101
|
Bösl B, Grimminger V, Walter S. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J Struct Biol 2006; 156:139-48. [PMID: 16563798 DOI: 10.1016/j.jsb.2006.02.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/06/2006] [Accepted: 02/09/2006] [Indexed: 11/25/2022]
Abstract
At the Cold Spring Harbor Meeting on 'Molecular Chaperones and the Heat Shock Response' in May 1996, Susan Lindquist presented evidence that a chaperone of yeast termed Hsp104, which her group had been investigating for several years, is able to dissolve protein aggregates (Glover, J.R., Lindquist, S., 1998. Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94, 73-82). Among many of the participants this news stimulated reactions reaching from decided skepticism to utter disbelief because protein aggregation was widely considered to be an irreversible process. Several years and publications later, it is undeniable that Susan had been right. Hsp104 is an ATP dependent molecular machine that-in cooperation with Hsp70 and Hsp40-extracts polypeptide chains from protein aggregates and facilitates their refolding, although the molecular details of this process are still poorly understood. Meanwhile, close homologues of Hsp104 have been identified in bacteria (ClpB), in mitochondria (Hsp78), and in the cytosol of plants (Hsp101), but intriguingly not in the cytosol of animal cells (Mosser, D.D., Ho, S., Glover, J.R., 2004. Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43, 8107-8115). Observations that Hsp104 plays an essential role in the maintenance of yeast prions (see review by James Shorter in this issue) have attracted even more attention to the molecular mechanism of this ATP dependent chaperone (Chernoff, Y.O., Lindquist, S.L., Ono, B., Inge-Vechtomov, S.G., Liebman, S.W., 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [PSI+]. Science 268, 880-884).
Collapse
Affiliation(s)
- Benjamin Bösl
- Department für Chemie, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | | | | |
Collapse
|
102
|
Okuno T, Yamanaka K, Ogura T. Flavodoxin, a new fluorescent substrate for monitoring proteolytic activity of FtsH lacking a robust unfolding activity. J Struct Biol 2006; 156:115-9. [PMID: 16563797 DOI: 10.1016/j.jsb.2006.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/25/2022]
Abstract
Escherichia coli FtsH, which belongs to the ATPases associated with diverse cellular activities (AAA) family, is an ATP-dependent and membrane-bound protease. FtsH degrades misassembled membrane proteins and a subset of cytoplasmic regulatory proteins. To elucidate the molecular mechanisms of the proteolysis, a system for precisely monitoring substrate degradation is required. We have exploited E. coli flavodoxin containing non-covalently bound flavin mononucleotide (FMN) as a model substrate for monitoring protein degradation. It was found that FtsH degrades FMN-free apo-flavodoxin but not holo-flavodoxin. However, degradation of a mutant flavodoxin carrying a substitution of Tyr94 to Asp with a lower affinity for FMN could be monitored by fluorimetry. This newly developed monitoring system will also be applicable for proteolysis by other ATP-dependent proteases.
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | |
Collapse
|
103
|
Bewley MC, Graziano V, Griffin K, Flanagan JM. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 2006; 153:113-28. [PMID: 16406682 PMCID: PMC4377234 DOI: 10.1016/j.jsb.2005.09.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 09/09/2005] [Accepted: 09/13/2005] [Indexed: 01/07/2023]
Abstract
ClpP is a self-compartmentalized proteolytic assembly comprised of two, stacked, heptameric rings that, when associated with its cognate hexameric ATPase (ClpA or ClpX), form the ClpAP and ClpXP ATP-dependent protease, respectively. The symmetry mismatch is an absolute feature of this large energy-dependent protease and also of the proteasome, which shares a similar barrel-shaped architecture, but how it is accommodated within the complex has yet to be understood, despite recent structural investigations, due in part to the conformational lability of the N-termini. We present the structures of Escherichia coli ClpP to 1.9A and an inactive variant that provide some clues for how this might be achieved. In the wild type protein, the highly conserved N-terminal 20 residues can be grouped into two major structural classes. In the first, a loop formed by residues 10-15 protrudes out of the central access channel extending approximately 12-15A from the surface of the oligomer resulting in the closing of the access channel observed in one ring. Similar loops are implied to be exclusively observed in human ClpP and a variant of ClpP from Streptococcus pneumoniae. In the other ring, a second class of loop is visible in the structure of wt ClpP from E. coli that forms closer to residue 16 and faces toward the interior of the molecule creating an open conformation of the access channel. In both classes, residues 18-20 provide a conserved interaction surface. In the inactive variant, a third class of N-terminal conformation is observed, which arises from a conformational change in the position of F17. We have performed a detailed functional analysis on each of the first 20 amino acid residues of ClpP. Residues that extend beyond the plane of the molecule (10-15) have a lesser effect on ATPase interaction than those lining the pore (1-7 and 16-20). Based upon our structure-function analysis, we present a model to explain the widely disparate effects of individual residues on ClpP-ATPase complex formation and also a possible functional reason for this mismatch.
Collapse
Affiliation(s)
- Maria C. Bewley
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Vito Graziano
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kathleen Griffin
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - John M. Flanagan
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
- Corresponding author. (J.M. Flanagan)
| |
Collapse
|
104
|
Zietkiewicz S, Lewandowska A, Stocki P, Liberek K. Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. J Biol Chem 2006; 281:7022-9. [PMID: 16415353 DOI: 10.1074/jbc.m507893200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to temperatures over a certain limit leads to massive protein aggregation in the cell. Disaggregation of such aggregates is largely dependent on the Hsp100 and Hsp70 chaperones. The exact role of the Hsp70 chaperone machine (composed of DnaK, DnaJ, and GrpE) in the Hsp100-dependent process remains unknown. In this study we focused on the Hsp70 role at the initial step of the disaggregation process. Two different aggregated model substrates, green fluorescent protein (GFP) and firefly luciferase, were incubated with the Hsp70 machine resulting in efficient fragmentation of large aggregates into smaller ones. Our data suggest that the observed fragmentation is achieved first by extraction of polypeptides from aggregates in Hsp70 chaperone machine-dependent manner and not by direct fragmentation of large aggregates. In the absence of Hsp100 (ClpB) these "extracted" polypeptides were not able to fold properly and promptly reassociated into new aggregates. The extracted GFP molecules were efficiently recognized and sequestered by a molecular trap, the mutant GroEL D87K, which binds stably to unfolded but not to native polypeptides. The binding of extracted GFP molecules to the GroEL trap prevented their reaggregation. We propose that the Hsp70 machine disentangles polypeptides from protein aggregates prior to Hsp100 action.
Collapse
Affiliation(s)
- Szymon Zietkiewicz
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | | | | |
Collapse
|
105
|
Hoskins JR, Wickner S. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc Natl Acad Sci U S A 2006; 103:909-14. [PMID: 16410355 PMCID: PMC1347992 DOI: 10.1073/pnas.0509154103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Clp/Hsp100 proteins comprise a large family of AAA(+) ATPases. Some Clp proteins function alone as molecular chaperones, whereas others act in conjunction with peptidases, forming ATP-dependent proteasome-like compartmentalized proteases. Protein degradation by Clp proteases is regulated primarily by substrate recognition by the Clp ATPase component. The ClpA and ClpX ATPases of Escherichia coli generally recognize short amino acid sequences that are located near the N or C terminus of a substrate. However, both ClpAP and ClpXP are able to degrade proteins in which the end containing the recognition signal is fused to GFP such that the signal is in the interior of the primary sequence of the substrate. Here, we tested whether the internal ClpA recognition signal was the sole element required for targeting the substrate to ClpA. The results show that, in the absence of a high-affinity peptide recognition signal at the terminus, two elements are important for recognition of GFP-RepA fusion proteins by ClpA. One element is the natural ClpA recognition signal located at the junction of GFP and RepA in the fusion protein. The second element is the C-terminal peptide of the fusion protein. Together, these two elements facilitate binding and unfolding by ClpA and degradation by ClpAP. The internal site appears to function similarly to Clp adaptor proteins but, in this case, is covalently attached to the polypeptide containing the terminal tag and both the "adaptor" and "substrate" modules are degraded.
