101
|
Hingley-Wilson SM, Lougheed KEA, Ferguson K, Leiva S, Williams HD. Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb) 2010; 90:236-44. [PMID: 20541977 PMCID: PMC2914252 DOI: 10.1016/j.tube.2010.03.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/16/2010] [Accepted: 03/31/2010] [Indexed: 01/25/2023]
Abstract
Mycobacterium tuberculosis has 10 universal stress proteins, whose function is unknown. However, proteomic and transcriptomic analyses have shown that a number of usp genes are significantly upregulated under hypoxic conditions and in response to nitric oxide and carbon monoxide, as well as during M. tuberculosis infection of macrophage cell lines. Six of these USPs are part of the DosR regulon and this, along with their expression pattern and the phenotypes of usp mutants in other bacterial species, suggests a potential role in the persistence and/or intracellular survival of Mtb. Knock-out mutants of individual usp genes encoding the USPs Rv1996, Rv2005c, Rv2026c and Rv2028c were generated and their growth and survival under hypoxic and other stress conditions examined. Although the majority of usp genes are highly induced in hypoxic conditions, mutation did not affect the long term survival of Mtb under these conditions, or in response to a range of stress conditions chosen to represent the environmental onslaughts experienced by the bacillus during an infection, nor during infection of mouse and human - derived macrophage cell lines. The possibility remains that these USPs are functionally redundant in Mtb.
Collapse
Affiliation(s)
- S M Hingley-Wilson
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
102
|
Shi W, Zhang Y. PhoY2 but not PhoY1 is the PhoU homologue involved in persisters in Mycobacterium tuberculosis. J Antimicrob Chemother 2010; 65:1237-42. [PMID: 20360062 PMCID: PMC2868530 DOI: 10.1093/jac/dkq103] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Revised: 02/18/2010] [Accepted: 03/05/2010] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Mycobacterial persistence is thought to be the underlying cause of the current lengthy tuberculosis therapy and latent infection. Despite some recent progress, the mechanisms of bacterial persistence are poorly understood. We have recently identified a new persister gene phoU from Escherichia coli and have shown that the phoU mutant has a defect in persisters. The objective of this study is to evaluate the role of two phoU homologues phoY1 and phoY2 from Mycobacterium tuberculosis in mycobacterial persistence. METHODS M. tuberculosis phoY1 and phoY2 mutant strains were constructed. The persister-related phenotypes of the phoY1 and phoY2 mutants were assessed in vitro by MIC testing, drug exposure assays and also by survival in the mouse model of tuberculosis infection. RESULTS We demonstrated that M. tuberculosis PhoY2 is the equivalent of E. coli PhoU in that inactivation of phoY2 but not phoY1 caused a defect in persistence phenotype as shown by increased susceptibility to rifampicin and pyrazinamide in both MIC testing and drug exposure assays and also reduced persistence in the mouse model. CONCLUSIONS This study provides further validation that PhoU is involved in persistence not only in E. coli but also in M. tuberculosis and has implications for the development of new drugs targeting persisters for improved treatment.
Collapse
Affiliation(s)
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
103
|
Sklar JG, Makinoshima H, Schneider JS, Glickman MS. M. tuberculosis intramembrane protease Rip1 controls transcription through three anti-sigma factor substrates. Mol Microbiol 2010; 77:605-17. [PMID: 20545848 DOI: 10.1111/j.1365-2958.2010.07232.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is a mechanism of transmembrane signal transduction that functions through intramembrane proteolysis of substrates. We previously reported that the RIP metalloprotease Rv2869c (Rip1) is a determinant of Mycobacterium tuberculosis (Mtb) cell envelope composition and virulence, but the substrates of Rip1 were undefined. Here we show that Rip1 cleaves three transmembrane anti-sigma factors: anti-SigK, anti-SigL and anti-SigM, negative regulators of Sigma K, L and M. We show that transcriptional activation of katG in response to phenanthroline requires activation of SigK and SigL by Rip1 cleavage of anti-SigK and anti-SigL. We also demonstrate a Rip1-dependent pathway that activates the genes for the mycolic acid biosynthetic enzyme KasA and the resuscitation promoting factor RpfC, but represses the bacterioferritin encoding gene bfrB. Regulation of these three genes by Rip1 is not reproduced by deletion of Sigma K, L or M, either indicating a requirement for multiple Rip1 substrates or additional arms of the Rip1 pathway. These results identify a branched proteolytic signal transduction system in which a single intramembrane protease cleaves three anti-sigma factor substrates to control multiple downstream pathways involved in lipid biosynthesis and defence against oxidative stress.
Collapse
Affiliation(s)
- Joseph G Sklar
- Immunology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | |
Collapse
|
104
|
Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 2010; 107:9819-24. [PMID: 20439709 DOI: 10.1073/pnas.1000715107] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Metabolic adaptation to the host niche is a defining feature of the pathogenicity of Mycobacterium tuberculosis (Mtb). In vitro, Mtb is able to grow on a variety of carbon sources, but mounting evidence has implicated fatty acids as the major source of carbon and energy for Mtb during infection. When bacterial metabolism is primarily fueled by fatty acids, biosynthesis of sugars from intermediates of the tricarboxylic acid cycle is essential for growth. The role of gluconeogenesis in the pathogenesis of Mtb however remains unaddressed. Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes the first committed step of gluconeogenesis. We applied genetic analyses and (13)C carbon tracing to confirm that PEPCK is essential for growth of Mtb on fatty acids and catalyzes carbon flow from tricarboxylic acid cycle-derived metabolites to gluconeogenic intermediates. We further show that PEPCK is required for growth of Mtb in isolated bone marrow-derived murine macrophages and in mice. Importantly, Mtb lacking PEPCK not only failed to replicate in mouse lungs but also failed to survive, and PEPCK depletion during the chronic phase of infection resulted in mycobacterial clearance. Mtb thus relies on gluconeogenesis throughout the infection. PEPCK depletion also attenuated Mtb in IFNgamma-deficient mice, suggesting that this enzyme represents an attractive target for chemotherapy.
Collapse
|
105
|
Cao B, Williams SJ. Chemical approaches for the study of the mycobacterial glycolipids phosphatidylinositol mannosides, lipomannan and lipoarabinomannan. Nat Prod Rep 2010; 27:919-47. [DOI: 10.1039/c000604a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
106
|
Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun 2009; 78:1383-9. [PMID: 20038535 DOI: 10.1128/iai.01020-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.
Collapse
|
107
|
Nair S, Ramaswamy PA, Ghosh S, Joshi DC, Pathak N, Siddiqui I, Sharma P, Hasnain SE, Mande SC, Mukhopadhyay S. The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. THE JOURNAL OF IMMUNOLOGY 2009; 183:6269-81. [PMID: 19880448 DOI: 10.4049/jimmunol.0901367] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The pathophysiological functions of proline-glutamic acid (PE)/proline-proline-glutamic acid (PPE) family of proteins of Mycobacterium tuberculosis are not well understood. In this study, we demonstrate that one of the PPE proteins, PPE18 can stimulate macrophages to secrete IL-10, known to favor a Th2 type response. The recombinant PPE18 was found to specifically interact with the TLR2 leading to an early and sustained activation of p38 MAPK, which is critical for IL-10 induction. In silico docking analyses and mutation experiments indicate that PPE18 specifically interacts with the leucine rich repeat 11 approximately 15 domain of TLR2 and the site of interaction is different from that of a synthetic lipopeptide Pam(3)CSK(4) known to activate predominantly ERK 1/2. When PMA-differentiated THP-1 macrophages were infected with a mutant Mycobacterium tuberculosis strain lacking the PPE18, produced poorer levels of IL-10 as compared with those infected with the wild-type strain. In contrast, an M. smegmatis strain overexpressing the PPE18 induced higher levels of IL-10 in infected macrophages. Our data indicate that the PPE18 protein may trigger an anti-inflammatory response by inducing IL-10 production.
