101
|
Helmbrecht K, Zeise E, Rensing L. Chaperones in cell cycle regulation and mitogenic signal transduction: a review. Cell Prolif 2008; 33:341-65. [PMID: 11101008 PMCID: PMC6496586 DOI: 10.1046/j.1365-2184.2000.00189.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chaperones/heat shock proteins (HSPs) of the HSP90 and HSP70 families show elevated levels in proliferating mammalian cells and a cell cycle-dependent expression. They transiently associate with key molecules of the cell cycle control system such as Cdk4, Wee-1, pRb, p53, p27/Kip1 and are involved in the nuclear localization of regulatory proteins. They also associate with viral oncoproteins such as SV40 super T, large T and small t antigen, polyoma large and middle S antigen and EpsteinBarr virus nuclear antigen. This association is based on a J-domain in the viral proteins and may assist their targeting to the pRb/E2F complex. Small HSPs and their state of phosphorylation and oligomerization also seem to be involved in proliferation and differentiation. Chaperones/HSPs thus play important roles within cell cycle processes. Their exact functioning, however, is still a matter of discussion. HSP90 in particular, but also HSP70 and other chaperones associate with proteins of the mitogen-activated signal cascade, particularly with the Src kinase, with tyrosine receptor kinases, with Raf and the MAP-kinase activating kinase (MEK). This apparently serves the folding and translocation of these proteins, but possibly also the formation of large immobilized complexes of signal transducing molecules (scaffolding function).
Collapse
Affiliation(s)
- K Helmbrecht
- Institute of Cell Biology, Biochemistry and Biotechnology, University of Bremen, Germany
| | | | | |
Collapse
|
102
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
103
|
Martín B, Sanz R, Aragüés R, Oliva B, Sierra A. Functional Clustering of Metastasis Proteins Describes Plastic Adaptation Resources of Breast-Cancer Cells to New Microenvironments. J Proteome Res 2008; 7:3242-53. [DOI: 10.1021/pr800137w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Berta Martín
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Rebeca Sanz
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Ramón Aragüés
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Baldo Oliva
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| | - Angels Sierra
- Centre d’Oncologia Molecular, IDIBELL, Hospital Duran i Reynals, CSUB, Gran Via s/n, Km 2.7, L’Hospitalet Ll, 08907, Spain, and Grup de Bioinformàtica Estructural (GRIB-IMIM), Universitat Pompeu Fabra, C/ Doctor Aiguader, 80 Barcelona 08003, Catalonia, Spain
| |
Collapse
|
104
|
Deocaris CC, Takano S, Priyandoko D, Kaul Z, Yaguchi T, Kraft DC, Yamasaki K, Kaul SC, Wadhwa R. Glycerol stimulates innate chaperoning, proteasomal and stress-resistance functions: implications for geronto-manipulation. Biogerontology 2008; 9:269-82. [DOI: 10.1007/s10522-008-9136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 02/27/2008] [Indexed: 12/21/2022]
|
105
|
Böttger S, Jerszyk E, Low B, Walker C. Genotoxic Stress–Induced Expression of p53 and Apoptosis in Leukemic Clam Hemocytes with Cytoplasmically Sequestered p53. Cancer Res 2008; 68:777-82. [DOI: 10.1158/0008-5472.can-06-0968] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
106
|
Ghosh JC, Dohi T, Kang BH, Altieri DC. Hsp60 Regulation of Tumor Cell Apoptosis. J Biol Chem 2008; 283:5188-94. [DOI: 10.1074/jbc.m705904200] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
107
|
Sanz R, Aragüés R, Stresing V, Martín B, Landemaine T, Oliva B, Driouch K, Lidereau R, Sierra A. Functional pathways shared by liver and lung metastases: a mitochondrial chaperone machine is up-regulated in soft-tissue breast cancer metastasis. Clin Exp Metastasis 2007; 24:673-83. [DOI: 10.1007/s10585-007-9124-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/12/2007] [Indexed: 12/19/2022]
|
108
|
Yi X, Luk JM, Lee NP, Peng J, Leng X, Guan XY, Lau GK, Beretta L, Fan ST. Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics 2007; 7:315-25. [PMID: 17934217 DOI: 10.1074/mcp.m700116-mcp200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is well known for poor prognosis and short survival because of high recurrence rate even after curative surgery. Today there is no available biomarker or biochemical test to indicate HCC recurrence, and this study aims to identify protein markers that can discriminate postoperative patients with early recurrence (ER), i.e. disease relapsed within the first year. In this study, 103 hepatitis B-related HCC patients were recruited, and 68 of them were used for ER-related biomarker discovery study. Proteomic expression patterns of matched tumor and adjacent non-tumor tissues from these patients plus 16 normal liver tissues were delineated by the two-dimensional gel electrophoresis differential profiling method. Significant protein spots were evaluated by hierarchical clustering analysis. SSP4612 that yielded the highest receiver operating characteristic (ROC) curve value for the ER subgroup of HCC was subsequently identified by tandem mass spectrometry, and the corresponding expression patterns were further confirmed by quantitative PCR, Western blot, and immunohistochemistry. Correlation analysis with clinicopathological data was also examined. Proteomic profiling analysis revealed overexpression of mortalin (gene HSPA9) in HCC when compared with the non-tumor and normal liver tissues (area under the curve (AUC) = 0.821). Furthermore, elevated mortalin level was also detected in the ER subgroup of HCC versus the recurrence-free state (where no cancer recurs for >1 year) (AUC = 0.833, sensitivity = 90.9%, specificity = 71.4%). Metastatic HCC cell lines also exhibited higher levels of mortalin and HSPA9 mRNA. Clinically, mortalin overexpression in HCC was closely associated with advanced tumor stages and venous infiltration, having implications for increased malignancy and aggressive behavior. Mortalin (HSPA9) is associated with HCC metastasis and thus suggested as a tumor marker for predicting early recurrence, which may have immediate clinical applications for cancer surveillance after curative surgery.
Collapse
Affiliation(s)
- Xin Yi
- Department of Surgery, Peking University People's Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Zvereff V, Wang JC, Shun K, Lacoste J, Chevrette M. Colocalisation of CD9 and mortalin in CD9-induced mitotic catastrophe in human prostate cancer cells. Br J Cancer 2007; 97:941-8. [PMID: 17848953 PMCID: PMC2360413 DOI: 10.1038/sj.bjc.6603964] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CD9, a member of the tetraspanin family of proteins, is involved in a variety of cellular interactions with many other proteins and molecules. Although CD9 has been implicated in cell fusion, migration and cancer progression, the detailed function of this protein is not completely understood and likely depends on interactions with different protein partners, which are not yet all known. Using co-immunoprecipitation and mass-spectrometric protein sequencing, we have identified in prostate cancer cells, a novel CD9 partner, the 75-kDa protein HSPA9B, also known as mortalin. We further show that introduction and overexpression of wild-type CD9 into human PC-3 prostate cancer cells induces mitotic catastrophe. We also demonstrate, by immunocolocalisation studies, the interaction of CD9 and mortalin in PC-3 cells undergoing mitotic catastrophe. Our results not only identified mortalin as a new CD9 partner, but also clarify the mechanisms by which CD9 may control prostate cancer progression.
Collapse
Affiliation(s)
- V Zvereff
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - J-C Wang
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - K Shun
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - J Lacoste
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal Quebec, Canada
| | - M Chevrette
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Research Institute of the McGill University Health Centre, 1650 Cedar Ave, Room R4-113, Montreal, Quebec, Canada H3G 1A4. E-mail:
| |
Collapse
|
110
|
Kobayashi K, Xin Y, Ymer SI, Werther GA, Russo VC. Subtractive hybridisation screen identifies genes regulated by glucose deprivation in human neuroblastoma cells. Brain Res 2007; 1170:129-39. [PMID: 17719568 DOI: 10.1016/j.brainres.2007.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 02/06/2023]
Abstract
Glucose is the major source of energy for the brain and inadequate glucose supply causes damage of neuronal cells. In this study we employed the human neuroblastoma cell line SH-SY5Y, as an in vitro model for neuronal cells, to identify genes regulated by glucose deprivation. Using subtractive hybridisation screen, validated by Northern analysis, we identify for the first time specific targets of the glucopenic response. These genes are involved in key cellular process including gene transcription, protein synthesis, mitochondrial metabolism, neuronal development, neuroprotection and neuronal apoptosis. Our findings suggest that the fate of neuronal cells undergoing glucose starvation relies on complex gene interactions. Modulation of the expression of these genes in vivo will enable determination of the precise role of each gene and possibly identify key elements and potential therapeutic targets of the glucopenic response.
