101
|
Chronic increases in sphingosine kinase-1 activity induce a pro-inflammatory, pro-angiogenic phenotype in endothelial cells. Cell Mol Biol Lett 2009; 14:424-41. [PMID: 19238330 PMCID: PMC6275620 DOI: 10.2478/s11658-009-0009-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 02/12/2009] [Indexed: 11/21/2022] Open
Abstract
Sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which has potent pro-inflammatory and pro-angiogenic effects. We investigated the effects of raised SK1 levels on endothelial cell function and the possibility that this signaling pathway is activated in rheumatoid arthritis. Human umbilical vein endothelial cells with 3- to 5-fold SK1 (EC(SK)) overexpression were generated by adenoviral and retroviralmediated gene delivery. The activation state of these cells and their ability to undergo angiogenesis was determined. S1P was measured in synovial fluid from patients with RA and OA. EC(SK) showed an enhanced migratory capacity and a stimulated rate of capillary tube formation. The cells showed constitutive activation as evidenced by the induction of basal VCAM-1 expression, and further showed a more augmented VCAM-1 and E selectin response to TNF compared with empty vector control cells (EC(EV)). These changes had functional consequences in terms of enhanced neutrophil binding in the basal and TNFstimulated states in EC(SK). By contrast, over-expression of a dominant-negative SK inhibited the TNF-induced VCAM-1 and E selectin and inhibited PMN adhesion, confirming that the observed effects were specifically mediated by SK. The synovial fluid levels of S1P were significantly higher in patients with RA than in those with OA. Small chronic increases in SK1 activity in the endothelial cells enhance the ability of the cells to support inflammation and undergo angiogenesis, and sensitize the cells to inflammatory cytokines. The SK1 signaling pathway is activated in RA, suggesting that manipulation of SK1 activity in diseases of aberrant inflammation and angiogenesis may be beneficial.
Collapse
|
102
|
The effects of markedly raised intracellular sphingosine kinase-1 activity in endothelial cells. Cell Mol Biol Lett 2009; 14:411-23. [PMID: 19238331 PMCID: PMC6275643 DOI: 10.2478/s11658-009-0008-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 02/12/2009] [Indexed: 11/20/2022] Open
Abstract
The enzyme sphingosine kinase-1 (SK1) promotes the formation of sphingosine-1-phosphate (S1P), which is an important survival factor for endothelial cells (EC). Modest increases in intracellular SK1 activity in the EC are known to confer a survival advantage upon the cells. Here, we investigated the effects of more dramatic increases in intracellular SK1 in the EC. We found that these cells show reduced cell survival under conditions of stress, enhanced caspase-3 activity, cell cycle inhibition, and cell-cell junction disruption. We propose that alterations in the phosphorylation state of the enzyme may explain the differential effects on the phenotype with modest versus high levels of enforced expression of SK1. Our results suggest that SK1 activity is subject to control in the EC, and that this control may be lost in conditions involving vascular regression.
Collapse
|
103
|
Sattler K, Levkau B. Sphingosine-1-phosphate as a mediator of high-density lipoprotein effects in cardiovascular protection. Cardiovasc Res 2009; 82:201-11. [PMID: 19233866 DOI: 10.1093/cvr/cvp070] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) has gained special attention in the high-density lipoprotein (HDL) field because HDL is the most prominent plasma carrier of S1P and because the S1P content of HDL may be responsible for many of the pleiotropic functions of HDL. This revelation has come from the evidence that HDL employ S1P receptors and signalling pathways to implement several HDL-ascribed biological effects as diverse as endothelial nitric oxide production, vasodilation, survival, and cardioprotection. This review focuses on HDL effects that are completely or partially mediated by the S1P content of the HDL particle and differentiates them from genuine HDL effects that are S1P-independent. In addition, the functional properties of 'free', HDL-unbound S1P are sometimes different from or even contrary to those of HDL-associated S1P. The nature of the physical interactions between HDL and local and systemic S1P production will be discussed as well as their consequences for organ function. Finally, we will elucidate the potential benefits and limitations of S1P analogues as a new class of functional HDL mimetics for cardiovascular therapy.
Collapse
Affiliation(s)
- Katherine Sattler
- Institute of Pathophysiology, Zentrum für Innere Medizin, Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
104
|
Kolmakova A, Rajesh M, Zang D, Pili R, Chatterjee S. VEGF recruits lactosylceramide to induce endothelial cell adhesion molecule expression and angiogenesis in vitro and in vivo. Glycoconj J 2009; 26:547-58. [PMID: 19219548 DOI: 10.1007/s10719-008-9206-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/10/2008] [Accepted: 10/15/2008] [Indexed: 11/24/2022]
Abstract
Angiogenesis is largely driven by vascular endothelial growth factor (VEGF). However, the role of lipid second messengers such as lactosylceramide (LacCer) and LacCer synthase in angiogenesis is not well understood. We have determined the distribution of various LacCer synthase mRNA transcripts using sequential analysis of gene expression (SAGE). Endothelial cells from colon cancer tissues had a 4.5-fold increase in a LacCer synthase transcript (beta1,4GalT-V) as compared to normal colon tissue endothelial cells. Consequently, our focus turned to understanding the role of this enzyme in regulating VEGF-induced angiogenesis in vitro and in vivo. Herein, we show that in human endothelial cells, VEGF-induced angiogenesis is mitigated by dimethylsphingosine and suramin; inhibitors of sphingosine kinase 1(SphK-1) and sphingosine1-phosphate receptor 1(S1P (1)), respectively, and this were bypassed by LacCer but not by S1P. VEGF and basic fibroblast growth factor-induced angiogenesis was mitigated by PDMP; an inhibitor of glucosylceramide synthase and LacCer synthase in human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC). Likewise, GalT-V gene ablation using corresponding siRNA also mitigated VEGF-induced angiogenesis. In Matrigel plug angiogenesis assay in nude mice, angiogenesis was markedly inhibited by D-PDMP with concordantly diminished LacCer synthase activity. Mechanistic studies revealed that the use of LY294002, a PI3 kinase inhibitor, mitigated VEGF-induced expression of platelet-endothelial cell adhesion molecule (PECAM-1/CD31); the trans-endothelial migration of a monocyte cell line (U-937) and angiogenesis in HAEC cells. Since this enzyme is a target for VEGF action and LacCer serves as a lipid second messenger in inducing angiogenesis in vitro and in vivo, novel therapeutic approaches may be developed using our findings to mitigate colon cancer.
