101
|
Andoh A, Shioya M, Nishida A, Bamba S, Tsujikawa T, Kim-Mitsuyama S, Fujiyama Y. Expression of IL-24, an activator of the JAK1/STAT3/SOCS3 cascade, is enhanced in inflammatory bowel disease. THE JOURNAL OF IMMUNOLOGY 2009; 183:687-95. [PMID: 19535621 DOI: 10.4049/jimmunol.0804169] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IL-24 is a member of the IL-10 family of cytokines. In this study, we investigated IL-24 expression in the inflamed mucosa of patients with inflammatory bowel disease (IBD), and characterized the molecular mechanisms responsible for IL-24 expression in human colonic subepithelial myofibroblasts (SEMFs). IL-24 expression in the IBD mucosa was evaluated by immunohistochemical methods. IL-24 mRNA and protein expression was determined by real-time PCR and ELISA, respectively. AP-1 and C/EBP DNA-binding activity and IL-24 promoter activity were assessed by EMSA analysis and a reporter gene assay, respectively. IL-24 mRNA expression was significantly elevated in active lesions from patients who have ulcerative colitis and Crohn's disease. Colonic SEMFs were identified as a major source of IL-24 in the mucosa. IL-1beta, but not IL-17A, TNF-alpha, or IFN-gamma, significantly enhanced IL-24 mRNA and protein expression in isolated colonic SEMFs. The IL-1beta-induced IL-24 mRNA expression was mediated by the activation of the transcription factors, AP-1 and C/EBP-beta. Induction of IL-24 mRNA stabilization was also involved in the effects of IL-1beta. IL-24 induced JAK1/STAT-3 phosphorylation and SOCS3 expression in HT-29 colonic epithelial cells. IL-24 did not modulate the proliferation of HT-29 cells, but significantly increased the mRNA expression of membrane-bound mucins (MUC1, MUC3, and MUC4). IL-24 derived from colonic SEMFs acts on colonic epithelial cells to elicit JAK1/STAT-3 activation and the expression of SOCS3 and mucins, supporting their suppressive effects on mucosal inflammation in IBD.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan.
| | | | | | | | | | | | | |
Collapse
|
102
|
Kreis S, Philippidou D, Margue C, Behrmann I. IL-24: a classic cytokine and/or a potential cure for cancer? J Cell Mol Med 2009; 12:2505-10. [PMID: 18505472 PMCID: PMC4514127 DOI: 10.1111/j.1582-4934.2008.00372.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
IL-24, a member of the IL-10 family of cytokines, is produced by monocytes and Th2 cells. Interestingly, immune cells do not appear to express specific IL-24 receptor chains (IL-20R1/IL-20R2 and IL-22R/IL-20R2), it is therefore unlikely that IL-24 has classical immune-modulating properties. Skin, on the other hand, seems to represent a major target tissue for IL-24 and related cytokines such as IL-19, -20, and -22. However, the initial interest in IL-24 did not arise from its physiological signalling properties through its cognate receptors but rather because of its tentative ability to selectively kill different cancer cells. In an attempt to further investigate the signalling events underlying the IL-24-induced cancer cell death, we found that melanoma cell lines did not react in the expected and previously described way. Using several different forms and delivery modes of IL-24, we were unable to detect any apoptosis-inducing properties of this cytokine in melanoma cells. In the present ‘Point of view’ we will briefly summarizse these findings and put them in context of published reports stating that IL-24 might be a long sought after treatment for several types of cancer.
Collapse
Affiliation(s)
- S Kreis
- Life Sciences Research Unit, University of Luxembourg, Luxembourg.
| | | | | | | |
Collapse
|
103
|
Zheng M, Bocangel D, Ramesh R, Ekmekcioglu S, Poindexter N, Grimm EA, Chada S. Interleukin-24 overcomes temozolomide resistance and enhances cell death by down-regulation of O6-methylguanine-DNA methyltransferase in human melanoma cells. Mol Cancer Ther 2008; 7:3842-51. [PMID: 19056673 PMCID: PMC2653264 DOI: 10.1158/1535-7163.mct-08-0516] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma is the most malignant of skin cancers, highly resistant to chemotherapy and radiotherapy. Temozolomide, a promising new derivative of dacarbazine, is currently being tested for treatment of metastatic melanoma. Resistance to alkylating agents such as temozolomide correlates with increased expression of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Interleukin-24 (IL-24; mda-7) is a tumor suppressor cytokine that selectively inhibits tumor cell growth by inducing apoptosis and cell cycle arrest in melanoma cell lines and solid tumors. This tumor-selective activity has been observed in multiple preclinical animal models and in clinical trials. In this study, we analyzed the ability of Ad-IL-24 and its protein product, IL-24, to overcome temozolomide resistance in human melanoma cells. We have shown that Ad-IL-24 via exogenous IL-24 protein induces combinatorial synergy of temozolomide-induced cell killing in temozolomide-resistant melanoma cells by inhibition of MGMT. Neutralizing antibodies against IL-24 or its receptors significantly blocked the apoptotic activity of IL-24 + MGMT treatment. We show that accumulation of functional p53 is essential for IL-24-induced down-regulation of MGMT. Using either MGMT small interfering RNA, p53 small interfering RNA, or a p53 dominant-negative mutant to block MGMT protein expression resulted in increased sensitization to temozolomide. However, MGMT blockade in combination with IL-24 + temozolomide resulted in loss of combinatorial synergy, indicating that MGMT expression is required for the reversal of temozolomide resistance in melanoma cells. This study shows that IL-24 can play a significant role in overcoming temozolomide resistance and that the clinical efficacy of temozolomide may be improved by using a biochemotherapy combination with IL-24.
Collapse
Affiliation(s)
- Mingzhong Zheng
- Introgen Therapeutics, 2250 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
104
|
Sahoo A, Jung YM, Kwon HK, Yi HJ, Lee S, Chang S, Park ZY, Hwang KC, Im SH. A novel splicing variant of mouse interleukin (IL)-24 antagonizes IL-24-induced apoptosis. J Biol Chem 2008; 283:28860-72. [PMID: 18708357 PMCID: PMC2662000 DOI: 10.1074/jbc.m802510200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/17/2008] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing of mRNA enables functionally diverse protein isoforms to be expressed from a single gene, allowing transcriptome diversification. Interleukin (IL)-24/MDA-7 is a member of the IL-10 gene family, and FISP (IL-4-induced secreted protein), its murine homologue, is selectively expressed and secreted by T helper 2 lymphocytes. A novel splice variant of mouse IL-24/FISP, designated FISP-sp, lacks 29 nucleotides from the 5'-end of exon 4 of FISP. The level of FISP-sp expression is 10% of the level of total primary FISP transcription. Unlike FISP, FISP-sp does not induce growth inhibition and apoptosis. FISP-sp is exclusively localized in endoplasmic reticulum, and its expression is up-regulated by endoplasmic reticulum stress. Our results suggest that the novel splicing variant FISP-sp dimerizes with FISP and blocks its secretion and inhibits FISP-induced apoptosis in vivo.
Collapse
Affiliation(s)
- Anupama Sahoo
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Eager R, Harle L, Nemunaitis J. Ad-MDA-7; INGN 241: a review of preclinical and clinical experience. Expert Opin Biol Ther 2008; 8:1633-43. [DOI: 10.1517/14712598.8.10.1633] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
106
|
Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X, Yang J. Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm 2008; 23:310-20. [PMID: 18593364 DOI: 10.1089/cbr.2007.0453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that interleukin-24 (IL-24; mda-7) as a novel tumor suppressor gene has tumor-suppressive activity against a broad spectrum of human cancers. However, the therapeutic effect of the recombinant human IL-24 (rhIL-24) protein purified from prokaryotic cells on human lung cancers has not been reported. In this study, we cloned the human gene coding for IL-24 from lipopolysaccharide-activated human peripheral blood mononuclear cells (PBMCs) by reverse-transcriptase polymerase chain reaction and constructed an expression vector pBV220-IL-24. We then transfected Escherichia coli DH5alpha with pBV220-IL-24. The soluble rhIL-24 was obtained from purified insoluble inclusion bodies of transfected cells by a denaturing and renaturing process. We demonstrated that the purified soluble rhIL-24 protein with 18.5 kappaDa was capable of (1) inducing in vitro apoptosis of A549 lung carcinoma cells; (2) activating PBMCs to secrete cytokines such as IL-6, tumor necrosis factor-alpha, and interferon-gamma; (3) inhibiting the formation of blood capillaries on chicken embryonic allantois and in vivo tumor angiogenesis; and (4) inhibiting A549 lung tumor cell growth in vitro and in vivo. Therefore, our results indicate its potent suppressive effect on human lung carcinoma cell line and warrant its further investigation for therapeutic application against human lung cancer.
Collapse
Affiliation(s)
- Yufeng Xie
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
107
|
Autocrine regulation of mda-7/IL-24 mediates cancer-specific apoptosis. Proc Natl Acad Sci U S A 2008; 105:9763-8. [PMID: 18599461 DOI: 10.1073/pnas.0804089105] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A noteworthy aspect of melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) as a cancer therapeutic is its ability to selectively kill cancer cells without harming normal cells. Intracellular MDA-7/IL-24 protein, generated from an adenovirus expressing mda-7/IL-24 (Ad.mda-7), induces cancer-specific apoptosis by inducing an endoplasmic reticulum (ER) stress response. Secreted MDA-7/IL-24 protein, generated from cells infected with Ad.mda-7, induces growth inhibition and apoptosis in surrounding noninfected cancer cells but not in normal cells, thus exerting an anti-tumor "bystander" effect. The present studies reveal a provocative finding that recombinant MDA-7/IL-24 protein can robustly induce expression of endogenous mda-7/IL-24, which generates the signaling events necessary for bystander killing. To evaluate the mechanism underlying this positive autocrine feedback loop, we show that MDA-7/IL-24 protein induces stabilization of its own mRNA without activating its promoter. Furthermore, this posttranscriptional effect depends on de novo protein synthesis. As a consequence of this autocrine feedback loop MDA-7/IL-24 protein induces sustained ER stress as evidenced by expression of ER stress markers (BiP/GRP78, GRP94, GADD153, and phospho-eIF2alpha) and reactive oxygen species production, indicating that both intracellular and secreted proteins activate similar signaling pathways to induce apoptosis. Thus, our results clarify the molecular mechanism by which secreted MDA-7/IL-24 protein (generated from Ad.mda-7-infected cells) exerts cancer-specific killing.