Collapse
Affiliation(s)
- Kisho Kobayashi
- Centre for Hormone Research, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, 3052 Parkville, Australia
| | | | | | | | | |
Collapse
|
111
|
Jeczen R, Skomra D, Cybulski M, Schneider-Stock R, Szewczuk W, Roessner A, Rechberger T, Semczuk A. P53/MDM2 overexpression in metastatic endometrial cancer: correlation with clinicopathological features and patient outcome. Clin Exp Metastasis 2007; 24:503-11. [PMID: 17671841 DOI: 10.1007/s10585-007-9087-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 07/02/2007] [Indexed: 12/20/2022]
Abstract
Several studies have reported that p53/mdm2 distortions play a pivotal role in the development and progression of various human malignancies. However, the number of reports having evaluated simultaneously the components of the P53-pathway alterations in advanced-stage human endometrial carcinomas (EC) is low. In this study, we examined the expression of P53/MDM2 proteins in primary and metastatic ECs, and analyzed the clinicopathological characteristics as well as the survival outcome of patients in relation to P53/MDM2 overexpression. The study group comprised 36 patients with advanced EC, whose primary and metastatic tumor slides were sufficient for analysis. Immunohistochemical assessment was made by applying anti-human P53 and MDM2 antibodies and a highly sensitive EnVision(+)/HPR visualization system. Nuclear P53 overexpression was seen in 11 (31%) primary ECs and 12 (33%) metastatic tumors. There was a significant correlation between P53 overexpression (in primary cancers and metastatic tumors) and MDM2 overexpression in metastatic tumors. Nuclear MDM2 overexpression was noted in 42% (15/36) of primary carcinomas and in 47% (17/36) of metastatic tumors. A significant association existed between MDM2 overexpression and histological grading (G1 + G2 versus G3, P = 0.043). P53/MDM2 overexpression occurred simultaneously in 7 out of 36 (19%) primary ECs and in 9 out of 36 (25%) metastatic lesions. Concomitant overexpression of these proteins was reported in 7 out of 36 (19%) cases and tended to be higher in tumors showing VSI compared to neoplasms lacking vascular space invasion (P = 0.051). P53 overexpression, either in primary ECs (P < 0.0001) or metastatic lesions (P < 0.0001), was significantly associated with poor survival in univariate analysis. Moreover, the log-rank test demonstrated that simultaneous P53/MDM2 overexpression was also correlated with decreased length of survival. There was no correlation between MDM2 overexpression and patient survival. Multivariate Cox regression analysis revealed that only P53 overexpression is an independent predictor of survival. In conclusion, our data support the view that patients with P53 overexpression are significantly associated with an unfavorable outcome, whereas MDM2 overexpression is not related to decreased survival length in women operated on for advanced-stage EC.
Collapse
Affiliation(s)
- Ryszard Jeczen
- District Obstetrics-Gynecology St. Sophia Hospital, Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Ohtsuka R, Abe Y, Fujii T, Yamamoto M, Nishimura J, Takayanagi R, Muta K. Mortalin is a novel mediator of erythropoietin signaling. Eur J Haematol 2007; 79:114-25. [PMID: 17635236 DOI: 10.1111/j.1600-0609.2007.00870.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Erythropoietin (EPO) stimulates erythroid growth by enhancing the proliferation, maturation and survival of late-stage erythroid progenitor cells. However, the entire process of EPO stimulation remains undetermined. To further clarify the intracellular mechanisms by which EPO affects the growth of erythroid progenitor cells, we analyzed proteins obtained from purified human erythroid colony-forming cells (ECFCs) cultured with or without EPO, and one of the proteins apparently related with EPO stimuli was identified as mortalin (mthsp70/PBP74/Grp75/mot-2), which is a member of the heat shock protein 70 family of chaperones. The amount of mortalin mRNA in ECFCs increased in an EPO dose-dependent manner, and ECFC growth was dependent on the amount of mortalin. Furthermore, expression of mortalin in ECFCs was suppressed by a phosphatidylinositol 3-kinase inhibitor. Finally, we analyzed gene expression patterns in ECFCs cultured with or without EPO after treatment with mortalin small interfering RNA (siRNA) using a DNA microarray. When ECFCs treated with mortalin siRNA were cultured with EPO, the expression of several genes overlapped with the profile seen in control ECFCs cultured without EPO. Our data suggest that mortalin is involved in the mediation of EPO signaling and plays an important role in stimulating the growth of erythroid progenitor cells.
Collapse
Affiliation(s)
- Rie Ohtsuka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
113
|
Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, Kaul SC. Selective killing of cancer cells by leaf extract of Ashwagandha: identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res 2007; 13:2298-306. [PMID: 17404115 DOI: 10.1158/1078-0432.ccr-06-0948] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Ashwagandha is regarded as a wonder shrub of India and is commonly used in Ayurvedic medicine and health tonics that claim its variety of health-promoting effects. Surprisingly, these claims are not well supported by adequate studies, and the molecular mechanisms of its action remain largely unexplored to date. We undertook a study to identify and characterize the antitumor activity of the leaf extract of ashwagandha. EXPERIMENTAL DESIGN Selective tumor-inhibitory activity of the leaf extract (i-Extract) was identified by in vivo tumor formation assays in nude mice and by in vitro growth assays of normal and human transformed cells. To investigate the cellular targets of i-Extract, we adopted a gene silencing approach using a selected small hairpin RNA library and found that p53 is required for the killing activity of i-Extract. RESULTS By molecular analysis of p53 function in normal and a variety of tumor cells, we found that it is selectively activated in tumor cells, causing either their growth arrest or apoptosis. By fractionation, purification, and structural analysis of the i-Extract constituents, we have identified its p53-activating tumor-inhibiting factor as with a none. CONCLUSION We provide the first molecular evidence that the leaf extract of ashwagandha selectively kills tumor cells and, thus, is a natural source for safe anticancer medicine.
Collapse
Affiliation(s)
- Nashi Widodo
- Research Institute for Cell Engineering, GENE Therapeutics, Inc., National Institute of Advanced Industrial Science and Technology, Higashi, Tsukuba, Japan
| | | | | | | | | | | | | |
Collapse
|
114
|
Fuchs D, Dirscherl B, Schroot JH, Daniel H, Wenzel U. Proteome analysis suggests that mitochondrial dysfunction in stressed endothelial cells is reversed by a soy extract and isolated isoflavones. J Proteome Res 2007; 6:2132-42. [PMID: 17503794 DOI: 10.1021/pr060547y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apoptosis is a driving force in atherosclerosis development. A soy extract or a combination of the soy isoflavones genistein and daidzein inhibited apoptosis induced by oxidized LDL in endothelial cells. Proteome analysis revealed that the LDL-induced alterations of numerous proteins were reversed by the extract and the genistein/daidzein mixture but only three protein entities, all functionally linked to mitochondrial dysfunction, were regulated in common by both treatments.
Collapse
Affiliation(s)
- Dagmar Fuchs
- Department of Food and Nutrition, Molecular Nutrition Unit, Technical University of Munich, Am Forum 5, D-85350 Freising, Germany
| | | | | | | | | |
Collapse
|
115
|
Sherman MY, Sherman M, Gabai V, O'Callaghan C, Yaglom J. Molecular chaperones regulate p53 and suppress senescence programs. FEBS Lett 2007; 581:3711-5. [PMID: 17555746 PMCID: PMC3433766 DOI: 10.1016/j.febslet.2007.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 05/14/2007] [Indexed: 01/21/2023]
Abstract
Many types of cancer cells constitutively express major molecular chaperones at high levels. Recent findings demonstrate that specific depletion of individual chaperones, including various members of the Hsp70 family, small heat shock proteins, or VCP/p97, leads to activation of p53 pathway and subsequently triggers cellular senescence. Here, we discuss a possibility that in cancer cells high levels of chaperones serve to keep the p53 signaling under control, thus allowing cancer cells to evade the default senescence and form tumors.
