101
|
Cell cycle: mechanisms of control and dysregulation in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
102
|
Emerging roles of peroxisome proliferator-activated receptor gamma in cancer. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
103
|
Díaz Flaqué MC, Galigniana NM, Béguelin W, Vicario R, Proietti CJ, Russo RC, Rivas MA, Tkach M, Guzmán P, Roa JC, Maronna E, Pineda V, Muñoz S, Mercogliano MF, Charreau EH, Yankilevich P, Schillaci R, Elizalde PV. Progesterone receptor assembly of a transcriptional complex along with activator protein 1, signal transducer and activator of transcription 3 and ErbB-2 governs breast cancer growth and predicts response to endocrine therapy. Breast Cancer Res 2013; 15:R118. [PMID: 24345432 PMCID: PMC3978912 DOI: 10.1186/bcr3587] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/09/2013] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION The role of the progesterone receptor (PR) in breast cancer remains a major clinical challenge. Although PR induces mammary tumor growth, its presence in breast tumors is a marker of good prognosis. We investigated coordinated PR rapid and nonclassical transcriptional effects governing breast cancer growth and endocrine therapy resistance. METHODS We used breast cancer cell lines expressing wild-type and mutant PRs, cells sensitive and resistant to endocrine therapy, a variety of molecular and cellular biology approaches, in vitro proliferation studies and preclinical models to explore PR regulation of cyclin D1 expression, tumor growth, and response to endocrine therapy. We investigated the clinical significance of activator protein 1 (AP-1) and PR interaction in a cohort of 99 PR-positive breast tumors by an immunofluorescence protocol we developed. The prognostic value of AP-1/PR nuclear colocalization in overall survival (OS) was evaluated using Kaplan-Meier method, and Cox model was used to explore said colocalization as an independent prognostic factor for OS. RESULTS We demonstrated that at the cyclin D1 promoter and through coordinated rapid and transcriptional effects, progestin induces the assembly of a transcriptional complex among AP-1, Stat3, PR, and ErbB-2 which functions as an enhanceosome to drive breast cancer growth. Our studies in a cohort of human breast tumors identified PR and AP-1 nuclear interaction as a marker of good prognosis and better OS in patients treated with tamoxifen (Tam), an anti-estrogen receptor therapy. Rationale for this finding was provided by our demonstration that Tam inhibits rapid and genomic PR effects, rendering breast cancer cells sensitive to its antiproliferative effects. CONCLUSIONS We here provided novel insight into the paradox of PR action as well as new tools to identify the subgroup of ER+/PR + patients unlikely to respond to ER-targeted therapies.
Collapse
Affiliation(s)
- María C Díaz Flaqué
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Natalia M Galigniana
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Wendy Béguelin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rocío Vicario
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Cecilia J Proietti
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Rosalía Cordo Russo
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Martín A Rivas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Mercedes Tkach
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | | | - Juan C Roa
- Universidad de La Frontera, Temuco, Chile
| | - Esteban Maronna
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
- Sanatorio Mater Dei, Buenos Aires, Argentina
| | | | | | | | - Eduardo H Charreau
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricio Yankilevich
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Roxana Schillaci
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| | - Patricia V Elizalde
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Obligado 2490, Buenos Aires 1428, Argentina
| |
Collapse
|
104
|
Sawai M, Ishikawa Y, Ota A, Sakurai H. The proto-oncogeneJUNis a target of the heat shock transcription factor HSF1. FEBS J 2013; 280:6672-80. [DOI: 10.1111/febs.12570] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 10/06/2013] [Accepted: 10/14/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Maki Sawai
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Yukio Ishikawa
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Azumi Ota
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| | - Hiroshi Sakurai
- Department of Clinical Laboratory Science; Kanazawa University Graduate School of Medical Science; Ishikawa Japan
| |
Collapse
|
105
|
|
106
|
KIM DONGWOOK, KO SEONMI, JEON YOUNGJOO, NOH YOUNGWOOCK, CHOI NAGJIN, CHO SUNGDAE, MOON HONGSEOP, CHO YOUNGSIK, SHIN JAECHEN, PARK SEONMIN, SEO KANGSEOK, CHOI JIYOUNG, CHAE JUNGIL, SHIM JUNGHYUN. Anti-proliferative effect of honokiol in oral squamous cancer through the regulation of specificity protein 1. Int J Oncol 2013; 43:1103-10. [DOI: 10.3892/ijo.2013.2028] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/16/2013] [Indexed: 11/06/2022] Open
|
107
|
Casimiro MC, Wang C, Li Z, Di Sante G, Willmart NE, Addya S, Chen L, Liu Y, Lisanti MP, Pestell RG. Cyclin D1 determines estrogen signaling in the mammary gland in vivo. Mol Endocrinol 2013; 27:1415-28. [PMID: 23864650 DOI: 10.1210/me.2013-1065] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The CCND1 gene, which is frequently overexpressed in cancers, encodes the regulatory subunit of a holoenzyme that phosphorylates the retinoblastoma protein. Although it is known that cyclin D1 regulates estrogen receptor (ER)α transactivation using heterologous reporter systems, the in vivo biological significance of cyclin D1 to estrogen-dependent signaling, and the molecular mechanisms by which cyclin D1 is involved, are yet to be elucidated. Herein, genome-wide expression profiling conducted of 17β-estradiol-treated castrated virgin mice deleted of the Ccnd1 gene demonstrated that cyclin D1 determines estrogen-dependent gene expression for 88% of estrogen-responsive genes in vivo. In addition, expression profiling of 17β-estradiol-stimulated cyclin D1 small interfering RNA treated MCF7 cells shows cyclin D1 is required for estrogen-mediated gene expression in vitro. Genome-wide chromatin immunoprecipitation-Seq analysis revealed a cyclin D1-DNA bound form associated with genes that were regulated by estrogen in a cyclin D1-dependent manner. The cyclin D1-dependent estrogen signaling pathways identified in vivo were highly enriched for extracellular membrane-associated growth factor receptors (epidermal growth factor receptor, ErbB3, and EphB3) and their ligands (amphiregulin, encoded by AREG gene), and matrix metalloproteinase. The AREG protein, a pivotal ligand for epidermal growth factor receptors to promote cellular proliferation, was induced by cyclin D1 via the AREG promoter. Chromatin immunoprecipitation analysis demonstrated the recruitment of cyclin D1 to the breast cancer 1 (Brca1)/ERα binding site of the Areg gene. Cyclin D1 genetic deletion demonstrated the in vivo requirement for cyclin D1 in assembling the estrogen-dependent amplified in breast cancer 1-associated multiprotein complex. The current studies define a requirement for cyclin D1 in estrogen-dependent signaling modules governing growth factor receptor and ligand expression in vivo and reveal a noncanonical function of cyclin D1 at ERα target gene promoters. Cyclin D1 mediates the convergence of ERα and growth factor signaling at a common cis-element of growth factor genes.
Collapse
Affiliation(s)
- Mathew C Casimiro
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Hsu CC, Hu CD. Transcriptional activity of c-Jun is critical for the suppression of AR function. Mol Cell Endocrinol 2013; 372:12-22. [PMID: 23523566 PMCID: PMC3646949 DOI: 10.1016/j.mce.2013.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/04/2013] [Indexed: 12/16/2022]
Abstract
Androgen receptor (AR) signaling plays a pivotal role in growth and survival of prostate cancer cells. c-Jun is an important member of the activator protein 1 (AP-1) family and was shown to interact with AR. However, the role of c-Jun in AR signaling remains controversial, with being a coactivator or a corepressor reported. Here, utilizing multiple approaches, we show that c-Jun efficiently inhibits AR activity and the growth of prostate cancer cells. Overexpression of c-Jun inhibits not only the activities of various androgen-responsive promoters but also the transcripts of multiple AR target genes. Interestingly, long-term c-Jun overexpression also down-regulates AR expression at both the protein and mRNA levels. Molecular analysis suggests that c-Jun inhibits AR transactivation potential via an unknown target gene. The inhibition of AR by c-Jun occurs in both hormone naïve and castration-resistant prostate cancer cells. Our results unravel a novel mechanism by which c-Jun antagonizes the AR signaling.