Collapse
|
108
|
Ekmekcioglu S, Mumm JB, Udtha M, Chada S, Grimm EA. Killing of human melanoma cells induced by activation of class I interferon-regulated signaling pathways via MDA-7/IL-24. Cytokine 2008; 43:34-44. [PMID: 18511292 PMCID: PMC2582834 DOI: 10.1016/j.cyto.2008.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 01/28/2023]
Abstract
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.
Collapse
Affiliation(s)
- Suhendan Ekmekcioglu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 362, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
109
|
Yacoub A, Gupta P, Park MA, Rhamani M, Hamed H, Hanna D, Zhang G, Sarkar D, Lebedeva IV, Emdad L, Koumenis C, Curiel DT, Grant S, Fisher PB, Dent P. Regulation of GST-MDA-7 toxicity in human glioblastoma cells by ERBB1, ERK1/2, PI3K, and JNK1-3 pathway signaling. Mol Cancer Ther 2008; 7:314-29. [PMID: 18281516 DOI: 10.1158/1535-7163.mct-07-2150] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present studies defined the biological effects of a GST fusion protein of melanoma differentiation-associated gene-7 (mda-7), GST-MDA-7 (1 and 30 nmol/L), on cell survival and cell signaling in primary human glioma cells in vitro. GST-MDA-7, in a dose- and time-dependent fashion killed glioma cells with diverse genetic characteristics; 1 nmol/L caused arrest without death, whereas 30 nmol/L caused arrest and killing after exposure. Combined inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT function was required to enhance 1 nmol/L GST-MDA-7 lethality in all cell types, whereas combined activation of MEK1 and AKT was required to suppress 30 nmol/L GST-MDA-7 lethality; both effects are mediated in part by modulating c-Jun NH(2)-terminal kinase (JNK) 1-3 activity. The geldanamycin 17AAG inhibited AKT and ERK1/2 in GBM cells and enhanced GST-MDA-7 lethality. JNK1-3 signaling promoted BAX activation and mitochondrial dysfunction. In GBM6 cells, GST-MDA-7 (30 nmol/L) transiently activated p38 mitogen-activated protein kinase, which was modestly protective against JNK1-3-induced toxicity, whereas GST-MDA-7 (300 nmol/L) caused prolonged intense p38 mitogen-activated protein kinase activation, which promoted cell death. In GBM12 cells that express full-length mutant activated ERBB1, inhibition of ERBB1 did not modify GST-MDA-7 lethality; however, in U118 established glioma cells, stable overexpression of wild-type ERBB1 and/or truncated active ERBB1vIII suppressed GST-MDA-7 lethality. Our data argue that combined inhibition of ERK1/2 and AKT function, regardless of genetic background, promotes MDA-7 lethality in human primary human glioma cells via JNK1-3 signaling and is likely to represent a more ubiquitous approach to enhancing MDA-7 toxicity in this cell type than inhibition of ERBB1 function.
Collapse
Affiliation(s)
- Adly Yacoub
- Department of Biochemistry, Virginia Commonwealth University, Richmond, VA 23298-0035, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Gupta P, Emdad L, Lebedeva IV, Sarkar D, Dent P, Curiel DT, Settleman J, Fisher PB. Targeted combinatorial therapy of non-small cell lung carcinoma using a GST-fusion protein of full-length or truncated MDA-7/IL-24 with Tarceva. J Cell Physiol 2008; 215:827-36. [PMID: 18270968 DOI: 10.1002/jcp.21369] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, displays cancer-specific apoptosis-inducing properties when delivered by a replication-incompetent adenovirus (Ad.mda-7) or as a GST-tagged recombinant protein (GST-MDA-7). Previous studies demonstrated that an adenovirus expressing M4, a truncated version of MDA-7/IL-24 containing amino acid residues 104-206, also induced similar cancer-specific apoptosis. We generated recombinant GST-M4 proteins and examined the potency of GST-MDA-7 and GST-M4 on a panel of epidermal growth factor receptor (EGFR) wild type and mutant non-small cell lung carcinoma (NSCLC) cells either as a single agent or in combination with a reversible EGFR inhibitor, Tarceva. The combination of either GST-MDA-7 or GST-M4 ( approximately 0.1 microM) and Tarceva (10 microM), at sub-optimal apoptosis-inducing concentrations synergistically enhanced growth inhibition and apoptosis induction over that observed with either agent alone. The combination treatment also augmented inhibition of EGFR signaling, analyzed by phosphorylation of EGFR and its downstream effectors AKT and ERK1/2, over that with single-agent therapy. Tarceva enhanced GST-MDA-7 and GST-M4 toxicity in cells expressing mutated EGFR proteins that are resistant to the inhibitory effects of Tarceva. In total, these data suggest that combined treatment of NSCLC cells with an EGFR inhibitor can augment the efficacy of GST-MDA-7 and GST-M4 and that the EGFR inhibitor Tarceva may mediate this combinatorial effect by inhibiting multiple tyrosine kinases in addition to the EGFR. This approach highlights a potential new combinatorial strategy, which may prove beneficial for NSCLC patients with acquired resistance to EGFR inhibitors.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Sarkar D, Su ZZ, Park ES, Vozhilla N, Dent P, Curiel DT, Fisher PB. A cancer terminator virus eradicates both primary and distant human melanomas. Cancer Gene Ther 2008; 15:293-302. [PMID: 18323853 DOI: 10.1038/cgt.2008.14] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prognosis and response to conventional therapies of malignant melanoma inversely correlate with disease progression. With increasing thickness, melanomas acquire metastatic potential and become inherently resistant to radiotherapy and chemotherapy. These harsh realities mandate the design of improved therapeutic modalities, especially those targeting metastases. To develop an approach to effectively treat this aggressive disease, we constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV produces large quantities of MDA-7/IL-24 protein as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal human immortal melanocytes and human melanoma cells demonstrates cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 CTV into xenografts derived from MeWo human metastatic melanoma cells in athymic nude mice completely eliminated not only primary treated tumors but also distant non-treated tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for treating patients with advanced melanomas with metastases.
Collapse
Affiliation(s)
- D Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
112
|
Suh YJ, Hunt KK. A Novel Therapeutic Approach to Breast Cancer using a Selective Cyclooxygenase 2 Inhibitor and Adenovirus-mediated Delivery of the Melanoma Differentiation-associated Gene-7 (Ad-mda7). J Breast Cancer 2008. [DOI: 10.4048/jbc.2008.11.2.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Young-Jin Suh
- Department of Surgery, St. Vincent's Hospital, The Catholic University of Korea, Suwon, Korea
| | - Kelly K. Hunt
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
113
|
Stenderup K, Rosada C, Worsaae A, Clausen JT, Norman Dam T. Interleukin-20 as a target in psoriasis treatment. Ann N Y Acad Sci 2007; 1110:368-81. [PMID: 17911452 DOI: 10.1196/annals.1423.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interleukin-20 (IL-20) is a new member of the IL-10 cytokine family discovered by a structural algorithm. IL-20 transgenic mice displayed skin abnormalities reminiscent of psoriasis, a finding that has prompted the investigation of this new interleukin in relation to this disease. This article reviews the role of IL-20 and its implication in psoriasis. It is shown that IL-20 and its receptors are found in human skin and that IL-20 is involved in proliferation, angiogenesis, and chemotaxis, all characteristics of psoriasis. We demonstrated that IL-20 induced the thickening of human epidermis in vivo; however, this thickening does not seem to be related to a direct effect of IL-20 on hyperproliferation since the growth of normal human epidermal keratinocytes (NHEKs) cultured in vitro was not affected by IL-20. On the other hand, in vitro, IL-20 stimulated human peripheral blood mononuclear cells (PBMCs) to produce proinflammatory cytokines and, in vivo, IL-20 in combination with PBMCs induced psoriasis. This may suggest that IL-20 indirectly exerts its proliferative effects on keratinocytes via immune cells present in the skin. Finally, we found that blocking IL-20 signaling in psoriasis improves psoriasis, suggesting that IL-20 is a potential target in psoriasis treatment.
Collapse
Affiliation(s)
- Karin Stenderup
- Department of Dermatology, Aarhus University Hospital, P.P. Oerumsgade 11, Bldg. 15, DK-8000 Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
114
|
Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells. PLoS One 2007; 2:e1300. [PMID: 18074024 PMCID: PMC2110900 DOI: 10.1371/journal.pone.0001300] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 11/13/2007] [Indexed: 11/18/2022] Open
Abstract
IL-24, also known as melanoma differentiation antigen 7 (mda-7), is a member of the IL-10 family of cytokines and is mainly produced by Th(2) cells as well as by activated monocytes. Binding of IL-24 to either of its two possible heterodimeric receptors IL-20R1/IL-20R2 and IL-22R/IL-20R2 activates STAT3 and/or STAT1 in target tissues such as lung, testis, ovary, keratinocytes and skin. To date, the physiological properties of IL-24 are still not well understood but available data suggest that IL-24 affects epidermal functions by increasing proliferation of dermal cells. In stark contrast to its "normal" and physiological behaviour, IL-24 has been reported to selectively and efficiently kill a vast variety of cancer cells, especially melanoma cells, independent of receptor expression and Jak-STAT signalling. These intriguing properties have led to the development of adenovirally-expressed IL-24, which is currently being evaluated in clinical trials. Using three different methods, we have analysed a large panel of melanoma cell lines with respect to IL-24 and IL-24 receptor expression and found that none of the investigated cell lines expressed sufficient amounts of functional receptor pairs and therefore did not react to IL-24 stimulation with Jak/STAT activation. Results for three cell lines contrasted with previous studies, which reported presence of IL-24 receptors and activation of STAT3 following IL-24 stimulation. Furthermore, evaluating four different sources and modes of IL-24 administration (commercial recombinant IL-24, bacterially expressed GST-IL-24 fusion protein, IL-24 produced from transfected Hek cells, transiently over-expressed IL-24) no induction or increase in cell death was detected when compared to appropriate control treatments. Thus, we conclude that the cytokine IL-24 itself has no cancer-specific apoptosis-inducing properties in melanoma cells.