Collapse
Affiliation(s)
- Joel R Hoskins
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
106
|
Oberdorf J, Carlson EJ, Skach WR. Uncoupling proteasome peptidase and ATPase activities results in cytosolic release of an ER polytopic protein. J Cell Sci 2006; 119:303-13. [PMID: 16390870 DOI: 10.1242/jcs.02732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 26S proteasome is the primary protease responsible for degrading misfolded membrane proteins in the endoplasmic reticulum. Here we examine the specific role of beta subunit function on polypeptide cleavage and membrane release of CFTR, a prototypical ER-associated degradation substrate with 12 transmembrane segments. In the presence of ATP, cytosol and fully active proteasomes, CFTR was rapidly degraded and released into the cytosol solely in the form of trichloroacetic acid (TCA)-soluble peptide fragments. Inhibition of proteasome beta subunits markedly decreased CFTR degradation but surprisingly, had relatively minor effects on membrane extraction and release. As a result, large TCA-insoluble degradation intermediates derived from multiple CFTR domains accumulated in the cytosol where they remained stably bound to inhibited proteasomes. Production of TCA-insoluble fragments varied for different proteasome inhibitors and correlated inversely with the cumulative proteolytic activities of beta1, beta2 and beta5 subunits. By contrast, ATPase inhibition decreased CFTR release but had no effect on the TCA solubility of the released fragments. Our results indicate that the physiologic balance between membrane extraction and peptide cleavage is maintained by excess proteolytic capacity of the 20S subunit. Active site inhibitors reduce this capacity, uncouple ATPase and peptidase activities, and generate cytosolic degradation intermediates by allowing the rate of unfolding to exceed the rate of polypeptide cleavage.
Collapse
Affiliation(s)
- Jon Oberdorf
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | |
Collapse
|
107
|
Fisher MT. Molecular roles of chaperones in assisted folding and assembly of proteins. GENETIC ENGINEERING 2006; 27:191-229. [PMID: 16382878 DOI: 10.1007/0-387-25856-6_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mark T Fisher
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
108
|
Martin A, Baker TA, Sauer RT. Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines. Nature 2005; 437:1115-20. [PMID: 16237435 DOI: 10.1038/nature04031] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Accepted: 07/14/2005] [Indexed: 11/09/2022]
Abstract
Hexameric ring-shaped ATPases of the AAA + (for ATPases associated with various cellular activities) superfamily power cellular processes in which macromolecular structures and complexes are dismantled or denatured, but the mechanisms used by these machine-like enzymes are poorly understood. By covalently linking active and inactive subunits of the ATPase ClpX to form hexamers, here we show that diverse geometric arrangements can support the enzymatic unfolding of protein substrates and translocation of the denatured polypeptide into the ClpP peptidase for degradation. These studies indicate that the ClpX power stroke is generated by ATP hydrolysis in a single subunit, rule out concerted and strict sequential ATP hydrolysis models, and provide evidence for a probabilistic sequence of nucleotide hydrolysis. This mechanism would allow any ClpX subunit in contact with a translocating polypeptide to hydrolyse ATP to drive substrate spooling into ClpP, and would prevent stalling if one subunit failed to bind or hydrolyse ATP. Energy-dependent machines with highly diverse quaternary architectures and molecular functions could operate by similar asymmetric mechanisms.
Collapse
Affiliation(s)
- Andreas Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
109
|
Ranquet C, Toussaint A, de Jong H, Maenhaut-Michel G, Geiselmann J. Control of Bacteriophage Mu Lysogenic Repression. J Mol Biol 2005; 353:186-95. [PMID: 16154589 DOI: 10.1016/j.jmb.2005.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/24/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
The transposable and temperate phage Mu infects Escherichia coli where it can enter the lytic life-cycle or reside as a repressed and integrated prophage. The repressor protein Rep is the key element in the lysis-lysogeny decision. We have analyzed the fate of Rep in different mutants by Western blotting under two conditions that can induce a lysogen: high temperature and stationary phase. We show that, unexpectedly, Rep accumulates under all conditions where the prophage is completely derepressed, and that this accumulation is ClpX-dependent. An analysis of the degradation kinetics shows that Rep is a target of two protease systems: inactivation of either the clpP or lon gene results in a stabilization of Rep. Such a reaction scheme explains the counterintuitive observation that derepression is correlated with high repressor concentration. We conclude that under all conditions of phage induction the repressor is sequestered in a non-active form. A quantitative simulation accounts for our experimental data. It provides a model that captures the essential features of Mu induction and explains some of the mechanisms by which the physiological signals affecting the lysis-lysogeny decision converge onto Rep.
Collapse
Affiliation(s)
- Caroline Ranquet
- Laboratoire du Contrôle de l'Expression Génique, Institut Jean Roget-Faculté de Médecine-Pharmacie, Domaine de la Merci, F-38700 La Tronche, France.
| | | | | | | | | |
Collapse
|
110
|
Camargos Oliveira J, Da Silva Castro N, Soares Felipe MS, Pereira M, De Almeida Soares CM. Comparative analysis of the cDNA encoding a ClpA homologue of Paracoccidioides brasiliensis. ACTA ACUST UNITED AC 2005; 109:707-16. [PMID: 16080393 DOI: 10.1017/s0953756205002789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A cDNA encoding a chaperone ClpA homologue of Paracoccidioides brasiliensis was isolated and characterized. The ClpA belongs to a group of ClpATPAses proteins, which are highly conserved, and include several heat inducible molecular chaperones. In this study, a 2879 bp cDNA designated as Pbclpa was obtained which encodes a predicted protein of 927 amino acids. Characteristic consensus motifs of the ClpATPases family are present. The PbClpA middle region was compared to other related ClpA and ClpB proteins from fungi and bacteria. Comparative analysis demonstrated in the middle region the presence of a heptad repeat sequence, characteristic of ClpBs from prokaryotes and fungi, which are absent in ClpAs from prokaryotes but were present in all described fungal ClpAs. Our comparative analysis reveals that one of the criteria typically used to distinguish the prokaryotic subfamilies ClpA and ClpB, the size of the middle sequence, may not be useful in fungi. Phylogenetic analyses were performed with the complete sequences of ClpAs from fungi and bacteria and with the middle regions of those ClpAs present at NCBI and Pfam databases. Our results indicated that both types of analysis can be useful as a tool in the determination of phylogenetic relationships.
Collapse
Affiliation(s)
- Juliana Camargos Oliveira
- Laboratório de Biologia Molecular, ICB, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil
| | | | | | | | | |
Collapse
|
111
|
Noireaux V, Bar-Ziv R, Godefroy J, Salman H, Libchaber A. Toward an artificial cell based on gene expression in vesicles. Phys Biol 2005; 2:P1-8. [PMID: 16224117 DOI: 10.1088/1478-3975/2/3/p01] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a new experimental approach to build an artificial cell using the translation machinery of a cell-free expression system as the hardware and a DNA synthetic genome as the software. This approach, inspired by the self-replicating automata of von Neumann, uses cytoplasmic extracts, encapsulated in phospholipid vesicles, to assemble custom-made genetic circuits to develop the functions of a minimal cell. Although this approach can find applications, especially in biotechnology, the primary goal is to understand how a DNA algorithm can be designed to build an operating system that has some of the properties of life. We provide insights on this cell-free approach as well as new results to transform step by step a long-lived vesicle bioreactor into an artificial cell. We show how the green fluorescent protein can be anchored to the membrane and we give indications of a possible insertion mechanism of integral membrane proteins. With vesicles composed of different phospholipids, the fusion protein alpha-hemolysin-eGFP can be expressed to reveal patterns on the membrane. The specific degradation complex ClpXP from E. coli is introduced to create a sink for the synthesized proteins. Perspectives and subsequent limitations of this approach are discussed.