Collapse
Affiliation(s)
- Shiny Nair
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
This unit gives background information on Mycobacterium smegmatis, a mycobacterial model system, and covers all the laboratory maintenance for this species including growth in liquid and on solid medium. It also contains recommendations concerning long-term strain storage. Although M. smegmatis is a Biosafety Level 1 organism, some rare infections in humans have been reported, and, thus all of the required safety measures are discussed here.
Collapse
|
109
|
Chen J, Kriakov J, Singh A, Jacobs WR, Besra GS, Bhatt A. Defects in glycopeptidolipid biosynthesis confer phage I3 resistance in Mycobacterium smegmatis. MICROBIOLOGY-SGM 2009; 155:4050-4057. [PMID: 19744987 DOI: 10.1099/mic.0.033209-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages have played an important role in the development of genetic tools and diagnostics for pathogenic mycobacteria, including Mycobacterium tuberculosis. However, despite the isolation of numerous phages that infect mycobacteria, the mechanisms of mycobacteriophage infection remain poorly understood, and knowledge about phage receptors is minimal. In an effort to identify the receptor for phage I3, we screened a library of Mycobacterium smegmatis transposon mutants for phage-resistant strains. All four phage I3-resistant mutants isolated were found to have transposon insertions in genes located in a cluster involved in the biosynthesis of the cell-wall-associated glycopeptidolipid (GPL), and consequently the mutants did not synthesize GPLs. The loss of GPLs correlated specifically with phage I3 resistance, as all mutants retained sensitivity to two other mycobacteriophages: D29 and Bxz1. In order to define the minimal receptor for phage I3, we then tested the phage sensitivity of previously described GPL-deficient mutants of M. smegmatis that accumulate biosynthesis intermediates of GPLs. The results indicated that, while the removal of most sugar residues from the fatty acyl tetrapeptide (FATP) core of GPL did not affect sensitivity to phage I3, a single methylated rhamnose, transferred by the rhamnosyltransferase Gtf2 to the FATP core, was critical for phage binding.
Collapse
Affiliation(s)
- Jiemin Chen
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jordan Kriakov
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Albel Singh
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - William R Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gurdyal S Besra
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Apoorva Bhatt
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
110
|
Dan L, Jianping X, Ruzhen G, Honghai W. Cloning and characterization of Rv0621 gene related to surfactant stress tolerance in Mycobacterium tuberculosis. Mol Biol Rep 2009; 36:1811-7. [PMID: 18979228 DOI: 10.1007/s11033-008-9384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
To understand how Mycobacterium tuberculosis (M. tuberculosis) could survive in human lung, Genomic expression library of M. tuberculosis in Escherichia coli (E. coli) had been prepared. Taking advantage of the genetic simplicity of E. coli and the functional conservation of some prokaryote proteins, a surfactant stress resistant gene Rv0621 was identified, which encodes a 37 kDa putative membrane protein. The E. coli colony with the partial Rv0621 gene insert, named S1, was able to grow in medium containing 0.4% sodium dodecyl sulfate, while the strain carried empty vector was unable to grow. The full length of the Rv0621 gene was then cloned into plasmid pET32a (+) expressed in E. coli BL21 (DE3). Using gas chromatographic-mass spectrometric (GC-MS), the fatty acid composition of the E. coli BL21 (DE3) carrying Rv0621-pET32a (+) and the E. coli BL21 (DE3) carrying empty vector pET32a (+) were compared. E. coli BL21 (DE3) carrying Rv0621-pET32a (+) contained more oleic acid. This suggests the gene may be involved in regulation of fatty acid synthesis and M. tuberculosis resistance to the surfactant defense of its host.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Amino Acid Sequence
- Bacterial Proteins/analysis
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Cloning, Molecular
- DNA, Bacterial/metabolism
- Electrophoresis, Polyacrylamide Gel
- Fatty Acids/analysis
- Gene Expression Regulation, Bacterial/drug effects
- Gene Library
- Genes, Bacterial
- Humans
- Microbial Viability/drug effects
- Molecular Sequence Data
- Mycobacterium tuberculosis/drug effects
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/growth & development
- Plasmids/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
- Restriction Mapping
- Sequence Analysis, DNA
- Sodium Dodecyl Sulfate/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Surface-Active Agents/pharmacology
- Transformation, Genetic/drug effects
Collapse
Affiliation(s)
- Liao Dan
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, People's Republic of China
| | | | | | | |
Collapse
|
111
|
Sampson T, Broussard GW, Marinelli LJ, Jacobs-Sera D, Ray M, Ko CC, Russell D, Hendrix RW, Hatfull GF. Mycobacteriophages BPs, Angel and Halo: comparative genomics reveals a novel class of ultra-small mobile genetic elements. MICROBIOLOGY-SGM 2009; 155:2962-2977. [PMID: 19556295 DOI: 10.1099/mic.0.030486-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacteriophages BPs, Angel and Halo are closely related viruses isolated from Mycobacterium smegmatis, and possess the smallest known mycobacteriophage genomes, 41,901 bp, 42,289 bp and 41,441 bp, respectively. Comparative genome analysis reveals a novel class of ultra-small mobile genetic elements; BPs and Halo each contain an insertion of the proposed mobile elements MPME1 and MPME2, respectively, at different locations, while Angel contains neither. The close similarity of the genomes provides a comparison of the pre- and post-integration sequences, revealing an unusual 6 bp insertion at one end of the element and no target duplication. Nine additional copies of these mobile elements are identified in a variety of different contexts in other mycobacteriophage genomes. In addition, BPs, Angel and Halo have an unusual lysogeny module in which the repressor and integrase genes are closely linked. The attP site is located within the repressor-coding region, such that prophage formation results in expression of a C-terminally truncated, but active, form of the repressor.
Collapse
Affiliation(s)
- Timothy Sampson
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Gregory W Broussard
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laura J Marinelli
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mondira Ray
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ching-Chung Ko
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel Russell
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Roger W Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
112
|
Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun 2009; 77:2557-67. [PMID: 19349422 DOI: 10.1128/iai.01481-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Persistence of Mycobacterium tuberculosis in humans represents a major roadblock to elimination of tuberculosis. We describe identification of a locus in M. tuberculosis, mel2, that displays similarity to bacterial bioluminescent loci and plays an important role during persistence in mice. We constructed a deletion of the mel2 locus and found that the mutant displays increased susceptibility to reactive oxygen species (ROS). Upon infection of mice by aerosol the mutant grows normally until the persistent stage, where it does not persist as well as wild type. Histopathological analyses show that infection with the mel2 mutant results in reduced pathology and both CFU and histopathology indicate that dissemination of the mel2 mutant to the spleen is delayed. These data along with growth in activated macrophages and infection of Phox(-/-) and iNOS(-/-) mice and bone marrow-derived macrophages suggest that the primary mechanism by which mel2 affects pathogenesis is through its ability to confer resistance to ROS. These studies provide the first insight into the mechanism of action for this novel class of genes that are related to bioluminescence genes. The role of mel2 in resistance to ROS is important for persistence and dissemination of M. tuberculosis and suggests that homologues in other bacterial species are likely to play a role in pathogenesis.
Collapse
|
113
|
Piuri M, Jacobs WR, Hatfull GF. Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS One 2009; 4:e4870. [PMID: 19300517 PMCID: PMC2654538 DOI: 10.1371/journal.pone.0004870] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/19/2022] Open
Abstract
Rapid antibiotic susceptibility testing of Mycobacterium tuberculosis is of paramount importance as multiple- and extensively- drug resistant strains of M. tuberculosis emerge and spread. We describe here a virus-based assay in which fluoromycobacteriophages are used to deliver a GFP or ZsYellow fluorescent marker gene to M. tuberculosis, which can then be monitored by fluorescent detection approaches including fluorescent microscopy and flow cytometry. Pre-clinical evaluations show that addition of either Rifampicin or Streptomycin at the time of phage addition obliterates fluorescence in susceptible cells but not in isogenic resistant bacteria enabling drug sensitivity determination in less than 24 hours. Detection requires no substrate addition, fewer than 100 cells can be identified, and resistant bacteria can be detected within mixed populations. Fluorescence withstands fixation by paraformaldehyde providing enhanced biosafety for testing MDR-TB and XDR-TB infections.