Collapse
|
115
|
Emdad L, Lebedeva IV, Su ZZ, Sarkar D, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 reverses multidrug resistance in human colorectal cancer cells. Mol Cancer Ther 2007; 6:2985-94. [DOI: 10.1158/1535-7163.mct-07-0399] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
116
|
Gupta P, Walter MR, Su ZZ, Lebedeva IV, Emdad L, Randolph A, Valerie K, Sarkar D, Fisher PB. BiP/GRP78 is an intracellular target for MDA-7/IL-24 induction of cancer-specific apoptosis. Cancer Res 2007; 66:8182-91. [PMID: 16912197 DOI: 10.1158/0008-5472.can-06-0577] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that induces cancer-selective growth suppression and apoptosis in a wide spectrum of human cancers in cell culture and animal models. Additionally, recent clinical trials confirm safety and document significant clinical activity of mda-7/IL-24 in patients with diverse solid cancers and melanomas. Despite intensive study the molecular basis of tumor-cell selectivity of mda-7/IL-24 is not well characterized. Using deletion analysis, a specific mutant of MDA-7/IL-24, M4, consisting of amino acids 104 to 206, is described that retains the cancer-specific growth-suppressive and apoptosis-inducing properties of the full-length protein. Employing rationally designed mutational analysis, we show that MDA-7/IL-24 and M4 physically interact with BiP/GRP78 through their C and F helices, localize in the endoplasmic reticulum, and activate p38 MAPK and GADD gene expression, culminating in cancer-selective apoptosis. These studies provide novel mechanistic insights into the discriminating antitumor activity of MDA-7/IL-24 by elucidating BiP/GRP78 as a defined intracellular target of action and present an unparalleled opportunity to develop improved therapeutic versions of this cancer-specific apoptosis-inducing cytokine.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Fisher PB, Sarkar D, Lebedeva IV, Emdad L, Gupta P, Sauane M, Su ZZ, Grant S, Dent P, Curiel DT, Senzer N, Nemunaitis J. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): novel gene therapeutic for metastatic melanoma. Toxicol Appl Pharmacol 2007; 224:300-7. [PMID: 17208263 PMCID: PMC2739016 DOI: 10.1016/j.taap.2006.11.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/11/2006] [Accepted: 11/13/2006] [Indexed: 11/30/2022]
Abstract
A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed 'differentiation therapy of cancer' with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24, a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies and document a central paradigm of cancer therapy, namely translation of basic science from the "bench to the bedside."
Collapse
Affiliation(s)
- Paul B Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Lee SG, Su ZZ, Emdad L, Sarkar D, Franke TF, Fisher PB. Astrocyte elevated gene-1 activates cell survival pathways through PI3K-Akt signaling. Oncogene 2007; 27:1114-21. [PMID: 17704808 DOI: 10.1038/sj.onc.1210713] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocyte elevated gene-1 (AEG-1) displays oncogenic properties. Its expression is elevated in diverse neoplastic states and it cooperates with Ha-ras to promote cellular transformation. Overexpression of AEG-1 augments invasion and anchorage-independent growth of transformed cells, while AEG-1 siRNA inhibits Ha-ras-mediated colony formation, supporting a potential functional role in tumorigenesis. Additionally, oncogenic Ha-ras induces AEG-1 expression through the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In the present study, we investigated whether AEG-1 could induce serum-independent cell growth, another property of oncogenes. Overexpression of AEG-1 inhibited serum starvation-induced apoptosis through activation of PI3K-Akt signaling, one of the effector pathways induced by activated Ras. AEG-1 also affected the phosphorylation state of Akt substrates that are implicated in apoptosis suppression, including glycogen synthase kinase 3beta, c-Myc, murine double minute 2, p53, p21/mda-6 and Bad. Additionally, AEG-1 blocked the activity of serum starvation-induced caspases. Taken together, these observations provide evidence that AEG-1 is an oncogene cooperating with Ha-ras as well as functioning as a downstream target gene of Ha-ras and may perform a central role in Ha-ras-mediated carcinogenesis. Activation of survival pathways may be one mechanism by which AEG-1 exerts its oncogenic properties.
Collapse
Affiliation(s)
- S-G Lee
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
119
|
Sarkar D, Lebedeva IV, Su ZZ, Park ES, Chatman L, Vozhilla N, Dent P, Curiel DT, Fisher PB. Eradication of therapy-resistant human prostate tumors using a cancer terminator virus. Cancer Res 2007; 67:5434-42. [PMID: 17545625 DOI: 10.1158/0008-5472.can-07-0195] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Terminal prostate cancer is refractory to conventional anticancer treatments because of frequent overexpression of antiapoptotic proteins Bcl-2 and/or Bcl-x(L). Adenovirus-mediated delivery of melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), a secreted cytokine having cancer-selective apoptosis-inducing properties, profoundly inhibits prostate cancer cell growth. However, forced overexpression of Bcl-2 or Bcl-x(L) renders prostate cancer cells resistant to Ad.mda-7. We constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV generates large quantities of MDA-7/IL-24 as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal prostate epithelial cells and parental and Bcl-2- or Bcl-x(L)-overexpressing prostate cancer cells confirmed cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition, and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 (CTV) into xenografts derived from DU-145-Bcl-x(L) cells in athymic nude mice completely eradicated not only primary tumors but also distant tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for advanced prostate cancer patients with metastatic disease.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a 'magic bullet' for cancer therapy? Expert Opin Biol Ther 2007; 7:577-86. [PMID: 17477796 DOI: 10.1517/14712598.7.5.577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An ideal cancer gene therapy would selectively kill cancer cells without harming normal cells and induce multipronged 'bystander' antitumor effects, facilitating eradication of both primary and metastatic tumors. Melanoma differentiation associated gene-7 (mda-7)/interleukin-24 (IL-24) exhibits all of these attributes and more. It induces cancer-selective apoptosis, inhibits angiogenesis, stimulates an antitumor immune response, sensitizes cancer cells to radiation and other modalities of conventional therapies, and exhibits profound 'bystander' activity eliminating both primary and distant tumors in animal models. Moreover, a replication-incompetent adenovirus expressing mda-7/IL-24, Ad.mda-7 (INGN-241), has now undergone evaluation in a Phase I clinical trial for multiple solid tumors, including melanomas, and has demonstrated safety and significant objective clinical activity. Considering these exciting observations, mda-7/IL-24 is being hailed as a 'magic bullet' for cancer gene therapy. This review elaborates on the pleiotropic properties of mda-7/IL-24 and unravels novel aspects of the molecule mandating future studies and expanded clinical applications.
Collapse
Affiliation(s)
- Devanand Sarkar
- Columbia University Medical Center, Department of Urology, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Emdad L, Lebedeva IV, Su ZZ, Gupta P, Sarkar D, Settleman J, Fisher PB. Combinatorial treatment of non-small-cell lung cancers with gefitinib and Ad.mda-7 enhances apoptosis-induction and reverses resistance to a single therapy. J Cell Physiol 2007; 210:549-59. [PMID: 17111370 DOI: 10.1002/jcp.20906] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activation of the epidermal growth factor receptor (EGFR) contributes to the pathogenesis of non-small-cell lung carcinomas (NSCLC) and gefitinib, a selective reversible EGFR inhibitor, is effective in treating patients with NSCLC. However, clinical resistance to gefitinib is a frequent occurrence highlighting the need for improved therapeutic strategies. Melanoma differentiation associated gene-7 (mda-7)/Interleukin-24 (IL-24) (mda-7/IL-24) displays cancer-selective apoptosis induction when delivered via a replication-incompetent adenovirus (Ad.mda-7). In this study, the effect of Ad.mda-7 infection, either alone or in combination with gefitinib, was analyzed in a panel of NSCLC cell lines carrying wild-type EGFR (H-460 and H-2030) or mutant EGFR (H-1650 and H-1975). While H-2030 and H-1650 cells were sensitive, H-460 and H-1975 cells were resistance to growth inhibition by Ad.mda-7, which was reversed by the combination of Ad.mda-7 and gefitinib. This combination increased MDA-7/IL-24 and downstream effector double-stranded RNA-activated protein kinase (PKR) protein expression, promoting apoptosis induction of NSCLC cells. Inhibition of PKR significantly inhibited apoptosis induction by Ad.mda-7 when administered alone but not when used in combination with gefitinib. The combination treatment also augmented inhibition of EGFR signaling. Our findings indicate that a combinatorial treatment with Ad.mda-7 and gefitinib may provide benefit in the treatment of NSCLC, especially in patients displaying resistance to clinically used EGFR inhibitors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Zheng M, Bocangel D, Doneske B, Mhashilkar A, Ramesh R, Hunt KK, Ekmekcioglu S, Sutton RB, Poindexter N, Grimm EA, Chada S. Human interleukin 24 (MDA-7/IL-24) protein kills breast cancer cells via the IL-20 receptor and is antagonized by IL-10. Cancer Immunol Immunother 2007; 56:205-15. [PMID: 16710719 PMCID: PMC11030656 DOI: 10.1007/s00262-006-0175-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/19/2006] [Indexed: 01/29/2023]
Abstract
The melanoma differentiation-associated gene-7 (mda-7/IL-24) is a unique member of the interleukin 10 (IL-10) family of cytokines, with ubiquitous tumor cell pro-apoptotic activity. Recent data have shown that IL-24 is secreted as a glycosylated protein and functions as a pro-Th1 cytokine and as a potent anti-angiogenic molecule. In this study, we analyzed the activity of Ad-mda7 and its protein product, secreted IL-24, against human breast cancer cells. We show that Ad-mda7 transduction of human breast cancer cells results in G(2)/M phase cell cycle arrest and apoptotic cell death, which correlates with secretion of IL-24 protein. Neutralizing antibody against IL-24 significantly inhibited Ad-mda7 cytotoxicity. IL-24 and IL-10 both engage their cognate receptors on breast cancer cells resulting in phosphorylation and activation of STAT3, however, IL-10 receptor binding failed to induce cell killing, indicating that tumor cell killing by IL-24 is independent of STAT3 phosphorylation. Treatment with exogenous IL-24 induced apoptosis in breast cancer cells and this effect was abolished by addition of anti-IL-24 antibody or anti-IL-20R1, indicating that bystander cell killing is mediated via IL-24 binding to the IL-20R1/IL-20R2 heterodimeric receptor complex. Co-administration of the related cytokine IL-10 inhibited killing mediated by IL-24 and concomitantly inhibited IL-24 mediated up-regulation of the tumor suppressor proteins, p53 and p27(Kip1). In summary, we have defined a tumor-selective cytotoxic bystander role for secreted IL-24 protein and identified a novel receptor-mediated death pathway in breast cancer cells, wherein the related cytokines IL-24 and IL-10 exhibit antagonistic activity.