Collapse
Affiliation(s)
- Michael Y Sherman
- Department of Biochemistry, Boston University Medical School, 715 Albany Street, K323, Boston, MA 02118, United States.
| | | | | | | | | |
Collapse
|
116
|
Widodo N, Deocaris CC, Kaur K, Hasan K, Yaguchi T, Yamasaki K, Sugihara T, Ishii T, Wadhwa R, Kaul SC. Stress chaperones, mortalin, and pex19p mediate 5-aza-2' deoxycytidine-induced senescence of cancer cells by DNA methylation-independent pathway. J Gerontol A Biol Sci Med Sci 2007; 62:246-55. [PMID: 17389721 DOI: 10.1093/gerona/62.3.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA demethylating agents are used to reverse epigenetic silencing of tumor suppressors in cancer therapeutics. Understanding of the molecular and cellular factors involved in DNA demethylation-induced gene desilencing and senescence is still limited. We have tested the involvement of two stress chaperones, Pex19p and mortalin, in 5-Aza-2' deoxycytidine (5AZA-dC; DNA demethylating agent)-induced senescence. We found that the cells overexpressing these chaperones were highly sensitive to 5AZA-dC, and their partial silencing eliminated 5AZA-dC-induced senescence in human osteosarcoma cells. We demonstrate that these chaperones modulate the demethylation and chromatin remodeling-dependent (as accessed by p16(INK4A) expression) and remodeling-independent (such as activation of tumor suppressor p53 pathway) senescence response of cells. Furthermore, we found the direct interactions of 5AZA-dC with these chaperones that may alter their functions. We conclude that both mortalin and Pex19p are important mediators, prognostic indicators, and tailoring tools for 5AZA-dC-induced senescence in cancer cells.
Collapse
Affiliation(s)
- Nashi Widodo
- National Institute of Advanced Industrial Science & Technology (AIST), Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Deocaris CC, Widodo N, Shrestha BG, Kaur K, Ohtaka M, Yamasaki K, Kaul SC, Wadhwa R. Mortalin sensitizes human cancer cells to MKT-077-induced senescence. Cancer Lett 2007; 252:259-69. [PMID: 17306926 DOI: 10.1016/j.canlet.2006.12.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Accepted: 12/27/2006] [Indexed: 01/01/2023]
Abstract
Mortalin is a chaperone protein that functions in many cellular processes such as mitochondrial biogenesis, intracellular trafficking, cell proliferation and signaling. Its upregulation in many human cancers makes it a candidate target for therapeutic intervention by small molecule drugs. In continuation to our earlier studies showing mortalin as a cellular target of MKT-077, a mitochondrion-seeking delocalized cationic dye that causes selective death of cancer cells, in this work, we report that MKT-077 binds to the nucleotide-binding domain of mortalin, causes tertiary structural changes in the protein, inactivates its chaperone function, and induces senescence in human tumor cell lines. Interestingly, in tumor cells with elevated level of mortalin expression, fairly low drug doses were sufficient to induce senescence. Guided by molecular screening for mortalin in tumor cells, our results led to the idea that working at low doses of the drug could be an alternative senescence-inducing cancer therapeutic strategy that could, in theory, avoid renal toxicities responsible for the abortion of MKT-077 clinical trials. Our work may likely translate to a re-appraisal of the therapeutic benefits of low doses of several classes of anti-tumor drugs, even of those that had been discontinued due to adverse effects.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Sun Y, Yi H, Zhang PF, Li MY, Li C, Li F, Peng F, Feng XP, Yang YX, Yang F, Xiao ZQ, Chen ZC. Identification of differential proteins in nasopharyngeal carcinoma cells with p53 silence by proteome analysis. FEBS Lett 2007; 581:131-9. [PMID: 17184779 DOI: 10.1016/j.febslet.2006.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/16/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
Although mutation of p53 tumor-suppressor gene is rare in nasopharyngeal carcinoma (NPC), NPC has a high frequency of overexpression of p53 protein. There seem to be complex mechanisms of inactivation and stabilization of p53 in NPC. To detect proteins associated with the function of p53 in high throughout screening, we succeeded in establishing p53 knockdown human NPC CNE2 cell line (CNE2sip53) using stable RNA interference, and compared the proteomic changes between CNE2sip53 and control cell line CNE2/pSUPER using two-dimensional gel electrophoresis. Twenty-two differentially expressed proteins between the two cell lines were identified by both matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and electrospray ionization tandem mass spectrometry, some of which are known to be associated with the p53 function (HSP27, hnRNP K, 14-3-3sigma, etc.), and others may be novel proteins associated with p53 function (eIF4B, TPT1, hnRNP H3, SFRS1 etc.). Furthermore, several differential proteins including HSP27, HSP70, GRP75 and GRP78 were verified as p53 interacting proteins in NPC by immunoprecipitation and Western blot analysis, and the suppression of HSP27 expression by HSP27 antisense oligonucleotides could decrease the p53 protein level. Our data suggest that these differential proteins may be associated with the function of p53 in NPC, and provide new clues to elucidate the mechanisms of inactivation and stabilization of p53 in NPC.
Collapse
Affiliation(s)
- Yi Sun
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Krishna SB, Alfonso LF, Thekkumkara TJ, Abbruscato TJ, Bhat GJ. Angiotensin II induces phosphorylation of glucose-regulated protein-75 in WB rat liver cells. Arch Biochem Biophys 2007; 457:16-28. [PMID: 17109810 PMCID: PMC2577571 DOI: 10.1016/j.abb.2006.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/12/2006] [Indexed: 01/19/2023]
Abstract
Studies in vascular smooth muscle cells suggest that, angiotensin II (Ang II)-mediated cellular response requires transactivation of epidermal growth factor receptor (EGF-R), and involves tyrosine phosphorylation of caveolin-1. Here we demonstrate that, exposure of WB rat liver cells to Ang II does not cause transactivation of EGF-R, but did rapidly activate p42/p44 mitogen-activated protein (MAP) kinases suggesting that it activates MAP kinases independent of EGF-R transactivation. We observed that the phospho-specific anti-caveolin-1 antibody detected a tyrosine phosphorylated, 75kDa protein in Ang II-treated cells which we identified as glucose regulated protein-75 (GRP-75). Phosphoamino acid analysis showed that Ang II induced its phosphorylation at tyrosine, serine and threonine residues and was localized to the cytoplasm. The ability of Ang-II to induce GRP-75 phosphorylation suggests that it may play a role in the protection of cytoplasmic proteins from the damaging effect of oxidative stress known to be produced during Ang-II induced signaling.
Collapse
Affiliation(s)
- Sharath B. Krishna
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Lloyd F. Alfonso
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Thomas J. Thekkumkara
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - Thomas J. Abbruscato
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| | - G. Jayarama Bhat
- Department of Pharmaceutical Sciences and Cancer Biology Center Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106
| |
Collapse
|
120
|
Kaul SC, Deocaris CC, Wadhwa R. Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol 2006; 42:263-74. [PMID: 17188442 DOI: 10.1016/j.exger.2006.10.020] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 10/05/2006] [Accepted: 10/24/2006] [Indexed: 11/23/2022]
Abstract
Mortalin was first cloned as a mortality factor that existed in the cytoplasmic fractions of normal, but not in immortal, mouse fibroblasts. A decade of efforts have expanded its persona from a house keeper protein involved in mitochondrial import, energy generation and chaperoning of misfolded proteins, to a guardian of stress that has multiple binding partners and to a killer protein that contributes to carcinogenesis on one hand and to old age disorders on the other. Being proved to be an attractive target for cancer therapy, it also warrants attention from the perspectives of management of old age diseases and healthy aging.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305 8562, Japan
| | | | | |
Collapse
|
121
|
Apoptosis vs. oncosis: role of cell volume and intracellular monovalent cations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 559:219-33. [PMID: 18727243 DOI: 10.1007/0-387-23752-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Several research teams have proposed that shrinkage and swelling in cells undergoing apoptosis and oncosis are not only the earliest morphological markers of the two modes of cell death but are also obligatory steps in the development of the death machinery. We examined this hypothesis as well as the role of monovalent cations as major intracellular osmolytes using vascular smooth muscle cells (VSMC) from the rat aorta and C7-MDCK cells derived from the Madin-Darby canine kidney. 48-hr inhibition of the Na(+)-K+ pump with ouabain did not affect VSMC survival and delayed serum deprivation-induced apoptosis at a step upstream of caspase-3 via elevation of the [Na+]i/[K+]i ratio and the expression of Na+ i-sensitive antiapoptotic genes including mortalin. Transient and modest (15-20%) shrinkage observed in serum-deprived VSMC did not contribute to triggering of the apoptotic machinery. In contrast to VSMC, ouabain led to oncosis of C7-MDCK cells, indicated by swelling and resistance to the pan-caspase inhibitor z-VAD.fmk. In these cells, the death signal was mediated by interaction of ouabain with the Na(+)-K(+)-ATPase alpha-subunit but was independent of the inhibition of Na(+)-K+ pump-mediated ion fluxes and elevation of the [Na+]i/[K+]i ratio.