Collapse
Affiliation(s)
- Mariana Piuri
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William R. Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
114
|
LpqM, a mycobacterial lipoprotein-metalloproteinase, is required for conjugal DNA transfer in Mycobacterium smegmatis. J Bacteriol 2009; 191:2721-7. [PMID: 19233923 DOI: 10.1128/jb.00024-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously described a novel conjugal DNA transfer process that occurs in Mycobacterium smegmatis. To identify donor genes required for transfer, we have performed a transposon mutagenesis screen; we report here that LpqM, a putative lipoprotein-metalloproteinase, is essential for efficient DNA transfer. Bioinformatic analyses predict that LpqM contains a signal peptide necessary for the protein's targeting to the cell envelope and a metal ion binding motif, the likely catalytic site for protease activity. Using targeted mutagenesis, we demonstrate that each of these motifs is necessary for DNA transfer and that LpqM is located in the cell envelope. The requirement for transfer is specific to the donor strain; an lpqM knockout mutant in the recipient is still proficient in transfer assays. The activity of LpqM is conserved among mycobacteria; homologues from both Mycobacterium tuberculosis and Mycobacterium avium can complement lpqM donor mutants, suggesting that the homologues recognize and process similar proteins. Lipoproteins constitute a significant proportion of the mycobacterial cell wall, but despite their abundance, very few have been assigned an activity. We discuss the potential role of LpqM in DNA transfer and the implications of the conservation of LpqM activity in M. tuberculosis.
Collapse
|
115
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
116
|
Abstract
Phage transduction is an attractive method of genetic manipulation in mycobacteria. PhiMycoMarT7 is well suited for transposon mutagenesis as it is temperature sensitive for replication and contains T7 promoters that promote transcription, a highly active transposase gene, and an Escherichia coli oriR6 K origin of replication. Mycobacterial transposon mutant libraries produced by PhiMycoMarT7 transduction are amenable to both forward and reverse genetic studies. In this protocol, we detail the preparation of PhiMycoMarT7, including a description of the phage, reconstitution of the phage, purification of plaques, preparation of phage stock, and titering of phage stock. We then describe the transduction procedure and finally outline the isolation of individual transposon mutants.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
117
|
Abstract
The importance of plasmids for molecular research cannot be underestimated. These double-stranded DNA units that replicate independently of the chromosomal DNA are as valuable to bacterial geneticists as a carpenter's hammer. Fortunately, today the mycobacterial research community has a number of these genetic tools at its disposal, and the development of these tools has greatly accelerated the study of mycobacterial pathogens. However, working with mycobacterial cloning plasmids is still not always as straightforward as working with Escherichia coli plasmids, and therefore a number of precautions and potential pitfalls will be discussed in this chapter.
Collapse
Affiliation(s)
- Farahnaz Movahedzadeh
- Institute for Tuberculosis Research, College of Pharmacy, Rm 412, University of Illinois at Chicago, 833 S Wood St, Chicago, Illinois 60612-7231, USA.
| | | |
Collapse
|
118
|
Construction of Mycobacterium abscessus defined glycopeptidolipid mutants: comparison of genetic tools. Appl Environ Microbiol 2008; 75:1331-8. [PMID: 19114521 DOI: 10.1128/aem.01914-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a rapidly growing mycobacterial species that can be involved in pulmonary and disseminated infections in immunosuppressed or young cystic fibrosis patients. It is an emerging pathogen and has attracted recent attention due to the numerous cases of infection; furthermore, genomic tools have been developed for this species. Nevertheless, the study of this species has until now been limited to spontaneous variants. We report here a comparison of three different mutagenesis systems--the ts-sacB, the phage, and the recombineering systems--and show that there are important differences in their efficiency for the construction of allelic-exchange mutants. We show, using the mmpL4b gene of the glycopeptidolipid pathway as a target, that allelic-exchange mutants can be constructed with a reasonable efficiency (approximately 7%) using the recombineering system. These observations will facilitate genetic and cellular microbiology experiments involving the construction and use of well-defined mutants to study the virulence determinant of this emerging pathogen.
Collapse
|
119
|
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages. Nat Rev Microbiol 2008; 6:851-7. [PMID: 18923412 DOI: 10.1038/nrmicro2014] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages are central components in the development of molecular tools for microbial genetics. Mycobacteriophages have proven to be a rich resource for tuberculosis genetics, and the recent development of a mycobacterial recombineering system based on mycobacteriophage Che9c-encoded proteins offers new approaches to mycobacterial mutagenesis. Expression of the phage exonuclease and recombinase substantially enhances recombination frequencies in both fast- and slow-growing mycobacteria, thereby facilitating construction of both gene knockout and point mutants; it also provides a simple and efficient method for constructing mycobacteriophage mutants. Exploitation of host-specific phages thus provides a general strategy for recombineering and mutagenesis in genetically naive systems.
Collapse
Affiliation(s)
- Julia C van Kessel
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
120
|
Coros A, Callahan B, Battaglioli E, Derbyshire KM. The specialized secretory apparatus ESX-1 is essential for DNA transfer in Mycobacterium smegmatis. Mol Microbiol 2008; 69:794-808. [PMID: 18554329 DOI: 10.1111/j.1365-2958.2008.06299.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conjugal DNA transfer in Mycobacterium smegmatis occurs by a mechanism distinct from plasmid-mediated DNA transfer. Previously, we had shown that the secretory apparatus, ESX-1, negatively regulated DNA transfer from the donor strain; ESX-1 donor mutants are hyper-conjugative. Here, we describe a genome-wide transposon mutagenesis screen to isolate recipient mutants. Surprisingly, we find that a majority of insertions map within the esx-1 locus, which encodes the secretory apparatus. Thus, in contrast to its role in donor function, ESX-1 is essential for recipient function; recipient ESX-1 mutants are hypo-conjugative. In addition to esx-1 genes, our screen identifies novel non-esx-1 loci in the M. smegmatis genome that are required for both DNA transfer and ESX-1 activity. DNA transfer therefore provides a simple molecular genetic assay to characterize ESX-1, which, in Mycobacterium tuberculosis, is necessary for full virulence. These findings reinforce the functional intertwining of DNA transfer and ESX-1 secretion, first described in the M. smegmatis donor. Moreover, our observation that ESX-1 has such diametrically opposed effects on transfer in the donor and recipient, forces us to consider how proteins secreted by the ESX-1 apparatus can function so as to modulate two seemingly disparate processes, M. smegmatis DNA transfer and M. tuberculosis virulence.
Collapse
Affiliation(s)
- Abbie Coros
- The Microscopy and Imaging Center, Texas A&M University, 2257 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
121
|
Ojha AK, Baughn AD, Sambandan D, Hsu T, Trivelli X, Guerardel Y, Alahari A, Kremer L, Jacobs WR, Hatfull GF. Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 2008; 69:164-74. [PMID: 18466296 PMCID: PMC2615189 DOI: 10.1111/j.1365-2958.2008.06274.x] [Citation(s) in RCA: 360] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Successful treatment of human tuberculosis requires 6-9 months' therapy with multiple antibiotics. Incomplete clearance of tubercle bacilli frequently results in disease relapse, presumably as a result of reactivation of persistent drug-tolerant Mycobacterium tuberculosis cells, although the nature and location of these persisters are not known. In other pathogens, antibiotic tolerance is often associated with the formation of biofilms--organized communities of surface-attached cells--but physiologically and genetically defined M. tuberculosis biofilms have not been described. Here, we show that M. tuberculosis forms biofilms with specific environmental and genetic requirements distinct from those for planktonic growth, which contain an extracellular matrix rich in free mycolic acids, and harbour an important drug-tolerant population that persist despite exposure to high levels of antibiotics.