Collapse
Affiliation(s)
- Chih-Chao Hsu
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
109
|
IKEDA YUJI, ODA KATSUTOSHI, HIRAIKE-WADA OSAMU, KOSO TAKAHIRO, MIYASAKA AKI, KASHIYAMA TOMOKO, TANIKAWA MICHIHIRO, SONE KENBUN, NAGASAKA KAZUNORI, MAEDA DAICHI, KAWANA KEI, NAKAGAWA SHUNSUKE, FUKAYAMA MASASHI, TETSU OSAMU, FUJII TOMOYUKI, YANO TETSU, KOZUMA SHIRO. Cyclin D1 harboring the T286I mutation promotes oncogenic activation in endometrial cancer. Oncol Rep 2013; 30:584-8. [DOI: 10.3892/or.2013.2515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/15/2013] [Indexed: 11/06/2022] Open
|
110
|
Wu K, Li Z, Cai S, Tian L, Chen K, Wang J, Hu J, Sun Y, Li X, Ertel A, Pestell RG. EYA1 phosphatase function is essential to drive breast cancer cell proliferation through cyclin D1. Cancer Res 2013; 73:4488-99. [PMID: 23636126 DOI: 10.1158/0008-5472.can-12-4078] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Drosophila Eyes Absent Homologue 1 (EYA1) is a component of the retinal determination gene network and serves as an H2AX phosphatase. The cyclin D1 gene encodes the regulatory subunits of a holoenzyme that phosphorylates and inactivates the pRb protein. Herein, comparison with normal breast showed that EYA1 is overexpressed with cyclin D1 in luminal B breast cancer subtype. EYA1 enhanced breast tumor growth in mice in vivo, requiring the phosphatase domain. EYA1 enhanced cellular proliferation, inhibited apoptosis, and induced contact-independent growth and cyclin D1 abundance. The induction of cellular proliferation and cyclin D1 abundance, but not apoptosis, was dependent upon the EYA1 phosphatase domain. The EYA1-mediated transcriptional induction of cyclin D1 occurred via the AP-1-binding site at -953 and required the EYA1 phosphatase function. The AP-1 mutation did not affect SIX1-dependent activation of cyclin D1. EYA1 was recruited in the context of local chromatin to the cyclin D1 AP-1 site. The EYA1 phosphatase function determined the recruitment of CBP, RNA polymerase II, and acetylation of H3K9 at the cyclin D1 gene AP-1 site regulatory region in the context of local chromatin. The EYA1 phosphatase regulates cell-cycle control via transcriptional complex formation at the cyclin D1 promoter.
Collapse
Affiliation(s)
- Kongming Wu
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA19107, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Lim SY, Soh JW. Specific Isoforms of Protein Kinase G Downregulate the Transcription of Cyclin D1 in NIH3T3. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
112
|
Eliades A, Papadantonakis N, Matsuura S, Mi R, Bais MV, Trackman P, Ravid K. Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. Cell Cycle 2013; 12:1242-50. [PMID: 23518500 DOI: 10.4161/cc.24312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
Collapse
Affiliation(s)
- Alexia Eliades
- Department of Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA USA
| | | | | | | | | | | | | |
Collapse
|
113
|
Kasza A. IL-1 and EGF regulate expression of genes important in inflammation and cancer. Cytokine 2013; 62:22-33. [PMID: 23481102 DOI: 10.1016/j.cyto.2013.02.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/09/2013] [Accepted: 02/05/2013] [Indexed: 02/08/2023]
Abstract
This review focuses on the mechanisms by which the expression of specific genes is regulated by two proteins that are important in inflammation and cancer, namely the pro-inflammatory cytokine interleukin (IL)-1β and epidermal growth factor (EGF). In the review the receptors that recognize factors that cause inflammation are described with main focus on the receptors associated with activation of IL-1β. The function of IL-1β and pathways leading to activation of transcription factors, particularly NFκB and Elk-1 are analyzed. Then the mechanisms of EGF action, with particular emphasis of the activation of Elk-1 are illustrated. The link between aberrant signaling of EGF receptor family members and cancer development is explained. The relationship between inflammation and tumorigenesis is discussed.
Collapse
Affiliation(s)
- Aneta Kasza
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
114
|
Abstract
Cells decide to proliferate or remain quiescent using signaling pathways that link information about the cellular environment to the G1 phase of the cell cycle. Progression through G1 phase is controlled by pRB proteins, which function to repress the activity of E2F transcription factors in cells exiting mitosis and in quiescent cells. Phosphorylation of pRB proteins by the G1 cyclin-dependent kinases (CDKs) releases E2F factors, promoting the transition to S phase. CDK activity is primarily regulated by the binding of CDK catalytic subunits to cyclin partners and CDK inhibitors. Consequently, both mitogenic and antiproliferative signals exert their effects on cell proliferation through the transcriptional regulation and ubiquitin-dependent degradation of cyclins and CDK inhibitors.
Collapse
Affiliation(s)
- Robert J Duronio
- Department of Biology and Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
115
|
Bassermann F, Eichner R, Pagano M. The ubiquitin proteasome system - implications for cell cycle control and the targeted treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:150-62. [PMID: 23466868 DOI: 10.1016/j.bbamcr.2013.02.028] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/07/2013] [Accepted: 02/22/2013] [Indexed: 01/21/2023]
Abstract
Two families of E3 ubiquitin ligases are prominent in cell cycle regulation and mediate the timely and precise ubiquitin-proteasome-dependent degradation of key cell cycle proteins: the SCF (Skp1/Cul1/F-box protein) complex and the APC/C (anaphase promoting complex or cyclosome). While certain SCF ligases drive cell cycle progression throughout the cell cycle, APC/C (in complex with either of two substrate recruiting proteins: Cdc20 and Cdh1) orchestrates exit from mitosis (APC/C(Cdc20)) and establishes a stable G1 phase (APC/C(Cdh1)). Upon DNA damage or perturbation of the normal cell cycle, both ligases are involved in checkpoint activation. Mechanistic insight into these processes has significantly improved over the last ten years, largely due to a better understanding of APC/C and the functional characterization of multiple F-box proteins, the variable substrate recruiting components of SCF ligases. Here, we review the role of SCF- and APC/C-mediated ubiquitylation in the normal and perturbed cell cycle and discuss potential clinical implications of SCF and APC/C functions. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
Affiliation(s)
- Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 Munich, Germany.
| | | | | |
Collapse
|
116
|
MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1. Oncogene 2013; 33:783-93. [DOI: 10.1038/onc.2012.637] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 12/19/2022]
|
117
|
Takahashi R, Hirata Y, Sakitani K, Nakata W, Kinoshita H, Hayakawa Y, Nakagawa H, Sakamoto K, Hikiba Y, Ijichi H, Moses HL, Maeda S, Koike K. Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer. Cancer Sci 2013; 104:337-44. [PMID: 23237571 DOI: 10.1111/cas.12080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family, and it is reportedly involved in the development of several cancers. However, the role of JNK in pancreatic cancer has not been elucidated. We assessed t he involvement of JNK in the development of pancreatic cancer and investigated the therapeutic effect of JNK inhibitors on this deadly cancer. Small interfering RNAs against JNK or the JNK inhibitor SP600125 were used to examine the role of JNK in cellular proliferation and the cell cycles of pancreatic cancer cell lines. Ptf1a(cre/+) ;LSL-Kras(G12D/+) ;Tgfbr2(flox/flox) mice were treated with the JNK inhibitor to examine pancreatic histology and survival. The effect of JNK inhibition on tumor angiogenesis was also assessed using cell lines and murine pancreatic cancer specimens. JNK was frequently activated in human and murine pancreatic cancer in vitro and in vivo. Growth of human pancreatic cancer cell lines was suppressed by JNK inhibition through G1 arrest in the cell cycle with decreased cyclin D1 expression. In addition, oncogenic K-ras expression led to activation of JNK in pancreatic cancer cell lines. Treatment of Ptf1a(cre/+) ;LSL-Kras(G12D/+) ;Tgfbr2(flox/flox) mice with the JNK inhibitor decreased growth of murine pancreatic cancer and prolonged survival of the mice significantly. Angiogenesis was also decreased by JNK inhibition in vitro and in vivo. In conclusion, activation of JNK promotes development of pancreatic cancer, and JNK may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Rastogi N, Mishra DP. Therapeutic targeting of cancer cell cycle using proteasome inhibitors. Cell Div 2012; 7:26. [PMID: 23268747 PMCID: PMC3584802 DOI: 10.1186/1747-1028-7-26] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 11/15/2012] [Indexed: 12/21/2022] Open
Abstract
Proteasomes are multicatalytic protease complexes in the cell, involved in the non-lysosomal recycling of intra-cellular proteins. Proteasomes play a critical role in regulation of cell division in both normal as well as cancer cells. In cancer cells this homeostatic function is deregulated leading to the hyperactivation of the proteasomes. Proteasome inhibitors (PIs) are a class of compounds, which either reversibly or irreversibly block the activity of proteasomes and induce cancer cell death. Interference of PIs with the ubiquitin proteasome pathway (UPP) involved in protein turnover in the cell leads to the accumulation of proteins engaged in cell cycle progression, which ultimately put a halt to cancer cell division and induce apoptosis. Upregulation of many tumor suppressor proteins involved in cell cycle arrest are known to play a role in PI induced cell cycle arrest in a variety of cancer cells. Although many PIs target the proteasomes, not all of them are effective in cancer therapy. Some cancers develop resistance against proteasome inhibition by possibly activating compensatory signaling pathways. However, the details of the activation of these pathways and their contribution to resistance to PI therapy remain obscure. Delineation of these pathways may help in checking resistance against PIs and deducing effective combinational approaches for improved treatment strategies. This review will discuss some of the signaling pathways related to proteasome inhibition and cell division that may help explain the basis of resistance of some cancers to proteasome inhibitors and underline the need for usage of PIs in combination with traditional chemotherapy.