Collapse
Affiliation(s)
- Mingzhong Zheng
- Introgen Therapeutics Inc., 2250 Holcombe Boulevard, Houston, TX 77030 USA
| | - Dora Bocangel
- Introgen Therapeutics Inc., 2250 Holcombe Boulevard, Houston, TX 77030 USA
| | - Blair Doneske
- Introgen Therapeutics Inc., 2250 Holcombe Boulevard, Houston, TX 77030 USA
| | - Abner Mhashilkar
- Introgen Therapeutics Inc., 2250 Holcombe Boulevard, Houston, TX 77030 USA
| | - Rajagopal Ramesh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA
| | - Kelly K. Hunt
- Department of Surgical Oncology and Tumor Biology, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA
| | - Suhendan Ekmekcioglu
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA
| | - R. Bryan Sutton
- Department of Physiology & Biophysics, UTMB, Galveston, TX 77555 USA
| | - Nancy Poindexter
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA
| | - Elizabeth A. Grimm
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030 USA
| | - Sunil Chada
- Introgen Therapeutics Inc., 2250 Holcombe Boulevard, Houston, TX 77030 USA
| |
Collapse
|
123
|
Kunz S, Wolk K, Witte E, Witte K, Doecke WD, Volk HD, Sterry W, Asadullah K, Sabat R. Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp Dermatol 2007; 15:991-1004. [PMID: 17083366 DOI: 10.1111/j.1600-0625.2006.00516.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to their structural similarity, interleukin (IL)-19, IL-20, IL-22, IL-24 and IL-26 were combined with IL-10 in the so-called IL-10 family. To expand the knowledge on IL-19, IL-20 and IL-24, we systematically and quantitatively analysed the expression of these mediators and their receptor chains in vitro and in vivo under various conditions and in comparison with other IL-10 family members. In vitro, IL-19, IL-20 and IL-24 were produced not only by activated immune cells, particularly monocytes, but also to a similar extent by keratinocytes. IL-1beta increased the expression of these mediators 1000-fold (IL-19) and 10-fold (IL-20 and IL-24) in keratinocytes. In vivo, these cytokines were expressed preferentially in inflamed tissues. The absence of either R1 chain for the two types of receptor complexes for these cytokines (IL-20R1/IL-20R2 and IL-22R1/IL-20R2) on immune cells implies that they cannot act on these cells. In fact, IL-19, IL-20 and IL-24 did not induce activation of signal transducer and activator of transcription (STAT) molecules in immune cells. Instead, several tissues, particularly the skin, tissues from the reproductive and respiratory systems, and various glands appeared to be the main targets of these mediators. Keratinocytes expressed both receptor complexes; however, the expression of IL-22R1 was 10 times higher than that of IL-20R1. Interferon-gamma further increased the expression of IL-22R1 and decreased that of IL-20R1, suggesting that under T1 cytokine conditions these mediators primarily affect keratinocytes via the IL-22R1/IL-20R2 complex. In summary, these data support the notion that IL-19, IL-20 and IL-24 are distinct from classical ILs and constitute a separate subfamily of mediators within the IL-10 family.
Collapse
Affiliation(s)
- Stefanie Kunz
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, University Hospital Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Yang J, Zhang W, Liu K, Jing S, Guo G, Luo P, Zou Q. Expression, purification, and characterization of recombinant human interleukin 24 in Escherichia coli. Protein Expr Purif 2007; 53:339-45. [PMID: 17292626 DOI: 10.1016/j.pep.2006.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/22/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
Interleukin-24 (IL-24) can induce apoptosis of a broad range of tumor cells, and this function of IL-24 is independent of classic tumor suppressor genes, such as p53, Rb and p16. Here, we report the expression, purification and preparation of a recombinant IL-24 protein (rIL-24) without post-translational modifications, which may selectively induce apoptosis of tumor cells in vitro. We found that non-fusion rIL-24 was not able to be expressed by vectors pET11c, 28a, and 22b in Escherichia coli. To obtain recombinant non-fusion IL-24 protein, the encoding region for IL-24 was cloned between KpnI and BamHI in pET32a. The Trx (Thioredoxin)/IL-24 fusion proteins were expressed in the form of inclusion bodies in E. coli host strain BL21 (DE21). The expression level was more than 30% of total cell lysate. Inclusion bodies were disrupted, washed, and isolated at pH 9.0, and were completely dissolved in a buffer containing 2M urea at pH 9.0. After nickel ion metal affinity chromatography, gel filtration chromatography, and renaturation, the refolded fusion proteins with a purity of >96% were obtained. Trx/IL-24 proteins were digested by enterokinase (EK) to both Trx and rIL-24 fragments which then were separated by cation exchange chromatography. Cell proliferation experiments proved that the rIL-24 (98% purity) retains its cancer-selective apoptosis-inducing properties. This result suggested that the rIL-24 may have cancer therapeutic applications.
Collapse
Affiliation(s)
- Jun Yang
- Department of Clinical Microbiology and Immunology, Faculty of Medical Laboratory Science, Third Military Medical University, 30 Sha Ping Ba Gaotanyan Street, Chongqing 400038, PR China.
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
The interleukin-19 (IL-19) subfamily of cytokines is part of a larger family of homologs of IL-10 that includes two groups of proteins: five viral cytokines, and eight cellular cytokines, having quite different biological activities. Among proteins of the latter group, IL-19, IL-20, IL-22, and IL-24 were suggested to form a structurally unique IL-19 subfamily characterized by their structural features and aggregation state as monomers. IFN-lambda1, IFN-lambda2, and IFN-lambda3 are likely to belong to this subfamily, and it is still not clear whether IL-26 belongs to it or not. In spite of their differences in biological function, all cellular homologs of IL-10 used for signaling a set of five overlapping membrane-bound receptors: three long receptor chains (IL-20R1, IL-22R1, and IFN-lambdaR) and two short receptor chains (IL-20R2 and IL-10R2). Signal transduction is initiated when a cytokine binds two receptor chains, one long and one short, forming a ternary complex. Crystal structures of IL-19 and IL-22 showed that these cytokines consist of seven amphipathic helices of different length organized in helical bundle, covering an extensive hydrophobic core. Based on the similarity of the structures with the structure of a single domain of IL-10, and with the crystal structure of a binary IL-10/IL-10R1 complex, putative receptor binding sites on the surface of IL-19 and IL-22 were identified. This chapter summarizes the available structural data on the IL-19 subfamily of cytokines and their putative ligand/receptor complexes.
Collapse
Affiliation(s)
- Alexander Zdanov
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
126
|
Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L, Bachelor MA, Grant S, Curiel DT, Dent P, Fisher PB. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111:596-628. [PMID: 16464504 PMCID: PMC1781515 DOI: 10.1016/j.pharmthera.2005.11.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 02/07/2023]
Abstract
"Differentiation therapy" provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining "differentiation therapy" with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-beta) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent "bystander antitumor" activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wang F, Lee E, Lowes MA, Haider AS, Fuentes-Duculan J, Abello MV, Chamian F, Cardinale I, Krueger JG. Prominent Production of IL-20 by CD68+/CD11c+ Myeloid-Derived Cells in Psoriasis: Gene Regulation and Cellular Effects. J Invest Dermatol 2006; 126:1590-9. [PMID: 16645593 DOI: 10.1038/sj.jid.5700310] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We assessed expression of IL-20 and its receptors in psoriasis, given the recent implication of IL-20 in epidermal hyperplasia. Psoriatic lesional (LS) skin consistently expressed more IL-20 mRNA than nonlesional (NL) skin. Immunoreactivity to IL-20 protein was greater in LS tissue and mainly localized to infiltrating CD68+/CD11c+ (myeloid-derived) dermal leukocytes. Because this contrasted with earlier reports of a keratinocyte source, we assessed IL-20 mRNA expression in a variety of cells in vitro, and confirmed a myeloid-derived cellular source (monocytes). Plastic adhesion, activation of beta2 integrins, and incubation with tumor necrosis factor-alpha stimulated expression in these cells. IL-20 receptor (IL-20R)alpha and IL-20Rbeta mRNA was decreased in LS versus NL skin, which also contrasted with earlier findings. To investigate the relationship between IL-20 and disease activity, we examined psoriasis patients treated with the CD2-targeted agent alefacept. In therapeutic responders, lesional IL-20 mRNA decreased to NL levels, suggesting that CD2+ leukocytes may proximally regulate IL-20. Finally, to assess IL-20 function, we used microarrays to screen IL-20-treated keratinocytes, which demonstrated upregulation of disease-related and IFN-gamma-induced genes. Hence, IL-20 may influence inflammation through IFN-like effects. Together, these data indicate that IL-20 may be an important effector cytokine in psoriasis, and that its inhibition may represent a potential therapeutic target.