Collapse
Affiliation(s)
- Antonina Kolmakova
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD 212005, USA
| | | | | | | | | |
Collapse
|
105
|
Lee CH, Lee MS, Kim SJ, Je YT, Ryu SH, Lee T. Identification of novel synthetic peptide showing angiogenic activity in human endothelial cells. Peptides 2009; 30:409-18. [PMID: 18992291 DOI: 10.1016/j.peptides.2008.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 11/16/2022]
Abstract
A novel synthetic hexapeptide (SFKLRY-NH(2)) that displays angiogenic activity has been identified by positional scanning of a synthetic peptide combinatorial library (PS-SPCL). The peptide induced proliferation, migration, and capillary-like tube formation in primary cultured HUVECs, and augmented vessel sprouting ex vivo while attenuated by the treatment with pertussis toxin (PTX) or U73122 (PLC-inhibitor) suggesting the influence of PTX-sensitive G-proteins and PLC. In addition, SFKLRY-NH(2) up-regulated the expression of VEGF-A in HUVECs and the neutralizing antibody against VEGF suppressed SFKLRY-NH(2)-induced tube formation activity. Taken together, these results suggest that SFKLRY-NH(2) may induce blood vessel formation by PTX-sensitive G protein-coupled receptor-PLC-Ca(2+) signaling cascade leading into VEGF-A expression in HUVECs.
Collapse
Affiliation(s)
- Chang Hee Lee
- SIGMOL Institute of Molecular Medicine, SIGMOL Inc., 790-834 Pohang, South Korea
| | | | | | | | | | | |
Collapse
|
106
|
Enhanced interaction between focal adhesion and adherens junction proteins: involvement in sphingosine 1-phosphate-induced endothelial barrier enhancement. Microvasc Res 2009; 77:304-13. [PMID: 19323978 DOI: 10.1016/j.mvr.2008.12.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/18/2008] [Accepted: 12/19/2008] [Indexed: 11/21/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important vascular barrier regulatory agonist which enhances the junctional integrity of human lung endothelial cell monolayers. We have now demonstrated that S1P induced cortical actin ring formation and redistribution of focal adhesion kinase (FAK) and paxillin to the cell periphery suggesting the critical role of cell-cell adhesion in endothelial barrier enhancement. Co-immunoprecipitation studies revealed increased association of VE-cadherin with FAK and paxillin in S1P-challenged human pulmonary artery endothelial cell (HPAEC) monolayers. Furthermore, S1P-induced enhancement of VE-cadherin interaction with alpha-catenin and beta-catenin was associated with the increased formation of FAK-beta-catenin protein complexes. Depletion of beta-catenin (siRNA) resulted in loss of S1P-mediated VE-cadherin association with FAK and paxillin rearrangement. Furthermore, transendothelial electrical resistance (an index of barrier function) demonstrated that beta-catenin siRNA significantly attenuated S1P-induced barrier enhancement. These results demonstrate a mechanism of S1P-induced endothelial barrier enhancement via beta-catenin-linked adherens junction and focal adhesion interaction.
Collapse
|
107
|
Okajima F, Sato K, Kimura T. Anti-atherogenic actions of high-density lipoprotein through sphingosine 1-phosphate receptors and scavenger receptor class B type I. Endocr J 2009; 56:317-34. [PMID: 18753704 DOI: 10.1507/endocrj.k08e-228] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plasma high-density lipoprotein (HDL) is a potent anti-atherogenic factor, a critical role of which is thought to be reverse cholesterol transport through the lipoprotein-associated apolipoprotein A-I (apoA-I). HDL also carries a potent bioactive lipid mediator, sphingosine 1-phophate (S1P), which exerts diverse physiological and pathophysiological actions in a variety of biological systems, including the cardiovascular system. In addition, HDL-associated apoA-I is known to stimulate intracellular signaling pathways unrelated to transporter activity. Mounting evidence indicates that multiple antiatherogenic or anti-inflammatory actions of HDL independent of cholesterol metabolism are mediated by the lipoprotein-associated S1P through S1P receptors and by apoA-I through scavenger receptor class B type I.
Collapse
Affiliation(s)
- Fumikazu Okajima
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | | | | |
Collapse
|
108
|
Sphingosine-1-phosphate receptor 1 is a useful adjunct for distinguishing vascular neoplasms from morphological mimics. Virchows Arch 2008; 454:217-22. [PMID: 19005676 DOI: 10.1007/s00428-008-0696-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/22/2022]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to play an important role in the migration, proliferation, and survival of endothelial cells. S1P(1) of vascular and lymphatic endothelial cells can be detected by immunostaining of paraffin-embedded sections using a rabbit anti-S1P(1) antibody. In this study, to distinguish vascular tumors from histologic mimics using immunohistochemical means, we evaluated the expression of S1P(1) in a range of vascular tumors. S1P(1) expression was observed in eight of eight hemangiomas, four of four lymphangiomas, four of four epithelioid hemangioendotheliomas, three of three Kaposi's sarcomas, and 15 of 15 angiosarcomas with vasoformative, spindle, epithelioid, and undifferentiated features. Conventional analysis and use of a tissue microarray of soft tissue tumors revealed three of 21 liposarcomas to have weak cytoplasmic staining and one of five squamous cell carcinomas to have membranous staining in a very limited area among 115 nonvascular tumors including histological mimics of angiosarcoma such as undifferentiated carcinoma, melanoma, and epithelioid sarcoma. The sensitivity with regards to the angiosarcoma cases was equal to, or even exceeded in undifferentiated angiosarcoma, that of CD31. Based on this study, S1P(1) may be a useful adjunct to CD31 in cases where a vascular neoplasm requires a differential diagnosis.