Collapse
Affiliation(s)
- Vincent Noireaux
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
112
|
Weart RB, Nakano S, Lane BE, Zuber P, Levin PA. The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 2005; 57:238-49. [PMID: 15948963 PMCID: PMC5432201 DOI: 10.1111/j.1365-2958.2005.04673.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Assembly of the tubulin-like cytoskeletal protein FtsZ into a ring structure establishes the location of the nascent division site in prokaryotes. Factors that modulate FtsZ assembly are essential for ensuring the precise spatial and temporal regulation of cytokinesis. We have identified ClpX, the substrate recognition subunit of the ClpXP protease, as an inhibitor of FtsZ assembly in Bacillus subtilis. Genetic data indicate that ClpX but not ClpP inhibits FtsZ-ring formation in vivo. In vitro, ClpX inhibits FtsZ assembly in a ClpP-independent manner through a mechanism that does not require ATP hydrolysis. Together our data support a model in which ClpX helps maintain the cytoplasmic pool of unassembled FtsZ that is required for the dynamic nature of the cytokinetic ring. ClpX is conserved throughout bacteria and has been shown to interact directly with FtsZ in Escherichia coli. Thus, we speculate that ClpX functions as a general regulator of FtsZ assembly and cell division in a wide variety of bacteria.
Collapse
Affiliation(s)
- Richard B. Weart
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Shunji Nakano
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Brooke E. Lane
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | - Peter Zuber
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Petra Anne Levin
- Department of Biology, Washington University, St Louis, MO 63130, USA
- For correspondence. ; Tel. (+1) 314 935 7888; Fax (+1) 314 935 4432
| |
Collapse
|
113
|
Kang SG, Dimitrova MN, Ortega J, Ginsburg A, Maurizi MR. Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J Biol Chem 2005; 280:35424-32. [PMID: 16115876 DOI: 10.1074/jbc.m507240200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functional form of ClpP, the proteolytic component of ATP-dependent Clp proteases, is a hollow-cored particle composed of two heptameric rings joined face-to-face forming an aqueous chamber containing the proteolytic active sites. We have found that isolated human mitochondrial ClpP (hClpP) is stable as a heptamer and remains a monodisperse species (s(20,w) 7.0 S; M(app) 169, 200) at concentrations > or = 3 mg/ml. Heptameric hClpP has no proteolytic activity and very low peptidase activity. In the presence of ATP, hClpX interacts with hClpP forming a complex, which by equilibrium sedimentation measurements has a M(app) of 1 x 10(6). Electron microscopy confirmed that the complex consisted of a double ring of hClpP with an hClpX ring axially aligned on each end. The hClpXP complex has protease activity and greatly increased peptidase activity, indicating that interaction with hClpX affects the conformation of the hClpP catalytic active site. A mutant of hClpP, in which a cysteine residue was introduced into the handle region at the interface between the two rings formed stable tetradecamers under oxidizing conditions but spontaneously dissociated into two heptamers upon reduction. Thus, hClpP rings interact transiently but very weakly in solution, and hClpX must exert an allosteric effect on hClpP to promote a conformation that stabilizes the tetradecamer. These data suggest that hClpX can regulate the appearance of hClpP peptidase activity in mitochondria and might affect the nature of the degradation products released during ATP-dependent proteolytic cycles.
Collapse
Affiliation(s)
- Sung Gyun Kang
- Laboratory of Cell Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
114
|
Abstract
Degradation of ssrA-tagged proteins is a central feature of protein-quality control in all bacteria. In Escherichia coli, the ATP-dependent ClpXP and ClpAP proteases are thought to participate in this process, but their relative contributions to degradation of ssrA-tagged proteins in vivo have been uncertain because two adaptor proteins, ClpS and SspB, can modulate proteolysis of these substrates. Here, intracellular levels of these protease components and adaptors were determined during exponential growth and as cells entered early stationary phase. Levels of ClpA and ClpP increased about threefold during this transition, whereas ClpX, ClpS and SspB levels remained nearly constant. Using GFP-ssrA expressed from the chromosome as a degradation reporter, the effects of altered concentrations of different protease components or adaptor proteins were explored. Both ClpXP and ClpAP degraded GFP-ssrA in the cell, demonstrating that wild-type levels of SspB and ClpS do not inhibit ClpAP completely. Upon entry into stationary phase, increased levels of ClpAP resulted in increased degradation of ssrA-tagged substrates. As measured by maximum turnover rates, ClpXP degradation of GFP-ssrA in vivo was significantly more efficient than in vitro. Surprisingly, ClpX-dependent ClpP-independent degradation of GFP-ssrA was also observed. Thus, unfolding of this substrate by ClpX appears to enhance intracellular degradation by other proteases.
Collapse
Affiliation(s)
- Christopher M Farrell
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
115
|
Zamboni N, Fischer E, Muffler A, Wyss M, Hohmann HP, Sauer U. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures of Bacillus subtilis. Biotechnol Bioeng 2005; 89:219-32. [PMID: 15584023 DOI: 10.1002/bit.20338] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
At the onset of glucose-limited continuous cultures, riboflavin production in recombinant Bacillus subtilis declines significantly within 3 generations. This phenomenon was specific to riboflavin production and was not correlated with any other physiological parameter. Physiological analyses excluded genetic degeneration or co-metabolism of previously generated overflow metabolites as possible causes for the riboflavin transients. By developing a novel method for (13)C-based metabolic flux analysis under non-steady-state conditions, we showed that the pentose precursors of riboflavin were exclusively synthesized via the non-oxidative pentose-phosphate (PP) pathway as long as riboflavin production was high. The complete redirection of carbon flux to the oxidative branch of the PP pathway was achieved at unaltered PP pathway gene expression and correlated with the declining riboflavin production. With the possible exception of a slight down-regulation of the purine biosynthesis pathway, genome-wide expression analysis indicated that transcriptional regulation was not responsible for the production decline.
Collapse
Affiliation(s)
- Nicola Zamboni
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
116
|
Ondrovicová G, Liu T, Singh K, Tian B, Li H, Gakh O, Perecko D, Janata J, Granot Z, Orly J, Kutejová E, Suzuki CK. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J Biol Chem 2005; 280:25103-10. [PMID: 15870080 DOI: 10.1074/jbc.m502796200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanistic studies of ATP-dependent proteolysis demonstrate that substrate unfolding is a prerequisite for processive peptide bond hydrolysis. We show that mitochondrial Lon also degrades folded proteins and initiates substrate cleavage non-processively. Two mitochondrial substrates with known or homology-derived three-dimensional structures were used: the mitochondrial processing peptidase alpha-subunit (MPPalpha) and the steroidogenic acute regulatory protein (StAR). Peptides generated during a time course of Lon-mediated proteolysis were identified and mapped within the primary, secondary, and tertiary structure of the substrate. Initiating cleavages occurred preferentially between hydrophobic amino acids located within highly charged environments at the surface of the folded protein. Subsequent cleavages proceeded sequentially along the primary polypeptide sequence. We propose that Lon recognizes specific surface determinants or folds, initiates proteolysis at solvent-accessible sites, and generates unfolded polypeptides that are then processively degraded.
Collapse
Affiliation(s)
- Gabriela Ondrovicová
- Institute of Molecular Biology, Slovak Academy of Sciences, 84551 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Burton RE, Baker TA, Sauer RT. Nucleotide-dependent substrate recognition by the AAA+ HslUV protease. Nat Struct Mol Biol 2005; 12:245-51. [PMID: 15696175 DOI: 10.1038/nsmb898] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Accepted: 01/11/2005] [Indexed: 11/09/2022]
Abstract
ATP-dependent protein degradation is controlled principally by substrate recognition. The AAA+ HslU ATPase is thought to bind protein substrates, denature them, and translocate the unfolded polypeptide into the HslV peptidase. The lack of well-behaved high-affinity substrates for HslUV (ClpYQ) has hampered understanding of the rules and mechanism of substrate engagement. We show that HslUV efficiently degrades Arc repressor, especially at heat-shock temperatures. Degradation depends on sequences near the N terminus of Arc. Fusion protein and peptide-binding experiments demonstrate that this sequence is a degradation tag that binds directly to HslU. Strong binding of this tag to the enzyme requires ATP and Mg(2+). Furthermore, fusion of this sequence to a protein with marked mechanical stability leads to complete degradation. Thus, these experiments demonstrate that HslUV is a powerful protein unfoldase and that initial substrate engagement by the HslU ATPase must occur after ATP binding.