Collapse
Affiliation(s)
- Anil K Ojha
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Wang XM, Galamba A, Warner DF, Soetaert K, Merkel JS, Kalai M, Bifani P, Lefèvre P, Mizrahi V, Content J. IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis. Tuberculosis (Edinb) 2008; 88:399-409. [PMID: 18439874 DOI: 10.1016/j.tube.2008.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/22/2008] [Accepted: 02/16/2008] [Indexed: 11/30/2022]
Abstract
The acquisition of DNA and the loss of genetic information are two important mechanisms that contribute to strain-specific differences in genome content. In this study, comparative genomics has allowed us to infer the roles of genomic rearrangement and changes in both distribution and copy number of the insertion element, IS1096, in the evolution of Mycobacterium smegmatis mc2155 from its progenitor, M. smegmatis ATCC 607. Comparative analysis revealed that the ATCC 607 genome contains only 11 IS1096 elements against the 24 reported in mc2155. As mc2155 evolved, there was a considerable expansion in the copy number of IS1096 (+13) as well as duplication of a 56-kb fragment flanked on both sides by IS1096; concurrently, a single IS1096 element and its flank were deleted. This study demonstrates that insertion sequence (IS) expansion and IS-induced rearrangements such as duplication, deletion and shuffling are major forces driving genomic diversity and evolution.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- IPH-Pasteur Institute of Brussels, Rue Engeland 642, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
van Kessel JC, Hatfull GF. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 2008; 67:1094-107. [PMID: 18221264 DOI: 10.1111/j.1365-2958.2008.06109.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Construction of genetically isogenic strains of mycobacteria is complicated by poor recombination rates and the lack of generalized transducing phages for Mycobacterium tuberculosis. We report here a powerful method for introducing single point mutations into mycobacterial genomes using oligonucleotide-derived single-stranded DNA recombineering and mycobacteriophage-encoded proteins. Phage Che9c gp61-mediated recombination is sufficiently efficient that single base changes can be introduced without requirement for direct selection, with isogenic mutant strains identified simply by PCR. Efficient recombination requires only short (50 nucleotide) oligonucleotides, but there is an unusually strong strand bias and an oligonucleotide targeting lagging strand DNA synthesis can recombine more than 10,000-fold efficiently than its complementary oligonucleotide. This ssDNA recombineering provides a simple assay for comparing the activities of related phage recombinases, and we find that both Escherichia coli RecET and phage lambda Red recombination proteins function inefficiently in mycobacteria, illustrating the utility of developing recombineering in new bacterial systems using host-specific bacteriophage recombinases. ssDNA mycobacterial recombineering provides a simple approach to characterizing antimycobacterial drug targets, and we have constructed and characterized single point mutations that confer resistance to isoniazid, rifampicin, ofloxacin and streptomycin.
Collapse
Affiliation(s)
- Julia C van Kessel
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, 376 Crawford Hall, 4249 Fifth Ave, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
124
|
Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol 2008; 74:1687-95. [PMID: 18192416 DOI: 10.1128/aem.01208-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.
Collapse
|
125
|
Abstract
Microarray mapping of transposon insertions can be used to quantify the relative abundance of different transposon mutants within a complex pool after exposure to selective pressure. The transposon site hybridization (TraSH) method applies this strategy to the study of Mycobacterium tuberculosis and can be adapted to the study of other microorganisms. This chapter describes the methods used to mutagenize mycobacteria with transposons, extract genomic DNA, amplify genomic DNA adjacent to transposon ends using polymerase chain reaction and T7 transcription, and synthesize labeled cDNA. It also describes methods used to construct an appropriate microarray, hybridize labeled cDNA, and analyze the microarray data. Important considerations involved in the experimental design of the selective pressure, the design of the microarray, and the statistical analysis of collected data are discussed.
Collapse
|
126
|
Wu CW, Schmoller SK, Shin SJ, Talaat AM. Defining the stressome of Mycobacterium avium subsp. paratuberculosis in vitro and in naturally infected cows. J Bacteriol 2007; 189:7877-86. [PMID: 17693514 PMCID: PMC2168719 DOI: 10.1128/jb.00780-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 08/01/2007] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis causes an enteric infection in cattle, with a great impact on the dairy industry in the United States and worldwide. Characterizing the gene expression profile of M. avium subsp. paratuberculosis exposed to different stress conditions, or shed in cow feces, could improve our understanding of the pathogenesis of M. avium subsp. paratuberculosis. In this report, the stress response of M. avium subsp. paratuberculosis on a genome-wide level (stressome) was defined for the first time using DNA microarrays. Expression data analysis revealed unique gene groups of M. avium subsp. paratuberculosis that were regulated under in vitro stressors while additional groups were regulated in the cow samples. Interestingly, acidic pH induced the regulation of a large number of genes (n=597), suggesting the high sensitivity of M. avium subsp. paratuberculosis to acidic environments. Generally, responses to heat shock, acidity, and oxidative stress were similar in M. avium subsp. paratuberculosis and Mycobacterium tuberculosis, suggesting common pathways for mycobacterial defense against stressors. Several sigma factors (e.g., sigH and sigE) were differentially coregulated with a large number of genes depending on the type of each stressor. Subsequently, we analyzed the virulence of six M. avium subsp. paratuberculosis mutants with inactivation of differentially regulated genes using a murine model of paratuberculosis. Both bacterial and histopathological examinations indicated the attenuation of all gene mutants, especially those selected based on their expression in the cow samples (e.g., lipN). Overall, the employed approach profiled mycobacterial genetic networks triggered by variable stressors and identified a novel set of putative virulence genes. A similar approach could be applied to analyze other intracellular pathogens.
Collapse
Affiliation(s)
- Chia-wei Wu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
127
|
Robertson D, Carroll P, Parish T. Rapid recombination screening to test gene essentiality demonstrates that pyrH is essential in Mycobacterium tuberculosis. Tuberculosis (Edinb) 2007; 87:450-8. [PMID: 17719852 DOI: 10.1016/j.tube.2007.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/25/2007] [Accepted: 05/03/2007] [Indexed: 10/22/2022]
Abstract
The availability of the complete genome of Mycobacterium tuberculosis affords the possibility of screening genes for essentiality under defined conditions. We tested a rapid recombination method for screening and confirmation of gene essentiality which would be more amenable to higher throughput applications. Non-replicating vectors carrying the internal portion of a gene were used as recombination substrates. Such vectors would lead to inactivation of the target gene in a single recombination step. For non-essential genes, recombinants can be obtained; for essential genes, no recombinants can be obtained, thus providing a rapid screening method to determine essentiality in a targeted manner. The incorporation of a promoter in the vector allowed us to establish the essentiality of a single gene in an operon. We confirmed this method worked with several essential (proC, glnE, mtrB, trpD) and one non-essential (tlyA) gene. In addition, we used the method to demonstrate that the pyrH gene is essential.
Collapse
Affiliation(s)
- Dina Robertson
- Centre for Infectious Disease, Institute for Cell and Molecular Science, Barts and the London, Blizard Building, London, UK
| | | | | |
Collapse
|
128
|
Lynett J, Stokes RW. Selection of transposon mutants of Mycobacterium tuberculosis with increased macrophage infectivity identifies fadD23 to be involved in sulfolipid production and association with macrophages. Microbiology (Reading) 2007; 153:3133-3140. [PMID: 17768256 DOI: 10.1099/mic.0.2007/007864-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alterations to the composition or architecture of the mycobacterial cell envelope can affect the macrophage infectivity of the bacillus. To further characterize the mycobacterial gene products that modulate the interaction with host cells, we employed transposon mutagenesis and screened for mutants that demonstrated an enhanced binding affinity toward macrophages. After successive rounds of mutant selection and enrichment, a total of five mutants were isolated that harboured gene disruptions within loci involved in lipid synthetic pathways as well as genes coding for putative hypothetical proteins. One mutant in particular, with a disruption in the Rv3826 gene (fadD23), was repeatedly isolated during library screening. Analysis of the cell envelope constituents of the Tn : : fadD23 strain revealed a lack of sulfolipid production which was restored following complementation with the wild-type gene.