Collapse
|
109
|
Bryan L, Paugh BS, Kapitonov D, Wilczynska KM, Alvarez SM, Singh SK, Milstien S, Spiegel S, Kordula T. Sphingosine-1-phosphate and interleukin-1 independently regulate plasminogen activator inhibitor-1 and urokinase-type plasminogen activator receptor expression in glioblastoma cells: implications for invasiveness. Mol Cancer Res 2008; 6:1469-77. [PMID: 18819934 DOI: 10.1158/1541-7786.mcr-08-0082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Glioblastoma multiforme is an invasive primary brain tumor, which evades the current standard treatments. The invasion of glioblastoma cells into healthy brain tissue partly depends on the proteolytic and nonproteolytic activities of the plasminogen activator system proteins, including the urokinase-type plasminogen activator (uPA), plasminogen activator inhibitor 1 (PAI-1), and a receptor for uPA (uPAR). Here we show that sphingosine-1-phosphate (S1P) and the inflammatory mediator interleukin-1 (IL-1) increase the mRNA and protein expression of PAI-1 and uPAR and enhance the invasion of U373 glioblastoma cells. Although IL-1 enhanced the expression of sphingosine kinase 1 (SphK1), the enzyme that produces S1P, down-regulation of SphK1 had no effect on the IL-1-induced uPAR or PAI-1 mRNA expression, suggesting that these actions of IL-1 are independent of S1P production. Indeed, the S1P-induced mRNA expression of uPAR and PAI-1 was blocked by the S1P(2) receptor antagonist JTE013 and by the down-regulation of S1P(2) using siRNA. Accordingly, the inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 and Rho-kinase, two downstream signaling cascades activated by S1P(2), blocked the activation of PAI-1 and uPAR mRNA expression by S1P. More importantly, the attachment of glioblastoma cells was inhibited by the addition of exogenous PAI-1 or siRNA to uPAR, whereas the invasion of glioblastoma cells induced by S1P or IL-1 correlated with their ability to enhance the expression of PAI-1 and uPAR. Collectively, these results indicate that S1P and IL-1 activate distinct pathways leading to the mRNA and protein expression of PAI-1 and uPAR, which are important for glioblastoma invasiveness.
Collapse
Affiliation(s)
- Lauren Bryan
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Estrada R, Wang L, Jala VR, Lee JF, Lin CY, Gray RD, Haribabu B, Lee MJ. Ligand-induced nuclear translocation of S1P(1) receptors mediates Cyr61 and CTGF transcription in endothelial cells. Histochem Cell Biol 2008; 131:239-49. [PMID: 18936953 DOI: 10.1007/s00418-008-0521-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2008] [Indexed: 01/26/2023]
Abstract
Sphingosine-1-phosphate (S1P) receptor subtype 1 (S1P(1)), a G-protein coupled receptor (GPCR), regulates many biological activities of endothelial cells (ECs). In this report, we show that S1P(1) receptors are present in the nuclei of ECs by using various biochemical and microscopic techniques such as cellular fractionation, immunogold labeling, and confocal microscopic analysis. Live cell imaging showed that plasma membrane S1P(1) receptors are rapidly internalized and subsequently translocated to nuclear compartment upon S1P stimulation. Utilizing membrane biotinylation technique further supports the notion that nuclear S1P(1) receptors were internalized from plasma membrane S1P(1) after ligand treatment. Moreover, nuclear S1P(1) is able to regulate the transcription of Cyr61 and CTGF, two growth factors functionally important in the regulation of vasculature. Collectively, these data suggest a novel S1P-S1P(1) signaling axis present in the nuclear compartment of endothelial cells, which may regulate biological responses of endothelium.
Collapse
Affiliation(s)
- Rosendo Estrada
- Department of Microbiology and Immunology, Gheens Center on Aging, University of Louisville Health Sciences Center, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Snider AJ, Kawamori T, Bradshaw SG, Orr KA, Gilkeson GS, Hannun YA, Obeid LM. A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J 2008; 23:143-52. [PMID: 18815359 DOI: 10.1096/fj.08-118109] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is emerging as an important mediator of immune and inflammatory responses. S1P formation is catalyzed by sphingosine kinase (SK), of which the SK1 isoenzyme is activated by tumor necrosis alpha (TNF-alpha). SK1 has been shown to be required for mediating TNF-alpha inflammatory responses in cells, including induction of cyclooxygenase 2 (COX-2). Because TNF-alpha and COX-2 are increased in patients with inflammatory bowel disease (IBD), we investigated the role of SK1 in a murine model of colitis. SK1(-/-) mice treated with dextran sulfate sodium (DSS) had significantly less blood loss, weight loss, colon shortening, colon histological damage, and splenomegaly than did wild-type (WT) mice. In addition, SK1(-/-) mice had no systemic inflammatory response. Moreover, WT but not SK1(-/-) mice treated with dextran sulfate sodium had significant increases in blood S1P levels, colon SK1 message and activity, and colon neutrophilic infiltrate. Unlike WT mice, SK1(-/-) mice failed to show colonic COX-2 induction despite an exaggerated TNF-alpha response; thus implicating for the first time SK1 in TNF-alpha-mediated COX-2 induction in vivo. Inhibition of SK1 may prove to be a valuable therapeutic target by inhibiting systemic and local inflammation in IBD.
Collapse
Affiliation(s)
- Ashley J Snider
- Department of Medicine, Medical University of South Carolina, 114 Doughty St., MSC 779, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Immunohistochemical detection of sphingosine-1-phosphate receptor 1 in vascular and lymphatic endothelial cells. J Mol Histol 2008; 39:527-33. [PMID: 18758970 DOI: 10.1007/s10735-008-9193-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P(1)), a receptor for sphingosine-1-phosphate, has been shown to play an important role in the migration, proliferation, and survival of several types of cell including endothelial cells. Given that S1P(1) signaling could serve as a therapeutic target, we evaluate the expression of S1P(1) in formalin-fixed and paraffin-embedded sections from human tissues, using automated immunostainers (Ventana). The specificity of the polyclonal rabbit anti-human S1P(1) antibody used in this study was defined by immunostaining of the vasculature in S1P ( 1 ) ( -/- ) and S1P ( 1 ) ( +/- ) mouse embryos. The antibody stained the newly formed vasculatures ex vivo in a serum-free matrix culture model using rat aortic rings. In human specimens, S1P(1) was strongly expressed on the cell surface membrane of endothelial cells of blood and lymphatic vessels in all tissues examined. The expression of S1P(1) was confirmed by the flow cytometric analysis and real time RT-PCR of an angiosarcoma cell line. This study indicates that S1P(1) can be used as an immunohistochemical marker for human tissue endothelial cells.