Collapse
Affiliation(s)
- Namrata Rastogi
- Cell Death Research Laboratory, Division of Endocrinology, CSIR- Central Drug Research Institute, Lucknow, 226001, India.
| | | |
Collapse
|
119
|
Mauvoisin D, Charfi C, Lounis AM, Rassart E, Mounier C. Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci 2012; 104:36-42. [PMID: 23013158 DOI: 10.1111/cas.12032] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/10/2012] [Accepted: 09/22/2012] [Indexed: 11/29/2022] Open
Abstract
Stearoyl-CoA desaturase-1 (SCD1) is an endoplasmic reticulum anchored enzyme catalyzing the synthesis of monounsaturated fatty acids, mainly palmytoleyl-CoA and oleyl-CoA. Recent studies have revealed a function for SCD1 in the modulation of signaling processes related to cell proliferation, survival and transformation to cancer. We used MCF7 and MDA-MB-231 cells to analyze the role of SCD1 in the metastatic acquisition of breast cancer cells. Silencing SCD1 expression in breast cancer cells has no effect on cell viability but the levels of cell proliferation, cell cycle genes' expressions and the phosphorylation state of ERK1/2 MAPK are significantly reduced. Decreasing SCD1 expression also reduces the level of GSK3 phosphorylation, indicating higher activity of the kinase. Using cells fractionation, immunofluorescence and a β-catenin/TCF-responsive reporter construct, we demonstrate that lowering SCD1 expression leads to a decrease of β-catenin amounts within the nucleus and to inhibition of its transactivation capacity. Moreover, MDA-MB-231 cells transfected with the SCD1 siRNA show a lower invasive potential than the control cells. Taken together, our data demonstrate that low SCD1 expression is associated with a decrease in the proliferation rate of breast cancer cells associated with a decrease in ERK1/2 activation. SCD1 silencing also inhibits GSK3 phosphorylation, lowering β-catenin translocation to the nucleus, and, subsequently, its transactivation capacity and the expression of its target genes. Finally, we show that silencing SCD1 impairs the epithelial to mesenchymal transition-like behavior of the cells, a characteristic of metastatic breast cancer.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- BioMed, Department of Biological Science, University of Quebec, Montreal, Canada
| | | | | | | | | |
Collapse
|
120
|
Zhang HS, Yan B, Li XB, Fan L, Zhang YF, Wu GH, Li M, Fang J. PAX2 protein induces expression of cyclin D1 through activating AP-1 protein and promotes proliferation of colon cancer cells. J Biol Chem 2012; 287:44164-72. [PMID: 23135283 DOI: 10.1074/jbc.m112.401521] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Paired box (PAX) 2, a transcription factor, plays a critical role in embryogenesis. When aberrantly expressed in adult tissues, it generally exhibits oncogenic properties. However, the underlying mechanisms remain unclear. We reported previously that the expression of PAX2 was up-regulated in human colon cancers. However, the role of PAX2 in colon cancer cells has yet to be determined. The aim of this study is to determine the function of PAX2 in colon cancer cells and to investigate the possible mechanisms underlain. We find that knockdown of PAX2 inhibits proliferation and xenograft growth of colon cancer cells. Inhibition of PAX2 results in a decreased expression of cyclin D1. Expression of cyclin D1 is found increased in human primary colon malignant tumors, and its expression is associated with that of PAX2. These data indicate that PAX2 is a positive regulator of expression of cyclin D1. We find that knockdown of PAX2 inhibits the activity of AP-1, a transcription factor that induces cyclin D1 expression, implying that PAX2 induces cyclin D1 through AP-1. PAX2 has little effect on expression of AP-1 members including c-Jun, c-Fos, and JunB. Our data show that PAX2 prevents JunB from binding c-Jun and enhances phosphorylation of c-Jun, which may elevate the activity of AP-1. Taken together, these results suggest that PAX2 promotes proliferation of colon cancer cells through AP-1.
Collapse
Affiliation(s)
- Hai-Sheng Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Bottazzi ME, Assoian RK. The extracellular matrix and mitogenic growth factors control G1 phase cyclins and cyclin-dependent kinase inhibitors. Trends Cell Biol 2012; 7:348-52. [PMID: 17708979 DOI: 10.1016/s0962-8924(97)01114-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Most cell types require both mitogenic growth factors and cell adhesion to the extracellular matrix (ECM) for proliferation. Over the past few years, these growth requirements have received renewed attention and can now be explained by studies showing that signals provided by growth factors and the ECM are jointly required to stimulate the cyclin-dependent kinases (CDKs) that mediate cell-cycle progression through G1 phase. This article summarizes our current understanding of the control of G1 cyclins and CDK inhibitors by growth factors and the ECM. In addition, we have highlighted one or two signal-transduction pathways that presently seem closely linked to regulation of the G1 phase cyclin-CDK system.
Collapse
|
122
|
Shimizu T, Kasamatsu A, Yamamoto A, Koike K, Ishige S, Takatori H, Sakamoto Y, Ogawara K, Shiiba M, Tanzawa H, Uzawa K. Annexin A10 in human oral cancer: biomarker for tumoral growth via G1/S transition by targeting MAPK signaling pathways. PLoS One 2012; 7:e45510. [PMID: 23029062 PMCID: PMC3444476 DOI: 10.1371/journal.pone.0045510] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 08/21/2012] [Indexed: 12/23/2022] Open
Abstract
Background Annexins are calcium and phospholipid binding proteins that form an evolutionary conserved multigene family. Considerable evidence indicates that annexin A10 (ANXA10) is involved in tumoral progression, although little is known about its role in human oral carcinogenesis. In this study, we investigated the involvement of ANXA10 in oral squamous cell carcinoma (OSCC). Methodology/Principal Findings ANXA10 mRNA and protein expressions were assessed by quantitative reverse transcriptase polymerase chain reaction and immunoblotting, and we conducted a proliferation assay and cell-cycle analysis in ANXA10 knockdown cells in vitro. We evaluated the correlation between the ANXA10 expression status in 100 primary OSCCs and the clinicopathological features by immunohistochemistry. ANXA10 mRNA and protein expression levels were up-regulated in all cellular lines examined (n = 7, p<0.05). ANXA10 knockdown cells showed that cellular proliferation decreased by inactivation of extracellular regulated kinase (ERK) (p<0.05), and cell-cycle arrest at the G1 phase resulted from up-regulation of cyclin-dependent kinase inhibitors. ANXA10 protein expression in primary OSCCs was also significantly greater than in normal counterparts (p<0.05), and higher expression was correlated with tumoral size (p = 0.027). Conclusions/Significance Our results proposed for the first time that ANXA10 is an indicator of cellular proliferation in OSCCs. Our results suggested that ANXA10 expression might indicate cellular proliferation and ANXA10 might be a potential therapeutic target for the development of new treatments for OSCCs.
