Interaction of the erythroid transcription factor cGATA-1 with a critical auto-regulatory element. Nucleic Acids Res 1992; 20:4429-36. [PMID: 1408744 PMCID: PMC334168 DOI: 10.1093/nar/20.17.4429] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have performed a mutational analysis of the promoter for the chicken erythroid-specific GATA-1 transcription factor, and have investigated in detail the interaction of the factor with an upstream auto-regulatory element (ARE). We find that a single proximal GATA binding site of the ARE is required for promoter activity in primary erythroid cells; however, this minimal promoter is inappropriately active in fibroblasts. At least two molecules of GATA-1 can interact with the ARE, and sequences outside of the consensus site appear critical for the transcriptional activity of the bound protein. Finally, we provide evidence for complex protein/DNA interactions at the ARE, including the ability of GATA-1 to bend DNA.
Collapse
Affiliation(s)
- G Schwartzbauer
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | |
Collapse
|