Collapse
Affiliation(s)
- Randall E Burton
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
118
|
Chandu D, Nandi D. Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation. Res Microbiol 2005; 155:710-9. [PMID: 15501647 DOI: 10.1016/j.resmic.2004.06.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Accepted: 06/03/2004] [Indexed: 10/26/2022]
Abstract
The general pathway involving adenosine triphosphate (ATP)-dependent proteases and ATP-independent peptidases during cytosolic protein degradation is conserved, with differences in the enzymes utilized, in organisms from different kingdoms. Lon and caseinolytic protease (Clp) are key enzymes responsible for the ATP-dependent degradation of cytosolic proteins in Escherichia coli. Orthologs of E. coli Lon and Clp were searched for, followed by multiple sequence alignment of active site residues, in genomes from seventeen organisms, including representatives from eubacteria, archaea, and eukaryotes. Lon orthologs, unlike ClpP and ClpQ, are present in most organisms studied. The roles of these proteases as essential enzymes and in the virulence of some organisms are discussed.
Collapse
Affiliation(s)
- Dilip Chandu
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
119
|
Piszczek G, Rozycki J, Singh SK, Ginsburg A, Maurizi MR. The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer. J Biol Chem 2005; 280:12221-30. [PMID: 15657062 DOI: 10.1074/jbc.m411733200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Substrate recognition by Clp chaperones is dependent on interactions with motifs composed of specific peptide sequences. We studied the binding of short motif-bearing peptides to ClpA, the chaperone component of the ATP-dependent ClpAP protease of Escherichia coli in the presence of ATPgammaS and Mg2+ at pH 7.5. Binding was measured by isothermal titration calorimetry (ITC) using the peptide, AANDENYALAA, which corresponds to the SsrA degradation motif found at the C terminus of abnormal nascent polypeptides in vivo. One SsrA peptide was bound per hexamer of ClpA with an association constant (K(A)) of 5 x 10(6) m(-1). Binding was also assayed by changes in fluorescence of an N-terminal dansylated SsrA peptide, which bound with the same stoichiometry of one per ClpA hexamer (K(A) approximately 1 x 10(7) m(-1)). Similar results were obtained when ATP was substituted for ATPgammaS at 6 degrees C. Two additional peptides, derived from the phage P1 RepA protein and the E. coli HemA protein, which bear different substrate motifs, were competitive inhibitors of SsrA binding and bound to ClpA hexamers with K(A)' > 3 x 10(7) m(-1). DNS-SsrA bound with only slightly reduced affinity to deletion mutants of ClpA missing either the N-terminal domain or the C-terminal nucleotide-binding domain, indicating that the binding site for SsrA lies within the N-terminal nucleotide-binding domain. Because only one protein at a time can be unfolded and translocated by ClpA hexamers, restricting the number of peptides initially bound should avoid nonproductive binding of substrates and aggregation of partially processed proteins.
Collapse
Affiliation(s)
- Grzegorz Piszczek
- Laboratory of Biochemistry, NHLBI, National Institutes of Health, Bethesda, MD 20892-8012, USA.
| | | | | | | | | |
Collapse
|
120
|
Kenniston JA, Burton RE, Siddiqui SM, Baker TA, Sauer RT. Effects of local protein stability and the geometric position of the substrate degradation tag on the efficiency of ClpXP denaturation and degradation. J Struct Biol 2004; 146:130-40. [PMID: 15037244 DOI: 10.1016/j.jsb.2003.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Revised: 10/20/2003] [Indexed: 10/26/2022]
Abstract
ClpX and related AAA+ ATPases of the Clp/Hsp100 family are able to denature native proteins. Here, we explore the role of protein stability in ClpX denaturation and subsequent ClpP degradation of model substrates bearing ssrA degradation tags at different positions. ClpXP degraded T. thermophilus RNase-H* with a C-terminal ssrA tag very efficiently, despite the very high global stability of this thermophilic protein. In fact, global thermodynamic stability appears to play little role in susceptibility to degradation, as a far less stable RNase-H*-ssrA mutant was degraded more slowly than wild type by ClpXP and a completely unfolded mutant variant was degraded less than twice as fast as the wild-type parent. When ssrA peptide tags were covalently linked to surface cysteines at positions 114 or 140 of RNase-H*, the conjugates were proteolyzed very slowly. This resistance to degradation was not caused by inaccessibility of the ssrA tag or an inability of ClpXP to degrade proteins with side-chain linked ssrA tags. Our results support a model in which ClpX denatures proteins by initially unfolding structural elements attached to the degradation tag, suggest an important role for the position of the degradation tag and direction of force application, and correlate well with the mapping of local protein stability within RNase-H* by native-state hydrogen exchange.
Collapse
Affiliation(s)
- Jon A Kenniston
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
121
|
Xia D, Esser L, Singh SK, Guo F, Maurizi MR. Crystallographic investigation of peptide binding sites in the N-domain of the ClpA chaperone. J Struct Biol 2004; 146:166-79. [PMID: 15037248 DOI: 10.1016/j.jsb.2003.11.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/07/2003] [Indexed: 11/30/2022]
Abstract
Escherichia coli ClpA, an Hsp100/Clp chaperone and an integral component of the ATP-dependent ClpAP protease, participates in the dissolution and degradation of regulatory proteins and protein aggregates. ClpA consists of three functional domains: an N-terminal domain and two ATPase domains, D1 and D2. The N-domain is attached to D1 by a mobile linker and is made up of two tightly bound, identically folded alpha-helical bundles related by a pseudo 2-fold symmetry. Between the halves of the pseudo-dimer is a large flexible acidic loop that becomes better ordered upon binding of the small adaptor protein, ClpS. We have identified a number of structural features in the N-domain, including a Zn(++) binding motif, several interfaces for binding to ClpS, and a prominent hydrophobic surface area that binds peptides in different configurations. These structural motifs may contribute to binding of protein or peptide substrates with weak affinity and broad specificity. Kinetic studies comparing wild-type ClpA to a mutant ClpA with its N-domain deleted show that the N-domains contribute to the binding of a non-specific protein substrate but not of a folded substrate with the specific SsrA recognition tag. A functional model is proposed in which the N-domains in ClpA function as tentacles to weakly hold on to proteins thereby enhancing local substrate concentration.
Collapse
Affiliation(s)
- Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
122
|
Okuno T, Yamada-Inagawa T, Karata K, Yamanaka K, Ogura T. Spectrometric analysis of degradation of a physiological substrate sigma32 by Escherichia coli AAA protease FtsH. J Struct Biol 2004; 146:148-54. [PMID: 15037246 DOI: 10.1016/j.jsb.2003.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 10/17/2003] [Indexed: 11/16/2022]
Abstract
We have established a fluorescence polarization assay system by which degradation of sigma32, a physiological substrate, by FtsH can be monitored spectrometrically. Using the system, it was found that an FtsH hexamer degrades approximately 0.5 molecules of Cy3-sigma32 per min at 42 degrees C and hydrolyzes approximately 140 ATP molecules during the degradation of a single molecule of Cy3-sigma32. Evidence also suggests that degradation of sigma32 proceeds from the N-terminus to the C-terminus. Although FtsH does not have a robust enough unfoldase activity to unfold a tightly folded proteins such as green fluorescent protein, it can unfold proteins with lower T(m)s such as glutathione S-transferase (T(m) = 52 degrees C).