Collapse
Affiliation(s)
- Toshihiro Shimizu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Ayumi Yamamoto
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Kazuyuki Koike
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Shunsaku Ishige
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
| | - Hiroaki Takatori
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba, Japan
| | - Yosuke Sakamoto
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsunori Ogawara
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Masashi Shiiba
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Hideki Tanzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- Division of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chuo-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|
123
|
Shi YJ, Huo KK. Knockdown expression of Apc11 leads to cell-cycle distribution reduction in G2/M phase. GENETICS AND MOLECULAR RESEARCH 2012; 11:2814-22. [PMID: 23007976 DOI: 10.4238/2012.august.24.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anaphase-promoting complex/cyclosome (APC/C) is a key E3 ubiquitin ligase in cell division, which catalyses ubiquitination of cell-cycle regulators. Studying this complex could reveal important information regarding its application in cancer research and therapy. In this study, 4 synthesized small interfering RNAs (siRNAs) were transfected into HEK293T cells to suppress messenger RNA (mRNA) of Apc11; 2 of these reduced the amount of Apc11 mRNA by over 50%. Further experiments showed that rather than causing apoptosis, siRNA transfection led to cell-cycle distributions characterized by less time spent in G2/M phase and more time spent in G1 phase. This phenomenon was specifically induced by Apc11 silencing, as co-transfection of siRNA and an Apc11 plasmid could reverse this distribution bias. Our results suggested that siRNA targeted against Apc11 could hamper entry into G2/M phase. Current efforts are focused on elucidating the function and utility of the APC complex for clinical applications.
Collapse
Affiliation(s)
- Y-J Shi
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | | |
Collapse
|
124
|
Wang C, Chen Q, Hamajima Y, Sun W, Zheng YQ, Hu XH, Ondrey FG, Lin JZ. Id2 regulates the proliferation of squamous cell carcinoma in vitro via the NF-κB/Cyclin D1 pathway. CHINESE JOURNAL OF CANCER 2012; 31:430-9. [PMID: 22835384 PMCID: PMC3777501 DOI: 10.5732/cjc.011.10454] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Squamous cell carcinoma (SCC) is a significant cause of cancer morbidity and mortality worldwide, with an incidence of up to 166 cases per 100 000 population. It arises in the skin, upper aerodigestive tract, lung, and cervix and affects more than 200 000 Americans each year. We report here that a microarray experiment comparing 41 SCC and 13 normal tissue specimens showed that Id2, a gene that controls the cell cycle, was significantly up-regulated in SCC. Enforced expression of Id2 in vitro stimulated the proliferation of SCC cells and up-regulated the transcription of nuclear factor kappa B (NF-κB) and cyclin D1. Enhancement of the NF-κB activity with p65 significantly increased the cell proliferation and the transcription of cyclin D1, whereas inhibition of the NF-κB activity with I kappa B alpha mutant (IκBα M) and pyrroline dithiocarbamate (PDTC) abrogated cell proliferation and transcription of cyclin D1. Furthermore, a mutated NF-κB binding site in the cyclin D1 promoter fully abrogated the Id2-induced transcription of cyclin D1. Taken together, these data indicate that Id2 induces SCC tumor growth and proliferation through the NF-κB/cyclin D1 pathway.
Collapse
Affiliation(s)
- Chuan Wang
- The Cancer Center and Fujian Key Laboratory of Translational Cancer Medicine, Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Liao J, Ke M, Xu T, Lin L. Electroacupuncture inhibits apoptosis in annulus fibrosis cells through suppression of the mitochondria-dependent pathway in a rat model of cervical intervertebral disc degradation. Genet Mol Biol 2012; 35:686-92. [PMID: 23055810 PMCID: PMC3459421 DOI: 10.1590/s1415-47572012005000046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/09/2012] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate whether treatment with electroacupuncture (EA) inhibited mitochondria-dependent apoptosis in annulus fibrosis (AF) cells in a rat model of cervical intervertebral disc degradation induced by unbalanced dynamic and static forces. Forty Sprague-Dawley rats were used in this study, of which 30 underwent surgery to induce cervical intervertebral disc degradation, 10 rats received EA at acupoints Dazhui (DU 14) and Shousanli (LI 10). TUNEL staining was measured to assess apoptosis in AF cells, immunohistochemistry was used to examine Bcl-2 and Bax expression, colorimetric assays were used to determine caspase 9 and caspase 3 activities and RT-PCR and western blotting were used to assess the mRNA and protein expression of Crk and ERK2. Treatment with EA reduced the number of AF-positive cells in TUNEL staining, increased Bcl-2-positive cells and decreased Bax-positive cells in immunohistochemical staining, significantly inhibited the activation of caspases-9 and -3, and enhanced the mRNA and protein expression of Crk and ERK2. Our data show that EA inhibits AF cell apoptosis via the mitochondria-dependent pathway and up-regulates Crk and ERK2 expression. These results suggest that treatment with may be a good alternative therapy for preventing cervical spondylosis.
Collapse
Affiliation(s)
- Jun Liao
- Department of Acupuncture and Moxa and Tuina, Fujian University of Traditional Chinese Medicine, Fujian, P.R. China
| | | | | | | |
Collapse
|
126
|
Tarasewicz E, Jeruss JS. Phospho-specific Smad3 signaling: impact on breast oncogenesis. Cell Cycle 2012; 11:2443-51. [PMID: 22659843 DOI: 10.4161/cc.20546] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Members of the TGFβ superfamily are known to exert a myriad of physiologic and pathologic growth controlling influences on mammary development and oncogenesis. In epithelial cells, TGFβ signaling inhibits cell growth through cytostatic and pro-apoptotic activities but can also induce cancer cell EMT and, thus, has a dichotomous role in breast cancer biology. Mechanisms governing this switch are the subject of active investigation. Smad3 is a critical intracellular mediator of TGFβ signaling regulated through phosphorylation by the TGFβ receptor complex at the C terminus. Smad3 is also a substrate for several other kinases that phosphorylate additional sites within the Smad protein. This discovery has expanded the understanding of the significance and complexity of TGFβ signaling through Smads. This review highlights recent advances revealing the critical role of phospho-specific Smad3 in malignancy and illustrates the potential prognostic and therapeutic impact of Smad3 phospho-isoforms in breast cancer.
