101
|
Abstract
The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in Raff, 1996). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in Weinberg, 2007). The detection of genetic lesions in human cancers that activate prosurvival genes or disable proapoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux, Cory, and Adams, 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007). Importantly, apoptosis is also a major contributor to anticancer therapy-induced killing of tumor cells (reviewed in Cory and Adams, 2002; Cragg et al., 2009). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in Lessene, Czabotar, and Colman, 2008).
Collapse
Affiliation(s)
- Gemma Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
102
|
Cashman JR, MacDonald M, Ghirmai S, Okolotowicz KJ, Sergienko E, Brown B, Garcia X, Zhai D, Dahl R, Reed JC. Inhibition of Bfl-1 with N-aryl maleimides. Bioorg Med Chem Lett 2010; 20:6560-4. [PMID: 20933419 PMCID: PMC2987701 DOI: 10.1016/j.bmcl.2010.09.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
Abstract
High-throughput screening of 66,000 compounds using competitive binding of peptides comprising the BH3 domain to anti-apoptotic Bfl-1 led to the identification of 14 validated 'hits' as inhibitors of Bfl-1. N-Aryl maleimide 1 was among the validated 'hits'. A chemical library encompassing over 280 analogs of 1 was prepared following a two-step synthesis. Structure-activity studies for inhibition of Bfl-1 by analogs of N-aryl maleimide 1 revealed a preference for electron-withdrawing substituents in the N-aryl ring and hydrophilic amines appended to the maleimide core. Inhibitors of Bfl-1 are potential development candidates for anti-cancer therapeutics.
Collapse
Affiliation(s)
- John R Cashman
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Tripathi P, Kurtulus S, Wojciechowski S, Sholl A, Hoebe K, Morris SC, Finkelman FD, Grimes HL, Hildeman DA. STAT5 is critical to maintain effector CD8+ T cell responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:2116-24. [PMID: 20644163 PMCID: PMC2991082 DOI: 10.4049/jimmunol.1000842] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During an immune response, most effector T cells die, whereas some are maintained and become memory T cells. Factors controlling the survival of effector CD4(+) and CD8(+) T cells remain unclear. In this study, we assessed the role of IL-7, IL-15, and their common signal transducer, STAT5, in maintaining effector CD4(+) and CD8(+) T cell responses. Following viral infection, IL-15 was required to maintain a subpopulation of effector CD8(+) T cells expressing high levels of killer cell lectin-like receptor subfamily G, member 1 (KLRG1), and lower levels of CD127, whereas IL-7 and IL-15 acted together to maintain KLRG1(low)CD127(high) CD8(+) effector T cells. In contrast, effector CD4(+) T cell numbers were not affected by the individual or combined loss of IL-15 and IL-7. Both IL-7 and IL-15 drove phosphorylation of STAT5 within effector CD4(+) and CD8(+) T cells. When STAT5 was deleted during the course of infection, both KLRG1(high)CD127(low) and KLRG1(low)CD127(high) CD8(+) T cells were lost, although effector CD4(+) T cell populations were maintained. Furthermore, STAT5 was required to maintain expression of Bcl-2 in effector CD8(+), but not CD4(+), T cells. Finally, IL-7 and IL-15 required STAT5 to induce Bcl-2 expression and to maintain effector CD8(+) T cells. Together, these data demonstrate that IL-7 and IL-15 signaling converge on STAT5 to maintain effector CD8(+) T cell responses.
Collapse
Affiliation(s)
- Pulak Tripathi
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Sema Kurtulus
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Sara Wojciechowski
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Allyson Sholl
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Kasper Hoebe
- Department of Pediatrics, Division of Molecular Immunology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Suzanne C. Morris
- Department of Immunology, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - Fred D. Finkelman
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Immunology, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | - H. Leighton Grimes
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - David A. Hildeman
- Department of Pediatrics, Division of Immunobiology, Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
104
|
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110:1155-64. [PMID: 20564213 PMCID: PMC2922950 DOI: 10.1002/jcb.22630] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5' rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-kappaB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-kappaB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
105
|
Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 2010; 29:5071-82. [PMID: 20581863 DOI: 10.1038/onc.2010.248] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells circulating in peripheral blood (PB) differ from the leukemic fraction in lymph nodes (LNs) with respect to cell division and drug sensitivity. CD40 stimulation of PB CLL cells in vitro results in chemoresistance and provides a partial model for the LN microenvironment. The TLR9 ligand CpG induces proliferation in immunoglobulin variable heavy-chain-unmutated CLL, but apoptosis in immunoglobulin variable heavy-chain-mutated CLL. To juxtapose proliferative with antiapoptotic signals, we investigated the effects of CpG in the context of CD40 ligation in mutated versus unmutated CLL cells in this study. Prolonged CD40 ligation induced classical, followed by alternative nuclear factor-kappaB (NF-kappaB), activity in both subgroups, correlating with enhanced Bfl-1 and Bcl-X(L) levels, respectively. A dichotomy in NF-kappaB signaling occurred on combined CD40/TLR9 triggering. This induced declining p52 and Bcl-X(L) levels, and reversed chemoresistance only in mutated cells, whereas unmutated cells proliferated, maintained p52 and Bcl-X(L) and remained chemoresistant. The pivotal contribution of Bcl-X(L) to chemoresistance was shown by the BH3 mimetic ABT-737 and RNA interference. Finally, in ex vivo LN samples, p52, p65 and Bcl-X(L) levels were highly expressed, corroborating the in vitro findings. Thus, a distinction in NF-kappaB activation and drug susceptibility in mutated versus unmutated (LN-like) CLL cells was uncovered, which was causally linked to Bcl-X(L) levels.
Collapse
|
106
|
Abstract
The race for a cure to cancer continues, fueled by unprecedented discoveries of fundamental biology underlying carcinogenesis and tumorigenesis. The expansion of the target list and tools to approach them is moving the oncology community extraordinarily rapidly to clinical trials, bringing new hope for cancer patients. This effort is also propelling biological discoveries in cardiovascular research, because many of the targets being explored in cancer play fundamental roles in the heart and vasculature. The combined efforts of cardiovascular and cancer biologists, along with clinical investigators in these fields, will be needed to understand how to safely exploit these efforts. Here, we discuss a few of the many research foci in oncology where we believe such collaboration will be particularly important.
Collapse
Affiliation(s)
- Xuyang Peng
- Cardiovascular Medicine, Vanderbilt University Medical Center, PRB 359B Pierce Ave., Nashville, TN 37232, USA.
| | | | | |
Collapse
|
107
|
Damdinsuren B, Zhang Y, Khalil A, Wood WH, Becker KG, Shlomchik MJ, Sen R. Single round of antigen receptor signaling programs naive B cells to receive T cell help. Immunity 2010; 32:355-66. [PMID: 20226693 PMCID: PMC3607434 DOI: 10.1016/j.immuni.2010.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 11/09/2009] [Accepted: 02/17/2010] [Indexed: 01/05/2023]
Abstract
To simulate transient B cell activation that is the likely initiator of T-dependent responses, we examined the molecular and functional consequences of a single round of immunoglobulin M (IgM) signaling. This form of activation triggered early cytosolic signaling and the transcription factor NF-kappaB activation indistinguishably from conventional continuous IgM crosslinking but did not induce G1 progression. However, single round IgM signaling changed the expression of chemokine and chemokine receptor genes implicated in initiating T-dependent responses, as well as accentuated responsiveness to CD40 signaling. Several features of single-round IgM signaling in vitro were recapitulated in B cells after short-term exposure to antigen in vivo. We propose that transient BCR signals prime B cells to receive T cell help by increasing the probability of B-T encounter and creating a cellular environment that is hyper-responsive to CD40 signaling.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD40 Antigens/immunology
- CD40 Antigens/metabolism
- G1 Phase
- Gene Expression Regulation
- Immunity, Innate
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Signal Transduction
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Bazarragchaa Damdinsuren
- Gene Regulation Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Yongqing Zhang
- Research Resources Branch, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Ashraf Khalil
- Department of Immunobiology, Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - William H. Wood
- Research Resources Branch, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Kevin G. Becker
- Research Resources Branch, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224
| | - Mark J. Shlomchik
- Department of Immunobiology, Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Ranjan Sen
- Gene Regulation Section, Laboratory of Cellular and Molecular Biology, National Institute on Aging, 251 Bayview Boulevard, Baltimore, MD 21224
| |
Collapse
|
108
|
Abstract
The antiapoptotic Bcl-2 family member Bfl-1 is up-regulated in many human tumors in which nuclear factor-kappaB (NF-kappaB) is implicated and contributes significantly to tumor cell survival and chemoresistance. We previously found that NF-kappaB induces transcription of bfl-1 and that the Bfl-1 protein is also regulated by ubiquitin-mediated proteasomal degradation. However, the role that dysregulation of Bfl-1 turnover plays in cancer is not known. Here we show that ubiquitination-resistant mutants of Bfl-1 display increased stability and greatly accelerated tumor formation in a mouse model of leukemia/lymphoma. We also show that tyrosine kinase Lck is up-regulated and activated in these tumors and leads to activation of the IkappaB kinase, Akt, and extracellular signal-regulated protein kinase signaling pathways, which are key mediators in cancer. Coexpression of Bfl-1 and constitutively active Lck promoted tumor formation, whereas Lck knockdown in tumor-derived cells suppressed leukemia/lymphomagenesis. These data demonstrate that ubiquitination is a critical tumor suppression mechanism regulating Bfl-1 function and suggest that mutations in bfl-1 or in the signaling pathways that control its ubiquitination may predispose one to cancer. Furthermore, because bfl-1 is up-regulated in many human hematopoietic tumors, this finding suggests that strategies to promote Bfl-1 ubiquitination may improve therapy.