Collapse
Affiliation(s)
- Takashi Okuno
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan
| | | | | | | | | |
Collapse
|
123
|
Sharma S, Hoskins JR, Wickner S. Binding and degradation of heterodimeric substrates by ClpAP and ClpXP. J Biol Chem 2004; 280:5449-55. [PMID: 15591068 DOI: 10.1074/jbc.m412411200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ClpA and ClpX function both as molecular chaperones and as the regulatory components of ClpAP and ClpXP proteases, respectively. ClpA and ClpX bind substrate proteins through specific recognition signals, catalyze ATP-dependent protein unfolding of the substrate, and when in complexes with ClpP translocate the unfolded polypeptide into the cavity of the ClpP peptidase for degradation. To examine the mechanism of interaction of ClpAP with dimeric substrates, single round binding and degradation experiments were performed, revealing that ClpAP degraded both subunits of a RepA homodimer in one cycle of binding. Furthermore, ClpAP was able to degrade both protomers of a RepA heterodimer in which only one subunit contained the ClpA recognition signal. In contrast, ClpXP degraded both subunits of a dimeric substrate only when both protomers contained a recognition signal. These data suggest that ClpAP and ClpXP may recognize and bind substrates in significantly different ways.
Collapse
Affiliation(s)
- Suveena Sharma
- Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
124
|
Sauer RT, Bolon DN, Burton BM, Burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I, Neher SB, Oakes ESC, Siddiqui SM, Wah DA, Baker TA. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 2004; 119:9-18. [PMID: 15454077 PMCID: PMC2717008 DOI: 10.1016/j.cell.2004.09.020] [Citation(s) in RCA: 348] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Machines of protein destruction-including energy-dependent proteases and disassembly chaperones of the AAA(+) ATPase family-function in all kingdoms of life to sculpt the cellular proteome, ensuring that unnecessary and dangerous proteins are eliminated and biological responses to environmental change are rapidly and properly regulated. Exciting progress has been made in understanding how AAA(+) machines recognize specific proteins as targets and then carry out ATP-dependent dismantling of the tertiary and/or quaternary structure of these molecules during the processes of protein degradation and the disassembly of macromolecular complexes.
Collapse
Affiliation(s)
- Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Wolf DH, Hilt W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1695:19-31. [PMID: 15571806 DOI: 10.1016/j.bbamcr.2004.10.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The final destination of the majority of proteins that have to be selectively degraded in eukaryotic cells is the proteasome, a highly sophisticated nanomachine essential for life. 26S proteasomes select target proteins via their modification with polyubiquitin chains or, in rare cases, by the recognition of specific motifs. They are made up of different subcomplexes, a 20S core proteasome harboring the proteolytic active sites hidden within its barrel-like structure and two 19S caps that execute regulatory functions. Similar complexes equipped with PA28 regulators instead of 19S caps are a variation of this theme specialized for the production of antigenic peptides required in immune response. Structure analysis as well as extensive biochemical and genetic studies of the 26S proteasome and the ubiquitin system led to a basic model of substrate recognition and degradation. Recent work raised new concepts. Additional factors involved in substrate acquisition and delivery to the proteasome have been discovered. Moreover, first insights in the tasks of individual subunits or subcomplexes of the 19S caps in substrate recognition and binding as well as release and recycling of polyubiquitin tags have been obtained.
Collapse
Affiliation(s)
- Dieter H Wolf
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|
126
|
Weibezahn J, Tessarz P, Schlieker C, Zahn R, Maglica Z, Lee S, Zentgraf H, Weber-Ban EU, Dougan DA, Tsai FTF, Mogk A, Bukau B. Thermotolerance Requires Refolding of Aggregated Proteins by Substrate Translocation through the Central Pore of ClpB. Cell 2004; 119:653-65. [PMID: 15550247 DOI: 10.1016/j.cell.2004.11.027] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2004] [Revised: 08/20/2004] [Accepted: 10/06/2004] [Indexed: 10/26/2022]
Abstract
Cell survival under severe thermal stress requires the activity of the ClpB (Hsp104) AAA+ chaperone that solubilizes and reactivates aggregated proteins in concert with the DnaK (Hsp70) chaperone system. How protein disaggregation is achieved and whether survival is solely dependent on ClpB-mediated elimination of aggregates or also on reactivation of aggregated proteins has been unclear. We engineered a ClpB variant, BAP, which associates with the ClpP peptidase and thereby is converted into a degrading disaggregase. BAP translocates substrates through its central pore directly into ClpP for degradation. ClpB-dependent translocation is demonstrated to be an integral part of the disaggregation mechanism. Protein disaggregation by the BAP/ClpP complex remains dependent on DnaK, defining a role for DnaK at early stages of the disaggregation reaction. The activity switch of BAP to a degrading disaggregase does not support thermotolerance development, demonstrating that cell survival during severe thermal stress requires reactivation of aggregated proteins.
Collapse
Affiliation(s)
- Jimena Weibezahn
- Zentrum für Molekulare Biologie der Universität Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
The ClpXP protease of bacteria can degrade a wide variety of proteins while maintaining remarkable substrate selectivity. New work in Escherichia coli implicates adaptor proteins in enhancing substrate selectivity and regulating the flow of substrates to cellular proteases.
Collapse
Affiliation(s)
- Sarah E Ades
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
128
|
Hutschenreiter S, Tinazli A, Model K, Tampé R. Two-substrate association with the 20S proteasome at single-molecule level. EMBO J 2004; 23:2488-97. [PMID: 15175655 PMCID: PMC449772 DOI: 10.1038/sj.emboj.7600262] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Accepted: 05/10/2004] [Indexed: 11/08/2022] Open
Abstract
The bipartite structure of the proteasome raises the question of functional significance. A rational design for unraveling mechanistic details of the highly symmetrical degradation machinery from Thermoplasma acidophilum pursues orientated immobilization at metal-chelating interfaces via affinity tags fused either around the pore apertures or at the sides. End-on immobilization of the proteasome demonstrates that one pore is sufficient for substrate entry and product release. Remarkably, a 'dead-end' proteasome can process only one substrate at a time. In contrast, the side-on immobilized and free proteasome can bind two substrates, presumably one in each antechamber, with positive cooperativity as analyzed by surface plasmon resonance and single-molecule cross-correlation spectroscopy. Thus, the two-stroke engine offers the advantage of speeding up degradation without enhancing complexity.
Collapse
Affiliation(s)
- Silke Hutschenreiter
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
| | - Ali Tinazli
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
| | - Kirstin Model
- Department of Structural Biology, Max-Planck-Institute of Biophysics, Frankfurt a. M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Frankfurt a. M., Germany
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University Frankfurt, Marie-Curie Str. 9–11, 60439 Frankfurt a. M., Germany. Tel.: +49 69 798 29476; Fax: +49 69 798 29495; E-mail:
| |
Collapse
|
129
|
Lee RJ, Liu CW, Harty C, McCracken AA, Latterich M, Römisch K, DeMartino GN, Thomas PJ, Brodsky JL. Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 2004; 23:2206-15. [PMID: 15152188 PMCID: PMC419910 DOI: 10.1038/sj.emboj.7600232] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 04/19/2004] [Indexed: 11/09/2022] Open
Abstract
Aberrant polypeptides in the endoplasmic reticulum (ER) are retro-translocated to the cytoplasm and degraded by the 26S proteasome via ER-associated degradation (ERAD). To begin to resolve the requirements for the retro-translocation and degradation steps during ERAD, a cell-free assay was used to investigate the contributions of specific factors in the yeast cytosol and in ER-derived microsomes during the ERAD of a model, soluble polypeptide. As ERAD was unaffected when cytoplasmic chaperone activity was compromised, we asked whether proteasomes on their own supported both export and degradation in this system. Proficient ERAD was observed if wild-type cytosol was substituted with either purified yeast or mammalian proteasomes. Moreover, addition of only the 19S cap of the proteasome catalyzed ATP-dependent export of the polypeptide substrate, which was degraded upon subsequent addition of the 20S particle.