Collapse
|
122
|
Shinmura K, Bennett RA, Tarapore P, Fukasawa K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 2006; 26:2939-44. [PMID: 17072342 DOI: 10.1038/sj.onc.1210085] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal amplification of centrosomes is the major cause of mitotic defects and chromosome instability in cancer cells. Centrosomes duplicate once in each cell cycle, and abrogation of the regulatory mechanism underlying centrosome duplication leads to centrosome amplification. p53 tumor suppressor protein is involved in the regulation of centrosome duplication: loss of p53 as well as expression of certain p53 mutants result in deregulated centrosome duplication and centrosome amplification. p53 at least in part depends on its transactivation function to control centrosome duplication, primarily via upregulation of p21 cyclin-dependent kinase (CDK) inhibitor, which prevents untimely activation of CDK2/cyclin E, a key initiator of centrosome duplication. However, numerous studies have shown the presence of p53 at centrosomes, yet the role of the centrosomally localized p53 in the regulation of centrosome duplication had been enigmatic. Here, we comparatively examined wild-type p53 and p53 mutants that are transactivation(+)/centrosome-binding(-), transactivation(-)/centrosome-binding(+) and transactivation(-)/centrosome-binding(-) for their abilities to control centrosome duplication. We found that the transactivation(+)/centrosome-binding(-) and transactivation(-)/centrosome-binding(+) mutants suppress centrosome duplication only partially compared with wild-type p53. Moreover, the transactivation(-)/centrosome-binding(-) mutant almost completely lost the ability to suppress centrosome duplication. These observations provide direct evidence for the centrosomally localized p53 to participate in the regulation of centrosome duplication in a manner independent of its transactivation function in addition to its transactivation-dependent regulation of centrosome duplication.
Collapse
Affiliation(s)
- K Shinmura
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
123
|
Aizu W, Belinsky GS, Flynn C, Noonan EJ, Boes CC, Godman CA, Doshi B, Nambiar PR, Rosenberg DW, Giardina C. Circumvention and reactivation of the p53 oncogene checkpoint in mouse colon tumors. Biochem Pharmacol 2006; 72:981-91. [PMID: 16949053 DOI: 10.1016/j.bcp.2006.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 06/29/2006] [Accepted: 07/17/2006] [Indexed: 01/25/2023]
Abstract
The p53 tumor suppressor protein is sequence-normal in azoxymethane (AOM)-induced mouse colon tumors, making them a good model for human colon cancers that retain a wild type p53 gene. Cellular localization and co-immunoprecipitation experiments using a cell line derived from an AOM-induced colon tumor (AJ02-NM(0) cells) pointed to constitutively expressed Mdm2 as being an important negative regulator of p53 in these cells. Although the Mdm2 inhibitory protein p19/ARF was expressed in AJ02-NM(0) cells, its level of expression was not sufficient for p53 activation. We tested the response of AJ02-NM(0) cells to the recently developed Mdm2 inhibitor, Nutlin-3. Nutlin-3 was found to activate p53 DNA binding in AJ02-NM(0) cells, to a level comparable to doxorubicin and 5-fluorouracil (5-FU). In addition, Nutlin-3 increased expression of the p53 target genes Bax and PERP to a greater extent than doxorubicin or 5-FU, and triggered a G2/M phase arrest in these cells, compared to a G1 arrest triggered by doxorubicin and 5-FU. The differences in the cellular response may be related to differences in the kinetics of p53 activation and/or its post-translational modification status. In an ex vivo experiment, Nutlin-3 was found to activate p53 target gene expression and apoptosis in AOM-induced tumor tissue, but not in normal adjacent mucosa. Our data indicate that Mdm2 inhibitors may be an effective means of selectively targeting colon cancers that retain a sequence-normal p53 gene while sparing normal tissue and that the AOM model is an appropriate model for the preclinical development of these drugs.
Collapse
Affiliation(s)
- Wataru Aizu
- Department of Molecular & Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Orlov SN, Hamet P. Intracellular monovalent ions as second messengers. J Membr Biol 2006; 210:161-72. [PMID: 16909338 DOI: 10.1007/s00232-006-0857-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 02/08/2006] [Indexed: 01/03/2023]
Abstract
It is generally accepted that electrochemical gradients of monovalent ions across the plasma membrane, created by the coupled function of pumps, carriers and channels, are involved in the maintenance of resting and action membrane potential, cell volume adjustment, intracellular Ca(2+ )handling and accumulation of glucose, amino acids, nucleotides and other precursors of macromolecular synthesis. In the present review, we summarize data showing that side-by-side with these classic functions, modulation of the intracellular concentration of monovalent ions in a physiologically reasonable range is sufficient to trigger numerous cellular responses, including changes in enzyme activity, gene expression, protein synthesis, cell proliferation and death. Importantly, the engagement of monovalent ions in regulation of the above-listed cellular responses occurs at steps upstream of Ca(2+) (i) and other key intermediates of intracellular signaling, which allows them to be considered as second messengers. With the exception of HCO (3) (-) -sensitive soluble adenylyl cyclase, the molecular origin of sensors involved in the function of monovalent ions as second messengers remains unknown.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal, (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
125
|
Cussac D, Pichereaux C, Colomba A, Capilla F, Pont F, Gaits-Iacovoni F, Lamant L, Espinos E, Burlet-Schiltz O, Monsarrat B, Delsol G, Payrastre B. Proteomic analysis of anaplastic lymphoma cell lines: identification of potential tumour markers. Proteomics 2006; 6:3210-22. [PMID: 16596703 DOI: 10.1002/pmic.200500647] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Anaplastic large-cell lymphomas (ALCL) are high grade lymphomas of T or null phenotype often associated with the t(2;5) translocation leading to the expression of a chimeric protein consisting of the N-terminal portion of nucleophosmin (NPM) and the intracellular domain of the anaplastic lymphoma kinase (ALK). Although ALCL are recognized as distinct clinical, biological and cytogenetic entities, heterogeneities persist in this group of tumours, which exhibit a broad spectrum of morphological features. Particularly, the common type tumour consisting in large cells contrast with the small cell variant that is sometimes associated with a leukemic phase. The ALK-negative ALCL is often associated with a poor prognosis. Here, we investigated the proteome of these subtypes of tumours using patient-derived cell lines. We compared the proteome of the cytosolic fraction of NPM-ALK-positive versus NPM-ALK-negative cells on one hand, and the proteome of common cell type versus small cell variant on the other hand. The identification of a set of proteins differentially expressed in the subtypes of ALCL points to new diagnosis/prognosis markers. This study also provides interesting information on the molecular mechanisms responsible for the different subtypes of ALCL.
Collapse
MESH Headings
- Anaplastic Lymphoma Kinase
- Biomarkers, Tumor/biosynthesis
- Cell Line, Tumor
- Cytosol/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Nuclear Proteins/biosynthesis
- Nucleophosmin
- Phenotype
- Prognosis
- Protein-Tyrosine Kinases/biosynthesis
- Proteome/biosynthesis
- Receptor Protein-Tyrosine Kinases
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Daniel Cussac
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan, Département d'Oncogenèse et Signalisation dans les Cellules Hématopoïétiques, CHU Purpan, 31059 Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Deocaris CC, Kaul SC, Wadhwa R. On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 2006; 11:116-28. [PMID: 16817317 PMCID: PMC1484513 DOI: 10.1379/csc-144r.1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The heat shock chaperones mortalin/mitochondrial heat shock protein 70 (mtHsp70) and Hsp60 are found in multiple subcellular sites and function in the folding and intracellular trafficking of many proteins. The chaperoning activity of these 2 proteins involves different structural and functional mechanisms. In spite of providing an excellent model for an evolutionarily conserved molecular "brotherhood", their individual functions, although overlapping, are nonredundant. As they travel to various locations, both chaperones acquire different binding partners and exert a more divergent involvement in tumorigenesis, cellular senescence, and immunology. An understanding of their functional biology may lead to novel designing and development of therapeutic strategies for cancer and aging.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | |
Collapse
|
127
|
Deocaris CC, Yamasaki K, Kaul SC, Wadhwa R. Structural and functional differences between mouse mot-1 and mot-2 proteins that differ in two amino acids. Ann N Y Acad Sci 2006; 1067:220-3. [PMID: 16803989 DOI: 10.1196/annals.1354.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chaperone functions mediated by the heat-shock protein (HSP) family constitute a fundamental mechanism that governs the life span of organisms. Here we investigated the chaperone activities of the mitochondrial HSP70 protein, mortalin, which is a heat-uninducible stress protein involved in immortalization and tumorigenesis. There are two mortalin alleles, mot-1 and mot-2, in mouse, encoding two distinct proteins. Whereas an overexpression of mot-1-induced senescence in NIH 3T3 cells, overexpression of mot-2 promoted their malignant properties. Here, we provide evidence that mot-1 possesses very low chaperone activity as compared to mot-2. A "lazy lid" hypothesis is proposed for their differential aging phenotypes.