Collapse
|
109
|
Krivoruchko A, Storey KB. Molecular mechanisms of turtle anoxia tolerance: A role for NF-κB. Gene 2010; 450:63-9. [DOI: 10.1016/j.gene.2009.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 10/09/2009] [Accepted: 10/09/2009] [Indexed: 01/20/2023]
|
110
|
Morais C, Healy H, Johnson DW, Gobe G. Inhibition of nuclear factor kappa B attenuates tumour progression in an animal model of renal cell carcinoma. Nephrol Dial Transplant 2009; 25:1462-74. [PMID: 20037166 DOI: 10.1093/ndt/gfp673] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a highly metastatic and lethal disease with few efficacious treatments. Many studies have shown that the ubiquitous transcription factor nuclear factor kappa B (NF-kappaB) plays a key role in the development and progression of many cancers including RCC. The aim of this investigation was to evaluate the anti-cancer effect of pyrrolidine dithiocarbamate (PDTC), a NF-kappaB inhibitor, in a murine xenograft model of RCC. METHODS The metastatic human RCC cell line, SN12K1, was inoculated into the left kidneys of severe combined immunodeficiency mice and the effect of semi-continuous PDTC treatment (50 mg/kg) on RCC growth analysed 5 weeks later. The analyses carried out in three groups (no treatment, RCC alone and RCC + PDTC) at 5 weeks were: renal weight, protein expression by immunohistochemistry and Western immunoblot, apoptosis (TdT-mediated nick end labelling and morphology) and mitosis (morphology). RESULTS PDTC significantly decreased RCC growth and the expression of NF-kappaB subunits (p50, p52, c-Rel and RelB), upstream IKK-beta and IKK-gamma, but did not induce any changes in the expression of IkappaB-alpha and IkappaB-beta. RCC growth was associated with a significant decrease in the expression of the anti-apoptotic proteins Bcl-2 and Bcl-(XL) and increase in pro-apoptotic Bax, all of which were reversed by PDTC. Cell proliferation was significantly reduced by PDTC. CONCLUSION The results demonstrate the potential anti-cancer benefits of treating NF-kappaB positive RCCs with NF-kappaB inhibitors like PDTC.
Collapse
Affiliation(s)
- Christudas Morais
- Department of Renal Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| | | | | | | |
Collapse
|
111
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
112
|
Meningococcal porin PorB prevents cellular apoptosis in a toll-like receptor 2- and NF-kappaB-independent manner. Infect Immun 2009; 78:994-1003. [PMID: 20028813 DOI: 10.1128/iai.00156-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Meningococcal porin PorB is an inhibitor of apoptosis induced via the intrinsic pathway in various cell types. This effect is attributed to prevention of mitochondrial depolarization and of subsequent release of proapoptotic mitochondrial factors. To determine whether apoptosis is globally inhibited by PorB, we compared the intrinsic and extrinsic pathways in HeLa cells. Interestingly, PorB does not prevent extrinsic apoptosis induced by tumor necrosis factor alpha plus cycloheximide, suggesting a unique mitochondrial pathway specificity. Several intracellular factors regulated by NF-kappaB, including members of the Bcl-2 family and of the inhibitor of apoptosis (IAP) family, play major roles in controlling apoptosis, and some of them are thought to contribute to the antiapoptotic effect of the gonococcal porin, PIB. However, most of the members of the Bcl-2 family and the IAP family are not induced by meningococcal PorB in HeLa cells, with the exception of Bfl-1/A1. Interestingly, PorB does not induce NF-kappaB activation in HeLa cells, likely due to a lack of Toll-like receptor 2 (TLR2) expression in these cells. Bfl-1/A1 expression is also regulated by CBF1, a nuclear component of the Notch signaling pathway, independent of NF-kappaB activation. Since HeLa cells are protected by PorB from intrinsic apoptosis events, regardless of TLR2 and NF-kappaB expression, the possibility of a contribution of alternative signaling pathways to this effect cannot be excluded. In this paper, we describe an initial dissection of the cascade of cellular events involved in the antiapoptotic effect of PorB in the absence of TLR2.
Collapse
|
113
|
Nuutinen U, Ropponen A, Eeva J, Eray M, Pellinen R, Wahlfors J, Pelkonen J. The Effect of Microenvironmental CD40 Signals on TRAIL- and Drug-induced Apoptosis in Follicular Lymphoma Cells. Scand J Immunol 2009; 70:565-73. [DOI: 10.1111/j.1365-3083.2009.02330.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
114
|
Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 2009; 106:19946-51. [PMID: 19897720 DOI: 10.1073/pnas.0907511106] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.
Collapse
|
115
|
Dai Y(J, DeFrances MC, Zou C, Johnson CJ, Zarnegar R. The Met protooncogene is a transcriptional target of NF kappaB: implications for cell survival. J Cell Biochem 2009; 107:1222-36. [PMID: 19530226 PMCID: PMC2868332 DOI: 10.1002/jcb.22226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
NF kappaB transcription factor regulates gene expression in response to extracellular stimuli such as TNF alpha. The genes regulated by NF kappaB encode for proteins which control cell growth and survival. Met is the tyrosine kinase receptor for hepatocyte growth factor, and it too promotes cell mitogenesis and survival. Previously, we showed that Met gene expression is regulated by TNF alpha. In this report, we identify and characterize a TNF alpha response element in the Met promoter. This element contains tandem C/EBP sites adjacent to an NF kappaB site. Binding of the NF kappaB p65 subunit and C/EBP beta to this element is induced by TNF alpha. To examine the interplay of NF kappaB and Met in vivo, we determined that Met mRNA and protein levels are reduced in the livers of p65-/- mice as compared to controls. In p65-/- mouse embryonic fibroblasts (MEFs), Met induction by TNF alpha is abrogated while Met's basal gene expression is reduced by half as compared to controls. When overexpressed in p65-/- MEFs, Met confers resistance to TNF-alpha-mediated cell death. Conversely, expression of dominant negative Met in wild-type MEFs renders them sensitive to cell death induced by TNF alpha. A similar response following TNF alpha challenge was observed in hepatocytic cells treated with siRNA to knockdown endogenous Met. Together, these results indicate that the Met gene is a direct target of NF kappaB and that Met participates in NF kappaB-mediated cell survival.
Collapse
Affiliation(s)
- Yu (James) Dai
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Marie C. DeFrances
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Chunbin Zou
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Carla J. Johnson
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Reza Zarnegar
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
- University of Pittsburgh Cancer Institute, Pittsburgh, PA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
116
|
Chen F, Beezhold K, Castranova V. Tumor Promoting or Tumor Suppressing of NF-κ B, a Matter of Cell Context Dependency. Int Rev Immunol 2009; 27:183-204. [DOI: 10.1080/08830180802130327] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
117
|
Abstract
CD40 is a TNF receptor family member that is widely recognized for its prominent role in immune regulation and homeostasis. Expression of CD40 is not restricted to normal lymphoid cells but is also evident in the majority of haemopoietic and epithelial malignancies where it has been implicated in oncogenic events. Accumulating evidence, however, suggests that the CD40 pathway can be exploited for cancer therapy by virtue of its ability to stimulate the host anti-tumor immune response, normalize the tumor microenvironment and directly suppress the growth of CD40-positive tumors. Here, we provide an overview of the multifaceted functions of the CD40 pathway in cancer and its emerging role in the treatment of malignancy.