Collapse
Affiliation(s)
- Jennifer Lynett
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Richard W Stokes
- Departments of Microbiology and Immunology and Paediatrics, University of British Columbia; Division of Infectious and Immunological Diseases, British Columbia's Children's Hospital, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
129
|
Colangeli R, Helb D, Vilchèze C, Hazbón MH, Lee CG, Safi H, Sayers B, Sardone I, Jones MB, Fleischmann RD, Peterson SN, Jacobs WR, Alland D. Transcriptional regulation of multi-drug tolerance and antibiotic-induced responses by the histone-like protein Lsr2 in M. tuberculosis. PLoS Pathog 2007; 3:e87. [PMID: 17590082 PMCID: PMC1894825 DOI: 10.1371/journal.ppat.0030087] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 05/10/2007] [Indexed: 12/31/2022] Open
Abstract
Multi-drug tolerance is a key phenotypic property that complicates the sterilization of mammals infected with Mycobacterium tuberculosis. Previous studies have established that iniBAC, an operon that confers multi-drug tolerance to M. bovis BCG through an associated pump-like activity, is induced by the antibiotics isoniazid (INH) and ethambutol (EMB). An improved understanding of the functional role of antibiotic-induced genes and the regulation of drug tolerance may be gained by studying the factors that regulate antibiotic-mediated gene expression. An M. smegmatis strain containing a lacZ gene fused to the promoter of M. tuberculosis iniBAC (PiniBAC) was subjected to transposon mutagenesis. Mutants with constitutive expression and increased EMB-mediated induction of PiniBAC::lacZ mapped to the lsr2 gene (MSMEG6065), a small basic protein of unknown function that is highly conserved among mycobacteria. These mutants had a marked change in colony morphology and generated a new polar lipid. Complementation with multi-copy M. tuberculosis lsr2 (Rv3597c) returned PiniBAC expression to baseline, reversed the observed morphological and lipid changes, and repressed PiniBAC induction by EMB to below that of the control M. smegmatis strain. Microarray analysis of an lsr2 knockout confirmed upregulation of M. smegmatis iniA and demonstrated upregulation of genes involved in cell wall and metabolic functions. Fully 121 of 584 genes induced by EMB treatment in wild-type M. smegmatis were upregulated (“hyperinduced”) to even higher levels by EMB in the M. smegmatis lsr2 knockout. The most highly upregulated genes and gene clusters had adenine-thymine (AT)–rich 5-prime untranslated regions. In M. tuberculosis, overexpression of lsr2 repressed INH-mediated induction of all three iniBAC genes, as well as another annotated pump, efpA. The low molecular weight and basic properties of Lsr2 (pI 10.69) suggested that it was a histone-like protein, although it did not exhibit sequence homology with other proteins in this class. Consistent with other histone-like proteins, Lsr2 bound DNA with a preference for circular DNA, forming large oligomers, inhibited DNase I activity, and introduced a modest degree of supercoiling into relaxed plasmids. Lsr2 also inhibited in vitro transcription and topoisomerase I activity. Lsr2 represents a novel class of histone-like proteins that inhibit a wide variety of DNA-interacting enzymes. Lsr2 appears to regulate several important pathways in mycobacteria by preferentially binding to AT-rich sequences, including genes induced by antibiotics and those associated with inducible multi-drug tolerance. An improved understanding of the role of lsr2 may provide important insights into the mechanisms of action of antibiotics and the way that mycobacteria adapt to stresses such as antibiotic treatment. Understanding the cellular processes stimulated when Mycobacterium tuberculosis is treated with antibiotics may provide clues as to why months of therapy and use of several drugs simultaneously are required to prevent antibiotic resistance. Antibiotic treatment “turns on” or induces certain M. tuberculosis genes. These genes are of special interest because they appear to help M. tuberculosis survive the stress of antibiotic treatment. Our study of the regulation of antibiotic-induced genes, including iniBAC, in two mycobacterial species revealed that a small protein called Lsr2 controls iniBAC and other antibiotic-induced genes, especially ones related to the cell wall. Lsr2 binds to DNA in a relatively non-specific manner and appears to inhibit certain enzymes that must interact with DNA as part of their function. These properties differentiate Lsr2 from classical regulators of gene expression that bind to specific DNA sequences, and suggest that Lsr2 is a novel histone-like protein. These proteins regulate genes by changing the way DNA is shaped, and, indeed, we found that Lsr2 can change the shape of DNA by introducing a small number of coils into its structure. Our results suggest that Lsr2 is a major regulator of antibiotic-induced responses in mycobacteria.
Collapse
Affiliation(s)
- Roberto Colangeli
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Abstract
Tuberculosis remains a major health problem in the world, which is compounded further by the alarmingly high rate of M. tuberculosis infections in AIDS patients. Thus, there is an urgent need to advance our understanding of the mycobacterium to develop new drugs. The extraordinary recent developments in mycobacterial genetic research, particularly in genomics will greatly facilitate this goal. The knowledge of the entire genome sequence of M. tuberculosis will help in designing new chemotherapeutic and immunotherapeutic interventions. This review highlights recent developments in genomics, mycobacterial genetics, novel vaccine strategies, and our understanding of tuberculous dormancy.
Collapse
Affiliation(s)
- A J Steyn
- Department of Immunology and Infectious Disease, Harvard School of Public Health, Boston, Massachusetts, USA
| | | | | |
Collapse
|
131
|
Glover RT, Kriakov J, Garforth SJ, Baughn AD, Jacobs WR. The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. J Bacteriol 2007; 189:5495-503. [PMID: 17526710 PMCID: PMC1951828 DOI: 10.1128/jb.00190-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phosphate import is required for the growth of mycobacteria and is regulated by environmental inorganic phosphate (P(i)) concentrations, although the mechanism of this regulation has not been characterized. The expression of genes involved in P(i) acquisition is frequently regulated by two-component regulatory systems (2CRs) consisting of a sensor histidine kinase and a DNA-binding response regulator. In this work, we have identified the senX3-regX3 2CR as a P(i)-dependent regulator of genes involved in phosphate acquisition in Mycobacterium smegmatis. Characterization of senX3 mutants with different PhoA phenotypes suggests a dual role for SenX3 as a phosphatase or a phosphodonor for the response regulator RegX3, depending upon P(i) availability. Expression of PhoA activity required phosphorylation of RegX3, consistent with a role for phosphorylated RegX3 (RegX3 approximately P) as a transcriptional activator of phoA. Furthermore, purified RegX3 approximately P bound to promoter sequences from phoA, senX3, and the high-affinity phosphate transporter component pstS, demonstrating direct transcriptional control of all three genes. DNase I footprinting and primer extension analyses have further defined the DNA-binding region and transcriptional start site within the phoA promoter. A DNA motif consisting of an inverted repeat was identified in each of the promoters bound by RegX3 approximately P. Based upon our findings, we propose a model for P(i)-regulated gene expression mediated by SenX3-RegX3 in mycobacteria.
Collapse
Affiliation(s)
- Robert T Glover
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
132
|
Shin AR, Lee KS, Lee JS, Kim SY, Song CH, Jung SB, Yang CS, Jo EK, Park JK, Paik TH, Kim HJ. Mycobacterium tuberculosis HBHA protein reacts strongly with the serum immunoglobulin M of tuberculosis patients. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:869-75. [PMID: 16893986 PMCID: PMC1539112 DOI: 10.1128/cvi.00103-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Identification and characterization of serologically active mycobacterial antigens are prerequisites for the development of diagnostic reagents. We examined the humoral immune responses of active tuberculosis (TB) patients against Triton-soluble proteins extracted from Mycobacterium tuberculosis by immunoblotting. A 29-kDa protein reacted with immunoglobulin M (IgM) in the pooled sera of the patients, and its N-terminal amino acid sequence matched that of the heparin-binding hemagglutinin (HBHA). Recombinant full-length HBHA was expressed in Escherichia coli (rEC-HBHA) and M. smegmatis (rMS-HBHA). In immunoblot analysis, the IgM antibodies of the TB patients reacted strongly with rMS-HBHA but not with rEC-HBHA, whereas the IgG antibodies of these patients reacted weakly with both recombinant HBHA proteins. In enzyme-linked immunosorbent assay analysis using rMS-HBHA and 85B as antigens, the mean levels and sensitivities of the anti-HBHA IgM antibodies of the TB patients were significantly higher than those of the anti-antigen 85B IgM antibodies, while the IgG antibodies showed the opposite results. Of interest in this respect, the pooled sera from the TB patients that contained anti-HBHA IgM antibodies neutralized the entry of M. tuberculosis into epithelial cells. These findings suggest that IgM antibody to HBHA may play a role in protection against extrapulmonary dissemination.