Collapse
Affiliation(s)
- Frank Wang
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bocangel D, Zheng M, Mhashilkar A, Liu Y, Ramesh R, Hunt KK, Chada S. Combinatorial synergy induced by adenoviral-mediated mda-7 and Herceptin in Her-2+ breast cancer cells. Cancer Gene Ther 2006; 13:958-68. [PMID: 16783343 DOI: 10.1038/sj.cgt.7700972] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The melanoma differentiation-associated gene-7 (mda-7) is a member of the interleukin-10 cytokine family and a novel tumor suppressor gene. Adenoviral-mediated mda-7 (Ad-mda7) gene transfer has tumor-specific growth inhibitory and proapoptotic effects in a broad spectrum of cancer cells. In breast cancer cells, adenoviral-induced mda-7 expression triggers antiproliferative effects by downregulation of survival signals, such as Bcl-2 and Akt. The anti-human epidermal growth factor receptor-2 (Her-2) monoclonal antibody, Trastuzumab (Herceptin), increases the sensitivity of Her-2/neu-overexpressing breast cancer cells to chemotherapeutic agents and radiotherapy. In this study, we evaluate the effects of treatment with Ad-mda7 and Herceptin combination therapy in a panel of Her-2/neu-overexpressing cell lines, and in established tumors in nude mice. Compared to individual treatments, the combination of Ad-mda7 and Herceptin elicits supra-additive antitumor activity in Her-2/neu-overexpressing tumor cell lines: increased cell death, cell cycle block and apoptosis. The Ad-mda7 and Herceptin interaction was shown to be synergistic by isobologram analysis. Ad-mda7 does not alter cell surface Her-2/neu levels, but the combination of Ad-mda7+Herceptin results in increased expression of cell surface E-cadherin with concomitant translocation of beta-catenin from the nucleus to the cell membrane. In vivo, the combination of Ad-mda7 and Herceptin showed significantly increased antitumor activity (P<0.003) against Her-2/neu-overexpressing tumors. These data suggest that the combination of Ad-mda7 with Herceptin may be a novel therapy for breast cancer patients whose tumors overexpress Her-2/neu. The observed synergistic effect may improve treatment options for otherwise poorly responsive, Her-2-positive, breast cancer patients.
Collapse
Affiliation(s)
- D Bocangel
- Introgen Therapeutics Inc., Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Lebedeva IV, Sarkar D, Su ZZ, Gopalkrishnan RV, Athar M, Randolph A, Valerie K, Dent P, Fisher PB. Molecular target-based therapy of pancreatic cancer. Cancer Res 2006; 66:2403-13. [PMID: 16489047 DOI: 10.1158/0008-5472.can-05-3510] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer is genetically complex, and without effective therapy. Mutations in the Kirsten-ras (K-ras) oncogene occur early and frequently (approximately 90%) during pancreatic cancer development and progression. In this context, K-ras represents a potential molecular target for the therapy of this highly aggressive cancer. We now show that a bipartite adenovirus expressing a novel cancer-specific apoptosis-inducing cytokine gene, mda-7/interleukin-24 (IL-24), and a K-ras AS gene, but not either gene alone, promotes growth suppression, induction of apoptosis, and suppression of tumor development mediated by K-ras mutant pancreatic cancer cells. Equally, the combination of an adenovirus expressing mda-7/IL-24 and pharmacologic and genetic agents simultaneously blocking K-ras or downstream extracellular regulated kinase 1/2 signaling also promotes similar inhibitory effects on the growth and survival of K-ras mutant pancreatic carcinoma cells. This activity correlates with the reversal of a translational block in mda-7/IL-24 mRNA in pancreatic cancer cells that limits message association with polysomes, thereby impeding translation into protein. Our study provides support for a "dual molecular targeted therapy" involving oncogene inhibition and selective cancer apoptosis-inducing gene expression with potential for effectively treating an invariably fatal cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Mahasreshti PJ, Kataram M, Wu H, Yalavarthy LP, Carey D, Fisher PB, Chada S, Alvarez RD, Haisma HJ, Dent P, Curiel DT. Ovarian cancer targeted adenoviral-mediated mda-7/IL-24 gene therapy. Gynecol Oncol 2006; 100:521-32. [PMID: 16225913 DOI: 10.1016/j.ygyno.2005.08.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 08/19/2005] [Accepted: 08/30/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We have previously shown that adenoviral-mediated melanoma differentiation-associated gene-7 (Ad.mda-7) therapy induces apoptosis in ovarian cancer cells. However, the apoptosis induction was low and directly correlated with infectivity of Ad.mda-7. The objective of this study was to derive ovarian cancer targeted infectivity-enhanced adenoviral vectors encoding mda-7 and evaluate their enhancement in therapeutic efficacy for ovarian carcinoma. METHODS Infectivity-enhanced adenoviral vectors encoding mda-7 Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 were derived by incorporation of RGD and or RGD and Pk7 motifs in the fiber knobs by genetic modification. Viruses were validated by PCR for presence of mda-7 and by Western blot for expression of MDA-7 protein. To test the enhancement of therapeutic efficacy of these viruses, a panel of human ovarian carcinoma cells, OV-4, HEY, SKOV3, SKOV3.ip1, were infected by either Ad.mda-7 or Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 or their respective control viruses and the cell killing was evaluated by crystal violet staining in vitro. Further, therapeutic efficacy was evaluated in vivo using human ovarian cancer xenograft mouse models. RESULTS Both Ad.RGD.pK7.mda-7 and Ad.RGD.mda-7 showed significant increase in cell killing in vitro compared to unmodified Ad.mda-7 with Ad.RGD.pK7.mda-7 showing highest cell killing. Further, Ad.RGD.pK7.mda-7 showed a significant increase in survival of mice bearing human ovarian cancer xenografts compared to Ad.mda-7 and other control groups. CONCLUSION Infectivity-enhanced Ad.RGD.mda-7 and Ad.RGD.pK7.mda-7 viruses significantly enhanced ovarian cancer tumor cell killing in vitro. Significant prolongation of survival by Ad.RGD.pK7.mda-7 in murine ovarian cancer models demonstrates the high clinical translational potential of these viruses for ovarian cancer therapy.
Collapse
Affiliation(s)
- Parameshwar J Mahasreshti
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
The "holy grail" of cancer therapy is to identify and exploit genetic elements and signal transduction pathways capable of selectively destroying tumor cells without eliciting harmful effects in normal cells or tissues. To achieve this objective, subtraction hybridization was combined with a "differentiation therapy" model of cancer in which human melanoma cells were induced to revert to a more "normal" state, growth arrest irreversibly, and terminally differentiate by treatment with fibroblast IFN and mezerein. This strategy permitted the cloning of a variety of genes involved in regulating important physiologic processes, including cell cycle, response to cytokines and viruses, tumorigenesis and metastasis, cancer growth control, apoptosis, and senescence. A specific gene, melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), displaying cancer-specific apoptosis-inducing properties isolated using this scheme has now come into the limelight as a new gene therapy for divergent cancers. Although the mechanism of cancer cell selectivity of mda-7/IL-24 remains to be delineated, numerous attributes enable this gene as an effective therapy for cancer, including an ability to discriminate between normal and cancer cells, induce apoptosis in diverse tumor cells, promote "bystander" antitumor effects, inhibit tumor growth and angiogenesis in animal models, synergize with radiation, and modulate immune responses. These unique features combined with successful transition into the clinic instill confidence that mda-7/IL-24, as a single or more likely as part of a combinatorial approach, may provide profound therapeutic benefit for cancer patients.
Collapse
Affiliation(s)
- Paul B Fisher
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
132
|
Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L, Wang Y, Zhang J, Zhang Z, Huiwang J, Qian Q, Qian C, Liu X. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16:845-58. [PMID: 16000066 DOI: 10.1089/hum.2005.16.845] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It has been demonstrated that interleukin 24 (IL-24, also called melanoma differentiation associated gene 7) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-24 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-24 (ZD55-IL-24) was constructed by insertion of an IL-24 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. ZD55-IL-24 could express substantially more IL-24 than Ad-IL-24 because of replication of the vector. It has been shown that ZD55-IL-24 exerted a strong cytopathic effect and significant apoptosis in tumor cells with p53 dysfunction. Moreover, no cytotoxic and apoptotic effects could be seen in normal cells infected with ZD55-IL-24. Expression of IL-24 did not interfere with viral replication induced by oncolytic adenovirus. Activation of caspase 3 and caspase 9, and induction of bax gene expression, were involved in tumor cell apoptosis induced by ZD55-IL-24. Treatment of established tumors with ZD55-IL-24 showed much stronger antitumor activity than that induced by ONYX-015 or Ad-IL- 24. These data indicated that oncolytic adenovirus expressing IL-24 could exert potential antitumor activity and offer a novel approach to cancer therapy.
Collapse
Affiliation(s)
- Lili Zhao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005; 24:7552-66. [PMID: 16044151 DOI: 10.1038/sj.onc.1208911] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melanoma differentiation associated gene-7 (mda-7) was cloned using subtraction hybridization from terminally differentiated human melanoma cells. Based on structural and functional properties, mda-7 is now recognized as interleukin-24 (IL-24), a new member of the expanding IL-10 gene family. Unique properties of mda-7/IL-24 include its ability to selectively induce growth suppression, apoptosis and radiosensitization in diverse human cancer cells, without causing similar effects in normal cells. The utility of mda-7/IL-24, administered by means of a replication-incompetent adenovirus, as a gene therapy for cancer has recently received validation in patients, highlighting an important phenomenon initially observed in pancreatic tumor cells, namely a 'potent bystander apoptosis-inducing effect' in adjacent tumor cells not initially receiving this gene product. We presently investigated the contribution of mda-7/IL-24 secreted by normal cells in mediating this 'bystander effect', and document that normal cells induced to produce mda-7/IL-24 following infection with recombinant adenoviruses expressing this cytokine secrete mda-7/IL-24, which modifies the anchorage-independent growth, invasiveness, survival and sensitivity to radiation of cancer cells that contain functional IL-20/IL-22 receptors, but not in cancer cells that lack a complete set of receptors. Moreover, the combination of secreted mda-7/IL-24 and radiation engenders a 'bystander antitumor effect' not only in inherently mda-7/IL-24 or radiation-sensitive cancer cells, but also in tumor cells overexpressing the antiapoptotic proteins bcl-2 or bcl-x(L) and displaying resistance to either treatment alone. The present studies provide definitive evidence that secreted mda-7/IL-24 from normal cells can induce direct antitumor and radiation-enhancing effects that are dependent on the presence of canonical receptors for this cytokine on tumor cells. Moreover, we now describe a novel means of enhancing mda-7/IL-24's therapeutic potential by targeting normal cells to produce and release this cancer-specific apoptosis-inducing cytokine, a strategy that could be employed as an innovative way of using this unique gene product for treating metastatic disease.