Collapse
Affiliation(s)
- Angelica S I Loskog
- Rudbeck Laboratory, Clinical Immunology Division, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
118
|
Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 2009; 229:152-72. [PMID: 19426221 DOI: 10.1111/j.1600-065x.2009.00782.x] [Citation(s) in RCA: 1124] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY During the generation of a successful adaptive immune response, multiple molecular signals are required. A primary signal is the binding of cognate antigen to an antigen receptor expressed by T and B lymphocytes. Multiple secondary signals involve the engagement of costimulatory molecules expressed by T and B lymphocytes with their respective ligands. Because of its essential role in immunity, one of the best characterized of the costimulatory molecules is the receptor CD40. This receptor, a member of the tumor necrosis factor receptor family, is expressed by B cells, professional antigen-presenting cells, as well as non-immune cells and tumors. CD40 binds its ligand CD40L, which is transiently expressed on T cells and other non-immune cells under inflammatory conditions. A wide spectrum of molecular and cellular processes is regulated by CD40 engagement including the initiation and progression of cellular and humoral adaptive immunity. In this review, we describe the downstream signaling pathways initiated by CD40 and overview how CD40 engagement or antagonism modulates humoral and cellular immunity. Lastly, we discuss the role of CD40 as a target in harnessing anti-tumor immunity. This review underscores the essential role CD40 plays in adaptive immunity.
Collapse
Affiliation(s)
- Raul Elgueta
- Department of Microbiology and Immunology, Dartmouth Medical School and The Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | | | | | | | |
Collapse
|
119
|
Doreau A, Belot A, Bastid J, Riche B, Trescol-Biemont MC, Ranchin B, Fabien N, Cochat P, Pouteil-Noble C, Trolliet P, Durieu I, Tebib J, Kassai B, Ansieau S, Puisieux A, Eliaou JF, Bonnefoy-Bérard N. Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 2009; 10:778-85. [PMID: 19483719 DOI: 10.1038/ni.1741] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 04/16/2009] [Indexed: 01/28/2023]
Abstract
Studies have suggested involvement of interleukin 17 (IL-17) in autoimmune diseases, although its effect on B cell biology has not been clearly established. Here we demonstrate that IL-17 alone or in combination with B cell-activating factor controlled the survival and proliferation of human B cells and their differentiation into immunoglobulin-secreting cells. This effect was mediated mainly through the nuclear factor-kappaB-regulated transcription factor Twist-1. In support of the relevance of our observations and the potential involvement of IL-17 in B cell biology, we found that the serum of patients with systemic lupus erythematosus had higher concentrations of IL-17 than did the serum of healthy people and that IL-17 abundance correlated with the disease severity of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Agnès Doreau
- Université de Lyon, Institut Fédératif de Recherche 128, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Ding B, Kirkiles-Smith NC, Pober JS. FOXO3a regulates oxygen-responsive expression of tumor necrosis factor receptor 2 in human dermal microvascular endothelial cells. J Biol Chem 2009; 284:19331-9. [PMID: 19473970 DOI: 10.1074/jbc.m109.006536] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Microvascular endothelial cell (EC) expression of tumor necrosis factor receptor (TNFR) 2 is induced in situ by ischemia/reperfusion injury. To assess effects of molecular oxygen on TNFR2 expression, we subjected cultured human dermal microvascular ECs (HDMECs) to hypoxic conditions (1% O(2)) or to hypoxic conditions followed by return to normoxic conditions. TNFR2 mRNA and protein are expressed under normoxic conditions but are rapidly reduced by hypoxia; they fall even further upon reoxygenation but rebound by 6-9 h. TNFR1 expression is unaffected by hypoxia or reoxygenation in these same cells. We identified a potential FOXO3a binding site in the 5' enhancer region of the TNFR2 gene. FOXO3a from normoxic but not hypoxic HDMECs binds an oligonucleotide sequence matching this site, and the endogenous enhancer binds FOXO3a at this site in HDMECs under normoxic but not hypoxic conditions. Unphosphorylated FOXO3a is present in the nucleus of HDMECs under normoxic conditions. Hypoxia leads to FOXO3a phosphorylation at an Akt/protein kinase B target site and subsequent nuclear export; these processes are reversed by reoxygenation and blocked by LY294002, a phosphatidylinositol 3-kinase inhibitor that blocks Akt activation. LY294002 also prevents the hypoxia-mediated decrease in TNFR2 expression. Transiently transfected FOXO3a activates a TNFR2 promoter/reporter construct in HDMECs, whereas small interference RNA knockdown of FOXO3a reduces TNFR2 but not TNFR1 expression under normoxic conditions. Reduction in TNFR2 by small interference RNA sensitizes HDMECs to TNFR1-mediated apoptosis. We conclude that FOXO3a regulates oxygen-dependent changes in expression of TNFR2 in HDMECs, controlling sensitivity to TNF-mediated apoptosis.
Collapse
Affiliation(s)
- Bo Ding
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8089, USA
| | | | | |
Collapse
|
121
|
Abstract
SUMMARY OX40 (CD134) and its binding partner, OX40L (CD252), are members of the tumor necrosis factor receptor/tumor necrosis factor superfamily and are expressed on activated CD4(+) and CD8(+) T cells as well as on a number of other lymphoid and non-lymphoid cells. Costimulatory signals from OX40 to a conventional T cell promote division and survival, augmenting the clonal expansion of effector and memory populations as they are being generated to antigen. OX40 additionally suppresses the differentiation and activity of T-regulatory cells, further amplifying this process. OX40 and OX40L also regulate cytokine production from T cells, antigen-presenting cells, natural killer cells, and natural killer T cells, and modulate cytokine receptor signaling. In line with these important modulatory functions, OX40-OX40L interactions have been found to play a central role in the development of multiple inflammatory and autoimmune diseases, making them attractive candidates for intervention in the clinic. Conversely, stimulating OX40 has shown it to be a candidate for therapeutic immunization strategies for cancer and infectious disease. This review provides a broad overview of the biology of OX40 including the intracellular signals from OX40 that impact many aspects of immune function and have promoted OX40 as one of the most prominent costimulatory molecules known to control T cells.
Collapse
Affiliation(s)
- Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
122
|
Vogler M, Butterworth M, Majid A, Walewska RJ, Sun XM, Dyer MJS, Cohen GM. Concurrent up-regulation of BCL-XL and BCL2A1 induces approximately 1000-fold resistance to ABT-737 in chronic lymphocytic leukemia. Blood 2009; 113:4403-13. [PMID: 19008458 DOI: 10.1182/blood-2008-08-173310] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABT-737 and its orally active analog, ABT-263, are rationally designed inhibitors of BCL2 and BCL-X(L). ABT-263 shows promising activity in early phase 1 clinical trials in B-cell malignancies, particularly chronic lymphocytic leukemia (CLL). In vitro, peripheral blood CLL cells are extremely sensitive to ABT-737 (EC(50) approximately 7 nM), with rapid induction of apoptosis in all 60 patients tested, independent of parameters associated with disease progression and chemotherapy resistance. In contrast to data from cell lines, ABT-737-induced apoptosis in CLL cells was largely MCL1-independent. Because CLL cells within lymph nodes are more resistant to apoptosis than those in peripheral blood, CLL cells were cultured on CD154-expressing fibroblasts in the presence of interleukin-4 (IL-4) to mimic the lymph node microenvironment. CLL cells thus cultured developed an approximately 1000-fold resistance to ABT-737 within 24 hours. Investigations of the underlying mechanism revealed that this resistance occurred upstream of mitochondrial perturbation and involved de novo synthesis of the antiapoptotic proteins BCL-X(L) and BCL2A1, which were responsible for resistance to low and high ABT-737 concentrations, respectively. Our data indicate that after therapy with ABT-737-related inhibitors, resistant CLL cells might develop in lymph nodes in vivo and that treatment strategies targeting multiple BCL2 antiapoptotic members simultaneously may have synergistic activity.
Collapse
MESH Headings
- Apoptosis/drug effects
- Biphenyl Compounds/pharmacology
- Blotting, Western
- CD40 Ligand/genetics
- CD40 Ligand/metabolism
- Drug Resistance, Neoplasm
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Immunoenzyme Techniques
- Immunoprecipitation
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymph Nodes/drug effects
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphocytes/pathology
- Minor Histocompatibility Antigens
- Mitochondria/drug effects
- Mitochondria/metabolism
- Myeloid Cell Leukemia Sequence 1 Protein
- Nitrophenols/pharmacology
- Piperazines/pharmacology
- Protein Biosynthesis/drug effects
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Small Interfering/pharmacology
- Sulfonamides/pharmacology
- Up-Regulation
- bcl-X Protein/antagonists & inhibitors
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Meike Vogler
- Medical Research Council Toxicology Unit, University of Leicester, Leicester, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
123
|
Chen YW, Lin GJ, Chia WT, Lin CK, Chuang YP, Sytwu HK. Triptolide exerts anti-tumor effect on oral cancer and KB cells in vitro and in vivo. Oral Oncol 2009; 45:562-8. [PMID: 19359213 DOI: 10.1016/j.oraloncology.2008.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 01/11/2023]
Abstract
Triptolide (TPL), a diterpenoid triepoxide purified from the Chinese herb Tripterygium wilfordii Hook F, has been reported to potentiate the anti-tumor effect in various cancer cells. However, the effect of TPL on oral cancers is not yet evaluated. Herein we first demonstrate that TPL induces prominent growth inhibition and apoptosis in two oral cancer cell lines, SCC25 and OEC-M1 and in KB cells. Our results indicate that TPL induces a dose-dependent apoptosis of these cells at nanomolar concentration. Apoptosis signalings are both activated through time upon TPL treatment detected by elevated caspase-3, 8, 9 activities. In xenograft tumor mouse model, TPL injection successfully inhibits the tumor growth via apoptosis induction which was demonstrated by TUNEL assay. These results demonstrate that TPL exerts anti-tumor effect on oral cancer and KB cells and suggest further the potential of TPL combining with other chemotherapeutic agents or radiotherapy for advanced oral cancer.