Collapse
Affiliation(s)
- A-Rum Shin
- Department of Microbiology, College of Medicine, Chungnam National University, 6 Muwha-Dong, Jung-Ku, Daejeon 301-747, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Piuri M, Hatfull GF. A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 2006; 62:1569-85. [PMID: 17083467 PMCID: PMC1796659 DOI: 10.1111/j.1365-2958.2006.05473.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2006] [Indexed: 11/30/2022]
Abstract
The predominant morphotype of mycobacteriophage virions has a DNA-containing capsid attached to a long flexible non-contractile tail, features characteristic of the Siphoviridae. Within these phage genomes the tape measure protein (tmp) gene can be readily identified due to the well-established relationship between the length of the gene and the length of the phage tail--because these phages typically have long tails, the tmp gene is usually the largest gene in the genome. Many of these mycobacteriophage Tmp's contain small motifs with sequence similarity to host proteins. One of these motifs (motif 1) corresponds to the Rpf proteins that have lysozyme activity and function to stimulate growth of dormant bacteria, while the others (motifs 2 and 3) are related to proteins of unknown function, although some of the related proteins of the host are predicted to be involved in cell wall catabolism. We show here that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for phage viability, it facilitates efficient infection and DNA injection into stationary phase cells. Tmp's of mycobacteriophages may thus have acquired these motifs in order to avoid a selective disadvantage that results from changes in peptidoglycan in non-growing cells.
Collapse
Affiliation(s)
- Mariana Piuri
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of PittsburghPittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of PittsburghPittsburgh, PA 15260, USA
| |
Collapse
|
134
|
Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006; 74:3825-33. [PMID: 16790754 PMCID: PMC1489745 DOI: 10.1128/iai.01742-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.
Collapse
Affiliation(s)
- Sung Jae Shin
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
135
|
Dayaram YK, Talaue MT, Connell ND, Venketaraman V. Characterization of a glutathione metabolic mutant of Mycobacterium tuberculosis and its resistance to glutathione and nitrosoglutathione. J Bacteriol 2006; 188:1364-72. [PMID: 16452418 PMCID: PMC1367217 DOI: 10.1128/jb.188.4.1364-1372.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glutathione is a tripeptide and antioxidant, synthesized at high levels by cells during the production of reactive oxygen and nitrogen intermediates. Glutathione also serves as a carrier molecule for nitric oxide in the form of S-nitrosoglutathione. Previous studies from this laboratory have shown that glutathione and S-nitrosoglutathione are directly toxic to mycobacteria. Glutathione is not transported into the cells as a tripeptide. Extracellular glutathione is converted to a dipeptide due to the action of transpeptidase, and the dipeptide is then transported into the bacterial cells. The processing of glutathione and S-nitrosoglutathione is brought about by the action of the enzyme gamma-glutamyl transpeptidase. The function of gamma-glutamyl transpeptidase is to cleave glutathione and S-nitrosoglutathione to the dipeptide (Cys-Gly), which is then transported into the bacterium by the multicomponent ABC transporter dipeptide permease. We have created a mutant strain of Mycobacterium tuberculosis lacking this metabolic enzyme. We investigated the sensitivity of this strain to glutathione and S-nitrosoglutathione compared to that of the wild-type bacteria. In addition, we examined the role of glutathione and/or S-nitrosoglutathione in controlling the growth of intracellular M. tuberculosis inside mouse macrophages.
Collapse
Affiliation(s)
- Yaswant K Dayaram
- Department of Microbiology and Molecular Genetics, UMDNJ-New Jersey Medical School, 225 Warren Street, Newark, New Jersey 07103, USA
| | | | | | | |
Collapse
|
136
|
Hernàndez Pando R, Aguilar LD, Infante E, Cataldi A, Bigi F, Martin C, Gicquel B. The use of mutant mycobacteria as new vaccines to prevent tuberculosis. Tuberculosis (Edinb) 2006; 86:203-10. [PMID: 16542875 DOI: 10.1016/j.tube.2006.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Given the variable protective efficacy generated by Mycobacterium bovis BCG (Bacillus Calmette-Guérin), there is a concerted effort worldwide to develop better vaccines that could be used to reduce the burden of tuberculosis. Rational attenuated mutants of Mycobacterium tuberculosis are vaccine candidates that offer some potential in this area. In this paper, we will discuss the molecular methods used to generate mutant mycobacteria, as well as the results obtained with some of these strains, in terms of attenuation, immunogenicity and level of protection, when compared with the conventional BCG vaccine in diverse animal models. Tuberculosis vaccine candidates based on safe and live mycobacterial mutants could be promising candidates.
Collapse
Affiliation(s)
- R Hernàndez Pando
- Experimental Pathology Section, Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiràn, Vasco de Quiroga 15, Tlalpan, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
137
|
Lane JM, Rubin EJ. Scaling down: a PCR-based method to efficiently screen for desired knockouts in a high density Mycobacterium tuberculosis picked mutant library. Tuberculosis (Edinb) 2006; 86:310-3. [PMID: 16527544 DOI: 10.1016/j.tube.2006.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 01/20/2006] [Indexed: 11/25/2022]
Abstract
Transposon mutagenesis produces random mycobacterial mutants at high frequency. Because they are random, however, it is difficult to isolate mutations in particular target genes. Here we describe the use of an arrayed library of Mycobacterium tuberculosis together with a PCR screening strategy to rapidly identify strains with defined insertion mutations. This method is useful for many genetic applications.
Collapse
Affiliation(s)
- James M Lane
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
138
|
Shi S, Ehrt S. Dihydrolipoamide acyltransferase is critical for Mycobacterium tuberculosis pathogenesis. Infect Immun 2006; 74:56-63. [PMID: 16368957 PMCID: PMC1346611 DOI: 10.1128/iai.74.1.56-63.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis has evolved to persist in host macrophages, where it faces a nutrient-poor environment and is exposed to oxidative and nitrosative stress. To defend itself against oxidative/nitrosative stress, M. tuberculosis expresses an NADH-dependent peroxidase and peroxynitrite reductase that is encoded by ahpC, ahpD, lpd, and dlaT. In addition to its central role in the peroxynitrite reductase complex, dlaT (Rv2215) also encodes the E2 component of pyruvate dehydrogenase. Here we demonstrate that inactivation of dlaT in the chromosome of H37Rv resulted in a mutant (H37RvDeltadlaT) that displayed phenotypes associated with DlaT's role in metabolism and in defense against nitrosative stress. The H37RvDeltadlaT strain showed retarded growth in vitro and was highly susceptible to killing by acidified sodium nitrite. Mouse macrophages readily killed intracellular H37RvDeltadlaT organisms, and in mice dlaT was required for full virulence.
Collapse
Affiliation(s)
- Shuangping Shi
- Department of Microbiology and Immunology, Weill Cornell Medical College, Box 62, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
139
|
Mehta PK, Pandey AK, Subbian S, El-Etr SH, Cirillo SLG, Samrakandi MM, Cirillo JD. Identification of Mycobacterium marinum macrophage infection mutants. Microb Pathog 2006; 40:139-51. [PMID: 16451826 DOI: 10.1016/j.micpath.2005.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/10/2005] [Accepted: 12/12/2005] [Indexed: 11/18/2022]
Abstract
Mycobacterium marinum is an important pathogen of humans, amphibians and fish. Most pathogenic mycobacteria, including M. marinum, infect, survive and replicate primarily intracellularly within macrophages. We constructed a transposon mutant library in M. marinum using Tn5367 delivered by phage transduction in the shuttle phasmid phAE94. We screened 529 clones from the transposon library directly in macrophage infection assays. All clones were screened for their ability to initially infect macrophages as well as survive and replicate intracellularly. We identified 19 mutants that fit within three classes: class I) defective for growth in association with macrophages (42%), class II) defective for macrophage infection (21%) and class III) defective for infection of and growth in association with macrophages (37%). Although 14 of the macrophage infection mutants (Mim) carry insertions in genes that have not been previously identified, five are associated with virulence of mycobacteria in animal models. These observations confirm the utility of mutant screens directly in association with macrophages to identify new virulence determinants in mycobacteria. We complemented four of the Mim mutants with their M. tuberculosis homologue, demonstrating that secondary mutations are not responsible for the observed defect in macrophage infection. The genes we identified provide insight into the molecular mechanisms of macrophage infection by M. marinum.