Collapse
|
113
|
Limaye V. The role of sphingosine kinase and sphingosine-1-phosphate in the regulation of endothelial cell biology. ACTA ACUST UNITED AC 2008; 15:101-12. [PMID: 18568950 DOI: 10.1080/10623320802125342] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Sphingolipids, in particular sphingosine kinase (SphK) and its product sphingosine-1-phosphate (S1P), are now recognized to play an important role in regulating many critical processes in endothelial cells. Activation of SphK1 is essential in mediating the endothelial proinflammatory effects of inflammatory cytokines such as tumor necrosis factor (TNF). In addition, S1P regulates the survival and proliferation of endothelial cells, as well as their ability to undergo cell migration, all essential components of angiogenesis. Thus the inflammatory and angiogenic potential of the endothelium is in part regulated by intracellular components including the activity of SphK1 and levels of S1P. Herein a review of the sphingomyelin pathway with a particular focus on its relevance to endothelial cell biology is presented.
Collapse
Affiliation(s)
- Vidya Limaye
- Rheumatology Department, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|
114
|
Ryan JJ, Spiegel S. The role of sphingosine-1-phosphate and its receptors in asthma. ACTA ACUST UNITED AC 2008; 21:89-96. [PMID: 18389100 DOI: 10.1358/dnp.2008.21.2.1188195] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that plays important roles in allergic responses, including asthma and anaphylaxis, the incidence of which is rising worldwide especially in industrialized urban populations. In this review, we will discuss how S1P is formed and released, and how it acts at many cellular levels, including mast cells, the airway epithelium, airway smooth muscle and many immune cells. Since the actions of S1P on all of these cells could exacerbate allergic responses, the proteins that synthesize, release and respond to S1P offer plausible targets for a new generation of antiinflammatory therapeutics.
Collapse
Affiliation(s)
- John J Ryan
- Department of Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | |
Collapse
|
115
|
Heller R, Chang Q, Ehrlich G, Hsieh SN, Schoenwaelder SM, Kuhlencordt PJ, Preissner KT, Hirsch E, Wetzker R. Overlapping and distinct roles for PI3Kbeta and gamma isoforms in S1P-induced migration of human and mouse endothelial cells. Cardiovasc Res 2008; 80:96-105. [PMID: 18558630 DOI: 10.1093/cvr/cvn159] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIMS Sphingosine-1-phosphate (S1P), a key regulator of vascular homeostasis and angiogenesis, promotes endothelial cell migration via stimulation of phosphoinositide 3-kinase (PI3K). The aim of this study was to identify the role of PI3Kbeta and gamma isoforms and their downstream effector pathways in mediating endothelial cell migration induced by S1P. METHODS AND RESULTS Experiments were performed in human umbilical vein endothelial cells (HUVEC) and murine lung endothelial cells (MLEC). A combination of specific inhibitors, RNA interference, and PI3Kgamma(-/-) mice were used to investigate the role of PI3Kbeta and gamma isoforms in endothelial cell migration. Both PI3Kbeta and gamma isoforms are required for full migration induced by S1P, with Rac1 being a major mediator downstream of both isoforms. In addition, PI3Kbeta but not PI3Kgamma mediates migration via Akt but independent of Rac1 and endothelial NO synthase (eNOS). Further, a S1P-mediated activation of extracellular signal-regulated kinases (Erk) 1/2 contributes to the chemotactic response independent of PI3Kbeta or PI3Kgamma. CONCLUSIONS Our data demonstrate that both PI3Kbeta and PI3Kgamma isoforms are required for S1P-induced endothelial cell migration through activation of Rac1. In addition, PI3Kbeta initiates an Akt-sensitive chemotactic response which is independent of Rac1 and eNOS. Thus, PI3Kbeta and PI3Kgamma have both overlapping and distinct roles in regulating endothelial cell migration, which may underlie S1P-triggered angiogenic differentiation.
Collapse
Affiliation(s)
- Regine Heller
- Center for Molecular Biomedicine, Institute of Molecular Cell Biology, Friedrich Schiller University, Jena, Am Leutragraben 3, 07743 Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Takabe K, Paugh SW, Milstien S, Spiegel S. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60:181-95. [PMID: 18552276 DOI: 10.1124/pr.107.07113] [Citation(s) in RCA: 556] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
117
|
Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/Gi/PLC/Ca2+ signaling pathways. Blood 2008; 112:1129-38. [PMID: 18541717 DOI: 10.1182/blood-2007-11-125203] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lymphatic system plays pivotal roles in mediating tissue fluid homeostasis and immunity, and excessive lymphatic vessel formation is implicated in many pathological conditions, which include inflammation and tumor metastasis. However, the molecular mechanisms that regulate lymphatic vessel formation remain poorly characterized. Sphingosine-1-phosphate (S1P) is a potent bioactive lipid that is implicated in a variety of biologic processes such as inflammatory responses and angiogenesis. Here, we first report that S1P acts as a lymphangiogenic mediator. S1P induced migration, capillary-like tube formation, and intracellular Ca(2+) mobilization, but not proliferation, in human lymphatic endothelial cells (HLECs) in vitro. Moreover, a Matrigel plug assay demonstrated that S1P promoted the outgrowth of new lymphatic vessels in vivo. HLECs expressed S1P1 and S1P3, and both RNA interference-mediated down-regulation of S1P1 and an S1P1 antagonist significantly blocked S1P-mediated lymphangiogenesis. Furthermore, pertussis toxin, U73122, and BAPTA-AM efficiently blocked S1P-induced in vitro lymphangiogenesis and intracellular Ca(2+) mobilization of HLECs, indicating that S1P promotes lymphangiogenesis by stimulating S1P1/G(i)/phospholipase C/Ca(2+) signaling pathways. Our results suggest that S1P is the first lymphangiogenic bioactive lipid to be identified, and that S1P and its receptors might serve as new therapeutic targets against inflammatory diseases and lymphatic metastasis in tumors.