Collapse
Affiliation(s)
- Yuan-Wu Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, No. 161, Section 6, Min-Chuan East Road, Neihu 114, Taipei 114, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
124
|
Ponce C, Torres M, Galleguillos C, Sovino H, Boric MA, Fuentes A, Johnson MC. Nuclear factor κB pathway and interleukin-6 are affected in eutopic endometrium of women with endometriosis. Reproduction 2009; 137:727-37. [DOI: 10.1530/rep-08-0407] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In order to investigate the role of the nuclear factor κB (NFKB) pathway on gene expression in the eutopic endometrium in endometriosis, and in particular of interleukin-6 (IL6), we evaluated RELA, IκB kinase (CHUK), NFKBIA and IL6 expressions and NFKB DNA binding in eutopic endometrium from women with endometriosis. Eutopic endometrium was obtained from 37 women with endometriosis and 42 fertile women during laparoscopy. We analysed RELA, CHUK, NFKBIA and IL6 mRNA levels (RT-PCR); RELA, CHUK and NFKBIA proteins and p-NFKBIA/NFKBIA ratio (western blot); and NFKB binding (DNA shift assay) and IL6 concentration (ELISA) in endometrial explants. Our results indicate that mRNA and cytoplasmic proteins of RELA and CHUK exhibit constant levels in normal endometrium during the menstrual cycle. A dramatic increase (P<0.05) in NFKBIA mRNA expression, RELA nuclear presence and the mRNA and the protein of IL6 during late secretory phase was also observed in this tissue. By contrast, in eutopic endometrium from endometriosis patients, a decrease (P<0.05) in IL6 mRNA and protein (61%), NFKBIA mRNA (46%), p-NFKBIA/NFKBIA ratio (42%), RELA nuclear stromal (68%) and CHUK (48%) proteins were found exclusively during the late secretory phase compared with normal endometrium. In conclusion, the canonical activation of NFKB pathway is deregulated and may have reduced transcriptional function affecting NFKBIA and IL6 expression, genes related local proinflammatory processes. These molecular alterations observed during the late secretory phase in eutopic endometrium from endometriosis patients constitute a NFKB system dysfunction, suggesting that NFKB could be an important factor in endometriosis aetiology.
Collapse
|
125
|
Hepatitis B virus X protein modulates apoptosis in primary rat hepatocytes by regulating both NF-kappaB and the mitochondrial permeability transition pore. J Virol 2009; 83:4718-31. [PMID: 19279112 DOI: 10.1128/jvi.02590-08] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hepatitis B virus (HBV) X protein (HBx) is a multifunctional protein that regulates numerous cellular signal transduction pathways, including those that modulate apoptosis. However, different HBx-dependent effects on apoptosis have been reported; these differences are likely the consequence of the exact conditions and cell types used in a study. Many of the previously reported studies that analyzed HBx regulation of apoptosis were conducted in immortalized or transformed cells, and the alterations that have transformed or immortalized these cells likely impact apoptotic pathways. We examined the effects of HBx on apoptotic pathways in cultured primary rat hepatocytes, a biologically relevant system that mimics normal hepatocytes in the liver. We analyzed the effects of HBx on apoptosis both when HBx was expressed in the absence of other HBV proteins and in the context of HBV replication. HBx stimulation of NF-kappaB inhibited the activation of apoptotic pathways in cultured primary rat hepatocytes. However, when HBx-induced activation of NF-kappaB was blocked, HBx stimulated apoptosis; blocking the activity of the mitochondrial permeability transition pore inhibited HBx activation of apoptosis. These results suggest that HBx can be either proapoptotic or antiapoptotic in hepatocytes, depending on the status of NF-kappaB, and confirm previous studies that link some HBx activities to modulation of the mitochondrial permeability transition pore. Overall, our studies define apoptotic pathways that are regulated by HBx in cultured primary hepatocytes and provide potential mechanisms for the development of HBV-associated liver cancer.
Collapse
|
126
|
Hsu TS, Yang PM, Tsai JS, Lin LY. Attenuation of cadmium-induced necrotic cell death by necrostatin-1: Potential necrostatin-1 acting sites. Toxicol Appl Pharmacol 2009; 235:153-62. [DOI: 10.1016/j.taap.2008.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/09/2008] [Accepted: 12/11/2008] [Indexed: 12/21/2022]
|
127
|
Biopolymer-released dexamethasone prevents tumor necrosis factor alpha-induced loss of auditory hair cells in vitro: implications toward the development of a drug-eluting cochlear implant electrode array. Otol Neurotol 2009; 29:1012-9. [PMID: 18818545 DOI: 10.1097/mao.0b013e3181859a1f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
HYPOTHESIS Polymer-eluted dexamethasone (DXM) will retain its ability to protect against tumor necrosis factor alpha (TNFalpha)-induced hair cell (HC) loss. BACKGROUND TNFalpha has been shown to be associated with trauma-induced hearing loss. DXM has been demonstrated to protect the cochlea against trauma-induced hearing loss. DXM is currently administered either systemically or locally to treat patients with sudden hearing loss of unknown cause. METHODS P-3 organ of Corti explants challenged with an ototoxic level of TNFalpha was the experimental system, and the base form of DXM (DXMb) incorporated into a biorelease polymer (i.e., SIBS) was the otoprotection molecule tested. The efficacy of otoprotection was determined by counts of fluorescein isothiocyanate-phalloidin-stained HCs and changes in gene expression. RESULTS HC counts show 1) SIBS alone did not protect HCs from TNFalpha ototoxicity (SIBS versus SIBS + TNFalpha; p < 0.001), and 2) SIBS with DXMb provides a significant level of protection against TNFalpha-induced loss of HCs (TNFalpha + SIBS versus TNFalpha + SIBS/DXMb, 299 mug; p < 0.001). Gene expression results show that polymer-eluted DXMb 1) upregulates antiapoptotic genes (i.e., Bcl-2, Bcl-xl) and downregulates a proapoptotic gene (i.e., Bax) in TNFalpha-challenged explants and 2) downregulates TNFR1 in these explants. CONCLUSION Polymer-eluted DXMb retains its otoprotection capabilities in our in vitro test system of TNFalpha-challenged organ of Corti explants by altering the pattern of gene expression to favor survival of TNFalpha-exposed HCs. These results, although in vitro, support the application of polymer containing DXMb to electrode arrays for the conservation of hearing during cochlear implantation.
Collapse
|
128
|
Huerta-Yepez S, Vega M, Escoto-Chavez SE, Murdock B, Sakai T, Baritaki S, Bonavida B. Nitric oxide sensitizes tumor cells to TRAIL-induced apoptosis via inhibition of the DR5 transcription repressor Yin Yang 1. Nitric Oxide 2009; 20:39-52. [PMID: 18778787 DOI: 10.1016/j.niox.2008.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/26/2022]
Abstract
Treatment of TRAIL-resistant tumor cells with the nitric oxide donor DETANONOate sensitizes the tumor cells to TRAIL-induced apoptosis concomitantly with DR5 upregulation. The mechanism of sensitization was examined based on the hypothesis that DETANONOate inhibits a transcription repressor Yin Yang 1 (YY1) that negatively regulates DR5 transcription. Treatment of the prostate carcinoma cell lines with DETANONOate inhibited both NF-kappaB and YY1 DNA-binding activities concomitantly with upregulation of DR5 expression. The direct role of YY1 in the regulation of TRAIL resistance was demonstrated in cells treated with YY1 siRNA resulting in TRAIL-induced apoptosis. The role of YY1 in the transcriptional regulation of DR5 was examined in cells treated with a DR5 luciferase reporter system (pDR5) and two constructs, namely, the pDR5/-605 construct with a deletion of the putative YY1 DNA-binding region (-1224 to -605) and a construct pDR5-YY1 with a mutation of the YY1 DNA-binding site. A significant (3-fold) augmentation of luciferase activity over baseline transfection with pDR5 was observed in cells transfected with the modified constructs. ChIP analysis corroborated the YY1 binding to the DR5 promoter. In vivo, tissues from nude mice bearing the PC-3 xenograft and treated with DETANONOate showed inhibition of YY1 and upregulation of DR5. The present findings demonstrate that YY1 negatively regulates DR5 transcription and expression and these correlated with resistance to TRAIL-induced apoptosis. DETANONOate inhibits both NF-kappaB and YY1 and in combination with TRAIL reverses tumor cell resistance to TRAIL apoptosis.