Collapse
Affiliation(s)
- Parmod K Mehta
- Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Sciences Center, 471 Reynolds Medical Building, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
140
|
Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis--application for identification and susceptibility testing. J Med Microbiol 2006; 55:37-42. [PMID: 16388028 DOI: 10.1099/jmm.0.46238-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The host range of well-characterized mycobacteriophages, such as D29 and TM4, has been determined, together with that of more recently isolated mycobacteriophages, in Mycobacterium ulcerans, Mycobacterium tuberculosis, Mycobacterium bovis BCG, Mycobacterium avium, Mycobacterium marinum, Mycobacterium scrofulaceum, Mycobacterium fortuitum and Mycobacterium chelonae. Here, a set of virulent phages for M. ulcerans, a pathogen with a dramatic increase of incidence over the last decade, is demonstrated. In this work, a mycobacteriophage replication assay was adapted for the identification and rifampicin-susceptibility testing of M. ulcerans. Mycobacteriophages have generated a number of useful tools and enabled insights into mycobacterial genetics. With regard to the neglected pathogen M. ulcerans, the findings presented in this work allow the application of a large range of phage-based vectors and markers. The potential of phage therapy can now be evaluated for this extracellular pathogen.
Collapse
Affiliation(s)
- Jan Rybniker
- Department of Microbiology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Stefanie Kramme
- Department of Microbiology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Pamela L Small
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
141
|
Aguilar LD, Infante E, Bianco MV, Cataldi A, Bigi F, Pando RH. Immunogenicity and protection induced by Mycobacterium tuberculosis mce-2 and mce-3 mutants in a Balb/c mouse model of progressive pulmonary tuberculosis. Vaccine 2005; 24:2333-42. [PMID: 16388878 DOI: 10.1016/j.vaccine.2005.11.051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 11/24/2005] [Indexed: 11/17/2022]
Abstract
Mycobacterial proteins coded by the mammalian cell entry (mce) genes allow for cell invasion into the host. The Mycobacterium tuberculosismce-2 and mce-3 mutants have impaired synthesis of mce proteins and are attenuated in BALB/c mice. Intra-tracheal infection of Balb/c mice with either mce mutant induced lower but progressive production of IFN-gamma and TNF-alpha, as well as larger delayed type hypersensitivity (DTH) reactions, than their parental H37Rv strain. When used as a subcutaneous vaccine and, before challenge, both mutants were more attenuated than BCG in Balb/c and immunodeficient nude mice. Cell suspensions from lymph nodes and spleen from mce mutant vaccinated mice stimulated with mycobacterial culture filtrate antigens (CFA) or immunodominant antigens (ESAT-6, Ag85) produced more INF-gamma than BCG-vaccinated animals. Used as subcutaneous vaccines, 60 days before intra-tracheal challenge with the hypervirulent strain of M. tuberculosis (Beijing code 9501000), both mutants induced a higher level of protection than BCG; 72% and 63% of the mice vaccinated with the mce-2 and mce-3 mutants, respectively, survived for 16 weeks after the challenge as compared to 30% of those vaccinated with BCG. Likewise, there was less tissue damage (pneumonia) and lower colony forming units (CFU) in the mice vaccinated with either of the two mutants as compared to the findings in mice vaccinated with BCG. These data suggest that lack of mce-2 and -3 gene expression decreases virulence and increases immunogenicity of live vaccines, favouring their ability to protect against tuberculosis, which was better than the protection conferred by BCG.
Collapse
Affiliation(s)
- L D Aguilar
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiràn, Vasco de Quiroga 15, Tlalpan, Mexico City CP-14000, Mexico
| | | | | | | | | | | |
Collapse
|
142
|
Bhatt A, Kremer L, Dai AZ, Sacchettini JC, Jacobs WR. Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J Bacteriol 2005; 187:7596-606. [PMID: 16267284 PMCID: PMC1280301 DOI: 10.1128/jb.187.22.7596-7606.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition or inactivation of InhA, a fatty acid synthase II (FASII) enzyme, leads to mycobacterial cell lysis. To determine whether inactivation of other enzymes of the mycolic acid-synthesizing FASII complex also leads to lysis, we characterized the essentiality of two beta-ketoacyl-acyl carrier protein synthases, KasA and KasB, in Mycobacterium smegmatis. Using specialized transduction for allelic exchange, null kasB mutants, but not kasA mutants, could be generated in Mycobacterium smegmatis, suggesting that unlike kasB, kasA is essential. To confirm the essentiality of kasA, and to detail the molecular events that occur following depletion of KasA, we developed CESTET (conditional expression specialized transduction essentiality test), a genetic tool that combines conditional gene expression and specialized transduction. Using CESTET, we were able to generate conditional null inhA and kasA mutants. We studied the effects of depletion of KasA in M. smegmatis using the former strain as a reference. Depletion of either InhA or KasA led to cell lysis, but with different biochemical and morphological events prior to lysis. While InhA depletion led to the induction of an 80-kDa complex containing both KasA and AcpM, the mycobacterial acyl carrier protein, KasA depletion did not induce the same complex. Depletion of either InhA or KasA led to inhibition of alpha and epoxy mycolate biosynthesis and to accumulation of alpha'-mycolates. Furthermore, scanning electron micrographs revealed that KasA depletion resulted in the cell surface having a "crumpled" appearance, in contrast to the blebs observed on InhA depletion. Thus, our studies support the further exploration of KasA as a target for mycobacterial-drug development.
Collapse
Affiliation(s)
- Apoorva Bhatt
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
143
|
Infante E, Aguilar LD, Gicquel B, Pando RH. Immunogenicity and protective efficacy of the Mycobacterium tuberculosis fadD26 mutant. Clin Exp Immunol 2005; 141:21-8. [PMID: 15958066 PMCID: PMC1809405 DOI: 10.1111/j.1365-2249.2005.02832.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Mycobacterium tuberculosis fadD26 mutant has impaired synthesis of phthiocerol dimycocerosates (DIM) and is attenuated in BALB/c mice. Survival analysis following direct intratracheal infection confirmed the attenuation: 60% survival at 4 months post-infection versus 100% mortality at 9 weeks post-infection with the wild-type strain. The fadD26 mutant induced less pneumonia and larger DTH reactions. It induced lower but progressive production of interferon (IFN)-gamma, interleukin (IL)-4 and tumour necrosis factor (TNF)-alpha. Used as a subcutaneous vaccine 60 days before intratracheal challenge with a hypervirulent strain of M. tuberculosis (Beijing code 9501000), the mutant induced a higher level of protection than did Bacille Calmette-Guérin (BCG). Seventy per cent of the mice vaccinated with the fadD26 mutant survived at 16 weeks after challenge compared to 30% of those vaccinated with BCG. Similarly, there was less tissue damage (pneumonia) and lower colony-forming units (CFU) in the mice vaccinated with the fadD26 mutant compared to the findings in mice vaccinated with BCG. These data suggest that DIM synthesis is important for the pathogenicity of M. tuberculosis, and that inactivation of DIM synthesis can increase the immunogenicity of live vaccines, and increase their ability to protect against tuberculosis.