Collapse
Affiliation(s)
- Robert J Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chang-wei Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carol Harty
- University of Cambridge, Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Cambridge, UK
| | | | - Martin Latterich
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Karin Römisch
- University of Cambridge, Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Cambridge, UK
| | - George N DeMartino
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philip J Thomas
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh, PA 15260, USA. Tel.: +1 412 624 4831; Fax: +1 412 624 4759; E-mail:
| |
Collapse
|
130
|
Lum R, Tkach JM, Vierling E, Glover JR. Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 2004; 279:29139-46. [PMID: 15128736 DOI: 10.1074/jbc.m403777200] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Hsp104, a hexameric member of the Hsp100/Clp subfamily of AAA+ ATPases with two nucleotide binding domains (NBD1 and 2), refolds aggregated proteins in conjunction with Hsp70 molecular chaperones. Hsp104 may act as a "molecular crowbar" to pry aggregates apart and/or may extract proteins from aggregates by unfolding and threading them through the axial channel of the Hsp104 hexamer. Targeting Tyr-662, located in a Gly-Tyr-Val-Gly motif that forms part of the axial channel loop in NBD2, we created conservative (Phe and Trp) and non-conservative (Ala and Lys) amino acid substitutions. Each of these Hsp104 derivatives was comparable to the wild type protein in their ability to hydrolyze ATP, assemble into hexamers, and associate with heat-shock-induced aggregates in living cells. However, only those with conservative substitutions complemented the thermotolerance defect of a Deltahsp104 yeast strain and promoted refolding of aggregated protein in vitro. Monitoring fluorescence from Trp-662 showed that titration of fully assembled molecules with either ATP or ADP progressively quenches fluorescence, suggesting that nucleotide binding determines the position of the loop within the axial channel. A Glu to Lys substitution at residue 645 in the NBD2 axial channel strongly alters the nucleotide-induced change in fluorescence of Trp-662 and specifically impairs in protein refolding. These data establish that the structural integrity of the axial channel through NBD2 is required for Hsp104 function and support the proposal that Hsp104 and ClpB use analogous unfolding/threading mechanisms to promote disaggregation and refolding that other Hsp100s use to promote protein degradation.
Collapse
Affiliation(s)
- Ronnie Lum
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
131
|
Siddiqui SM, Sauer RT, Baker TA. Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes Dev 2004; 18:369-74. [PMID: 15004005 PMCID: PMC359390 DOI: 10.1101/gad.1170304] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ClpX binds substrates bearing specific classes of peptide signals, denatures these proteins, and translocates them through a central pore into ClpP for degradation. ClpX with the V154F po e mutation is severely defective in binding substrates bearing C-motif 1 degradation signals and is also impaired in a subsequent step of substrate engagement. In contrast, this mutant efficiently processes substrates with other classes of recognition signals both in vitro and in vivo. These results demonstrate that the ClpX pore functions in the recognition and catalytic engagement of specific substrates, and that ClpX recognizes different substrate classes in at least two distinct fashions.
Collapse
Affiliation(s)
- Samia M Siddiqui
- Massachusetts Institute of Technology, Department of Biology, Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
132
|
Joshi SA, Hersch GL, Baker TA, Sauer RT. Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 2004; 11:404-11. [PMID: 15064753 DOI: 10.1038/nsmb752] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Accepted: 03/03/2004] [Indexed: 11/08/2022]
Abstract
In the ClpXP compartmental protease, ring hexamers of the AAA(+) ClpX ATPase bind, denature and then translocate protein substrates into the degradation chamber of the double-ring ClpP(14) peptidase. A key question is the extent to which functional communication between ClpX and ClpP occurs and is regulated during substrate processing. Here, we show that ClpX-ClpP affinity varies with the protein-processing task of ClpX and with the catalytic engagement of the active sites of ClpP. Functional communication between symmetry-mismatched ClpXP rings depends on the ATPase activity of ClpX and seems to be transmitted through structural changes in its IGF loops, which contact ClpP. A conserved arginine in the sensor II helix of ClpX links the nucleotide state of ClpX to the binding of ClpP and protein substrates. A simple model explains the observed relationships between ATP binding, ATP hydrolysis and functional interactions between ClpX, protein substrates and ClpP.
Collapse
Affiliation(s)
- Shilpa A Joshi
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
133
|
Kwon AR, Trame CB, McKay DB. Kinetics of protein substrate degradation by HslUV. J Struct Biol 2004; 146:141-7. [PMID: 15037245 DOI: 10.1016/j.jsb.2003.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 10/24/2003] [Indexed: 11/28/2022]
Abstract
The HslUV protease-chaperone complex degrades specific protein substrates in an ATP-dependent reaction. Current models propose that the HslU chaperone, a AAA protein of the Clp/Hsp100 family, binds and unfolds substrates and translocates the polypeptide into the catalytic cavity of the HslV protease. These processes are being characterized using substrates that are targeted to HslUV with a carboxy-terminal fusion of the natural substrate SulA or the carboxy-terminal 11 amino acid residues thereof. In a tandem fusion of green fluorescent protein with SulA, HslUV degrades the SulA moiety but not green fluorescent protein. Wild type and mutant Arc repressor variants are degraded; over a range of substrate stabilities, the specific rate of degradation and its dependence on substrate stability is similar to that of ClpXP. For a hyperstable Arc variant having an intermolecular disulfide bond, the rate of degradation by HslUV is an order of magnitude slower than by ClpXP. Similarity in degradation rates for a subset of substrates by HslUV and ClpXP suggests a similarity in mechanism of the apparent rate-limiting steps of unfolding and translocation by the chaperone components HslU and ClpX. The fall-off in degradation by HslUV for the more stable substrates that are degraded by ClpXP is consistent with the two systems acting on different spectra of biological substrates.
Collapse
Affiliation(s)
- Ae-Ran Kwon
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
134
|
Kedzierska S, Akoev V, Barnett ME, Zolkiewski M. Structure and function of the middle domain of ClpB from Escherichia coli. Biochemistry 2004; 42:14242-8. [PMID: 14640692 PMCID: PMC1821349 DOI: 10.1021/bi035573d] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ClpB belongs to the Hsp100/Clp ATPase family. Whereas a homologue of ClpB, ClpA, interacts with and stimulates the peptidase ClpP, ClpB does not associate with peptidases and instead cooperates with DnaK/DnaJ/GrpE in an efficient reactivation of severely aggregated proteins. The major difference between ClpA and ClpB is located in the middle sequence region (MD) that is much longer in ClpB than in ClpA and contains several segments of coiled-coil-like heptad repeats. The function of MD is unknown. We purified the isolated MD fragment of ClpB from Escherichia coli (residues 410-570). Circular dichroism (CD) detected a high population of alpha-helical structure in MD. Temperature-induced changes in CD showed that MD is a thermodynamically stable folding domain. Sedimentation equilibrium showed that MD is monomeric in solution. We produced four truncated variants of ClpB with deletions of the following heptad-repeat-containing regions in MD: 417-455, 456-498, 496-530, and 531-569. We found that the removal of each heptad-repeat region within MD strongly inhibited the oligomerization of ClpB, which produced low ATPase activity of the truncated ClpB variants as well as their low chaperone activity in vivo. Only one ClpB variant (Delta417-455) could partially complement the growth defect of the clpB-null E. coli strain at 50 degrees C. Our results show that heptad repeats in MD play an important role in stabilization of the active oligomeric form of ClpB. The heptad repeats are likely involved in stabilization of an intra-MD helical bundle rather than an intersubunit coiled coil.
Collapse
Affiliation(s)
| | | | | | - Michal Zolkiewski
- * To whom correspondence should be addressed: Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506. Phone: (785) 532-3083. Fax: (785) 532-7278. E-mail:
| |
Collapse
|
135
|
Pickart CM, Cohen RE. Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 2004; 5:177-87. [PMID: 14990998 DOI: 10.1038/nrm1336] [Citation(s) in RCA: 541] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cecile M Pickart
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
136
|
Abstract
Clp/Hsp100 chaperones work with other cellular chaperones and proteases to control the quality and amounts of many intracellular proteins. They employ an ATP-dependent protein unfoldase activity to solubilize protein aggregates or to target specific classes of proteins for degradation. The structural complexity of Clp/Hsp100 proteins combined with the complexity of the interactions with their macromolecular substrates presents a considerable challenge to understanding the mechanisms by which they recognize and unfold substrates and deliver them to downstream enzymes. Fortunately, high-resolution structural data is now available for several of the chaperones and their functional partners, which together with mutational data on the chaperones and their substrates has provided a glimmer of light at the end of the Clp/Hsp100 tunnel.