Collapse
Affiliation(s)
- Sara Huerta-Yepez
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, A2-060, Los Angeles, CA 90095-73622, USA
| | | | | | | | | | | | | |
Collapse
|
129
|
Hu W, Xie J, Zhao J, Xu Y, Yang S, Ni W. Involvement of Bcl-2 family in apoptosis and signal pathways induced by cigarette smoke extract in the human airway smooth muscle cells. DNA Cell Biol 2009; 28:13-22. [PMID: 19090673 DOI: 10.1089/dna.2008.0782] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a highly prevalent airway disease characterized by an abnormal inflammatory response of the lungs to noxious particles and gases. Cigarette smoking remains a major risk factor for COPD development; however, little is known about its effect on human airway smooth muscle cells (HASMCs). The aim of this study is to examine whether apoptosis is involved in cigarette smoke extract (CSE)-induced HASMC death and the molecular mechanisms underlying it. Our studies have shown that CSE increased the level of reactive oxygen species (ROS) and cell apoptosis of HASMCs in a dose- and time-dependent manner, and the ROS scavenger N-acetyl-cysteine abrogated the effect of ROS level and apoptosis on HASMCs. Further, the expression of Bax, Bad, and Fas was increased but Bcl-2 and nuclear factor-kappaB (NF-kappaB) was decreased in a dose- and time-dependent fashion in CSE-induced apoptosis in HASMCs. Taken together, CSE could inhibit the cell growth and induce apoptosis of HASMCs through both the mitochondrial pathway and death receptor pathway. Oxidative stress and inhibition of NF-kappaB expression caused by CSE may play important roles in apoptosis and inhibition of cell growth in HASMCs.
Collapse
Affiliation(s)
- Weihua Hu
- Department of Respiratory Medicine, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | |
Collapse
|
130
|
Yoon H, Liu RH. Effect of 2alpha-hydroxyursolic acid on NF-kappaB activation induced by TNF-alpha in human breast cancer MCF-7 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8412-8417. [PMID: 18700741 DOI: 10.1021/jf8012844] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Apples are one of the largest contributors of fruit phenolics of all fruits consumed by Americans and contain a variety of bioactive compounds, which have health benefits. Consumption of apples has been linked to reduced risk of chronic diseases such as cancer and cardiovascular disease. Apple extracts have been shown to have the capabilities of inhibiting NF-kappaB activation in human breast cancer MCF-7 cells. 2Alpha-hydroxyursolic acid is one of the major triterpenoids isolated from apple peels, and its effects on cell proliferation and TNF-alpha-induced NF-kappaB activation in MCF-7 cells were examined. 2Alpha-hydroxyursolic acid significantly inhibited MCF-7 cell proliferation at doses of 20 microM (p < 0.05). Preincubation with 2alpha-hydroxyursolic acid suppressed TNF-alpha-induced NF-kappaB activation in a dose-dependent manner and significantly inhibited the activation at a dose of 20 microM of 2alpha-hydroxyursolic acid (p < 0.05). 2Alpha-hydroxyursolic acid treatment did not affect the phosphorylation level of NF-kappaB inhibitor (IkappaB-alpha), but proteasome activity in MCF-7 cells was inhibited significantly at doses of 10 and 20 microM ( p < 0.05). These results suggest that 2alpha-hydroxyursolic acid has antiproliferative activities against MCF-7 cells and capabilities inhibiting NF-kappaB activation induced by TNF-alpha partially by suppressing proteasome activities.
Collapse
Affiliation(s)
- Hyungeun Yoon
- Department of Food Science, Cornell University, Ithaca, New York 14853-7201, USA
| | | |
Collapse
|
131
|
Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G, Lamy T, Fest T, Tarte K, Guillaudeux T. CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL. THE JOURNAL OF IMMUNOLOGY 2008; 181:1001-11. [PMID: 18606651 DOI: 10.4049/jimmunol.181.2.1001] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The TNF family member TRAIL is emerging as a promising cytotoxic molecule for antitumor therapy. However, its mechanism of action and the possible modulation of its effect by the microenvironment in follicular lymphomas (FL) remain unknown. We show here that TRAIL is cytotoxic only against FL B cells and not against normal B cells, and that DR4 is the main receptor involved in the initiation of the apoptotic cascade. However, the engagement of CD40 by its ligand, mainly expressed on a specific germinal center CD4(+) T cell subpopulation, counteracts TRAIL-induced apoptosis in FL B cells. CD40 induces a rapid RNA and protein up-regulation of c-FLIP and Bcl-x(L). The induction of these antiapoptotic molecules as well as the inhibition of TRAIL-induced apoptosis by CD40 is partially abolished when NF-kappaB activity is inhibited by a selective inhibitor, BAY 117085. Thus, the antiapoptotic signaling of CD40, which interferes with TRAIL-induced apoptosis in FL B cells, involves NF-kappaB-mediated induction of c-FLIP and Bcl-x(L) which can respectively interfere with caspase 8 activation or mitochondrial-mediated apoptosis. These findings suggest that a cotreatment with TRAIL and an inhibitor of NF-kappaB signaling or a blocking anti-CD40 Ab could be of great interest in FL therapy.
Collapse
Affiliation(s)
- Marion Travert
- Institut National de la Santé et de la Recherche Médicale, Unité 917 MICA, Faculté de Médecine, Université Rennes 1, Institut Fédératif de Recherche 140 Génétique Fonctionnelle Agronomie et Santé, Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
PURPOSE OF REVIEW This review aims to summarize recent advances in the mechanisms through which the activation of the transcription factor NF-kappaB contributes to the pathogenesis of multiple myeloma. RECENT FINDINGS This transcription factor regulates expression of numerous genes involved in multiple myeloma pathogenesis, including growth, survival, immortalization, angiogenesis and metastasis. Recently, mutations of NF-kappaB signaling molecules have been identified in multiple myeloma cells. In addition, interactions between multiple myeloma cells and the bone marrow environment play critical roles in NF-kappaB activation as well as in multiple myeloma pathogenesis. Moreover, several drugs that are effective against multiple myeloma, including bortezomib, thalidomide, lenalidomide and arsenic trioxide, have been found to block activation of NF-kappaB. The combination of conventional chemotherapeutic drugs and those that block NF-kappaB activation has now proven to be effective in the treatment of multiple myeloma. SUMMARY Recent studies further underscore the critical role of NF-kappaB in multiple myeloma pathogenesis and have provided the rationale for multiple myeloma therapy with NF-kappaB-specific inhibitors combined with conventional chemotherapeutic drugs.
Collapse
|
133
|
Zhong CY, Zhou YM, Pinkerton KE. NF-kappaB inhibition is involved in tobacco smoke-induced apoptosis in the lungs of rats. Toxicol Appl Pharmacol 2008; 230:150-8. [PMID: 18355884 PMCID: PMC2495769 DOI: 10.1016/j.taap.2008.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Apoptosis is a vital mechanism for the regulation of cell turnover and plays a critical role in tissue homeostasis and development of many disease processes. Previous studies have demonstrated the apoptotic effect of tobacco smoke; however, the molecular mechanisms by which tobacco smoke triggers apoptosis remain unclear. In the present study we investigated the effects of tobacco smoke on the induction of apoptosis in the lungs of rats and modulation of nuclear factor-kappa B (NF-kappaB) in this process. Exposure of rats to 80 mg/m(3) tobacco smoke significantly induced apoptosis in the lungs. Tobacco smoke resulted in inhibition of NF-kappaB activity, noted by suppression of inhibitor of kappaB (IkappaB) kinase (IKK), accumulation of IkappaBalpha, decrease of NF-kappaB DNA binding activity, and downregulation of NF-kappaB-dependent anti-apoptotic proteins, including Bcl-2, Bcl-xl, and inhibitors of apoptosis. Initiator caspases for the death receptor pathway (caspase 8) and the mitochondrial pathway (caspase 9) as well as effector caspase 3 were activated following tobacco smoke exposure. Tobacco smoke exposure did not alter the levels of p53 and Bax proteins. These findings suggest the role of NF-kappaB pathway in tobacco smoke-induced apoptosis.