Collapse
|
118
|
Kohno T, Igarashi Y. Attenuation of cell motility observed with high doses of sphingosine 1-phosphate or phosphorylated FTY720 involves RGS2 through its interactions with the receptor S1P. Genes Cells 2008; 13:747-57. [PMID: 18513330 DOI: 10.1111/j.1365-2443.2008.01202.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sphingosine 1-phosphate (S1P) stimulation enhances cell motility via the G-protein coupled S1P receptor S1P1. This ligand-induced, receptor-mediated cell motility follows a typical bell-shaped dose-response curve, that is, stimulation with low concentrations of S1P enhances cell motility, whereas excess ligand stimulation does not enhance it. So far, the attenuation of the response at higher ligand concentrations has not been explained. We report here that S1P1 interacts with the regulator of G protein signaling (RGS)-2 protein, which is a GTPase-activating protein (GAP) for heterotrimeric G proteins, in a concentration dependent manner. The RGS2-S1P1 complex dissociated at higher ligand concentrations, yet it was unaffected at low concentrations, suggesting that the dissociated RGS2 is involved in the concurrent decrease of cell motility. In RGS2 knockdown cells, the decrease of cell motility induced by high ligand concentrations was rescued. S1P1 internalization was not implicated in the attenuation of the response. Similar results were observed upon stimulation with the phosphorylated form of FTY720 (FTYP), which is an S1P1 agonist. In conclusion, the suppressed response in cell motility induced by excess S1P or FTYP via S1P1 is regulated by RGS2 functioning through a mechanism that is independent of S1P1 internalization.
Collapse
Affiliation(s)
- Takayuki Kohno
- Laboratory of Biomembrane and Biofunctional Chemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | | |
Collapse
|
119
|
Sphingosine kinases and sphingosine-1-phosphate are critical for transforming growth factor beta-induced extracellular signal-regulated kinase 1 and 2 activation and promotion of migration and invasion of esophageal cancer cells. Mol Cell Biol 2008; 28:4142-51. [PMID: 18426913 DOI: 10.1128/mcb.01465-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transforming growth factor beta (TGFbeta) plays a dual role in oncogenesis, acting as both a tumor suppressor and a tumor promoter. These disparate processes of suppression and promotion are mediated primarily by Smad and non-Smad signaling, respectively. A central issue in understanding the role of TGFbeta in the progression of epithelial cancers is the elucidation of the mechanisms underlying activation of non-Smad signaling cascades. Because the potent lipid mediator sphingosine-1-phosphate (S1P) has been shown to transactivate the TGFbeta receptor and activate Smad3, we examined its role in TGFbeta activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and promotion of migration and invasion of esophageal cancer cells. Both S1P and TGFbeta activate ERK1/2, but only TGFbeta activates Smad3. Both ligands promoted ERK1/2-dependent migration and invasion. Furthermore, TGFbeta rapidly increased S1P, which was required for TGFbeta-induced ERK1/2 activation, as well as migration and invasion, since downregulation of sphingosine kinases, the enzymes that produce S1P, inhibited these responses. Finally, our data demonstrate that TGFbeta activation of ERK1/2, as well as induction of migration and invasion, is mediated at least in part by ligation of the S1P receptor, S1PR2. Thus, these studies provide the first evidence that TGFbeta activation of sphingosine kinases and formation of S1P contribute to non-Smad signaling and could be important for progression of esophageal cancer.
Collapse
|
120
|
Huang YT, Chen SU, Chou CH, Lee H. Sphingosine 1-phosphate induces platelet/endothelial cell adhesion molecule-1 phosphorylation in human endothelial cells through cSrc and Fyn. Cell Signal 2008; 20:1521-7. [PMID: 18502612 DOI: 10.1016/j.cellsig.2008.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 03/21/2008] [Accepted: 04/07/2008] [Indexed: 01/12/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a multifunctional phospholipid which acts through a specific family of G protein-coupled receptors. Platelet/endothelial cell adhesion molecule-1 (PECAM-1) form trans-homophilic binding at lateral cell border. Upon stimulation, its cytoplasmic tyrosine residues could be phosphorylated and interact with various downstream signaling molecules. In this study, we demonstrated that S1P induced PECAM-1 tyrosine phosphorylation in human umbilical cord vein cells (HUVECs). By pharmacological inhibitors, it was suggested that G(i) and Src family kinases were involved in PECAM-1 phosphorylation. Moreover, cSrc and Fyn siRNA significantly suppressed S1P-induced PECAM-1 phosphorylation. These results suggested that S1P-induced PECAM-1 phosphorylation through G(i) and subsequent cSrc and Fyn. Our findings provide further understanding of S1P and PECAM-1 signaling as well as their functions in endothelial cells.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Institute of Zoology, National Taiwan University, No 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC
| | | | | | | |
Collapse
|
121
|
Sefcik LS, Petrie Aronin CE, Wieghaus KA, Botchwey EA. Sustained release of sphingosine 1-phosphate for therapeutic arteriogenesis and bone tissue engineering. Biomaterials 2008; 29:2869-77. [PMID: 18405965 DOI: 10.1016/j.biomaterials.2008.03.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive phospholipid that impacts migration, proliferation, and survival in diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. In this study, we investigated the effects of sustained release of S1P on microvascular remodeling and associated bone defect healing in vivo. The murine dorsal skinfold window chamber model was used to evaluate the structural remodeling response of the microvasculature. Our results demonstrated that 1:400 (w/w) loading and subsequent sustained release of S1P from poly(lactic-co-glycolic acid) (PLAGA) significantly enhanced lumenal diameter expansion of arterioles and venules after 3 and 7 days. Incorporation of 5-bromo-2-deoxyuridine (BrdU) at day 7 revealed significant increases in mural cell proliferation in response to S1P delivery. Additionally, three-dimensional (3D) scaffolds loaded with S1P (1:400) were implanted into critical-size rat calvarial defects, and healing of bony defects was assessed by radiograph X-ray, microcomputed tomography (muCT), and histology. Sustained release of S1P significantly increased the formation of new bone after 2 and 6 weeks of healing and histological results suggest increased numbers of blood vessels in the defect site. Taken together, these experiments support the use of S1P delivery for promoting microvessel diameter expansion and improving the healing outcomes of tissue-engineered therapies.