Collapse
Affiliation(s)
- Michael R Maurizi
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
137
|
Gerth U, Kirstein J, Mostertz J, Waldminghaus T, Miethke M, Kock H, Hecker M. Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 2004; 186:179-91. [PMID: 14679237 PMCID: PMC303445 DOI: 10.1128/jb.186.1.179-191.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clp-controlled proteolysis in Bacillus subtilis seems to play a substantial role, particularly under stress conditions. Calibrated Western blot analyses were used to estimate the approximate numbers of heat-inducible Clp molecules within a single cell. According to these numbers, the different Clp ATPases do not seem to compete for the proteolytic subunit ClpP. Coimmunoprecipitation experiments revealed the predicted specific ClpX-ClpP, ClpC-ClpP, and ClpE-ClpP interactions. ClpE and ClpX are rapidly degraded in wild-type cells during permanent heat stress but remained almost stable in a clpP mutant, suggesting ClpP-dependent degradation. In particular, ClpCP appeared to be involved in the degradation of the short-lived ClpE ATPase, indicating a negative "autoregulatory" circuit for this particular Clp ATPase at the posttranslational level. Analysis of the half-life of stress-inducible clp mRNAs during exponential growth and heat shock revealed precise regulation of the synthesis of each Clp protein at the posttranscriptional level as well to meet the needs of B. subtilis.
Collapse
Affiliation(s)
- Ulf Gerth
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, D-17487 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
138
|
Wojtyra UA, Thibault G, Tuite A, Houry WA. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J Biol Chem 2003; 278:48981-90. [PMID: 12937164 DOI: 10.1074/jbc.m307825200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clp ATPases are unique chaperones that promote protein unfolding and subsequent degradation by proteases. The mechanism by which this occurs is poorly understood. Here we demonstrate that the N-terminal domain of ClpX is a C4-type zinc binding domain (ZBD) involved in substrate recognition. ZBD forms a very stable dimer that is essential for promoting the degradation of some typical ClpXP substrates such as lambdaO and MuA but not GFP-SsrA. Furthermore, experiments indicate that ZBD contains a primary binding site for the lambdaO substrate and for the cofactor SspB. Removal of ZBD from the ClpX sequence renders the ATPase activity of ClpX largely insensitive to the presence of ClpP, substrates, or the SspB cofactor. All these results indicate that ZBD plays an important role in the ClpX mechanism of function and that ATP binding and/or hydrolysis drives a conformational change in ClpX involving ZBD.
Collapse
Affiliation(s)
- Urszula A Wojtyra
- Department of Biochemistry, Medical Sciences Building, 1 King's College Circle, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | |
Collapse
|
139
|
Abstract
Proteolysis by cytoplasmic, energy-dependent proteases plays a critical role in many regulatory circuits, keeping basal levels of regulatory proteins low and rapidly removing proteins when they are no longer needed. In bacteria, four families of energy-dependent proteases carry out degradation. In all of them, substrates are first recognized and bound by ATPase domains and then unfolded and translocated to a sequestered proteolytic chamber. Substrate selection depends not on ubiquitin but on intrinsic recognition signals within the proteins and, in some cases, on adaptor or effector proteins that participate in delivering the substrate to the protease. For some, the activity of these adaptors can be regulated, which results in regulated proteolysis. Recognition motifs for proteolysis are frequently found at the N and C termini of substrates. Proteolytic switches appear to be critical for cell cycle development in Caulobacter crescentus, for proper sporulation in Bacillus subtilis, and for the transition in and out of stationary phase in Escherichia coli. In eukaryotes, the same proteases are found in organelles, where they also play important roles.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892-4264, USA.
| |
Collapse
|
140
|
Neher SB, Sauer RT, Baker TA. Distinct peptide signals in the UmuD and UmuD' subunits of UmuD/D' mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci U S A 2003; 100:13219-24. [PMID: 14595014 PMCID: PMC263758 DOI: 10.1073/pnas.2235804100] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Escherichia coli UmuD' protein is a component of DNA polymerase V, an error-prone polymerase that carries out translesion synthesis on damaged DNA templates. The intracellular concentration of UmuD' is strictly controlled by regulated transcription, by posttranslational processing of UmuD to UmuD', and by ClpXP degradation. UmuD' is a substrate for the ClpXP protease but must form a heterodimer with its unabbreviated precursor, UmuD, for efficient degradation to occur. Here, we show that UmuD functions as a UmuD' delivery protein for ClpXP. UmuD can also deliver a UmuD partner for degradation. UmuD resembles SspB, a well-characterized substrate-delivery protein for ClpX, in that both proteins use related peptide motifs to bind to the N-terminal domain of ClpX, thereby tethering substrate complexes to ClpXP. The combined use of a weak substrate recognition signal and a delivery factor that tethers the substrate to the protease allows regulated proteolysis of UmuD/D' in the cell. Dual recognition strategies of this type may be a relatively common feature of intracellular protein turnover.
Collapse
Affiliation(s)
- Saskia B Neher
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
141
|
Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K, Ogura T. Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 2003; 278:50182-7. [PMID: 14514680 DOI: 10.1074/jbc.m308327200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Like other AAA proteins, Escherichia coli FtsH, a membrane-bound AAA protease, contains highly conserved aromatic and glycine residues (Phe228 and Gly230) that are predicted to lie in the central pore region of the hexamer. The functions of Phe228 and Gly230 were probed by site-directed mutagenesis. The results of both in vivo and in vitro assays indicate that these conserved pore residues are important for FtsH function and that bulkier, uncharged/apolar residues are essential at position 228. None of the point mutants, F228A, F228E, F228K, or G230A, was able to degrade sigma32, a physiological substrate. The F228A mutant was able to degrade casein, an unfolded substrate, although the other three mutants were not. Mutation of these two pore residues also affected the ATPase activity of FtsH. The F228K and G230A mutations markedly reduced ATPase activity, whereas the F228A mutation caused a more modest decrease in this activity. The F228E mutant was actually more active ATPase. The substrates, sigma32 and casein, stimulated the ATPase activity of wild type FtsH. The ATPase activity of the mutants was no longer stimulated by casein, whereas that of the three Phe228 mutants, but not the G230A mutant, remained sigma32-stimulatable. These results suggest that Phe228 and Gly230 in the predicted pore region of the FtsH hexamer have important roles in proteolysis and its coupling to ATP hydrolysis.
Collapse
Affiliation(s)
- Tomoko Yamada-Inagawa
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan
| | | | | | | | | |
Collapse
|
142
|
Abstract
ClpX, a heat shock protein 100 chaperone, which acts as the regulatory subunit of the ATP-dependent ClpXP protease, is responsible for intracellular protein remodeling and degradation. To provide a structural basis for a better understanding of the function of the Clp ATPase family, the crystal structures of Helicobacter pylori ClpX, lacking an N-terminal Cys cluster region complexed with ADP, was determined. The overall structure of ClpX is similar to that of heat shock locus U (HslU), consisting of two subdomains, with ADP bound at the subdomain interface. The crystal structure of ClpX reveals that a conserved tripeptide (LGF) is located on the tip of ClpP binding loop extending from the N-terminal subdomain. A hexameric model of ClpX suggests that six tripeptides make hydrophobic contacts with the hydrophobic clefts of the ClpP heptmer asymmetrically. In addition, the nucleotide binding environment provides the structural explanation for the hexameric assembly and the modulation of ATPase activity.