Collapse
Affiliation(s)
- Custer C Deocaris
- National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba, Japan
| | | | | | | |
Collapse
|
128
|
Wadhwa R, Takano S, Kaur K, Deocaris CC, Pereira-Smith OM, Reddel RR, Kaul SC. Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer 2006; 118:2973-80. [PMID: 16425258 DOI: 10.1002/ijc.21773] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Mortalin, also known as mthsp70/GRP75/PBP74, interacts with the tumor suppressor protein p53 and inactivates its transcriptional activation and apoptotic functions. Here, we examined the level of mortalin expression in a large variety of tumor tissues, tumor-derived and in vitro immortalized human cells. It was elevated in many human tumors, and in all of the tumor-derived and in vitro immortalized cells. In human embryonic fibroblasts immortalized with an expression plasmid for hTERT, the telomerase catalytic subunit, with or without human papillomavirus E6 and E7 genes, we found that subclones with spontaneously increased mortalin expression levels became anchorage-independent and acquired the ability to form tumors in nude mice. Furthermore, overexpression of mortalin was sufficient to increase the malignancy of breast carcinoma cells. The study demonstrates that upregulation of mortalin contributes significantly to tumorigenesis, and thus is a good candidate target for cancer therapy.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
129
|
Orlov SN, Hamet P. The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i-independent H+i-sensitive signalling. Acta Physiol (Oxf) 2006; 187:231-40. [PMID: 16734760 DOI: 10.1111/j.1748-1716.2006.01546.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Na/K-ATPase is the only known target of cardiotonic steroids (CTS) identified in plants, amphibians and later on in several mammalian species, including human. We focus our review on recent data implicating CTS in the tissue-specific regulation of cell survival and death. In vascular smooth muscle cells, CTS inhibited cell death triggered by apoptotic stimuli via a novel Na+i-mediated, Ca2+i-independent mechanism of expression of antiapoptotic genes, including mortalin. In contrast, exposure to CTS in vascular endothelial and renal epithelial cells led to cell death, showing combined markers of apoptosis and necrosis. This mode of cell death, termed oncosis, is caused by CTS interaction with Na/K-ATPase but is independent of the inhibition of Na/K-ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. The intermediates of intracellular signalling involved in Na+i, K+i-independent oncosis of CTS-treated cells remain unknown. Recently, we found that this mode of cell death can be protected by modest intracellular acidification via the expression of H+i-sensitive genes. The molecular origin of intracellular Na+ and H+ sensor involvement in the development of apoptosis and oncosis is currently under investigation.
Collapse
Affiliation(s)
- S N Orlov
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM)-Hôtel-Dieu, Montreal, Quebec, Canada.
| | | |
Collapse
|
130
|
Ma Z, Izumi H, Kanai M, Kabuyama Y, Ahn NG, Fukasawa K. Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 2006; 25:5377-90. [PMID: 16619038 DOI: 10.1038/sj.onc.1209543] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abnormal amplification of centrosomes, commonly found in human cancer, is the major cause of mitotic defects and chromosome instability in cancer cells. Like DNA, centrosomes duplicate once in each cell cycle, hence the defect in the mechanism that ensures centrosome duplication to occur once and only once in each cell cycle results in abnormal amplification of centrosomes and mitotic defects. Centrosomes are non-membranous organelles, and undergo dynamic changes in its constituents during the centrosome duplication cycle. Through a comparative mass spectrometric analysis of unduplicated and duplicated centrosomes, we identified mortalin, a member of heat shock protein family, as a protein that associates preferentially with duplicated centrosomes. Further analysis revealed that mortalin localized to centrosomes in late G1 before centrosome duplication, remained at centrosomes during S and G2, and dissociated from centrosomes during mitosis. Overexpression of mortalin overrides the p53-dependent suppression of centrosome duplication, and mortalin-driven centrosome duplication requires physical interaction between mortalin and p53. Moreover, mortalin promotes dissociation of p53 from centrosomes through physical interaction. The p53 mutant that lacks the ability to bind to mortalin remains at centrosomes, and suppresses centrosome duplication in a transactivation function-independent manner. Thus, our present findings not only identify mortalin as an upstream molecule of p53 but also provide evidence for the involvement of centrosomally localized p53 in the regulation of centrosome duplication.
Collapse
Affiliation(s)
- Z Ma
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521, USA
| | | | | | | | | | | |
Collapse
|
131
|
Kaul SC, Aida S, Yaguchi T, Kaur K, Wadhwa R. Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J Biol Chem 2005; 280:39373-9. [PMID: 16176931 DOI: 10.1074/jbc.m500022200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Hsp70 family member mortalin (mot-2/mthsp70/GRP75) binds to a carboxyl terminus region of the tumor suppressor protein p53. By in vivo co-immunoprecipitation of mot-2 with p53 and its deletion mutants, we earlier mapped the mot-2-binding site of p53 to its carboxyl terminus 312-352 amino acid residues. In the present study we attempted to disrupt mot-2-p53 interactions by overexpression of short p53 carboxyl-terminal peptides. We report that p53 carboxyl-terminal peptides (amino acid residues 312-390, 312-352, 323-390, and 323-352) localize in the cytoplasm, whereas 312-322, 337-390, 337-352, and 352-390 locate mostly in the nucleus. Most interestingly, the cytoplasmically localizing p53 peptides harboring the residues 323-337 activated the endogenous p53 function by displacing it from p53-mortalin complexes and relocating it to the nucleus. Such activation of p53 function was sufficient to cause growth arrest of human osteosarcoma and breast carcinoma cells.
Collapse
Affiliation(s)
- Sunil C Kaul
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
132
|
Pilzer D, Fishelson Z. Mortalin/GRP75 promotes release of membrane vesicles from immune attacked cells and protection from complement-mediated lysis. Int Immunol 2005; 17:1239-48. [PMID: 16091382 DOI: 10.1093/intimm/dxh300] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system is causing membrane damage and cell death. For protection, cells have adopted several resistance mechanisms, including removal of the membrane-inserted MAC by vesiculation. To identify proteins involved in MAC vesiculation, extracellular proteins released from K562 cells in response to treatment with sub-lytic complement were separated by acrylamide gel electrophoresis and protein bands were extracted, digested into peptides and the peptides were analyzed by mass spectrometry. A 75-kDa protein that was abundant in the supernatant of complement-treated cells was identified as mortalin/GRP75. Analysis by western blotting demonstrated that as early as 5 min after exposure to sub-lytic doses of complement, mortalin was released from K562 cells. Mortalin was released after complete activation of the complement system and formation of C5b-8, and even more so when C5b-9 was formed. Other pore formers, such as streptolysin O and melittin, did not induce release of mortalin. As shown, mortalin can bind to complement C8 and C9 and is shed in vesicles containing C9 and complement MACs. Anti-mortalin antibodies reduced mortalin release from complement-treated cells and elevated the extent of cell death by complement. Inhibitors of protein kinase C and extracellular signal-regulated protein kinase also prevented mortalin release from complement-activated cells. These results suggest that mortalin/GRP75 promotes the shedding of membrane vesicles loaded with complement MAC and protects cells from complement-mediated lysis.