Collapse
Affiliation(s)
- E Infante
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiràn, Mexico City, Mexico
| | | | | | | |
Collapse
|
144
|
Colangeli R, Helb D, Sridharan S, Sun J, Varma-Basil M, Hazbón MH, Harbacheuski R, Megjugorac NJ, Jacobs WR, Holzenburg A, Sacchettini JC, Alland D. The Mycobacterium tuberculosis iniA gene is essential for activity of an efflux pump that confers drug tolerance to both isoniazid and ethambutol. Mol Microbiol 2005; 55:1829-40. [PMID: 15752203 DOI: 10.1111/j.1365-2958.2005.04510.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Little is known about the intracellular events that occur following the initial inhibition of Mycobacterium tuberculosis by the first-line antituberculosis drugs isoniazid (INH) and ethambutol (EMB). Understanding these pathways should provide significant insights into the adaptive strategies M. tuberculosis undertakes to survive antibiotics. We have discovered that the M. tuberculosis iniA gene (Rv 0342) participates in the development of tolerance to both INH and EMB. This gene is strongly induced along with iniB and iniC (Rv 0341 and Rv 0343) by treatment of Mycobacterium bovis BCG or M. tuberculosis with INH or EMB. BCG strains overexpressing M. tuberculosis iniA grew and survived longer than control strains upon exposure to inhibitory concentrations of either INH or EMB. An M. tuberculosis strain containing an iniA deletion showed increased susceptibility to INH. Additional studies showed that overexpression of M. tuberculosis iniA in BCG conferred resistance to ethidium bromide, and the deletion of iniA in M. tuberculosis resulted in increased accumulation of intracellular ethidium bromide. The pump inhibitor reserpine reversed both tolerance to INH and resistance to ethidium bromide in BCG. These results suggest that iniA functions through an MDR-pump like mechanism, although IniA does not appear to directly transport INH from the cell. Analysis of two-dimensional crystals of the IniA protein revealed that this predicted transmembrane protein forms multimeric structures containing a central pore, providing further evidence that iniA is a pump component. Our studies elucidate a potentially unique adaptive pathway in mycobacteria. Drugs designed to inhibit the iniA gene product may shorten the time required to treat tuberculosis and may help prevent the clinical emergence of drug resistance.
Collapse
Affiliation(s)
- Roberto Colangeli
- Division of Infectious Disease and the Center for Emerging Pathogens, Department of Medicine, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Modern chemotherapy has played a major role in our control of tuberculosis. Yet tuberculosis still remains a leading infectious disease worldwide, largely owing to persistence of tubercle bacillus and inadequacy of the current chemotherapy. The increasing emergence of drug-resistant tuberculosis along with the HIV pandemic threatens disease control and highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. This review provides a brief historical account of tuberculosis drugs, examines the problem of current chemotherapy, discusses the targets of current tuberculosis drugs, focuses on some promising new drug candidates, and proposes a range of novel drug targets for intervention. Finally, this review addresses the problem of conventional drug screens based on inhibition of replicating bacilli and the challenge to develop drugs that target nonreplicating persistent bacilli. A new generation of drugs that target persistent bacilli is needed for more effective treatment of tuberculosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| |
Collapse
|
146
|
Flores AR, Parsons LM, Pavelka MS. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to beta-lactam antibiotics. J Bacteriol 2005; 187:1892-900. [PMID: 15743935 PMCID: PMC1064048 DOI: 10.1128/jb.187.6.1892-1900.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our laboratory previously constructed mutants of Mycobacterium tuberculosis and Mycobacterium smegmatis with deletions in the genes for their major beta-lactamases, BlaC and BlaS, respectively, and showed that the mutants have increased susceptibilities to most beta-lactam antibiotics, particularly the penicillins. However, there is still a basal level of resistance in the mutants to certain penicillins, and the susceptibilities of the mutants to some cephalosporin-based beta-lactams are essentially the same as those of the wild types. We hypothesized that characterizing additional mutants (derived from beta-lactamase deletion mutants) that are hypersusceptible to beta-lactam antibiotics might reveal novel genes involved with other mechanisms of beta-lactam resistance, peptidoglycan assembly, and cell envelope physiology. We report here the isolation and characterization of nine beta-lactam antibiotic-hypersusceptible transposon mutants, two of which have insertions in genes known to be involved with peptidoglycan biosynthesis (ponA2 and dapB); the other seven mutants have insertions which affect novel genes. These genes can be classified into three groups: those involved with peptidoglycan biosynthesis, cell division, and other cell envelope processes. Two of the peptidoglycan-biosynthetic genes (ponA2 and pbpX) may encode beta-lactam antibiotic-resistant enzymes proposed to be involved with the synthesis of the unusual diaminopimelyl linkages within the mycobacterial peptidoglycan.
Collapse
Affiliation(s)
- Anthony R Flores
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
147
|
|
148
|
Machowski EE, Dawes S, Mizrahi V. TB tools to tell the tale–molecular genetic methods for mycobacterial research. Int J Biochem Cell Biol 2005; 37:54-68. [PMID: 15381150 DOI: 10.1016/j.biocel.2004.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
In spite of the availability of drugs and a vaccine, tuberculosis--one of man's medical nemeses--remains a formidable public health problem, particularly in the developing world. The persistent nature of the tubercle bacillus, with one third of the world's population is estimated to be infected, combined with the emergence of multi drug-resistant strains and the exquisite susceptibility of HIV-positive individuals, has underscored the urgent need for in-depth study of the biology of Mycobacterium tuberculosis address the resurgence of TB. In aiming to understand the mechanisms by which mycobacteria react to their immediate environments, molecular genetic tools have been developed from naturally occurring genetic elements. These include protein expressing genes, and episomal and integrating elements, which have been derived mainly from prokaryotic but also from eukaryotic organisms. Molecular genetic tools that had been established as routine procedures in other prokaryotic genera were thus mimicked. Knowledge of the underlying mechanisms greatly expedited the harnessing of these elements for mycobacteriological research and has brought us to a point where these molecular genetic tools are now employed routinely in laboratories worldwide.
Collapse
Affiliation(s)
- Edith E Machowski
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, School of Pathology, University of the Witwatersrand and National Health Laboratory Service, P.O. Box 1038, Johannesburg 2000, South Africa.
| | | | | |
Collapse
|
149
|
Gao LY, Guo S, McLaughlin B, Morisaki H, Engel JN, Brown EJ. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol 2004; 53:1677-93. [PMID: 15341647 DOI: 10.1111/j.1365-2958.2004.04261.x] [Citation(s) in RCA: 302] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871-Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host.
Collapse
Affiliation(s)
- Lian-Yong Gao
- Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
150
|
Delogu G, Bua A, Pusceddu C, Parra M, Fadda G, Brennan MJ, Zanetti S. Expression and purification of recombinant methylated HBHA inMycobacterium smegmatis. FEMS Microbiol Lett 2004; 239:33-9. [PMID: 15451098 DOI: 10.1016/j.femsle.2004.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 07/22/2004] [Accepted: 08/10/2004] [Indexed: 10/26/2022] Open
Abstract
The Heparin-Binding Haemagglutinin (HBHA) is a mycobacterial adhesin involved in the dissemination of Mycobacterium tuberculosis from the site of primary infection and a potential candidate for the development of a new vaccine against tuberculosis. Methylation of HBHA is a novel post-translational event that imparts important immunological properties to the protein. Since recombinant HBHA expressed in Escherichia coli is not methylated, we investigated the possibility of producing recombinant methylated HBHA in fast growing mycobacteria for use in immunological and biochemical studies. The complete coding sequence of HBHA was cloned in the plasmid pMV206, under the control of a strong promoter (hsp60) or its own promoter. The constructs generated were electroporated into Mycobacterium smegmatis and the recombinant strains obtained were analyzed for the presence of the HBHA protein using the anti-HBHA monoclonal antibodies D2 and E4. Our results indicate that expression of high amounts of intact protein can be toxic for the mycobacteria, that methylated HBHA can be obtained in M. smegmatis only when using a promoter sequence weaker than hsp60 and that the expression of the complete structural gene is required in order to obtain methylated HBHA. We constructed a recombinant M. smegmatis strain (pMV3-38) that expresses a histidine-tagged methylated HBHA that can be easily purified. The use of fast-growing strains of M. smegmatis to obtain significant amounts of purified HBHA protein within a short timeframe, should be an effective strategy for the evaluation of a new HBHA-based vaccine candidate for tuberculosis.
Collapse
Affiliation(s)
- Giovanni Delogu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari.
| | | | | | | | | | | | | |
Collapse
|