Collapse
Affiliation(s)
- Cai-Yun Zhong
- Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
134
|
Alvaro T, Lejeune M, García JF, Salvadó MT, López C, Bosch R, Jaén J, Escrivá P, Pons LE. Tumor-infiltrated immune response correlates with alterations in the apoptotic and cell cycle pathways in Hodgkin and Reed-Sternberg cells. Clin Cancer Res 2008; 14:685-91. [PMID: 18245527 DOI: 10.1158/1078-0432.ccr-07-1246] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To analyze tumor-microenvironment relationships in Hodgkin lymphoma (HL) as potential determinants in the decision-making process related to the alterations in cell cycle and apoptotic pathways of Hodgkin/Reed-Sternberg (H/RS) cells. EXPERIMENTAL DESIGN Based on a cohort of 257 classic HL patients, we carried out a global descriptive correlational analysis and logistic regression study to identify tumor-infiltrated immune cell rate in HL that could be interconnected with genes involved in the regulation of apoptotic/proliferative pathways in H/RS cells. RESULTS Our results reveal the existence of a connection between the reactive microenvironment and molecular changes in apoptotic/proliferative pathways in H/RS cells. A lesser incidence of infiltrated cytotoxic cells in the tumor (CD8(+) T lymphocytes, CD57(+) natural killer, and granzyme B(+) cells) was associated with overexpression of antiapoptotic proteins (Bcl-X(L), survivin, caspase-3, and nuclear factor-kappaB) in tumoral cells. Increased incidence of general infiltrated immune cells, such as CD4(+) T lymphocytes, CD57(+) natural killer cells, activated CTL, and dendritic cells, in the microenvironment of the tumor was associated with increased growth fraction of tumoral cells, including G(1)-S checkpoint (cyclin D and cyclin E) and tumor suppressor pathways (p16 and SKP2), and with the presence of EBV (signal transducers and activators of transcription 1 and 3 expression; STAT1/STAT3). CONCLUSIONS A lower level of cytotoxic cells correlated with an increase of antiapoptotic mechanisms in H/RS cells, whereas the global infiltrated immune population correlated with the growth fraction of the tumor. Our collective data suggest a causal relationship between infiltrated immune response and concurrent changes of the different proliferative checkpoints, tumor suppressor, and apoptotic pathways of H/RS cells in HL.
Collapse
Affiliation(s)
- Tomás Alvaro
- Department of Pathology, Hospital de Tortosa Verge de la Cinta, Tortosa, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Calfee-Mason KG, Lee EY, Spear BT, Glauert HP. Role of the p50 subunit of NF-kappaB in vitamin E-induced changes in mice treated with the peroxisome proliferator, ciprofibrate. Food Chem Toxicol 2008; 46:2062-73. [PMID: 18336980 PMCID: PMC2600965 DOI: 10.1016/j.fct.2008.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 10/01/2007] [Accepted: 01/28/2008] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferators (PPs) are a diverse class of chemicals, which cause a dramatic increase in the size and number of hepatic peroxisomes in rodents and eventually lead to the development of hepatic tumors. Nuclear factor-kappaB (NF-kappaB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. Previously we found that the peroxisome proliferator ciprofibrate (CIP) activates NF-kappaB and that dietary vitamin E decreases CIP-induced NF-kappaB DNA binding. We, therefore, hypothesized that inhibition of NF-kappaB by vitamin E is necessary for effects of vitamin E on CIP-induced cell proliferation and the inhibition of apoptosis by CIP. Sixteen B6129 female mice (p50+/+) and twenty mice deficient in the p50 subunit of NF-kappaB (p50-/-) were fed a purified diet containing 10 or 250mg/kg vitamin E (alpha-tocopherol acetate) for 28 days. At that time, half of the mice were placed on the same diet with 0.01% CIP for 10 days. CIP treatment increased the DNA binding activity of NF-kappaB and cell proliferation, but had no significant effect on apoptosis. Compared to wild-type mice, the p50-/- mice had lower NF-kappaB activation, higher basal levels of cell proliferation and apoptosis, and a lower ratio of reduced glutathione to oxidized glutathione (GSH/GSSG). There was approximately a 60% reduction in cell proliferation in the CIP-treated p50-/- mice fed higher vitamin E in comparison to the p50-/- mice fed lower vitamin E. Dietary vitamin E also inhibited the DNA binding activity of NF-kappaB, increased apoptosis, and increased the GSH/GSSG ratio. This study shows the effects of vitamin E on cell growth parameters do not appear to be solely through decreased NF-kappaB activation, suggesting that vitamin E is acting by other molecular mechanisms.
Collapse
Affiliation(s)
- Karen G. Calfee-Mason
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
| | - Eun Y. Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
| | - Brett T. Spear
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40506, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40506, USA
- Graduate Center for Toxicology; University of Kentucky, Lexington, KY 40506, USA
| | - Howard P. Glauert
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40506, USA
- Graduate Center for Toxicology; University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
136
|
Song J, So T, Croft M. Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:7240-8. [PMID: 18490723 PMCID: PMC2410213 DOI: 10.4049/jimmunol.180.11.7240] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The costimulatory molecule OX40 (CD134) is required in many instances for effective T cell-mediated immunity, controlling proliferation, and survival of T cells after encountering specific Ag. We previously found that the functional targets of OX40 are survivin and aurora B that regulate proliferation and Bcl-2 antiapoptotic family members that regulate survival. However, the intracellular pathways from OX40 that mediate these effects are unclear. In this study, we show that OX40 signaling can target the canonical NF-kappaB (NF-kappaB1) pathway in peripheral Ag-responding CD4 T cells. Phosphorylation of IkappaBalpha, nuclear translocation of NF-kappaB1/p50 and RelA, and NF-kappaB1 activity, are impaired in OX40-deficient T cells. Retroviral transduction of active IkappaB kinase that constitutively activates NF-kappaB1 rescues the poor expansion and survival of OX40-deficient T cells, directly correlating with increased expression and activity of survivin, aurora B, and Bcl-2 family members. Moreover, active IkappaB kinase expression alone is sufficient to restore the defective expansion and survival of OX40-deficient T cells in vivo when responding to Ag. Thus, OX40 signals regulate T cell number and viability through the NF-kappaB1 pathway that controls expression and activity of intracellular targets for proliferation and survival.
Collapse
Affiliation(s)
- Jianxun Song
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
- Institute of Immunology PLA, The Third Military Medical University, Chongqing, China
| | - Takanori So
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | - Michael Croft
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| |
Collapse
|
137
|
Zeng Y, Wu Y, Deng Z, You X, Zhu C, Yu M, Wan Y. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma penetrans is mediated by nuclear factor kappaB activation in mouse macrophage. Can J Microbiol 2008; 54:150-8. [PMID: 18388985 DOI: 10.1139/w07-125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mycoplasma penetrans was shown to be involved in alteration of several eukaryotical cells functions and a causative agent in urogenital infectious diseases. Lipid-associated membrane proteins (LAMPs) may be responsible for the pathogenicity of some mycoplamas. In this study, we investigated whether M. penetrans LAMPs have pathogenic potential by inducing apoptosis in mouse macrophages. As analyzed by annexin-V - fluorescein isothiocyanate staining, significant early- and late-stage apoptosis was induced in M. penetrans LAMPs-challenged mouse macrophages. And agarose gel electrophoresis of the DNA of M. penetrans LAMPs-challenged cells revealed a ladder-like pattern of migration of DNA indicative of apoptosis. The possible molecular mechanisms responsible for the induction of apoptosis were also investigated by characterizing the activation of nuclear transcription factor kappaB (NFkappaB). NFkappaB was activated and translocated into the nucleus in mouse macrophages stimulated by M. penetrans LAMPs. The activation of NFkappaB and M. penetrans LAMPs-induced apoptosis in mouse macrophages was partially inhibited by the NFkappaB-specific inhibitor pyrrolidine dithiocarbamate. Thus, this study demonstrates that M. penetrans LAMPs may be an important etiological factor owing to their ability to induce apoptosis in mouse macrophages, which is probably mediated through the activation of NFkappaB.
Collapse
Affiliation(s)
- Yanhua Zeng
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, Hunan 421001, China
| | | | | | | | | | | | | |
Collapse
|
138
|
Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 2008; 19:158-63. [PMID: 18495079 DOI: 10.1016/j.niox.2008.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/25/2008] [Accepted: 04/25/2008] [Indexed: 02/07/2023]
Abstract
This report summarizes the present state of our knowledge pertaining to the NO-induced resistance or sensitization of tumor cell death. The effects of NO and its synergy with members of the TNF family, with cytotoxic drugs, and with ionizing radiations have been investigated. The dual effect of NO-induced resistance or sensitization and the underlying molecular mechanisms are discussed.