Collapse
Affiliation(s)
- Elizabeth Tarasewicz
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
127
|
Zhang X, Liu H, Li B, Huang P, Shao J, He Z. Tumor suppressor BLU inhibits proliferation of nasopharyngeal carcinoma cells by regulation of cell cycle, c-Jun N-terminal kinase and the cyclin D1 promoter. BMC Cancer 2012; 12:267. [PMID: 22727408 PMCID: PMC3585814 DOI: 10.1186/1471-2407-12-267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/15/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tumor suppressor genes function to regulate and block tumor cell proliferation. To explore the mechanisms underlying the tumor suppression of BLU/ZMYND10 gene on a frequently lost human chromosomal region, an adenoviral vector with BLU cDNA insert was constructed. METHODS BLU was re-expressed in nasopharyngeal carcinoma cells by transfection or viral infection. Clonogenic growth was assayed; cell cycle was analyzed by flow cytometry-based DNA content detection; c-Jun N-terminal kinase (JNK) and cyclin D1 promoter activities were measured by reporter gene assay, and phosphorylation was measured by immunoblotting. The data for each pair of groups were compared with Student t tests. RESULTS BLU inhibits clonogenic growth of nasopharyngeal carcinoma cells, arrests cell cycle at G1 phase, downregulates JNK and cyclin D1 promoter activities, and inhibits phosphorylation of c-Jun. CONCLUSIONS BLU inhibits growth of nasopharyngeal carcinoma cells by regulation of the JNK-cyclin D1 axis to exert tumor suppression.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Hui Liu
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Binbin Li
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Peichun Huang
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| | - Jianyong Shao
- State Key Laboratory of Oncology in South China, Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dong Feng Road, Guangzhou, Guangdong, 510060, China
| | - Zhiwei He
- Department of Pathophysiology, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science Technology and Industrial Park Dongguan, Guangdong, 523808, China
- Key Laboratory for Medical Molecular Diagnostics of Guangdong Province Sino-American Cancer Research Institute, Guangdong Medical College, 1 Xincheng Road, Song-Shan Lake (SSL) Science, Technology and Industrial Park, Dongguan, Guangdong, 523808, China
| |
Collapse
|
128
|
Llauradó M, Majem B, Castellví J, Cabrera S, Gil-Moreno A, Reventós J, Ruiz A. Analysis of Gene Expression Regulated by the ETV5 Transcription Factor in OV90 Ovarian Cancer Cells Identifies FOXM1 Overexpression in Ovarian Cancer. Mol Cancer Res 2012; 10:914-24. [DOI: 10.1158/1541-7786.mcr-11-0449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
129
|
Andrique L, Fauvin D, El Maassarani M, Colasson H, Vannier B, Séité P. ErbB380kDa, a nuclear variant of the ErbB3 receptor, binds to the Cyclin D1 promoter to activate cell proliferation but is negatively controlled by p14ARF. Cell Signal 2012; 24:1074-85. [DOI: 10.1016/j.cellsig.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 01/11/2023]
|
130
|
Trejo CL, Juan J, Vicent S, Sweet-Cordero A, McMahon M. MEK1/2 inhibition elicits regression of autochthonous lung tumors induced by KRASG12D or BRAFV600E. Cancer Res 2012; 72:3048-59. [PMID: 22511580 DOI: 10.1158/0008-5472.can-11-3649] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Genetically engineered mouse (GEM) models of lung tumorigenesis allow careful evaluation of lung tumor initiation, progression, and response to therapy. Using GEM models of oncogene-induced lung cancer, we show the striking similarity of the earliest stages of tumorigenesis induced by KRAS(G12D) or BRAF(V600E). Cre-mediated expression of KRAS(G12D) or BRAF(V600E) in the lung epithelium of adult mice initially elicited benign lung tumors comprising cuboidal epithelial cells expressing markers of alveolar pneumocytes. Strikingly, in a head-to-head comparison, oncogenic BRAF(V600E) elicited many more such benign tumors and did so more rapidly than KRAS(G12D). However, despite differences in the efficiency of benign tumor induction, only mice with lung epithelium expression of KRAS(G12D) developed malignant non-small cell lung adenocarcinomas. Pharmacologic inhibition of mitogen-activated protein (MAP)-extracellular signal-regulated kinase (ERK) kinase (MEK)1/2 combined with in vivo imaging showed that initiation and maintenance of both BRAF(V600E)- or KRAS(G12D)-induced lung tumors was dependent on MEK→ERK signaling. Although the tumors dramatically regressed in response to MEK1/2 inhibition, they regrew following cessation of drug treatment. Together, our findings show that RAF→MEK→ERK signaling is both necessary and sufficient for KRAS(G12D)-induced benign lung tumorigenesis in GEM models. The data also emphasize the ability of KRAS(G12D) to promote malignant lung cancer progression compared with oncogenic BRAF(V600E).
Collapse
Affiliation(s)
- Christy L Trejo
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco 94158, USA
| | | | | | | | | |
Collapse
|
131
|
Healey M, Crow MS, Molina CA. Ras-induced melanoma transformation is associated with the proteasomal degradation of the transcriptional repressor ICER. Mol Carcinog 2012; 52:692-704. [DOI: 10.1002/mc.21908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/16/2012] [Accepted: 03/07/2012] [Indexed: 02/01/2023]
|
132
|
Tanaka T, Shnimizu M, Moriwaki H. Cancer chemoprevention by carotenoids. Molecules 2012; 17:3202-42. [PMID: 22418926 PMCID: PMC6268471 DOI: 10.3390/molecules17033202] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/15/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023] Open
Abstract
Carotenoids are natural fat-soluble pigments that provide bright coloration to plants and animals. Dietary intake of carotenoids is inversely associated with the risk of a variety of cancers in different tissues. Preclinical studies have shown that some carotenoids have potent antitumor effects both in vitro and in vivo, suggesting potential preventive and/or therapeutic roles for the compounds. Since chemoprevention is one of the most important strategies in the control of cancer development, molecular mechanism-based cancer chemoprevention using carotenoids seems to be an attractive approach. Various carotenoids, such as β-carotene, a-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, fucoxanthin, canthaxanthin and astaxanthin, have been proven to have anti-carcinogenic activity in several tissues, although high doses of β-carotene failed to exhibit chemopreventive activity in clinical trials. In this review, cancer prevention using carotenoids are reviewed and the possible mechanisms of action are described.
Collapse
Affiliation(s)
- Takuji Tanaka
- Tohkai Cytopathology Institute, Cancer Research and Prevention-TCI-CaRP, 5-1-2 Minami-Uzura, Gifu 500-8285, Japan.
| | | | | |
Collapse
|
133
|
De Falco V, Tamburrino A, Ventre S, Castellone MD, Malek M, Manié SN, Santoro M. CD44 proteolysis increases CREB phosphorylation and sustains proliferation of thyroid cancer cells. Cancer Res 2012; 72:1449-58. [PMID: 22271686 DOI: 10.1158/0008-5472.can-11-3320] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CD44 is a marker of cancer stem-like cells and epithelial-mesenchymal transition that is overexpressed in many cancer types, including thyroid carcinoma. At extracellular and intramembranous domains, CD44 undergoes sequential metalloprotease- and γ-secretase-mediated proteolytic cleavage, releasing the intracellular protein fragment CD44-ICD, which translocates to the nucleus and activates gene transcription. Here, we show that CD44-ICD binds to the transcription factor CREB, increasing S133 phosphorylation and CREB-mediated gene transcription. CD44-ICD enhanced CREB recruitment to the cyclin D1 promoter, promoting cyclin D1 transcription and cell proliferation. Thyroid carcinoma cells harboring activated RET/PTC, RAS, or BRAF oncogenes exhibited CD44 cleavage and CD44-ICD accumulation. Chemical blockade of RET/PTC, BRAF, metalloprotease, or γ-secretase were each sufficient to blunt CD44 processing. Furthermore, thyroid cancer cell proliferation was obstructed by RNA interference-mediated knockdown of CD44 or inhibition of γ-secretase and adoptive CD44-ICD overexpression rescued cell proliferation. Together, these findings reveal a CD44-CREB signaling pathway that is needed to sustain cancer cell proliferation, potentially offering new molecular targets for therapeutic intervention in thyroid carcinoma.
Collapse
Affiliation(s)
- Valentina De Falco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, L. Califano, Università di Napoli Federico II c/o Istituto di Endocrinologia e Oncologia Sperimentale del CNR, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
134
|
Penas C, Ramachandran V, Ayad NG. The APC/C Ubiquitin Ligase: From Cell Biology to Tumorigenesis. Front Oncol 2012; 1:60. [PMID: 22655255 PMCID: PMC3356048 DOI: 10.3389/fonc.2011.00060] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/22/2011] [Indexed: 01/15/2023] Open
Abstract
The ubiquitin proteasome system (UPS) is required for normal cell proliferation, vertebrate development, and cancer cell transformation. The UPS consists of multiple proteins that work in concert to target a protein for degradation via the 26S proteasome. Chains of an 8.5-kDa protein called ubiquitin are attached to substrates, thus allowing recognition by the 26S proteasome. Enzymes called ubiquitin ligases or E3s mediate specific attachment to substrates. Although there are over 600 different ubiquitin ligases, the Skp1-Cullin-F-box (SCF) complexes and the anaphase promoting complex/cyclosome (APC/C) are the most studied. SCF involvement in cancer has been known for some time while APC/C's cancer role has recently emerged. In this review we will discuss the importance of APC/C to normal cell proliferation and development, underscoring its possible contribution to transformation. We will also examine the hypothesis that modulating a specific interaction of the APC/C may be therapeutically attractive in specific cancer subtypes. Finally, given that the APC/C pathway is relatively new as a cancer target, therapeutic interventions affecting APC/C activity may be beneficial in cancers that are resistant to classical chemotherapy.