Collapse
Affiliation(s)
- Lauren S Sefcik
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | | | | | | |
Collapse
|
122
|
Hashimoto M, Wang X, Mao L, Kobayashi T, Kawasaki S, Mori N, Toews ML, Kim HJ, Cerutis DR, Liu X, Rennard SI. Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the S1P2 receptor. Am J Respir Cell Mol Biol 2008; 39:356-63. [PMID: 18367729 DOI: 10.1165/rcmb.2006-0427oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Migration of fibroblasts plays an essential role in tissue repair after injury. Sphingosine 1-phosphate (S1P) is a multifunctional mediator released by many cells that can be released in inflammation and after injury. This study evaluated the effect of S1P on fibroblast chemotaxis toward fibronectin. S1P alone did not affect fibroblast migration, but S1P enhanced fibronectin-directed chemotaxis in a concentration-dependent manner. The effect of S1P was not mimicked by dihydro (dh) S1P or the S1P(1) receptor agonist SEW2871. S1P augmentation of fibroblast chemotaxis, however, was completely blocked by JTE-013, an S1P(2) antagonist, but not by suramin, an S1P(3) antagonist. Suppression of the S1P(2) receptor by small interfering (si)RNA also completely blocked S1P augmentation of fibroblast chemotaxis to fibronectin. S1P stimulated Rho activation and focal adhesion kinase (FAK) phosphorylation, and these were also significantly inhibited by the S1P(2) receptor antagonist (JTE-013) or by S1P(2) siRNA. Further, the potentiation of S1P signaling was blocked by the Rho-kinase inhibitor Y-27632 in a concentration-dependent manner. Inhibition of FAK with siRNA reduced basal chemotaxis toward fibronectin slightly but significantly, and almost completely blocked S1P augmented chemotaxis. These results suggest that S1P-augmented fibroblast chemotaxis toward fibronectin depends on the S1P(2) receptor and requires Rho and Rho-kinase, and FAK phosphorylation. By augmenting fibroblast recruitment, S1P has the potential to modulate tissue repair after injury. The pathways by which S1P mediates this effect, therefore, represent a potential therapeutic target to affect tissue repair and remodeling.
Collapse
Affiliation(s)
- Mitsu Hashimoto
- Department of Pathology, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Gude DR, Alvarez SE, Paugh SW, Mitra P, Yu J, Griffiths R, Barbour SE, Milstien S, Spiegel S. Apoptosis induces expression of sphingosine kinase 1 to release sphingosine-1-phosphate as a "come-and-get-me" signal. FASEB J 2008; 22:2629-38. [PMID: 18362204 DOI: 10.1096/fj.08-107169] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates myriad important cellular processes, including growth, survival, cytoskeleton rearrangements, motility, and immunity. Here we report that treatment of Jurkat and U937 leukemia cells with the pan-sphingosine kinase (SphK) inhibitor N,N-dimethylsphingosine to block S1P formation surprisingly caused a large increase in expression of SphK1 concomitant with induction of apoptosis. Another SphK inhibitor, D,L-threo-dihydrosphingosine, also induced apoptosis and produced dramatic increases in SphK1 expression. However, up-regulation of SphK1 was not a specific effect of its inhibition but rather was a consequence of apoptotic stress. The chemotherapeutic drug doxorubicin, a potent inducer of apoptosis in these cells, also stimulated SphK1 expression and activity and promoted S1P secretion. The caspase inhibitor ZVAD reduced not only doxorubicin-induced lethality but also the increased expression of SphK1 and secretion of S1P. Apoptotic cells secrete chemotactic factors to attract phagocytic cells, and we found that S1P potently stimulated chemotaxis of monocytic THP-1 and U937 cells and primary monocytes and macrophages. Collectively, our data suggest that apoptotic cells may up-regulate SphK1 to produce and secrete S1P that serves as a "come-and-get-me" signal for scavenger cells to engulf them in order to prevent necrosis.
Collapse
Affiliation(s)
- David R Gude
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, VCU School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Sphingosine-1-phosphate receptors: biology and therapeutic potential in kidney disease. Kidney Int 2008; 73:1220-30. [PMID: 18322542 DOI: 10.1038/ki.2008.34] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The major sphingolipid metabolite, sphingosine-1-phosphate (S1P), has important biological functions. S1P is the ligand for a family of five G-protein-coupled receptors with distinct signaling pathways that regulate angiogenesis, vascular maturation, immunity, chemotaxis, and other important biological pathways. Recently, clinical trials have targeted S1P receptors (S1PRs) for autoimmune diseases and transplantation and have generated considerable interest in developing additional, more selective compounds. This review summarizes current knowledge on the biology of S1P and S1PRs that forms the basis for future drug development and the treatment of kidney disease.
Collapse
|
125
|
Liu D, Iruthayanathan M, Homan LL, Wang Y, Yang L, Wang Y, Dillon JS. Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 2008; 149:889-98. [PMID: 18079198 PMCID: PMC2275364 DOI: 10.1210/en.2007-1125] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dehydroepiandrosterone (DHEA) activates a plasma membrane receptor on vascular endothelial cells and phosphorylates ERK 1/2. We hypothesize that ERK1/2-dependent vascular endothelial proliferation underlies part of the beneficial vascular effect of DHEA. DHEA (0.1-10 nm) activated ERK1/2 in bovine aortic endothelial cells (BAECs) by 15 min, causing nuclear translocation of phosphorylated ERK1/2 and phosphorylation of nuclear p90 ribosomal S6 kinase. ERK1/2 phosphorylation was dependent on plasma membrane-initiated activation of Gi/o proteins and the upstream MAPK kinase because the effect was seen with albumin-conjugated DHEA and was blocked by pertussis toxin or PD098059. A 15-min incubation of BAECs with 1 nm DHEA (or albumin-conjugated DHEA) increased endothelial proliferation by 30% at 24 h. This effect was not altered by inhibition of estrogen or androgen receptors or nitric oxide production. There was a similar effect of DHEA to increase endothelial migration. DHEA also increased the formation of primitive capillary tubes of BAECs in vitro in solubilized basement membrane. These rapid DHEA-induced effects were reversed by the inhibition of either Gi/o-proteins or ERK1/2. Additionally, DHEA enhanced angiogenesis in vivo in a chick embryo chorioallantoic membrane assay. These findings indicate that exposure to DHEA, at concentrations found in human blood, causes vascular endothelial proliferation by a plasma membrane-initiated activity that is Gi/o and ERK1/2 dependent. These data, along with previous findings, define an important vascular endothelial cell signaling pathway that is activated by DHEA and suggest that this steroid may play a role in vascular function.