Collapse
|
139
|
Singh SK, Moretta D, Almaguel F, De León M, De León DD. Precursor IGF-II (proIGF-II) and mature IGF-II (mIGF-II) induce Bcl-2 And Bcl-X L expression through different signaling pathways in breast cancer cells. Growth Factors 2008; 26:92-103. [PMID: 18428028 PMCID: PMC2774405 DOI: 10.1080/08977190802057258] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
IGF-II plays a crucial role in fetal and cancer development by signaling through the IGF-I receptor. We have shown that inhibition of IGF-II by resveratrol (RSV) induced apoptosis and that proIGF-II (highly expressed in cancer) was more potent than mIGF-II in inhibiting this effect. Thus, we hypothesized that IGF-II differentially regulates the signaling cascade of the IGF-I receptor to stimulate the anti-apoptotic proteins Bcl-2 and Bcl-X(L) to prevent apoptosis. RSV treatment to breast cancer cells inhibited Bcl-2 and Bcl-X(L) expression and induced mitochondrial membrane depolarization. ProIGF-II was more potent than mIGF-II in: (1) activating the PI3/Akt pathway, (2) regulating Bcl-2 and Bcl-X(L) expression, and (3) inducing phosphorylation/nuclear translocation of Cyclic AMP-responsive element binding protein. Furthermore, IGF-II differentially regulated the intracellular translocation of Bcl-2 and Bcl-X(L), a critical process in breast cancer progression to hormone-independence. Our study provides a novel mechanism of how proIGF-II promotes progression and chemoresistance in breast cancer development.
Collapse
Affiliation(s)
- S Kalla Singh
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, California 92350, USA
| | | | | | | | | |
Collapse
|
140
|
Kitada S, Kress CL, Krajewska M, Jia L, Pellecchia M, Reed JC. Bcl-2 antagonist apogossypol (NSC736630) displays single-agent activity in Bcl-2-transgenic mice and has superior efficacy with less toxicity compared with gossypol (NSC19048). Blood 2008; 111:3211-9. [PMID: 18202226 PMCID: PMC2265458 DOI: 10.1182/blood-2007-09-113647] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 12/22/2007] [Indexed: 12/20/2022] Open
Abstract
Altered expression of Bcl-2 family proteins plays central roles in apoptosis dysregulation in cancer and leukemia, promoting malignant cell expansion and contributing to chemoresistance. In this study, we compared the toxicity and efficacy in mice of natural product gossypol and its semisynthetic derivative apo-gossypol, compounds that bind and inhibit antiapoptotic Bcl-2 family proteins. Daily oral dosing studies showed that mice tolerate doses of apogossypol 2- to 4-times higher than gossypol. Hepatotoxicity and gastrointestinal toxicity represented the major adverse activities of gossypol, with apogossypol far less toxic. Efficacy was tested in transgenic mice in which Bcl-2 is overexpressed in B cells, resembling low-grade follicular lymphoma in humans. In vitro, Bcl-2-expressing B cells from transgenic mice were more sensitive to cytotoxicity induced by apogossypol than gossypol, with LD50 values of 3 to 5 microM and 7.5 to 10 microM, respectively. In vivo, using the maximum tolerated dose of gossypol for sequential daily dosing, apogossypol displayed superior activity to gossypol in terms of reducing splenomegaly and reducing B-cell counts in spleens of Bcl-2-transgenic mice. Taken together, these studies indicate that apogossypol is superior to parent compound gossypol with respect to toxicology and efficacy, suggesting that further development of this compound for cancer therapy is warranted.
Collapse
Affiliation(s)
- Shinichi Kitada
- Burnham Institute for Medical Research, Cancer Research Center, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
141
|
Simmons MJ, Fan G, Zong WX, Degenhardt K, White E, Gélinas C. Bfl-1/A1 functions, similar to Mcl-1, as a selective tBid and Bak antagonist. Oncogene 2008; 27:1421-8. [PMID: 17724464 PMCID: PMC2880719 DOI: 10.1038/sj.onc.1210771] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 07/23/2007] [Accepted: 08/03/2007] [Indexed: 11/09/2022]
Abstract
The prosurvival Bcl-2-family member Bfl-1/A1 is a transcriptional target of nuclear factor-kappaB (NF-kappaB) that is overexpressed in many human tumors and is a means by which NF-kappaB inhibits apoptosis, but its mode of action is controversial. To better understand how Bfl-1 functions, we investigated its interaction with proapoptotic multidomain proteins Bax and Bak, and the BH3-only proteins Bid and tBid. We demonstrate that in living cells Bfl-1 selectively interacts with Bak and tBid, but not with Bax or Bid. Bfl-1/Bak interaction is functional as Bfl-1 suppressed staurosporine (STS)-induced apoptosis in wild-type and Bax-deficient cells, but not in Bak-/- cells. We also show that Bfl-1 blocks tumor necrosis factor-alpha (TNFalpha)-induced activation of Bax indirectly, via association with tBid. C-terminal deletion decreased Bfl-1's interaction with Bak and tBid and reduced its ability to suppress Bak- and tBid-mediated cell death. These data indicate that Bfl-1 utilizes different mechanisms to suppress apoptosis depending on the stimulus. Bfl-1 associates with tBid to prevent activation of proapoptotic Bax and Bak, and it also interacts directly with Bak to antagonize Bak-mediated cell death, similar to Mcl-1. Thus, part of the protective function of NF-kappaB is to induce Mcl-1-like activity by upregulating Bfl-1.
Collapse
Affiliation(s)
- MJ Simmons
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Biochemistry and Molecular Biology, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - G Fan
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Biochemistry and Molecular Biology, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - W-X Zong
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Graduate Program in Biochemistry and Molecular Biology, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - K Degenhardt
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - E White
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, NJ, USA
- Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - C Gélinas
- Center for Advanced Biotechnology and Medicine, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
- Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Biochemistry, UMDNJ—Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
142
|
Integration of signals mediated by B-cell receptor, B-cell activating factor of the tumor necrosis factor family (BAFF) and Fas (CD95). Immunol Lett 2008; 116:211-7. [PMID: 18243342 DOI: 10.1016/j.imlet.2007.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 12/11/2007] [Indexed: 12/22/2022]
Abstract
The survival of the mature resting B cells depends on signaling from B cell receptor (BCR), and a plethora of positive and negative regulators, that maintain cellular homeostasis and ultimately determine cell's fate, i.e., survival or programmed death (apoptosis). Among these regulators we have investigated the B cell activating factor belonging to tumor necrosis factor family (BAFF) and the prototypic death receptor Fas/CD95 mediated signals. We have shown that BAFF inhibits Fas-mediated cell death, however, the BCR-driven survival signals were not strengthened by BAFF. Therefore, we propose that BAFF may function independently of the antigen specificity of BCR, thus may enhance the risk of autoimmune diseases by promoting the survival of bystander B cells in the germinal center.
Collapse
|
143
|
Low-level laser therapy decreases levels of lung neutrophils anti-apoptotic factors by a NF-kappaB dependent mechanism. Int Immunopharmacol 2008; 8:603-5. [PMID: 18328453 DOI: 10.1016/j.intimp.2007.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/14/2007] [Accepted: 12/14/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Low-level laser therapy (LLLT) is a known modulator of inflammatory process. Herein we studied the effect of 660 nm diode laser on mRNA levels of neutrophils anti-apoptotic factors in lipopolysaccharide (LPS)-induced lung inflammation. STUDY DESIGN/METHODOLOGY: Mice were divided into 8 groups (n=7 for each group) and irradiated with energy dosage of 7.5 J/cm(2). The Bcl-xL and A1 mRNA levels in neutrophils were evaluated by Real Time-PCR (RT-PCR). The animals were irradiated after exposure time of LPS. RESULTS LLLT and an inhibitor of NF-kappaB nuclear translocation (BMS 205820) attenuated the mRNA levels of Bcl-xL and A1 mRNA in lung neutrophils obtained from mice subjected to LPS-induced inflammation. CONCLUSION LLLT reduced the levels of anti-apoptotic factors in LPS inflamed mice lung neutrophils by an action mechanism in which the NF-kappaB seems to be involved.