Collapse
Affiliation(s)
- Clara Penas
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami, FL, USA
| | | | | |
Collapse
|
135
|
Sarkar TR, Sharan S, Wang J, Pawar SA, Cantwell CA, Johnson PF, Morrison DK, Wang JM, Sterneck E. Identification of a Src tyrosine kinase/SIAH2 E3 ubiquitin ligase pathway that regulates C/EBPδ expression and contributes to transformation of breast tumor cells. Mol Cell Biol 2012; 32:320-32. [PMID: 22037769 PMCID: PMC3255785 DOI: 10.1128/mcb.05790-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023] Open
Abstract
The transcription factor CCAAT/enhancer-binding protein delta (C/EBPδ, CEBPD) is a tumor suppressor that is downregulated during breast cancer progression but may also promote metastasis. Here, we have investigated the mechanism(s) regulating C/EBPδ expression and its role in human breast cancer cells. We describe a novel pathway by which the tyrosine kinase Src downregulates C/EBPδ through the SIAH2 E3 ubiquitin ligase. Src phosphorylates SIAH2 in vitro and leads to tyrosine phosphorylation and activation of SIAH2 in breast tumor cell lines. SIAH2 interacts with C/EBPδ, but not C/EBPβ, and promotes its polyubiquitination and proteasomal degradation. Src/SIAH2-mediated inhibition of C/EBPδ expression supports elevated cyclin D1 levels, phosphorylation of retinoblastoma protein (Rb), motility, invasive properties, and survival of transformed cells. Pharmacological inhibition of Src family kinases by SKI-606 (bosutinib) induces C/EBPδ expression in an SIAH2-dependent manner, which is necessary for "therapeutic" responses to SKI-606 in vitro. Ectopic expression of degradation-resistant mutants of C/EBPδ, which do not interact with SIAH2 and/or cannot be polyubiquitinated, prevents full transformation of MCF-10A cells by activated Src (Src truncated at amino acid 531 [Src-531]) in vitro. These data reveal that C/EBPδ expression can be regulated at the protein level by oncogenic Src kinase signals through SIAH2, thus contributing to breast epithelial cell transformation.
Collapse
Affiliation(s)
- Tapasree Roy Sarkar
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shikha Sharan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Jun Wang
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Snehalata A. Pawar
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Carrie A. Cantwell
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Peter F. Johnson
- Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Ju-Ming Wang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Esta Sterneck
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
136
|
Katiyar S, Jiao X, Addya S, Ertel A, Covarrubias Y, Rose V, Casimiro MC, Zhou J, Lisanti MP, Nasim T, Fortina P, Pestell RG. Mammary gland selective excision of c-jun identifies its role in mRNA splicing. Cancer Res 2011; 72:1023-34. [PMID: 22174367 DOI: 10.1158/0008-5472.can-11-3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The c-jun gene regulates cellular proliferation and apoptosis via direct regulation of cellular gene expression. Alternative splicing of pre-mRNA increases the diversity of protein functions, and alternate splicing events occur in tumors. Here, by targeting the excision of the endogenous c-jun gene within the mouse mammary epithelium, we have identified its selective role as an inhibitor of RNA splicing. Microarray-based assessment of gene expression, on laser capture microdissected c-jun(-/-) mammary epithelium, showed that endogenous c-jun regulates the expression of approximately 50 genes governing RNA splicing. In addition, genome-wide splicing arrays showed that endogenous c-jun regulated the alternate exon of approximately 147 genes, and 18% of these were either alternatively spliced in human tumors or involved in apoptosis. Endogenous c-jun also was shown to reduce splicing activity, which required the c-jun dimerization domain. Together, our findings suggest that c-jun directly attenuates RNA splicing efficiency, which may be of broad biologic importance as alternative splicing plays an important role in both cancer development and therapy resistance.
Collapse
Affiliation(s)
- Sanjay Katiyar
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
RAS proteins are essential components of signalling pathways that emanate from cell surface receptors. Oncogenic activation of these proteins owing to missense mutations is frequently detected in several types of cancer. A wealth of biochemical and genetic studies indicates that RAS proteins control a complex molecular circuitry that consists of a wide array of interconnecting pathways. In this Review, we describe how RAS oncogenes exploit their extensive signalling reach to affect multiple cellular processes that drive tumorigenesis.
Collapse
Affiliation(s)
- Yuliya Pylayeva-Gupta
- Department of Biochemistry, New York University School of Medicine, New York, New York 10016, USA
| | | | | |
Collapse
|
138
|
Lewis-Wambi JS, Kim H, Curpan R, Grigg R, Sarker MA, Jordan VC. The selective estrogen receptor modulator bazedoxifene inhibits hormone-independent breast cancer cell growth and down-regulates estrogen receptor α and cyclin D1. Mol Pharmacol 2011; 80:610-20. [PMID: 21737572 PMCID: PMC3187528 DOI: 10.1124/mol.111.072249] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/07/2011] [Indexed: 11/22/2022] Open
Abstract
Bazedoxifene (BZA) is a third-generation selective estrogen receptor modulator (SERM) that has been approved for the prevention and treatment of postmenopausal osteoporosis. It has antitumor activity; however, its mechanism of action remains unclear. In the present study, we characterized the effects of BZA and several other SERMs on the proliferation of hormone-dependent MCF-7 and T47D breast cancer cells and hormone-independent MCF-7:5C and MCF-7:2A cells and examined its mechanism of action in these cells. We found that all of the SERMs inhibited the growth of MCF-7, T47D, and MCF-7:2A cells; however, only BZA and fulvestrant (FUL) inhibited the growth of hormone-independent MCF-7:5C cells. Cell cycle analysis revealed that BZA and FUL induced G(1) blockade in MCF-7:5C cells; however, BZA down-regulated cyclin D1, which was constitutively overexpressed in these cells, whereas FUL suppressed cyclin A. Further analysis revealed that small interfering RNA knockdown of cyclin D1 reduced the basal growth of MCF-7:5C cells, and it blocked the ability of BZA to induce G(1) arrest in these cells. BZA also down-regulated estrogen receptor-α (ERα) protein by increasing its degradation and suppressing cyclin D1 promoter activity in MCF-7:5C cells. Finally, molecular modeling studies demonstrated that BZA bound to ERα in an orientation similar to raloxifene; however, a number of residues adopted different conformations in the induced-fit docking poses compared with the experimental structure of ERα-raloxifene. Together, these findings indicate that BZA is distinct from other SERMs in its ability to inhibit hormone-independent breast cancer cell growth and to regulate ERα and cyclin D1 expression in resistant cells.
Collapse
Affiliation(s)
- Joan S Lewis-Wambi
- Women's Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | | | |
Collapse
|
139
|
Nieto-Sampedro M, Valle-Argos B, Gómez-Nicola D, Fernández-Mayoralas A, Nieto-Díaz M. Inhibitors of Glioma Growth that Reveal the Tumour to the Immune System. Clin Med Insights Oncol 2011; 5:265-314. [PMID: 22084619 PMCID: PMC3201112 DOI: 10.4137/cmo.s7685] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Treated glioblastoma patients survive from 6 to 14 months. In the first part of this review, we describe glioma origins, cancer stem cells and the genomic alterations that generate dysregulated cell division, with enhanced proliferation and diverse response to radiation and chemotherapy. We review the pathways that mediate tumour cell proliferation, neo-angiogenesis, tumor cell invasion, as well as necrotic and apoptotic cell death. Then, we examine the ability of gliomas to evade and suppress the host immune system, exhibited at the levels of antigen recognition and immune activation, limiting the effective signaling between glioma and host immune cells.The second part of the review presents current therapies and their drawbacks. This is followed by a summary of the work of our laboratory during the past 20 years, on oligosaccharide and glycosphingolipid inhibitors of astroblast and astrocytoma division. Neurostatins, the O-acetylated forms of gangliosides GD1b and GT1b naturally present in mammalian brain, are cytostatic for normal astroblasts, but cytotoxic for rat C6 glioma cells and human astrocytoma grades III and IV, with ID50 values ranging from 200 to 450 nM. The inhibitors do not affect neurons or fibroblasts up to concentrations of 4 μM or higher.At least four different neurostatin-activated, cell-mediated antitumoral processes, lead to tumor destruction: (i) inhibition of tumor neovascularization; (ii) activation of microglia; (iii) activation of natural killer (NK) cells; (iv) activation of cytotoxic lymphocytes (CTL). The enhanced antigenicity of neurostatin-treated glioma cells, could be related to their increased expression of connexin 43. Because neurostatins and their analogues show specific activity and no toxicity for normal cells, a clinical trial would be the logical next step.