Collapse
Affiliation(s)
- Zhaozhong Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Sarkar D, Su ZZ, Vozhilla N, Park ES, Gupta P, Fisher PB. Dual cancer-specific targeting strategy cures primary and distant breast carcinomas in nude mice. Proc Natl Acad Sci U S A 2005; 102:14034-9. [PMID: 16172403 PMCID: PMC1236587 DOI: 10.1073/pnas.0506837102] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Indexed: 01/15/2023] Open
Abstract
Limitations of current viral-based gene therapies for malignant tumors include lack of cancer-specific targeting and insufficient tumor delivery. To ameliorate these problems and develop a truly effective adenovirus gene-based therapy for cancer, we constructed a conditionally replication competent adenovirus (CRCA) manifesting the unique properties of tumor-specific virus replication in combination with production of a cancer-selective cytotoxic cytokine, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), which embodies potent bystander antitumor activity. Cancer cell selective tropism was ensured by engineering the expression of the adenoviral E1A protein, necessary for viral replication, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells. In the E3 region of this CRCA, we introduced the mda-7/IL-24 gene, thereby mediating robust production of this cytokine as a function of adenovirus replication. Infection of this CRCA (designated Ad.PEG-E1A-mda-7) in normal mammary epithelial cells and breast cancer cells confirmed cancer cell selective adenoviral replication, mda-7/IL-24 expression, growth inhibition, and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 into human breast cancer xenografts in athymic nude mice completely eradicated not only the primary tumor but also distant tumors (established on the opposite flank of the animal) thereby implementing a cure. This dual cancer-specific targeting strategy provides an effective approach for treating breast and other human neoplasms with the potential for eradicating both primary tumors and metastatic disease. Additionally, these studies support the potential use of mda-7/IL-24 in the therapy of malignant cancers.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
135
|
Suh YJ, Chada S, McKenzie T, Liu Y, Swisher SG, Lucci A, Hunt KK. Synergistic tumoricidal effect between celecoxib and adenoviral-mediated delivery of mda-7 in human breast cancer cells. Surgery 2005; 138:422-30. [PMID: 16213894 DOI: 10.1016/j.surg.2005.06.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 06/13/2005] [Accepted: 06/16/2005] [Indexed: 01/03/2023]
Abstract
BACKGROUND Celecoxib, a selective cyclooxygenase 2 (COX-2) inhibitor, blocks growth and promotes apoptosis in breast cancer cells. The PI3K/Akt pathway is important in cell survival, and COX-2 and Akt might promote growth via a positive feedback loop. We have shown that adenoviral delivery of mda-7 (Ad-mda7) in breast cancer down-regulates Akt. We hypothesized that combining Ad-mda7 and celecoxib could mediate tumor suppression in COX-2 overexpressing breast cancer cells. METHODS Two COX-2 overexpressing human breast cancer cell lines (Her-18 and MDA-MB-436) were treated with celecoxib (20 micromol/L and 50 micromol/L) and Ad-mda7 (multiplicity of infection, 1000 and 2000 viral particles/cell). Adenovirus encoding the luciferase gene was used as a control. We assessed proliferation, cell cycle, apoptosis, prostaglandin E2 production, and changes in protein expression. Statistical analysis was performed by using the Student t test. RESULTS Regardless of HER-2/neu status, cell growth was markedly inhibited by celecoxib, Ad-mda7, and the combination compared with controls. Celecoxib + Ad-mda7 showed a greater than additive increase in cell death compared with either monotherapy (P < .05) and resulted in cell cycle block and apoptosis (P < .05). Both cell lines showed decreased prostaglandin E2 production after combination treatment compared with controls (P < .05), with decreased expression of COX-2, Akt, and phosphorylated Akt (P < .05). CONCLUSIONS Enhanced antitumor activity is achieved in breast cancer by combining celecoxib and Ad-mda7 regardless of HER-2/neu status. This occurs through inhibition of COX-2 expression and down-regulation of Akt. Combining Ad-mda7 with COX-2 inhibition provides a novel method of treatment in breast cancer.
Collapse
Affiliation(s)
- Young-Jin Suh
- Department of Surgical Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030-4009, USA
| | | | | | | | | | | | | |
Collapse
|
136
|
Poindexter NJ, Walch ET, Chada S, Grimm EA. Cytokine induction of interleukin-24 in human peripheral blood mononuclear cells. J Leukoc Biol 2005; 78:745-52. [PMID: 16000394 DOI: 10.1189/jlb.0205116] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin-24 (IL-24) is a recently identified member of the IL-10 family of cytokines. It was originally identified as a tumor suppressor molecule, melanoma differentiation-associated gene 7, and then renamed IL-24 and classified as a cytokine, based on its chromosomal location in the IL-10 locus, its mRNA expression in leukocytes, and its secretory sequence elements. Here, we correlate the kinetics of IL-24 mRNA and protein expression in human peripheral blood mononuclear cells (PBMC) stimulated by polyclonal activators phytohemagglutinin (PHA) and lipopolysaccharide (LPS) or by allogeneic major histocompatibility complex. PHA-stimulated PBMC express IL-24 mRNA, reaching peak levels at 8-12 h after stimulation. Protein expression, as measured by intracellular flow cytometry, followed the message, reaching maximum expression at 24 h. Subset analysis of mitogen-stimulated PBMC showed that IL-24 was expressed primarily in T cells and macrophages. Expression of IL-24 in mitogen-stimulated PBMC is the result of cytokine stimulation. Individual cytokines including IL-2, IL-7, IL-15, tumor necrosis factor alpha, granulocyte macrophage-colony stimulating factor, and IL-1beta stimulate the expression of IL-24 mRNA and protein, whereas interferons and T helper cell type 2 cytokines fail to induce substantial IL-24. When LPS- or PHA-stimulated cells were treated with Actinomycin D, IL-24 mRNA persisted at high levels over the 4-h course of treatment. These data strongly suggest that the expression of IL-24 in human PBMC results from cytokine stimulation and is regulated at the post-transcriptional level through stabilization of IL-24 mRNA.
Collapse
Affiliation(s)
- Nancy J Poindexter
- Experimental Therapeutics, Box 362, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
137
|
Zhao L, Gu J, Dong A, Zhang Y, Zhong L, He L, Wang Y, Zhang J, Zhang Z, Huiwang J, Qian Q, Qian C, Liu X. Potent Antitumor Activity of Oncolytic Adenovirus Expressing mda-7/IL-24 for Colorectal Cancer. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
138
|
Saito Y, Miyahara R, Gopalan B, Litvak A, Inoue S, Shanker M, Branch CD, Mhashilkar AM, Roth JA, Chada S, Ramesh R. Selective induction of cell cycle arrest and apoptosis in human prostate cancer cells through adenoviral transfer of the melanoma differentiation-associated -7 (mda-7)/interleukin-24 (IL-24) gene. Cancer Gene Ther 2005; 12:238-47. [PMID: 15578066 DOI: 10.1038/sj.cgt.7700780] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously reported that overexpression of the melanoma differentiation-associated gene -7 (mda-7) using a replication-defective adenovirus (Ad-mda7), results in tumor-specific growth suppression and induction of apoptosis in wide variety of cancer cells. In the present study, we investigated the antitumor activity of Ad-mda7 and the underlying mechanism in human prostate cancer cells and normal prostate epithelial cells. Overexpression of MDA-7 induced significant (P=.001) suppression of cell growth and apoptosis in prostate cancer cells (DU 145, LNCaP, and PC-3). In normal prostate epithelial cells (PrEC) some degree of growth inhibition but not apoptosis was observed. However, the inhibitory effects in normal cells were less compared to tumor cells. Growth inhibitory effects were mediated by the intracellular and not by extracellular MDA-7 protein. Molecular effectors that are involved in Ad-mda7-mediated tumor killing included activation of the caspase cascade, and the induction of G2 phase cell cycle arrest through the inhibition of Cdc25C pathway. These results demonstrate the mechanisms by which Ad-mda7 exerts its antitumor activity in human prostate cancer cells. The antitumor activity combined with previously reported antiangiogenic and proimmune properties of Ad-mda7 can serve as a potential therapeutic agent for treatment of primary and disseminated prostate cancer.
Collapse
Affiliation(s)
- Yuji Saito
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. Int Immunopharmacol 2005; 4:635-47. [PMID: 15120649 DOI: 10.1016/j.intimp.2004.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanoma Differentiation Associated gene-7 (mda-7)/IL-24 has shown potent tumor cell apoptosis inducing capacity in multiple cancers, making it a strong candidate for use as a human cancer gene therapeutic. Several independent studies have currently documented and confirmed mda-7/IL-24's cytokine nature including presence of a canonical secretory signal peptide, processing and secretion of the molecule by cells and it's binding to specific interleukin receptors on the cell surface. Receptor binding has been shown to activate the JAK/STAT signal transduction pathway with concomitant stimulation of STAT 1 and 3 transactivators. The physiological role(s) of this molecule in modulating immune responses, as a member of the IL-10 family of cytokines, is not well documented and most current information pertains to its apparently restricted expression patterns in specific cell types with immunomodulatory activity. On the other hand, several additional signal transduction pathways were modulated when cells overexpress mda-7/IL-24, not all of which are necessarily downstream of mda-7/IL-24 induced JAK/STAT activation. A summary of the current status of information is presented to provide a perspective for the cytokine-related properties of mda-7/IL-24 in correlation to its tumor cell apoptosis inducing activity. Moreover, new evidence has surfaced pointing toward apoptosis induction via mechanisms independent of cytokine activity-related JAK/STAT activation.