Collapse
|
144
|
NFAT but not NF-kappaB is critical for transcriptional induction of the prosurvival gene A1 after IgE receptor activation in mast cells. Blood 2008; 111:3081-9. [PMID: 18182578 DOI: 10.1182/blood-2006-10-053371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FcepsilonRI-activation-induced survival of mast cells is dependent on the expression and function of the prosurvival protein A1. The expression of A1 in lymphocytes and monocytes has previously been described to be transcriptionally regulated by NF-kappaB. Here we demonstrate that the expression of A1 in mast cells is not dependent on NF-kappaB but that NFAT plays a crucial role. FcepsilonRI-induced A1 expression was not affected in mast cells overexpressing an IkappaB-alpha super-repressor or cells lacking NF-kappaB subunits RelA, c-Rel, or c-Rel plus NF-kappaB1 p50. In contrast, inhibition of calcineurin and NFAT by cyclosporin A abrogated the expression of A1 in mast cells on FcepsilonRI-activation but had no effect on lipopolysaccharide-induced expression of A1 in J774A.1 monocytic cells. Cyclosporin A also inhibited luciferase expression in an A1 promoter reporter assay. A putative NFAT binding site in the A1 promoter showed inducible protein binding after FcepsilonRI crosslinking or treatment with ionomycin as detected in a band shift assay or chromatin immunoprecipitation. The binding protein was identified as NFAT1. Finally, mast cells expressing constitutively active NFAT1 exhibit increased expression of A1 after FcepsilonRI-stimulation. These results indicate that, in FcepsilonRI stimulated mast cells, A1 is transcriptionally regulated by NFAT1 but not by NF-kappaB.
Collapse
|
145
|
Uzzo RG, Haas NB, Crispen PL, Kolenko VM. Mechanisms of apoptosis resistance and treatment strategies to overcome them in hormone-refractory prostate cancer. Cancer 2008; 112:1660-71. [DOI: 10.1002/cncr.23318] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
146
|
Hochwald SN, Bloom D, Golubovskaya V, Cance WG. Fundamentals of Cancer Cell Biology and Molecular Targeting. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
147
|
Baritaki S, Katsman A, Chatterjee D, Yeung KC, Spandidos DA, Bonavida B. Regulation of tumor cell sensitivity to TRAIL-induced apoptosis by the metastatic suppressor Raf kinase inhibitor protein via Yin Yang 1 inhibition and death receptor 5 up-regulation. THE JOURNAL OF IMMUNOLOGY 2007; 179:5441-53. [PMID: 17911631 DOI: 10.4049/jimmunol.179.8.5441] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Raf-1 kinase inhibitor protein (RKIP) has been implicated in the regulation of cell survival pathways and metastases, and is poorly expressed in tumors. We have reported that the NF-kappaB pathway regulates tumor resistance to apoptosis by the TNF-alpha family via inactivation of the transcription repressor Yin Yang 1 (YY1). We hypothesized that RKIP overexpression may regulate tumor sensitivity to death ligands via inhibition of YY1 and up-regulation of death receptors (DRs). The TRAIL-resistant prostate carcinoma PC-3 and melanoma M202 cell lines were examined. Transfection with CMV-RKIP, but not with control CMV-EV, sensitized the cells to TRAIL-mediated apoptosis. Treatment with RKIP small interfering RNA (siRNA) inhibited TRAIL-induced apoptosis. RKIP overexpression was paralleled with up-regulation of DR5 transcription and expression; no change in DR4, decoy receptor 1, and decoy receptor 2 expression; and inhibition of YY1 transcription and expression. Inhibition of YY1 by YY1 siRNA sensitized the cells to TRAIL apoptosis concomitantly with DR5 up-regulation. RKIP overexpression inhibited several antiapoptotic gene products such as X-linked inhibitor of apoptosis (XIAP), c-FLIP long, and Bcl-x(L) that were accompanied with mitochondrial membrane depolarization. RKIP overexpression in combination with TRAIL resulted in the potentiation of these above effects and activation of caspases 8, 9, and 3, resulting in apoptosis. These findings demonstrate that RKIP overexpression regulates tumor cell sensitivity to TRAIL via inhibition of YY1, up-regulation of DR5, and modulation of apoptotic pathways. We suggest that RKIP may serve as an immune surveillance cancer gene, and its low expression or absence in tumors allows the tumor to escape host immune cytotoxic effector cells.
Collapse
Affiliation(s)
- Stavroula Baritaki
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
148
|
Gao L, Kwan JC, Macdonald PS, Yang L, Preiss T, Hicks M. Improved poststorage cardiac function by poly (ADP-ribose) polymerase inhibition: role of phosphatidylinositol 3-kinase Akt pathway. Transplantation 2007; 84:380-6. [PMID: 17700164 DOI: 10.1097/01.tp.0000276924.08343.78] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Inhibition of poly(ADP-ribose) polymerase 1 (PARP) has been shown to be effective in minimizing cardiac ischemia reperfusion injury. We investigated the cardioprotective effect of the PARP inhibitor, INO-1153, in isolated working rat hearts after 6 hr of hypothermic storage in Celsior. METHODS Hearts were treated with 1 muM INO-1153 before hypothermic storage, at cardioplegia and storage or after hypothermic storage. Hearts not exposed to INO-1153 served as controls. Another group was pretreated with the phosphatidylinositol 3-kinase inhibitor Wortmannin (0.1 muM) before storage in INO-1153-supplemented Celsior. After baseline measurement of aortic flow, heart rate, coronary flow, and cardiac output were obtained, hearts were arrested and stored in Celsior at 2-3 degrees C for 6 hr. After storage, hearts were reperfused for 15 min before performing work for a further 30 min, at which time poststorage indices of cardiac function were remeasured then heart tissue was stored at -80 degrees C for Western blot analysis. RESULTS The presence of INO-1153 during prestorage perfusion or during cardioplegia and storage significantly improved poststorage cardiac function. Functional improvements produced by INO-1153 were completely abolished by Wortmnanin pretreatment. Western blots showed a significant increase in phospho-Akt in presence of INO-1153, which was inhibited by Wortmannin. CONCLUSION Activation of the prosurvival phosphatidylinositol 3-kinase-Akt pathway was involved in the protective action of PARP inhibition in this model of donor heart procurement and hypothermic storage. Importantly for the logistics of clinical organ procurement, maximum protection is observed when the PARP inhibitor is included in the cardioplegic storage solution.
Collapse
Affiliation(s)
- Ling Gao
- Transplant Program, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
149
|
Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G, Pernis A, Pasqualucci L, Dalla-Favera R. A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 2007; 12:280-92. [PMID: 17785208 DOI: 10.1016/j.ccr.2007.08.011] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 06/15/2007] [Accepted: 08/13/2007] [Indexed: 11/16/2022]
Abstract
The BCL6 proto-oncogene encodes a transcriptional repressor necessary for the development of germinal centers (GCs) and directly implicated in lymphomagenesis. Post-GC development of B cells requires BCL6 downregulation, while its constitutive expression caused by chromosomal translocations leads to diffuse large B cell lymphoma (DLBCL). Herein we identify a signaling pathway that downregulates BCL6 expression in normal GC B cells and is blocked in a subset of DLBCL due to alterations in the BCL6 gene. Activation of the CD40 receptor leads to NF-kappaB-mediated induction of the IRF4 transcription factor, which, in turn, represses BCL6 expression by binding to its promoter region. A subset of DLBCL displays chromosomal translocations or mutations that disrupt the IRF4-responsive region in the BCL6 promoter and block its downregulation by CD40 signaling.
Collapse
Affiliation(s)
- Masumichi Saito
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L. Enhanced Antitumor Effect of Combined Triptolide and Ionizing Radiation. Clin Cancer Res 2007; 13:4891-9. [PMID: 17699869 DOI: 10.1158/1078-0432.ccr-07-0416] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The lack of effective treatment for pancreatic cancer results in a very low survival rate. This study explores the enhancement of the therapeutic effect on human pancreatic cancer via the combination of triptolide and ionizing radiation (IR). EXPERIMENTAL DESIGN In vitro AsPC-1 human pancreatic cancer cells were treated with triptolide alone, IR alone, or triptolide plus IR. Cell proliferation was analyzed with sulforhodamine B (SRB) method and clonogenic survival; comparison of apoptosis induced by the above treatment was analyzed by annexin V-propidium iodide (PI) staining. Furthermore, the expression of apoptotic pathway intermediates was measured by the assay of caspase activity and Western blot. Mitochondrial transmembrane potential was determined by JC-1 assay. In vivo, AsPC-1 xenografts were treated with 0.25 mg/kg triptolide, 10 Gy IR, or triptolide plus IR. The tumors were measured for volume and weight at the end of the experiment. Tumor tissues were tested for terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) and immunohistochemistry. RESULTS The combination of triptolide plus IR reduced cell survival to 21% and enhanced apoptosis, compared with single treatment. In vivo, tumor growth of AsPC-1 xenografts was reduced further in the group treated with triptolide plus IR compared with single treatment. TUNEL and immunohistochemistry of caspase-3 cleavage in tumor tissues indicated that the combination of triptolide plus IR resulted in significantly enhanced apoptosis compared with single treatments. CONCLUSIONS Triptolide in combination with ionizing radiation produced synergistic antitumor effects on pancreatic cancer both in vitro and in vivo and seems promising in the combined modality therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York 14642-8647, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|