Collapse
Affiliation(s)
- Manuel Nieto-Sampedro
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Beatriz Valle-Argos
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | - Diego Gómez-Nicola
- Instituto Cajal de Neurobiología, CSIC, 28002 Madrid, Spain
- Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain
| | | | | |
Collapse
|
140
|
Velasco-Velázquez MA, Popov VM, Lisanti MP, Pestell RG. The role of breast cancer stem cells in metastasis and therapeutic implications. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2-11. [PMID: 21640330 PMCID: PMC3123864 DOI: 10.1016/j.ajpath.2011.03.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/07/2011] [Accepted: 03/15/2011] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) possess the capacity to self-renew and to generate heterogeneous lineages of cancer cells that comprise tumors. A substantial body of evidence supports a model in which CSCs play a major role in the initiation, maintenance, and clinical outcome of cancers. In contrast, analysis of the role of CSCs in metastasis has been mainly conceptual and speculative. This review summarizes recent data that support the theory of CSCs as the source of metastatic lesions in breast cancer, with a focus on the key role of the microenvironment in the stemness-metastasis link.
Collapse
Affiliation(s)
- Marco A. Velasco-Velázquez
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vladimir M. Popov
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael P. Lisanti
- Department of Stem Cell Biology and Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard G. Pestell
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
141
|
Ibañez IL, Policastro LL, Tropper I, Bracalente C, Palmieri MA, Rojas PA, Molinari BL, Durán H. H2O2 scavenging inhibits G1/S transition by increasing nuclear levels of p27KIP1. Cancer Lett 2011; 305:58-68. [DOI: 10.1016/j.canlet.2011.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 01/15/2023]
|
142
|
Velasco-Velázquez MA, Li Z, Casimiro M, Loro E, Homsi N, Pestell RG. Examining the role of cyclin D1 in breast cancer. Future Oncol 2011; 7:753-765. [PMID: 21675838 DOI: 10.2217/fon.11.56] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin D1 overexpression is found in more than 50% of human breast cancers and causes mammary cancer in transgenic mice. Dysregulation of cyclin D1 gene expression or function contributes to the loss of normal cell cycle control during tumorigenesis. Recent studies have demonstrated that cyclin D1 conducts additional specific functions to regulate gene expression in the context of local chromatin, promote cellular migration and inhibit mitochondrial metabolism. It is anticipated that these additional functions contribute to the pathology associated with dysregulated cyclin D1 abundance. This article discusses evidence that examines the significance of cyclin D1 in breast cancer with emphasis on its role in breast cancer stem cell expansion.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo Postal 70-297, México DF, México
| | | | | | | | | | | |
Collapse
|
143
|
Li L, Zhang HN, Chen HZ, Gao P, Zhu LH, Li HL, Lv X, Zhang QJ, Zhang R, Wang Z, She ZG, Zhang R, Wei YS, Du GH, Liu DP, Liang CC. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ Res 2011; 108:1180-1189. [PMID: 21474819 DOI: 10.1161/circresaha.110.237875] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/28/2011] [Indexed: 02/03/2023]
Abstract
RATIONALE Vascular smooth muscle cell (VSMC) proliferation and migration are crucial events involved in the pathophysiology of vascular diseases. Sirtuin 1 (SIRT1), a class III histone deacetylase (HDAC), has been reported to have the function of antiatherosclerosis, but its role in neointima formation remains unknown. OBJECTIVE The present study was designed to investigate the role of SIRT1 in the regulation of neointima formation and to elucidate the underlying mechanisms. METHODS AND RESULTS A decrease in SIRT1 expression was observed following carotid artery ligation. smooth muscle cell (SMC)-specific human SIRT1 transgenic (Tg) mice were generated. SIRT1 overexpression substantially inhibited neointima formation after carotid artery ligation or carotid artery wire injury. In the intima of injured carotid arteries, VSMC proliferation (proliferating cell nuclear antigen (PCNA)-positive cells) was significantly reduced. SIRT1 overexpression markedly inhibited VSMC proliferation and migration and induced cell cycle arrest at G1/S transition in vitro. Accordingly, SIRT1 overexpression decreased the induction of cyclin D1 and matrix metalloproteinase-9 (MMP-9) expression by treatment with serum and TNF-α, respectively, whereas RNAi knockdown of SIRT1 resulted in the opposite effect. Decreased cyclin D1 and MMP-9 expression/activity were also observed in injured carotid arteries from SMC-SIRT1 Tg mice. Furthermore, 2 targets of SIRT1, c-Fos and c-Jun, were involved in the downregulation of cyclin D1 and MMP-9 expression. CONCLUSIONS Our findings demonstrate the inhibitory effect of SIRT1 on the VSMC proliferation and migration that underlie neointima formation and implicate SIRT1 as a potential target for intervention in vascular diseases.
Collapse
Affiliation(s)
- Li Li
- National Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, No 5 Dong Dan San Tiao, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Cui PH, Petrovic N, Murray M. The ω-3 epoxide of eicosapentaenoic acid inhibits endothelial cell proliferation by p38 MAP kinase activation and cyclin D1/CDK4 down-regulation. Br J Pharmacol 2011; 162:1143-55. [PMID: 21077851 DOI: 10.1111/j.1476-5381.2010.01113.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Dietary intake of ω-3 polyunsaturated fatty acids (ω-3 PUFAs) like eicosapentaenoic acid (EPA) decreases cancer risk, while arachidonic acid and other ω-6 PUFAs increase risk, but the underlying mechanisms are unclear. Cytochrome P450 (CYP)-derived epoxides contribute to enhanced tumourigenesis due to ω-6 PUFA intake. Thus, ω-6 arachidonic acid epoxides (EETs) inhibit apoptosis and stimulate proliferation by up-regulating cyclin D1 expression in cells. The present study evaluated the corresponding ω-3 PUFA epoxides and assessed their role in the regulation of cell proliferation. EXPERIMENTAL APPROACH Four chemically stable EPA epoxides (formed at the 8,9-, 11,12-, 14,15- and 17,18-olefinic bonds) were synthesized and tested against growth-related signalling pathways in brain microvascular endothelial bEND.3 cells. Cell cycle distribution was determined by flow cytometry and cyclin gene expression by immunoblotting and real-time PCR. The role of the p38 mitogen-activated protein (MAP) kinase in cyclin D1 dysregulation was assessed using specific inhibitors and dominant-negative expression plasmids. KEY RESULTS The ω-3 17,18-epoxide of EPA decreased cell proliferation, interrupted the cell cycle in S-phase and down-regulated the cyclin D1/cyclin-dependent kinase (CDK)-4 complex, whereas the 8,9-, 11,12- and 14,15-epoxides were either inactive or enhanced proliferation. Cyclin D1 down-regulation by 17,18-epoxy-EPA was mediated by activation of the growth-suppressing p38 MAP kinase, but the alternate EPA-epoxides were inactive. CONCLUSIONS AND IMPLICATIONS The present findings suggest that the epoxide formed by CYP enzymes at the ω-3 olefinic bond may contribute to the beneficial effects of ω-3 PUFA by down-regulating cyclin D1 and suppressing cell proliferation.