Collapse
Affiliation(s)
- Dong Young Kim
- Department of Molecular Cell Biology, Center for Molecular Medicine, SBRI, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | |
Collapse
|
143
|
Weibezahn J, Schlieker C, Bukau B, Mogk A. Characterization of a trap mutant of the AAA+ chaperone ClpB. J Biol Chem 2003; 278:32608-17. [PMID: 12805357 DOI: 10.1074/jbc.m303653200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AAA+ protein ClpB mediates the solubilization of protein aggregates in cooperation with the DnaK chaperone system (KJE). The order of action of ClpB and KJE on aggregated proteins is unknown. We describe a ClpB variant with mutational alterations in the Walker B motif of both AAA domains (E279A/E678A), which binds but does not hydrolyze ATP. This variant associates in vitro and in vivo in a stable manner with protein substrates, demonstrating direct interaction of ClpB with protein aggregates for the first time. Substrate interaction is strictly dependent on ATP binding to both AAA domains of ClpB. The unique substrate binding properties of the double Walker B variant allowed to dissect the order of ClpB and DnaK action during disaggregation reactions. ClpB-E279A/E678A outcompetes the DnaK system for binding to the model substrate TrfA and inhibits the dissociation of small protein aggregates by DnaK only, indicating that ClpB acts prior to DnaK on protein substrates.
Collapse
Affiliation(s)
- Jimena Weibezahn
- ZMBH, Universität Heidelberg, Im NeuenheimerFeld 282, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
144
|
Kenniston JA, Baker TA, Fernandez JM, Sauer RT. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 2003; 114:511-20. [PMID: 12941278 DOI: 10.1016/s0092-8674(03)00612-3] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proteolytic machines powered by ATP hydrolysis bind proteins with specific peptide tags, denature these substrates, and translocate them into a sequestered compartment for degradation. To determine how ATP is used during individual reaction steps, we assayed ClpXP degradation of ssrA-tagged titin variants with different stabilities in native and denatured forms. The rate of ATP turnover was 4-fold slower during denaturation than translocation. Importantly, this reduced turnover rate was constant during denaturation of native variants with different stabilities, but total ATP consumption increased with substrate stability, suggesting an iterative application of a uniform, mechanical unfolding force. Destabilization of substrate structure near the degradation tag accelerated degradation and dramatically reduced ATP consumption, revealing an important role for local protein stability in resisting denaturation. The ability to denature more stable proteins simply by using more ATP endows ClpX with a robust unfolding activity required for its biological roles in degradation and complex disassembly.
Collapse
Affiliation(s)
- Jon A Kenniston
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
145
|
Stüdemann A, Noirclerc-Savoye M, Klauck E, Becker G, Schneider D, Hengge R. Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 2003; 22:4111-20. [PMID: 12912910 PMCID: PMC175800 DOI: 10.1093/emboj/cdg411] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2003] [Revised: 06/26/2003] [Accepted: 06/30/2003] [Indexed: 11/14/2022] Open
Abstract
sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.
Collapse
Affiliation(s)
- Andrea Stüdemann
- Institut für Biologie-Mikrobiologie, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
146
|
Levchenko I, Grant RA, Wah DA, Sauer RT, Baker TA. Structure of a Delivery Protein for an AAA+ Protease in Complex with a Peptide Degradation Tag. Mol Cell 2003; 12:365-72. [PMID: 14536076 DOI: 10.1016/j.molcel.2003.08.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Substrate selection by AAA+ ATPases that function to unfold proteins or alter protein conformation is often regulated by delivery or adaptor proteins. SspB is a protein dimer that binds to the ssrA degradation tag and delivers proteins bearing this tag to ClpXP, an AAA+ protease, for degradation. Here, we describe the structure of the peptide binding domain of H. influenzae SspB in complex with an ssrA peptide at 1.6 A resolution. The ssrA peptides are bound in well-defined clefts located at the extreme ends of the SspB homodimer. SspB contacts residues within the N-terminal and central regions of the 11 residue ssrA tag but leaves the C-terminal residues exposed and positioned to dock with ClpX. This structure, taken together with biochemical analysis of SspB, suggests mechanisms by which proteins like SspB escort substrates to AAA+ ATPases and enhance the specificity and affinity of target recognition.
Collapse
Affiliation(s)
- Igor Levchenko
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
147
|
Burton RE, Baker TA, Sauer RT. Energy-dependent degradation: Linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Sci 2003; 12:893-902. [PMID: 12717012 PMCID: PMC2323860 DOI: 10.1110/ps.0237603] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
ClpX requires ATP to unfold protein substrates and translocate them into the proteolytic chamber of ClpP for degradation. The steady-state parameters for hydrolysis of ATP and ATPgammaS by ClpX were measured with different protein partners and the kinetics of degradation of ssrA-tagged substrates were determined with both nucleotides. ClpX hydrolyzed ATPgammaS to ADP and thiophosphate at a rate (6/min) significantly slower than ATP hydrolysis (140/min), but the hydrolysis of both nucleotides was increased by ssrA-tagged substrates and decreased by ClpP. K(M) and k(cat) for hydrolysis of ATP and ATPgammaS were linearly correlated over a 200-fold range, suggesting that protein partners largely affect k(cat) rather than nucleotide binding, indicating that most bound ATP leaves the enzyme by hydrolysis rather than dissociation, and placing an upper limit of approximately 15 micro M on K(D) for both nucleotides. Competition studies with ClpX and fluorescently labeled ADP gave inhibition constants for ATPgammaS ( approximately 2 micro M) and ADP ( approximately 3 micro M) under the reaction conditions used for steady-state kinetics. In the absence of Mg(2+), where hydrolysis does not occur, the inhibition constant for ATP ( approximately 55 micro M) was weaker but very similar to the value for ATPgammaS ( approximately 45 micro M). Compared with ATP, ATPgammaS supported slow but roughly comparable rates of ClpXP degradation for two Arc-ssrA substrates and denatured GFP-ssrA, but not of native GFP-ssrA. These results show that the processing of protein substrates by ClpX is closely coupled to the maximum rate of nucleotide hydrolysis.
Collapse
Affiliation(s)
- Randall E Burton
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
148
|
Flanagan JM, Bewley MC. Protein quality control in bacterial cells: integrated networks of chaperones and ATP-dependent proteases. GENETIC ENGINEERING 2003; 24:17-47. [PMID: 12416299 DOI: 10.1007/978-1-4615-0721-5_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- John M Flanagan
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
149
|
Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA. Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 2003; 11:671-83. [PMID: 12667450 DOI: 10.1016/s1097-2765(03)00060-1] [Citation(s) in RCA: 452] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ClpXP is a protease involved in DNA damage repair, stationary-phase gene expression, and ssrA-mediated protein quality control. To date, however, only a handful of ClpXP substrates have been identified. Using a tagged and inactive variant of ClpP, substrates of E. coli ClpXP were trapped in vivo, purified, and identified by mass spectrometry. The more than 50 trapped proteins include transcription factors, metabolic enzymes, and proteins involved in the starvation and oxidative stress responses. Analysis of the sequences of the trapped proteins revealed five recurring motifs: two located at the C terminus of proteins, and three N-terminal motifs. Deletion analysis, fusion proteins, and point mutations established that sequences from each motif class targeted proteins for degradation by ClpXP. These results represent a description of general rules governing substrate recognition by a AAA+ family ATPase and suggest strategies for regulation of protein degradation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
150
|
Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA. Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol Cell 2003; 11:659-69. [PMID: 12667449 DOI: 10.1016/s1097-2765(03)00068-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FtsH, a member of the AAA family of proteins, is the only membrane ATP-dependent protease universally conserved in prokaryotes, and the only essential ATP-dependent protease in Escherichia coli. We investigated the mechanism of degradation by FtsH. Other well-studied ATP-dependent proteases use ATP to unfold their substrates. In contrast, both in vitro and in vivo studies indicate that degradation by FtsH occurs efficiently only when the substrate is a protein of low intrinsic thermodynamic stability. Because FtsH lacks robust unfoldase activity, it is able to use the protein folding state of substrates as a criterion for degradation. This feature may be key to its role in the cell and account for its ubiquitous distribution among prokaryotic organisms.
Collapse
Affiliation(s)
- Christophe Herman
- Department of Microbiology & Immunology, University of California, San Franscisco, San Franscisco, CA 94143, USA.
| | | | | | | | | |
Collapse
|