Collapse
Affiliation(s)
- David Pilzer
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
133
|
Saretzki G, Armstrong L, Leake A, Lako M, von Zglinicki T. Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. ACTA ACUST UNITED AC 2005; 22:962-71. [PMID: 15536187 DOI: 10.1634/stemcells.22-6-962] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A very small number of embryonic stem (ES) cells gives rise to all tissues of the embryo proper. This means that ES cells should be equipped with highly efficient mechanisms to defend themselves against various stresses and to prevent or repair DNA damage. One of these mechanisms is a high activity of a verapamil-sensitive multidrug efflux pump. Because reactive oxygen species are a major source of DNA damage, we further tested the idea that murine ES cells might differ from their more differentiated counterparts by high levels of antioxidant defense and good DNA strand break repair capacity. This was confirmed by comparing cellular peroxide levels, total antioxidant capacity, and activity of radiation-induced strand break repair between murine ES cells and embryoid bodies or embryonic fibroblasts. Using microarrays and confirmation by reverse transcription-polymerase chain reaction, we identified several candidate antioxidant and stress-resistance genes that become downregulated during differentiation of ES cells into embryoid bodies.
Collapse
Affiliation(s)
- Gabriele Saretzki
- Henry Wellcome Laboratory for Biogerontology, Newcastle General Hospital, University of Newcastle upon Tyne, Newcastle upon Tyne NE4 6BE, UK
| | | | | | | | | |
Collapse
|
134
|
Wadhwa R, Deocaris CC, Widodo N, Taira K, Kaul SC. Imminent approaches towards molecular interventions in ageing. Mech Ageing Dev 2005; 126:481-90. [PMID: 15722107 DOI: 10.1016/j.mad.2004.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/23/2004] [Accepted: 10/18/2004] [Indexed: 10/26/2022]
Abstract
Ageing is an innate feature of living organisms. Sensational progress in its molecular understanding in the last decade has culminated into a highly complex picture. Emerging from this complexity are the distinctive roles of some of the tumor suppressor pathways including p53 and pRB in maintenance of senescence phenotype, and telomere maintaining pathways in its escape. We discuss here the current scenario of molecular ageing and the use of modern approaches for its intervention in culture system, at least. Many of the tools we describe here are the newly emergent functional RNA tools that are proved to be fruitful in decoding the human genome. These post-genomic technologies will help us in the discovery of gene targets for interventions aiming to improve the quality at later years of life beyond their mere algebraic extension.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | | | |
Collapse
|
135
|
|
136
|
Dundas SR, Lawrie LC, Rooney PH, Murray GI. Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J Pathol 2005; 205:74-81. [PMID: 15532096 DOI: 10.1002/path.1672] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using comparative proteomic analysis we have identified over-expression of mortalin in colorectal adenocarcinomas. Mortalin, also known as mitochondrial heat-shock protein 70 (mhsp 70), is involved in cell cycle regulation with important roles in cellular senescence and immortalization pathways. It is known to bind to and inactivate wild-type tumour suppressor protein p53 and influences the Ras-Raf-MAPK pathway. By immunostaining a colorectal cancer tissue microarray linked to a patient database, we further found that mortalin over-expression correlates with poor patient survival and, in multivariate analysis, is independent of standard prognostic variables (p = 0.04). Our findings demonstrate that mortalin over-expression may predict outcome in colorectal cancer and suggest that this protein is involved in colorectal neoplasia. Our experimental approach emphasises the analytical power of combining proteomics with tissue microarray analysis in the context of a well-defined tumour database.
Collapse
|
137
|
Bhat GJ, Samikkannu T, Thomas JJ, Thekkumkara TJ. alpha-thrombin rapidly induces tyrosine phosphorylation of a novel, 74-78-kDa stress response protein(s) in lung fibroblast cells. J Biol Chem 2004; 279:48915-22. [PMID: 15364938 DOI: 10.1074/jbc.m409043200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that exposure of CCL39 lung fibroblasts to alpha-thrombin rapidly inhibits interleukin 6-induced tyrosine phosphorylation of signal transducers and activators of transcription 3 (Stat3). While studying the cross-talk between alpha-thrombin and interleukin 6, we observed that the phospho-specific (tyrosine) anti-Stat3 antibody specifically cross-reacted with a 74-78-kDa protein(s) in alpha-thrombin-treated cells. In this study, we demonstrate that in alpha-thrombin-treated CCL39 cells, the 74-78-kDa protein(s) rapidly undergoes tyrosine phosphorylation. The phosphorylation by alpha-thrombin was detected as early as 5 min and reached a maximum at 15 min; however, low levels were present at 2 h. alpha-Thrombin receptor agonist peptide (SFLLRN) induced its tyrosine phosphorylation, suggesting that alpha-thrombin mediates the effects via protease-activated receptor type 1. Anti-Stat3 antibodies specific to different regions of Stat3 failed to recognize the 74-78-kDa protein(s), suggesting that it is unrelated to Stat3. Cell fractionation experiments showed that it is localized to the cytoplasm. Mass spectrometric analysis of the immunoprecipitated protein showed that the 74-78-kDa protein(s) is related to glucose-regulated protein 75 (GRP-75), a member of the heat shock/stress-response protein family. Consistent with these data, we observed tyrosine phosphorylation of GRP-75 in alpha-thrombin-treated cells. Exposure of cells to pervanadate, a stress-inducing agent, stimulated its tyrosine phosphorylation; however, cytokines and growth factors were ineffective. This is the first report of tyrosine phosphorylation of GRP-75-related stress protein(s) by alpha-thrombin and suggests that this pathway may contribute to the ability of alpha-thrombin to prevent apoptosis in cells exposed to stress or in the injured tissue.
Collapse
Affiliation(s)
- G Jayarama Bhat
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
| | | | | | | |
Collapse
|
138
|
Srokowski T, Pfeifer JD, Li J, Olson LM, Rader JS. Expression and Localization of GRP75 in Human Epithelial Tumors and Normal Tissues. Appl Immunohistochem Mol Morphol 2004; 12:132-8. [PMID: 15354738 DOI: 10.1097/00129039-200406000-00006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using differential display mRNA techniques, the authors found cDNA of the heat shock 70 protein known as GRP75 overexpressed in ovarian cancer cell lines. In the current study, the authors used immunohistochemistry to characterize the expression pattern of GRP75 in ovarian carcinomas and compared it with epithelial tumors originating from the female reproductive tract, epithelial neoplasms from non-gynecologic sites (colon, pancreas, breast, and lung), and various normal tissues. The authors also developed an antigen capture ELISA assay to determine if GRP75 can be detected in tumors, ascites, or sera of patients with advanced mullerian adenocarcinomas. All epithelial tumors from the ovary and the female reproductive tract were positive for GRP75 expression with moderate to strong staining intensity; stromal expression of GRP75 was generally weak or absent. Adenocarcinomas from the colon, lung, pancreas, and breast also stained strongly positive for GRP75. The epithelial cells of all normal tissues examined were positive for GRP75, and strong staining was also seen in the corpora lutea, hepatocytes, enteric neural plexus of the esophagus and colon, and placental cytotrophoblast and syncytiotrophoblast, and in subpopulations of pancreatic acinar cells. The ELISA assay detected GRP75 in tumor lysates and ascitic fluid, but not sera, of patients with mullerian adenocarcinomas. The authors conclude that GRP75 is highly expressed in both benign and malignant epithelium, as well as cells of specialized function from a variety of tissues.
Collapse
Affiliation(s)
- Tomasz Srokowski
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
139
|
Kirmanoglou K, Hannekum A, Schäfler AE. Expression of mortalin in patients with chronic atrial fibrillation. Basic Res Cardiol 2004; 99:404-8. [PMID: 15309412 DOI: 10.1007/s00395-004-0477-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 04/02/2004] [Accepted: 04/19/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND In myocardium of patients with chronic atrial fibrillation (AF) the expression of the mitochondrial heat shock proteins HSP60 and HSP10 is increased. They are responsible for folding and translocation of proteins inside the mitochondria. Import of these proteins is accomplished by mortalin. The aim of our study was to investigate if the expression of the heat shock protein mortalin is also increased in patients with AF. METHODS Right atrial samples from 18 patients undergoing elective cardiac surgery were excised and immediately frozen in liquid nitrogen: 8 patients had chronic AF (> or = 3 month) and 10 patients were in sinus rhythm (SR). Mortalin was determined by SDS-PAGE, Western blot and quantified by optical densitometry. RESULTS In myocardial samples from patients with chronic AF we found a more than 2-fold increase in mortalin expression. CONCLUSIONS The increased expression of mortalin may represent an adaptive heat shock response to restore cellular homeostasis.