Collapse
Affiliation(s)
- Rahul V Gopalkrishnan
- Department of Pathology, College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
140
|
Nagalakshmi ML, Murphy E, McClanahan T, de Waal Malefyt R. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int Immunopharmacol 2005; 4:577-92. [PMID: 15120644 DOI: 10.1016/j.intimp.2004.01.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The expression patterns of the IL-10 ligand and receptor genes were examined in normal and transformed cell lines of human hematopoietic and non-hematopoietic origin. IL-10 family ligands, IL-10, IL-19, IL-20, IL-22, IL-24 and IL-26 were predominantly expressed by hematopoietic cells. IL-10, IL-24 and IL-26 were produced by both monocytes and T cells, IL-19 and IL-20 were produced by monocytes whereas IL-22 was produced mainly by activated T cells. The receptors of the IL-10 family, IL-10R1, IL-10R2, IL-20R1, IL-20R2, IL-22R1 and IL-22 BP were also expressed in a distinct pattern when probed on these cell lines. The expression of IL-10R2 was ubiquitous whereas IL-10R1 was predominantly expressed on hematopoietic cells, including, T cells, B cells, NK cells, monocytes and dendritic cells. IL-20R1, IL-20R2 and IL-22R1 were absent or expressed at extremely low levels on cells of the hematopoietic lineage. These receptors were mainly found on epithelial and stromal cells fibroblasts of various tissues. Interestingly, IL-22BP was quite specifically expressed by dendritic cells. These data point to a function of the novel IL-10 family members in communication and interaction between cells of the hematopoietic and non-hematopoietic lineages, a role quite distinct from the immunomodulating effects of IL-10 itself.
Collapse
Affiliation(s)
- Marehalli L Nagalakshmi
- Department of Experimental Pathology and Pharmacology, DNAX Research Inc., 901 California Avenue, Palo Alto, CA 94304-1104, USA
| | | | | | | |
Collapse
|
141
|
Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, Nemunaitis J, Cunningham C, Yacoub A, Dent P, Fisher PB. mda-7/IL-24: exploiting cancer's Achilles' heel. Mol Ther 2005; 11:4-18. [PMID: 15585401 DOI: 10.1016/j.ymthe.2004.08.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 12/17/2022] Open
Abstract
The mda-7/IL-24 cDNA was isolated almost a decade ago in a screen for genes differentially upregulated following growth arrest and terminal differentiation of a human melanoma cell line employed as an in vitro cell differentiation model. The underlying rationale for the screen was that oncogenesis arises from a cellular dedifferentiation process culminating in uncontrolled proliferation and acquisition of invasive and metastatic potential. Identification of genes upregulated during the process of reactivation of faulty or inoperational differentiation maintenance programs was postulated to have cancer gene therapeutic potential. In this context, it is heartening to note that mda-7/IL-24 has made a methodical and progressive journey, from an unidentified novel sequence with little homology to known genes at its time of isolation to currently having the status of a molecule belonging to the IL-10-related family of cytokines, with considerable cancer gene therapeutic potential. Extensive in vitro and in vivo human tumor xenograft studies have established its transformed cell apoptosis-inducing capacity in various model systems. It has recently taken an important step for a candidate cancer gene therapeutic molecule, in the ultimate goal of benchtop to clinic, by being currently utilized in human Phase I/II clinical trials. This review provides a current perspective of our understanding of mda-7/IL-24, including established and more recent information about the molecular properties, specificity of anti-tumor-cell apoptosis-inducing activity, and underlying mechanisms of this action relative to its cancer gene therapeutic potential.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Tong AW, Nemunaitis J, Su D, Zhang Y, Cunningham C, Senzer N, Netto G, Rich D, Mhashilkar A, Parker K, Coffee K, Ramesh R, Ekmekcioglu S, Grimm EA, van Wart Hood J, Merritt J, Chada S. Intratumoral injection of INGN 241, a nonreplicating adenovector expressing the melanoma-differentiation associated gene-7 (mda-7/IL24): biologic outcome in advanced cancer patients. Mol Ther 2005; 11:160-72. [PMID: 15585417 DOI: 10.1016/j.ymthe.2004.09.021] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Accepted: 09/22/2004] [Indexed: 11/28/2022] Open
Abstract
The mda-7 gene (approved gene symbol IL24) is a novel tumor suppressor gene with tumor-apoptotic and immune-activating properties. We completed a Phase I dose-escalation clinical trial, in which a nonreplicating adenoviral construct expressing the mda-7 transgene (INGN 241; Ad-mda7) was administered intratumorally to 22 patients with advanced cancer. Excised tumors were evaluated for vector-specific DNA and RNA, transgenic MDA-7 expression, and biological effects. Successful gene transfer as assessed by DNA- and RT-PCR was demonstrated in 100% of patients evaluated. DNA analyses demonstrated a dose-dependent penetration of INGN 241 (up to 4 x 10(8) copies/mug DNA at the 2 x 10(12) vp dose). A parallel distribution of vector DNA, vector RNA, MDA-7 protein expression, and apoptosis induction was observed in all tumors, with signals decreasing with distance away from the injection site. Additional evidence for bioactivity of INGN 241 was illustrated via regulation of the MDA-7 target genes beta-catenin, iNOS, and CD31. Transient increases (up to 20-fold) of serum IL-6, IL-10, and TNF-alpha were observed. Significantly higher elevations of IL-6 and TNF-alpha were observed in patients who responded clinically to INGN 241. Patients also showed marked increases of CD3+CD8+ T cells posttreatment, suggesting that INGN 241 increased systemic TH1 cytokine production and mobilized CD8+ T cells. Intratumoral delivery of INGN 241 induced apoptosis in a large volume of tumor and elicited tumor-regulatory and immune-activating events that are consistent with the preclinical features of MDA-7/IL-24.
Collapse
Affiliation(s)
- Alex W Tong
- Baylor Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Cunningham CC, Chada S, Merritt JA, Tong A, Senzer N, Zhang Y, Mhashilkar A, Parker K, Vukelja S, Richards D, Hood J, Coffee K, Nemunaitis J. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther 2005; 11:149-59. [PMID: 15585416 DOI: 10.1016/j.ymthe.2004.09.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Accepted: 09/28/2004] [Indexed: 11/21/2022] Open
Abstract
The melanoma differentiation-associated gene-7 (mda-7; approved gene symbol IL24) is a tumor suppressor gene whose expression induces selective apoptosis in tumor cells. To characterize the safety and biologic activity of mda-7 gene transfer, we conducted a phase I trial using intratumoral injections of an adenovirus containing the mda-7 construct (Ad-mda7; INGN 241; 2 x 10(10) to 2 x 10(12) vp) in 28 patients with resectable solid tumors. One hundred percent of injected lesions demonstrated INGN 241 vector transduction, transgenic mRNA, elevated MDA-7 protein, and apoptosis induction, with the highest levels near the injection site. Apoptosis of cells in injected tumors was consistently observed even in heavily pretreated patients. INGN 241 vector DNA and mRNA were detected more than 1 cm from the injection site, whereas MDA-7 protein and bioactivity were more widely distributed. Toxicity attributable to the injections was self-limiting and generally mild; however, one patient experienced a grade 3 SAE possibly related to the study drug. Evidence of clinical activity was found in 44% of lesions with the repeat injection schedule, including complete and partial responses in two melanoma patients. Thus intratumoral administration of INGN 241 is well tolerated, induces apoptosis in a large percentage of tumor cells, and demonstrates evidence of clinically significant activity.
Collapse
|
144
|
Chada S, Bocangel D, Ramesh R, Grimm EA, Mumm JB, Mhashilkar AM, Zheng M. mda-7/IL24 kills pancreatic cancer cells by inhibition of the Wnt/PI3K signaling pathways: Identification of IL-20 receptor-mediated bystander activity against pancreatic cancer. Mol Ther 2005; 11:724-33. [PMID: 15851011 DOI: 10.1016/j.ymthe.2004.12.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 12/11/2004] [Indexed: 11/18/2022] Open
Abstract
The melanoma differentiation-associated gene (mda-7; approved gene symbol IL24) is a tumor suppressor gene whose protein expression in normal cells is restricted to the immune system and to melanocytes. Recent studies have shown that mda-7 gene transfer inhibits cell growth and induces apoptosis in melanoma, lung cancer, breast cancer, and other tumor types through activation of various intracellular signaling pathways. In the current study, we demonstrate that Ad-mda7 transduction of human pancreatic cancer cells results in G2/M cell cycle arrest and cell killing. Cytotoxicity is mediated via apoptosis in a time- and dose-dependent manner. Tumor cell killing correlates with regulation of proteins involved in the Wnt and PI3K pathways: beta-catenin, APC, GSK-3, JNK, and PTEN. Additionally, we identify bystander cell killing activated by exposure of pancreatic tumor cells to secreted human MDA-7 protein. In pancreatic tumor cells, exogenous MDA-7 protein activates STAT3 and kills cells via engagement of IL-20 receptors. The specificity of bystander killing is demonstrated using neutralizing anti-MDA-7 antibodies and anti-receptor antibodies, which inhibit the apoptotic effects. In sum, we show that Ad-mda7 is able to induce growth inhibition and apoptosis in pancreatic cancer cells via inhibition of the Wnt/PI3K pathways and identify a novel bystander mechanism of MDA-7 killing in pancreatic cancer that functions via IL-20 receptors.
Collapse
Affiliation(s)
- Sunil Chada
- Introgen Therapeutics, Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
145
|
Ramesh R, Ito I, Saito Y, Wu Z, Mhashikar AM, Wilson DR, Branch CD, Roth JA, Chada S. Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery. DNA Cell Biol 2005; 23:850-7. [PMID: 15684712 DOI: 10.1089/dna.2004.23.850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.