Collapse
Affiliation(s)
- Dongmin Liu
- Division of Endocrinology, Veterans Affairs Medical Center, University of Iowa,Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
126
|
Stradner MH, Hermann J, Angerer H, Setznagl D, Sunk IG, Windhager R, Graninger WB. Spingosine-1-phosphate stimulates proliferation and counteracts interleukin-1 induced nitric oxide formation in articular chondrocytes. Osteoarthritis Cartilage 2008; 16:305-11. [PMID: 17703957 DOI: 10.1016/j.joca.2007.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 06/25/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sphingosine-1-phosphate (S1P) is a messenger molecule, with important functions in inflammation and wound healing. The present study was performed to elucidate a possible role of S1P signaling in articular chondrocytes. METHODS Human and bovine primary chondrocytes were cultured in monolayer. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to detect S1P receptor mRNA. Proliferation of S1P stimulated chondrocytes was measured by 3H-thymidine uptake. Supernatants of cultured bovine chondrocytes stimulated with S1P alone or in combination with interleukin-1beta (IL-1beta) were tested for nitric oxide (NO) formation and expression of inducible nitric oxide synthase (iNOS). Matrixmetalloprotease-13 (MMP-13) and aggrecanase-1 (ADAMTS-4) were evaluated using real-time PCR. Glycosaminoglycan (GAG) loss from bovine cartilage explants was evaluated using the dimethylene blue method. RESULTS S1P1, S1P2 and S1P3 but not S1P4 and S1P5 receptor mRNA were detected in human and bovine chondrocytes. S1P dose dependently induced proliferation in bovine and human chondrocytes. S1P significantly reduced NO formation and iNOS mRNA and protein expression, both in un-stimulated and IL-1beta stimulated bovine chondrocytes. Furthermore, S1P dose dependently inhibited IL-1beta induced expression of ADAMTS-4 and MMP-13 and diminished IL-1beta mediated GAG depletion from cartilage explants. CONCLUSION These results suggest that S1P provides an anti-catabolic signal in articular chondrocytes.
Collapse
Affiliation(s)
- M H Stradner
- Department of Internal Medicine, Division of Rheumatology, Medical University of Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
127
|
Rho GTPases mediated integrin alpha v beta 3 activation in sphingosine-1-phosphate stimulated chemotaxis of endothelial cells. Histochem Cell Biol 2008; 129:579-88. [PMID: 18247041 DOI: 10.1007/s00418-008-0389-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2008] [Indexed: 01/22/2023]
Abstract
Integrins, a family of transmembrane heterodimeric polypeptides, mediate various biological responses including cell adhesion and migration. In this report, we show that sphingosine-1-phosphate (S1P) activates integrin alpha v beta 3 in endothelial cells (ECs) via the sphingosine-1-phosphate receptor subtype 1 (S1P1)-mediated signaling pathway. S1P treatment results in the activation of integrin alpha v beta 3 in the lamellipodia region of ECs, suggesting that integrin alpha v beta 3 plays a critical role in the S1P-stimulated chemotactic response of ECs. Indeed, S1P treatment induces the association of focal adhesion kinase (FAK) and cytoskeletal proteins with integrin alpha v beta 3, the ligation of alpha v and beta 3 subunits, as well as enhances endothelial migration on vitronectin-coated substrata. Knockdown endothelial S1P1 receptor, treatments with pertussis toxin or dominant-negative-Rho family GTPases abrogates the S1P-induced integrin alpha v beta 3 activation in ECs. Consequently, these treatments markedly inhibit the S1P-induced endothelial migratory response on vitronectin-coated substrata. Collectively, these data indicate that the S1P-mediated signaling via the S1P1/Gi/Rho GTPases pathway activates integrin alpha v beta 3, which is indispensable for S1P-stimulated chemotactic response of ECs.
Collapse
|
128
|
|
129
|
Singh IN, Hall ED. Multifaceted roles of sphingosine-1-phosphate: How does this bioactive sphingolipid fit with acute neurological injury? J Neurosci Res 2008; 86:1419-33. [DOI: 10.1002/jnr.21586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
130
|
Lee SY, Lee MS, Lee HY, Kim SD, Shim JW, Jo SH, Lee JW, Kim JY, Choi YW, Baek SH, Ryu SH, Bae YS. F2L, a peptide derived from heme-binding protein, inhibits LL-37-induced cell proliferation and tube formation in human umbilical vein endothelial cells. FEBS Lett 2007; 582:273-8. [PMID: 18083128 DOI: 10.1016/j.febslet.2007.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/28/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
F2L, a peptide derived from heme-binding protein, was originally identified as an endogenous ligand for formyl peptide receptor-like (FPRL)2. Previously, we reported that F2L inhibits FPR and FPRL1-mediated signaling in neutrophils. Since endothelial cells express functional FPRL1, we examined the effect of F2L on LL-37 (an FPRL1 agonist)-induced signaling in human umbilical vein endothelial cells (HUVECs). F2L stimulated the chemotactic migration in HUVECs. However, F2L inhibited FPRL1 activity, resulting in the inhibition of cell proliferation and tube formation induced by LL-37 in HUVECs. We suggest that F2L will potentially be useful in the study of FPRL1 signaling and the development of drugs to treat diseases involving the FPRL1 in the vascular system.