Collapse
Affiliation(s)
- Kiriakos Kirmanoglou
- Department of Cardiac Surgery, University of Ulm, Steinhövelstr. 9, 89075 Ulm, Germany
| | | | | |
Collapse
|
140
|
Lo JF, Hayashi M, Woo-Kim S, Tian B, Huang JF, Fearns C, Takayama S, Zapata JM, Yang Y, Lee JD. Tid1, a cochaperone of the heat shock 70 protein and the mammalian counterpart of the Drosophila tumor suppressor l(2)tid, is critical for early embryonic development and cell survival. Mol Cell Biol 2004; 24:2226-36. [PMID: 14993262 PMCID: PMC355836 DOI: 10.1128/mcb.24.6.2226-2236.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tid1 is the mammalian counterpart of the Drosophila tumor suppressor Tid56 and is also a DnaJ protein containing a conserved J domain through which it interacts with the heat shock protein 70 (Hsp70) family of chaperone proteins. We generated a Tid1 conditional mutation in mice, and the subsequent global removal of the Tid1 protein was achieved by crossing these conditional knockout mice with general deletor mice. No Tid1(-/-) embryos were detected as early as embryonic day 7.5 (E7.5). Nonetheless, Tid1-deficient blastocysts were viable, hatched, formed an inner cell mass and trophectoderm, and implanted (E4.5), suggesting that the homozygous mutant embryos die between E4.5 and E7.5. To assess the function of Tid1 in embryonic cells, mouse embryonic fibroblasts with the homologous Tid1 floxed allele were produced. Tid1 removal in these cells led to massive cell death. The death of Tid1-deficient cells could be rescued by ectopic expression of wild-type Tid1 but not by expression of the Tid1 protein that had a mutated J domain and was thus incapable of binding to Hsp70. We propose that Tid1 is critical for early mammalian development, most likely for its function in sustaining embryonic-cell survival, which requires its association with Hsp70.
Collapse
Affiliation(s)
- Jeng-Fan Lo
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Wadhwa R, Ando H, Kawasaki H, Taira K, Kaul SC. Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep 2003; 4:595-601. [PMID: 12776179 PMCID: PMC1319200 DOI: 10.1038/sj.embor.embor855] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Revised: 04/07/2003] [Accepted: 04/15/2003] [Indexed: 11/09/2022] Open
Abstract
Mortalin, also known as mot2/mthsp70/GRP75/PBP74, is a member of the heat-shock protein 70 family that is heat-uninducible. It is differentially distributed in cells that have normal and immortal phenotypes, has been localized to various subcellular sites, and has several binding partners and functions. Here, we describe the construction and use of mortalin-specific conventional and hybrid ribozymes to elucidate its crucial role in cell proliferation. Whereas conventional hammerhead ribozymes did not cause any repression of endogenous mortalin expression, RNA-helicase-linked hybrid ribozymes successfully suppressed the expression of mortalin, which resulted in the growth arrest of transformed human cells. We show that, first, RNA helicase-coupled hybrid ribozymes that have a linked unwinding activity can be used to target genes for which conventional hammerhead ribozymes are ineffective; second, the targeting of mortalin by RNA-helicase-coupled hybrid ribozymes causes growth suppression of transformed human cells and could be used as a treatment for cancer.
Collapse
Affiliation(s)
- Renu Wadhwa
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari-mura, Ibaraki, 300-4101, Japan
| | - Hiroshi Ando
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari-mura, Ibaraki, 300-4101, Japan
| | - Hiroaki Kawasaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Tokyo, 113-8656, Japan
| | - Kazunari Taira
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Tokyo, 113-8656, Japan
| | - Sunil C. Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Tel: +81 298 61 6713; Fax: +81 298 61 6052;
| |
Collapse
|
142
|
Kaul SC, Yaguchi T, Taira K, Reddel RR, Wadhwa R. Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Exp Cell Res 2003; 286:96-101. [PMID: 12729798 DOI: 10.1016/s0014-4827(03)00101-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The lifespan of human foreskin fibroblasts (HFF5), cultured under standard in vitro conditions (including ambient atmospheric oxygen tension), was extended slightly by expression of exogenous mortalin (mot-2)/mthsp70/Grp75, but not by the catalytic subunit of telomerase, hTERT. Together, mot-2 and hTERT permitted bypass of senescence, a substantial extension of lifespan, and possibly immortalization. This is the first demonstration that mot-2 and telomerase can cooperate in the immortalization process.
Collapse
Affiliation(s)
- Sunil C Kaul
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
143
|
Wadhwa R, Yaguchi T, Hasan MK, Taira K, Kaul SC. Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem Biophys Res Commun 2003; 302:735-42. [PMID: 12646231 DOI: 10.1016/s0006-291x(03)00226-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mortalin (mot-2/GRP75/PBP74/mthsp70) is a member of the hsp70 family of proteins and is differentially distributed in normal and immortal cells. It was shown to be involved in pathways to cell senescence and immortalization. To elucidate its functional aspects, a yeast interactive screen for mortalin (mot-2) binding proteins was performed. Mevalonate pyrophosphate decarboxylase (MPD) was identified as one of the mortalin binding partners. The interactions were confirmed in mammalian cells by two-hybrid assay and in vivo coimmunoprecipitation. MPD is known to furnish prenyl groups required for prenylation, protein modification that is essential for the activity of many proteins including p21(Ras) (Ras). We have examined the effect of MPD-mot-2 interactions on the level and activity of p21(Ras) and its downstream effectors, p44 and p42 MAP kinases (ERK1/ERK2), in Ras-Raf pathway. An overexpression of mot-2 resulted in reduced level of Ras and phosphorylated ERK2. These were rescued by co-expression of MPD from an exogenous promoter demonstrating a functional link between mot-2, MPD, and Ras. Ras and its oncogenic forms act as key players in controlling proliferation of normal and cancerous cells. Assigning mot-2 upstream of p21(Ras) offers an important mechanism for influence over cell proliferation.
Collapse
Affiliation(s)
- Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | | | |
Collapse
|
144
|
Taurin S, Seyrantepe V, Orlov SN, Tremblay TL, Thibault P, Bennett MR, Hamet P, Pshezhetsky AV. Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells. Circ Res 2002; 91:915-22. [PMID: 12433836 DOI: 10.1161/01.res.0000043020.45534.3e] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apoptosis of vascular smooth muscle cells (VSMCs) plays an important role in remodeling of vessel walls, one of the major determinants of long-term blood pressure elevation and an independent risk factor for cardiovascular morbidity and mortality. Recently, we have found that apoptosis in cultured VSMCs can be inhibited by inversion of the intracellular [Na+]/[K+] ratio after the sustained blockage of the Na+,K+-ATPase by ouabain. To understand the mechanism of ouabain action, we analyzed subsets of hydrophilic and hydrophobic VSMC proteins from control and ouabain-treated cells by 2-dimensional electrophoresis. Ouabain treatment led to overexpression of numerous soluble and hydrophobic cellular proteins. Among proteins that showed the highest level of ouabain-induced expression, we identified mortalin (also known as GRP75 or PBP-74), a member of the heat shock protein 70 (HSP70) superfamily and a marker for cellular mortal and immortal phenotypes. Northern and Western blotting and immunocytochemistry all have confirmed that treatment of VSMCs with ouabain results in potent induction of mortalin expression. Transient transfection of cells with mortalin cDNA led to at least a 6-hour delay in the development of apoptosis after serum deprivation. The expression of tumor suppressor gene, p53, in mortalin-transfected cells was delayed to the same extent, and the expressed protein showed abnormal perinuclear distribution, suggesting that p53 is retained and inactivated by mortalin. Our studies therefore define a new [Na+]i/[K+]i-responsive signaling pathway that may play an important role in the regulation of programmed cell death in VSMCs.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Blotting, Northern
- Cells, Cultured
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation/physiology
- HSP70 Heat-Shock Proteins/biosynthesis
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Male
- Mass Spectrometry
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Ouabain/pharmacology
- Potassium/metabolism
- Proteome/chemistry
- Proteome/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred BN
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Sodium/metabolism
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Transfection
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Sebastien Taurin
- Centre de Recherche de l'Hôpital Sainte Justine, Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Smith DL, Evans CA, Pierce A, Gaskell SJ, Whetton AD. Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation. Mol Cell Proteomics 2002; 1:876-84. [PMID: 12488463 DOI: 10.1074/mcp.m200035-mcp200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematopoietic stem cell disease, the hallmark of which is the Bcr-Abl protein tyrosine kinase (PTK). Without intervention the disease progresses from a benign chronic phase to a rapidly fatal blast crisis. To identify the molecular mechanisms underlying disease progression we used two-dimensional gel electrophoresis on a model we have previously described using the expression of a conditional mutant of Bcr-Abl PTK in a multipotent stem cell line, FDCP-Mix. Long term exposure of FDCP-Mix cells to Bcr-Abl mimics disease progression in CML. Four major differences were observed as a consequence of long term exposure to the Bcr-Abl PTK compared with cells exposed short term. The proteins were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry-generated peptide mass fingerprint data and liquid chromatography-tandem mass spectrometry-generated sequence information. Leukotriene A4 hydrolase, an enzyme known to be deregulated in CML, was found to be up-regulated. Annexin VI, vacuolar ATP synthase catalytic subunit A, and mortalin were found to be down-regulated. Poly(A) PCR cDNA analysis showed there was no correlation between the protein expression changes and mRNA levels. Western blot analysis also indicated no change in the levels of mortalin or leukotriene A4 hydrolase, indicating that post-translational events may modify protein content of the specific spots. Leukotriene B4 levels (product of leukotriene A4 hydrolase) were, however, reduced in cells exposed long term to Bcr-Abl activity. This study demonstrates the potential of proteomic analysis to define novel effects of oncogenes.