Collapse
Affiliation(s)
- Rajagopal Ramesh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Lebedeva IV, Su ZZ, Sarkar D, Gopalkrishnan RV, Waxman S, Yacoub A, Dent P, Fisher PB. Induction of reactive oxygen species renders mutant and wild-type K-ras pancreatic carcinoma cells susceptible to Ad.mda-7-induced apoptosis. Oncogene 2005; 24:585-96. [PMID: 15580305 DOI: 10.1038/sj.onc.1208183] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is exceptionally aggressive with no long-term effective therapy. Current interventional approaches, including surgery, radiation and/or chemotherapy, have done little to quell the mortality associated with this malignancy. Subtraction hybridization identified a cancer-specific apoptosis-inducing cytokine gene, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), with a broad range of selective antitumor activity in diverse cancers both in vitro and in vivo in nude mice and recently in patients with advanced carcinomas and melanomas. Unlike most neoplasms, pancreatic cancers display innate resistance to mda-7/IL-24-induced apoptosis, which correlates with a diminished capacity to convert mda-7/IL-24 mRNA into protein. We presently demonstrate that this translational block can be reversed by treatment with agents that elevate reactive oxygen species (ROS). Induction of apoptosis in vitro and suppression of tumorigenesis in vivo in nude mice are induced in pancreatic cancers, irrespective of the status of their K-ras gene, only when tumor cells simultaneously express mda-7/IL-24 and are treated with a ROS-inducer, such as arsenic trioxide (ARS), N-(4-hydroxyphenyl) retinamide (HPR) or dithiophene (NSC656240 (NSC)). In pancreatic cancer cells constitutively expressing mda-7/IL-24 mRNA, a single treatment with arsenic trioxide, HPR or NSC656240 induces apoptosis, which correlates with production of MDA-7/IL-24 protein. The specificity of this action is documented by the ability of ROS inhibitors, including N-acetyl-L-cysteine and Tiron, to block this killing effect. Of potential clinical significance, similar treatment of normal cells does not elicit significant changes in growth nor does it induce apoptosis. Analysis of signal transduction changes in pancreatic carcinoma cells infected with Ad.mda-7 in combination with a ROS-inducer indicate that cell death correlates with modulation of discrete cassettes of multiple signaling pathways in a pancreatic cancer cell-specific manner, supporting global signaling dysregulation as a potential mediator of apoptosis induction. These findings suggest a promising combinatorial approach for safely promoting cell death in pancreatic tumors that provides a rational framework for developing a selective and effective therapy for this invariably fatal cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Oida Y, Gopalan B, Miyahara R, Inoue S, Branch CD, Mhashilkar AM, Lin E, Bekele BN, Roth JA, Chada S, Ramesh R. Sulindac enhances adenoviral vector expressing mda-7/IL-24–mediated apoptosis in human lung cancer. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.291.4.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Several studies have shown antitumor activities of the melanoma differentiation–associated gene 7 (mda-7) and the nonsteroidal anti-inflammatory drug sulindac when used as a monotherapies against a wide variety of human cancers. However, the combined effects of mda-7 and sulindac have not previously been tested. Therefore, we tested the antitumor activity of an adenoviral vector expressing mda-7 (Ad-mda7) in combination with sulindac against non–small cell lung cancer cells in vitro and in vivo. When treated with Ad-mda7 in combination with sulindac, human lung cancer cells (A549 and H1299) underwent growth suppression resulting in apoptosis. The growth inhibition induced by Ad-mda7 in combination with sulindac was significantly greater than that observed with Ad-mda7 or sulindac alone. Furthermore, the degree of growth inhibition induced using this combination was dose-dependent for sulindac. Treatment with Ad-mda7 in combination with sulindac had no growth inhibitory effects on human normal lung (CCD-16) fibroblasts. We then investigated the mechanism by which sulindac enhances Ad-mda7-mediated apoptosis. Sulindac increased expression of ectopic MDA-7 protein in tumor cells, thereby increasing the expression of downstream effectors RNA-dependent protein kinase, p38MAPK, caspase-9, and caspase-3 and enhancing apoptosis of non–small cell lung cancer cells. Pulse-chase experiments showed that the increased expression of MDA-7 protein in sulindac-treated cells was due to increased half-life of the MDA-7 protein. Finally, treatment of human lung tumor xenografts in nude mice with Ad-mda7 plus sulindac significantly suppressed growth (P = 0.001) compared with Ad-mda7 or sulindac alone. Our results show for the first time that combined treatment with Ad-mda7 plus sulindac enhances growth inhibition and apoptosis of human lung cancer cells. The increased antitumor activity observed with the combination treatment is a result of increased half-life of MDA-7 protein. Regulation of protein turnover is a heretofore-unrecognized mechanism of this nonsteroidal anti-inflammatory drug.
Collapse
Affiliation(s)
- Yasuhisa Oida
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Began Gopalan
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Ryo Miyahara
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Satoshi Inoue
- 1Thoracic and Cardiovascular Surgery, Departments of
| | | | | | | | | | - Jack A. Roth
- 1Thoracic and Cardiovascular Surgery, Departments of
| | - Sunil Chada
- 3Experimental Therapeutics, University of Texas M. D. Anderson Cancer, Center; and
- 4Introgen Therapeutics, Inc., Houston, Texas
| | | |
Collapse
|
148
|
Ishikawa S, Nakagawa T, Miyahara R, Kawano Y, Takenaka K, Yanagihara K, Otake Y, Katakura H, Wada H, Tanaka F. Expression of MDA-7/IL-24 and Its Clinical Significance in Resected Non–Small Cell Lung Cancer. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.1198.11.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: The melanoma differentiation-associated gene-7 (MDA-7) protein, also known as interleukin (IL)-24, is a novel candidate of tumor suppressor that can induce apoptosis experimentally in a variety of human malignant cells including lung cancer cells. However, only one clinical study has documented that MDA-7/IL-24 expression is down-regulated with progression of melanoma. Thus, the present study was conducted to assess the clinical significance of MDA-7/IL-24 expression in non–small cell lung cancer.
Experimental Design: A total of 183 consecutive patients with resected pathologic stage I-IIIA, non–small cell lung cancer were retrospectively reviewed, and immunohistochemical staining was used to detect MDA-7/IL-24 expression.
Results: MDA-7/IL-24 expression was high in 97 (53.0%) patients and low in the other patients. There was no significant correlation between MDA-7/IL-24 status and any patients' characteristic including pathologic stage. There was no significant difference in tumor angiogenesis or proliferative activity according to MDA-7/IL-24 status, but MDA-7/IL-24-high adenocarcinoma showed a significantly higher incidence of apoptotic tumor cell death than MDA-7/IL-24-low adenocarcinoma. MDA-7/IL-24-high patients seemed to show a favorable postoperative prognosis as compared with MDA-7/IL-24-low patients (5-year survival rates, 75.9% and 62.0%, respectively), although the difference did not reach a statistical significance (P = 0.061). Subset analyses showed that positive MDA-7/IL-24 expression was a significant factor to predict a favorable prognosis in adenocarcinoma (P = 0.033), which was confirmed by a multivariate analysis; there was no difference in the prognosis according to MDA-7/IL-24 status in squamous cell carcinoma.
Conclusions: MDA-7/IL-24 status was a significant prognostic factor in lung adenocarcinoma, not in lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Shinya Ishikawa
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Tatsuo Nakagawa
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Ryo Miyahara
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Yozo Kawano
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Kazumasa Takenaka
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Kazuhiro Yanagihara
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
- 2Department of Translational Clinical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; and
| | - Yosuke Otake
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
- 3Department of Thoracic Surgery, Seishin-Iryo Center Hospital, Kobe, Japan
| | | | - Hiromi Wada
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| | - Fumihiro Tanaka
- 1Department of Thoracic Surgery, Faculty of Medicine, Kyoto University
| |
Collapse
|
149
|
Nishikawa T, Ramesh R, Munshi A, Chada S, Meyn RE. Adenovirus-mediated mda-7 (IL24) gene therapy suppresses angiogenesis and sensitizes NSCLC xenograft tumors to radiation. Mol Ther 2005; 9:818-28. [PMID: 15194048 DOI: 10.1016/j.ymthe.2004.03.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Accepted: 03/15/2004] [Indexed: 12/11/2022] Open
Abstract
Melanoma differentiation-associated gene-7 (mda-7), recently classified as interleukin-24 (approved gene symbol IL24), is thought to be a tumor suppressor gene based on the loss of its expression in many different types of cancer. Gene therapy by adenovirus-mediated mda-7 (Ad-mda7) gene transfer has been shown to inhibit the growth of several different tumor cell lines, in vitro and in vivo. We previously demonstrated that Ad-mda7 radiosensitized non-small-cell lung cancer (NSCLC) cell lines by enhancing an apoptosis pathway through the activation of JNK and c-Jun. In the present study, we investigated the efficacy of intratumoral administration of Ad-mda7 combined with ionizing radiation for treating A549 xenograft tumors in nude mice. Substantial and long-lasting inhibition of tumor growth was evident following the combined treatment. Histological examination revealed marked reduction of angiogenic factors (bFGF, VEGF) and microvessel density and enhanced apoptosis in the tumors treated with the combination therapy compared to those treated with Ad-mda7 alone or radiation alone. To confirm the radiosensitizing effect of secreted MDA-7 protein, we performed clonogenic survival assays using human umbilical vein endothelial cells (HUVECs), A549 cells, and normal human lung fibroblasts, CCD16 cells, pretreated with the conditioned medium from 293 cells that had been stably transfected with mda-7 or a control vector. The results showed that MDA-7 protein sensitized HUVECs to ionizing radiation but not A549 cells or CCD16 cells. Our results suggest that Ad-mda7 in combination with radiation enhances apoptosis in the tumors and that secreted MDA-7 protein inhibits angiogenesis by sensitizing endothelial cells to ionizing radiation without affecting other normal cells. We conclude that the combination of mda-7 gene therapy and radiotherapy may be a feasible and effective strategy for treatment of NSCLC.
Collapse
Affiliation(s)
- Takashi Nishikawa
- Department of Experimental Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
150
|
Dent P, Yacoub A, Grant S, Curiel DT, Fisher PB. MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity: A new cancer therapy? J Cell Biochem 2005; 95:712-9. [PMID: 15880678 DOI: 10.1002/jcb.20502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The novel cytokine MDA-7/IL-24 was identified by subtractive hybridization in the mid-1990s as a cytokine whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Multiple studies from several laboratories have subsequently demonstrated that expression of IL-24 in tumor cells, but not in non-transformed cells, causes their growth arrest and ultimately cell death. In addition, IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and causing endoplasmic reticulum stress. Recent publications of Phase I trial data have shown that a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7 (INGN 241)) was safe and had tumoricidal effects in patients, which argues that IL-24 may have therapeutic value. This review describes what is known about the impact of IL-24 on tumor cell biology in addition to approaches that may enhance the toxicity of this novel cytokine.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|