Collapse
Affiliation(s)
- Pei H Cui
- Pharmacogenomics and Drug Development Group, Faculty of Pharmacy, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
145
|
Janowski E, Jiao X, Katiyar S, Lisanti MP, Liu M, Pestell RG, Morad M. c-Jun is required for TGF-β-mediated cellular migration via nuclear Ca²⁺ signaling. Int J Biochem Cell Biol 2011; 43:1104-13. [PMID: 21447400 DOI: 10.1016/j.biocel.2011.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 11/17/2022]
Abstract
Tumor progression involves the acquisition of invasiveness through a basement membrane. The c-jun proto-oncogene is overexpressed in human tumors and has been identified at the leading edge of human breast tumors. TGF-β plays a bifunctional role in tumorigenesis and cellular migration. Although c-Jun and the activator protein 1 (AP-1) complex have been implicated in human cancer, the molecular mechanisms governing cellular migration via c-Jun and the role of c-Jun in TGF-β signaling remains poorly understood. Here, we analyze TGF-β mediated cellular migration in mouse embryo fibroblasts using floxed c-jun transgenic mice. We compared the c-jun wild type with the c-jun knockout cells through the use of Cre recombinase. Herein, TGF-β stimulated cellular migration and intracellular calcium release requiring endogenous c-Jun. TGF-β mediated Ca(2+) release was independent of extracellular calcium and was suppressed by both U73122 and neomycin, pharmacological inhibitors of the breakdown of PIP(2) into IP(3). Unlike TGF-β-mediated Ca(2+) release, which was c-Jun dependent, ATP mediated Ca(2+) release was c-Jun independent. These studies identify a novel pathway by which TGF-β regulates cellular migration and Ca(2+) release via endogenous c-Jun.
Collapse
Affiliation(s)
- Einsley Janowski
- Department of Pharmacology, Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20057, United States
| | | | | | | | | | | | | |
Collapse
|
146
|
Sakai T. ["Molecular-targeting prevention" of cancer. The theory and its possibilities]. Nihon Eiseigaku Zasshi 2011; 66:3-12. [PMID: 21358126 DOI: 10.1265/jjh.66.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In previous prevention studies, molecular targets were not intended. We then proposed the concept termed "molecular-targeting prevention" and applied it to cancer prevention. In most malignant tumors, tumor-suppressor genes, the retinoblastoma gene (RB) and/or the p53 gene are considered to be inactivated. We therefore hypothesized that RB and/or p53 might be good candidates for the molecular-targeting prevention of cancer. Interestingly, many cancer-preventive food factors were found to reactivate the lost functions of RB and/or p53 by a "gene-regulating chemoprevention" strategy. We next proposed the concept termed "combination-oriented molecular-targeting prevention", in which only the preventive effects are synergistically enhanced. We then investigated the TNF-related apoptosis-inducing ligand (TRAIL)-death receptor 5 (DR5) pathway as a candidate of the target, and found that many cancer-preventive food factors could enhance the pathway resulting in the synergistic apoptosis of various cancer cells. We hope that these strategies will contribute to the prevention of cancer.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Japan.
| |
Collapse
|
147
|
Kim SH, Nagalingam A, Saxena NK, Singh SV, Sharma D. Benzyl isothiocyanate inhibits oncogenic actions of leptin in human breast cancer cells by suppressing activation of signal transducer and activator of transcription 3. Carcinogenesis 2011; 32:359-67. [PMID: 21163886 PMCID: PMC3105585 DOI: 10.1093/carcin/bgq267] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 12/03/2010] [Accepted: 12/08/2010] [Indexed: 01/09/2023] Open
Abstract
Molecular effects of obesity, a well-established risk factor for breast cancer progression, are mediated by adipocytokine leptin. Given the important role of leptin in breast cancer growth and metastasis, novel strategies to antagonize biological effects of this adipocytokine are much desired. We showed previously that benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables (e.g. garden cress), confers significant protection against mammary carcinogenesis in a transgenic mouse model. The present study provides first evidence for the efficacy of BITC against oncogenic effects of leptin. The BITC treatment circumvented leptin-induced clonogenicity and anchorage-independent growth of MDA-MB-231 and MCF-7 human breast cancer cells. Leptin-stimulated migration and invasion of these cells was also inhibited in the presence of BITC. Analysis of the underlying molecular mechanisms revealed that BITC treatment suppressed leptin-induced Stat3 phosphorylation and cyclin D1 transactivation. The BITC-mediated inhibition of MDA-MB-231 xenograft growth correlated with a modest yet significant decrease in levels of Tyr705 phosphorylated Stat3. The BITC treatment efficiently inhibited Stat3 and SRC1 recruitment to cyclin D1 promoter in a chromatin immunoprecipitation analysis. Furthermore, overexpression of constitutively active Stat3 imparted significant protection against BITC-mediated inhibition of cyclin D1 transactivation, whereas RNA interference of Stat3 resulted in a significant increase in BITC-mediated inhibition of cyclin D1 transactivation in the presence of leptin. These results indicate that Stat3 plays an important role in BITC-mediated inhibition of leptin-induced cyclin D1 transactivation. In conclusion, BITC could potentially be a rational therapeutic strategy for breast carcinoma in obese patients with high leptin levels.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Neeraj K. Saxena
- Department of Hematology and Medical Oncology
- Department of Medicine
| | - Shivendra V. Singh
- Department of Pharmacology and Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dipali Sharma
- Department of Hematology and Medical Oncology
- Emory Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
148
|
Majid S, Saini S, Dar AA, Hirata H, Shahryari V, Tanaka Y, Yamamura S, Ueno K, Zaman MS, Singh K, Chang I, Deng G, Dahiya R. MicroRNA-205 inhibits Src-mediated oncogenic pathways in renal cancer. Cancer Res 2011; 71:2611-21. [PMID: 21330408 DOI: 10.1158/0008-5472.can-10-3666] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Src family of protein kinases (SFK) plays key roles in regulating fundamental cellular processes, including cell growth, differentiation, cell shape, migration, and survival, and specialized cell signals in various malignancies. The pleiotropic functions of SFKs in cancer make them promising targets for intervention. Here, we sought to investigate the role of microRNA-205 (miR-205) in inhibition of Src-mediated oncogenic pathways in renal cancer. We report that expression of miR-205 was significantly suppressed in renal cancer cell lines and tumors when compared with normal tissues and a nonmalignant cell line and is correlated inversely with the expression of SFKs. miR-205 significantly suppressed the luciferase activity of reporter plasmids containing the 3'-UTR (untranslated region) sequences complementary to either Src, Lyn, or Yes, which was abolished by mutations in these 3'-UTR regions. Overexpression of miR-205 in A498 cells reduced Src, Lyn, and Yes expression, both at mRNA and protein levels. Proliferation of renal cancer cells was suppressed by miR-205, mediated by the phospho-Src-regulated ERK1/2 pathway. Cell motility factor FAK (focal adhesion kinase) and STAT3 activation were also inhibited by miR-205. Transient and stable overexpression of miR-205 in A498 cells resulted in induction of G₀/G₁ cell-cycle arrest and apoptosis, as indicated by decreased levels of cyclin D1 and c-Myc, suppressed cell proliferation, colony formation, migration, and invasion in renal cancer cells. miR-205 also inhibited tumor cell growth in vivo. This is the first study showing that miR-205 inhibits proto-oncogenic SFKs, indicating a therapeutic potential of miR-205 in the treatment of renal cancer.
Collapse
Affiliation(s)
- Shahana Majid
- Department of Urology, VA Medical Center and University of California San Francisco, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Guo ZY, Hao XH, Tan FF, Pei X, Shang LM, Jiang XL, Yang F. The elements of human cyclin D1 promoter and regulation involved. Clin Epigenetics 2011; 2:63-76. [PMID: 22704330 PMCID: PMC3365593 DOI: 10.1007/s13148-010-0018-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023] Open
Abstract
Cyclin D1 is a cell cycle machine, a sensor of extracellular signals and plays an important role in G1-S phase progression. The human cyclin D1 promoter contains multiple transcription factor binding sites such as AP-1, NF-қB, E2F, Oct-1, and so on. The extracellular signals functions through the signal transduction pathways converging at the binding sites to active or inhibit the promoter activity and regulate the cell cycle progression. Different signal transduction pathways regulate the promoter at different time to get the correct cell cycle switch. Disorder regulation or special extracellular stimuli can result in cell cycle out of control through the promoter activity regulation. Epigenetic modifications such as DNA methylation and histone acetylation may involved in cyclin D1 transcriptional regulation.
Collapse
Affiliation(s)
- Zhi-Yi Guo
- Experimental and Research Center, Hebei United University, № 57 JianShe South Road, TangShan, Hebei 063000 People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
150
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|