Collapse
Affiliation(s)
- Duncan L Smith
- Leukaemia Research Fund Cellular Development Unit, Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester, United Kingdom
| | | | | | | | | |
Collapse
|
146
|
Abstract
Mortalin, also known as mthsp70/PBP74/GRP75, resides in multiple subcellular sites including mitochondria, ER, plasma membrane, cytoplasmic vesicles and cytosol. It is differentially distributed in normal and cancerous cells; the latter, when reverted back to normal phenotype, also show change in mortalin staining pattern similar to normal cells. Depending on its different subcellular niche and binding partner therein, mortalin is expected to perform multiple functions relevant to cell survival, control of proliferation and stress response.
Collapse
Affiliation(s)
- Sunil C Kaul
- Research Center for Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
147
|
Abstract
Mortalin/mthsp70/PBP74/Grp75 (called mortalin hereafter), a member of the Hsp70 family of chaperones, was shown to have different subcellular localizations in normal and immortal cells. It has been assigned to multiple subcellular sites and implicated in multiple functions ranging from stress response, intracellular trafficking, antigen processing, control of cell proliferation, differentiation, and tumorigenesis. The present article compiles and reviews information on the multiple sites and functions of mortalin in different organisms. The relevance of its differential distributions and functions in normal and immortal cell phenotypes is discussed.
Collapse
Affiliation(s)
- Renu Wadhwa
- Chugai Research Institute for Medical Sciences, 153-2 Nagai, Niihari, Ibaraki 300-4101, Japan
| | | | | |
Collapse
|
148
|
Yokoyama K, Fukumoto K, Murakami T, Harada SI, Hosono R, Wadhwa R, Mitsui Y, Ohkuma S. Extended longevity of Caenorhabditis elegans by knocking in extra copies of hsp70F, a homolog of mot-2 (mortalin)/mthsp70/Grp75. FEBS Lett 2002; 516:53-7. [PMID: 11959102 DOI: 10.1016/s0014-5793(02)02470-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Caenorhabditis elegans homolog of mortalin/mthsp70/Grp75 (called mot-2 hereafter) was isolated by screening of a nematode cDNA library with mouse mot-2 cDNA. The isolated clone matched to hsp70F of C. elegans. Analysis with two of the antibodies raised against hsp70F revealed that unlike mammalian mot-2, it is heat inducible. Transient induction of hsp70F by heat shock led to a slight (<13%) extension in the C. elegans life span. The transgenic worms that constitutively over-expressed hsp70F predominantly in muscle showed life span extension (approximately 43% for mean and approximately 45% for maximum life span) as compared to the wild-type and green fluorescent protein-transgenic worms. Life span extension of human cells was obtained by over-expression of mot-2 [Kaul et al. (2000) FEBS Lett. 474, 159-164]. Our results show, for the first time, that this member of the hsp70 family governs the longevity of worms and thus there are common pathways that determine mammalian and worm longevity.
Collapse
Affiliation(s)
- Ken Yokoyama
- Laboratory of Biochemistry, Department of Molecular and Cellular Biology, Faculty of Pharmaceutical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, 920-0934, Ishikawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Benvenuti S, Cramer R, Quinn CC, Bruce J, Zvelebil M, Corless S, Bond J, Yang A, Hockfield S, Burlingame AL, Waterfield MD, Jat PS. Differential proteome analysis of replicative senescence in rat embryo fibroblasts. Mol Cell Proteomics 2002; 1:280-92. [PMID: 12096110 DOI: 10.1074/mcp.m100028-mcp200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Normal somatic cells undergo a finite number of divisions and then cease dividing whereas cancer cells are able to proliferate indefinitely. To identify the underlying mechanisms that limit the mitotic potential, a two-dimensional differential proteome analysis of replicative senescence in serially passaged rat embryo fibroblasts was undertaken. Triplicate independent two-dimensional gels containing over 1200 spots each were run, curated, and analyzed. This revealed 49 spots whose expression was altered more than 2-fold. Of these, 42 spots yielded positive protein identification by mass spectrometry comprising a variety of cytoskeletal, heat shock, and metabolic proteins, as well as proteins involved in trafficking, differentiation, and protein synthesis, turnover, and modification. These included gelsolin, a candidate tumor suppressor for breast cancer, and alpha-glucosidase II, a member of the family of glucosidases that includes klotho; a defect in klotho expression in mice results in a syndrome that resembles human aging. Changes in expression of TUC-1, -2, -4, and -4 beta, members of the TUC family critical for neuronal differentiation, were also identified. Some of the identified changes were also shown to occur in two other models of senescence, premature senescence of REF52 cells and replicative senescence of mouse embryo fibroblasts. The majority of these candidate proteins were unrecognized previously in replicative senescence. They are now implicated in a new role.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Line
- Cells, Cultured
- Cellular Senescence
- Chromatography, High Pressure Liquid
- Cytoskeleton/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gelsolin/biosynthesis
- Glucuronidase
- Klotho Proteins
- Membrane Proteins/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Up-Regulation
- alpha-Glucosidases/biosynthesis
Collapse
Affiliation(s)
- Silvia Benvenuti
- Ludwig Institute for Cancer Research, Royal Free and University College School of Medicine, Courtauld Building, 91 Riding House Street, London W1W 7BS, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
OBJECTIVE To review the literature published in the past 6 years concerning the role of p53 tumor-suppressor protein in rheumatoid arthritis (RA). METHODS A MEDLINE search was performed to identify all publications that covered the role of p53 in RA. In addition, selected articles related to proto-oncogenes and matrix metalloproteinases were included in this review. RESULTS p53 protein is expressed in RA fibroblast-like synoviocytes (FLSs), and its overexpression is a characteristic feature of RA. The overexpression of p53 is probably induced by DNA strand breaks caused by the genotoxic environment of RA joints, in some cases because of p53 mutations. Independent studies from 3 groups indicated that p53 mutations can and do occur in RA synovial tissue samples derived from a subset of RA patients. Inactivation of p53 may contribute to the invasiveness of FLSs and to the high-level expression of cartilage degradation enzymes as well. Gene transfer or gene knockout studies using a collagen-II-induced RA animal model to examine the role of p53 in RA have been reported. Initial results are positive and indicate that gene transfer of p53 may be clinically useful for the management of RA. CONCLUSIONS p53 protein is expressed in RA FLSs, and its overexpression is a characteristic feature of RA. p53 mutations occur in the synovial tissues derived from a subset of RA patients. The clinical implications of p53 expression and the functional importance of somatic mutations in RA, however, are still unclear. Further research is needed to fully understand the implications of these findings and develop corresponding new therapeutic strategies.
Collapse
Affiliation(s)
- Yubo Sun
- Department of Medicine, University of Miami School of Medicine, FL, USA
| | | |
Collapse
|