Collapse
Affiliation(s)
- Sun Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Nofer JR. High-density lipoprotein, sphingosine 1-phosphate, and atherosclerosis. J Clin Lipidol 2007; 2:4-11. [PMID: 21291709 DOI: 10.1016/j.jacl.2007.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 11/26/2007] [Indexed: 11/27/2022]
Abstract
Numerous epidemiologic and interventional studies have revealed an inverse relationship between plasma concentrations of high-density lipoprotein (HDL) and coronary risk. There are several well-documented HDL functions, which may account for the antiatherogenic effects of this lipoprotein. Recent studies document that HDL serves as a carrier for the bioactive lysosphingolipid sphingosine 1-phosphate (S1P), which determines its functional properties. Generally available databases (eg, PubMed) were used, as well as our own results. An increasing body of evidence indicates that S1P is a mediator of many of the atheroprotective effects of HDL, including the ability to promote vasodilation and angiogenesis and protection against ischemia/reperfusion injury. These latter effects are believed to involve S1P-mediated retardation or suppression of inflammatory processes, such as endothelial expression of adhesion molecules, production of proinflammatory chemokines and cytokines, generation of reactive oxygen species, and cardiomyocyte apoptosis after myocardial infarction. This review article summarizes the evidence that S1P is a component of HDL contributing to the antiatherogenic and cardioprotective potential attributed to this lipoprotein.
Collapse
Affiliation(s)
- Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, and Leibniz Institute for Arteriosclerosis Research, University of Münster, Albert Schweizer Str. 33, D-48129 Münster, Germany
| |
Collapse
|
132
|
Anelli V, Gault CR, Cheng AB, Obeid LM. Sphingosine kinase 1 is up-regulated during hypoxia in U87MG glioma cells. Role of hypoxia-inducible factors 1 and 2. J Biol Chem 2007; 283:3365-3375. [PMID: 18055454 DOI: 10.1074/jbc.m708241200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingosine 1-phosphate (S1P), a sphingolipid metabolite that plays an important role in the regulation of cell survival, growth, migration, and angiogenesis, acts both inside the cells and as an extracellular mediator through binding to five G protein-coupled receptors (S1P(1-5)). Sphingosine kinase 1 (SK1), the enzyme responsible for S1P production, is overexpressed in many solid tumors, including gliomas. One common feature of these tumors is the presence of "hypoxic regions," characterized by cells expressing high levels of hypoxia-inducible factors HIF-1alpha and HIF-2alpha, two transcription regulators that modulate the levels of proteins with crucial roles in tumor progression. So far, nothing is known about the role and the regulation of SK1 during tumor-induced hypoxia or about SK1 regulation and HIFs. Here we investigated the role of HIF-1alpha and HIF-2alpha in the regulation of SK1 during hypoxic stress in glioma-derived U87MG cells. We report that hypoxia increases SK1 mRNA levels, protein expression, and enzyme activity, followed by intracellular S1P production and S1P release. Interestingly, knockdown of HIF-2alpha by small interfering RNA abolished the induction of SK1 and the production of extracellular S1P after CoCl(2) treatment, whereas HIF-1alpha small interfering RNA resulted in an increase of HIF-2alpha and of SK1 protein levels. Moreover, using chromatin immunoprecipitation analysis, we demonstrate that HIF-2alpha binds the SK1 promoter. Functionally, we demonstrate that conditioned medium from hypoxia-treated tumor cells results in neoangiogenesis in human umbilical vein endothelial cells in a S1P receptor-dependent manner. These studies provide evidence of a link between S1P production as a potent angiogenic agent and the hypoxic phenotype observed in many tumors.
Collapse
Affiliation(s)
- Viviana Anelli
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403; Department of Medical Chemistry, Biochemistry, and Biotechnology, University of Milan, Segrate, Milan 20090, Italy
| | - Christopher R Gault
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Amy B Cheng
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403
| | - Lina M Obeid
- Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29403; Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401.
| |
Collapse
|
133
|
Pham TCT, Fells JI, Osborne DA, North EJ, Naor MM, Parrill AL. Molecular recognition in the sphingosine 1-phosphate receptor family. J Mol Graph Model 2007; 26:1189-201. [PMID: 18165127 DOI: 10.1016/j.jmgm.2007.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 11/01/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
Abstract
Computational modeling and its application in ligand screening and ligand receptor interaction studies play important roles in structure-based drug design. A series of sphingosine 1-phosphate (S1P) receptor ligands with varying potencies and receptor selectivities were docked into homology models of the S1P(1-5) receptors. These studies provided molecular insights into pharmacological trends both across the receptor family as well as at single receptors. This study identifies ligand recognition features that generalize across the S1P receptor family, features unique to the S1P(4) and S1P(5) receptors, and suggests significant structural differences of the S1P(2) receptor. Docking results reveal a previously unknown sulfur-aromatic interaction between the S1P(4) C5.44 sulfur atom and the phenyl ring of benzimidazole as well as pi-pi interaction between F3.33 of S1P(1,4,5) and aromatic ligands. The findings not only confirm the importance of a cation-pi interaction between W4.64 and the ammonium of S1P at S1P(4) but also predict the same interaction at S1P(5). S1P receptor models are validated for pharmacophore development including database mining and new ligand discovery and serve as tools for ligand optimization to improve potency and selectivity.
Collapse
Affiliation(s)
- Truc-Chi T Pham
- Department of Chemistry and Computational Research on Materials Institute, The University of Memphis, Memphis, TN 38152, USA
| | | | | | | | | | | |
Collapse
|
134
|
Inoue S, Nakazawa T, Cho A, Dastvan F, Davastan F, Shilling D, Daum G, Reidy M. Regulation of arterial lesions in mice depends on differential smooth muscle cell migration: a role for sphingosine-1-phosphate receptors. J Vasc Surg 2007; 46:756-63. [PMID: 17903653 DOI: 10.1016/j.jvs.2007.05.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/20/2007] [Indexed: 10/22/2022]
Abstract
The response of mice arteries to injury varies significantly between strains. FVB mice develop large neointimas after injury, whereas very small lesions form in C57BL/6 mice. After injury, platelet interaction with the denuded artery and early smooth muscle (SMC) replication are identical in both strains; however, the migration of SMCs differs significantly. FVB cells readily move into the developing neointima, whereas only the occasional C57BL/6 cells migrate. Injured arteries showed no difference in matrix metalloproteinases (MMP-2 and MMP-9) and plasminogen activator activities. In vitro, sphingosine-1-phosphate (S1P) in combination with platelet-derived growth factor (PDGF) stimulates migration of FVB cells but inhibits migration of C57BL/6 SMCs. Both SMCs migrate equally well to PDGF alone. One explanation is that the SMCs express different S1P receptors. Real-time polymerase chain reaction shows that FVB cells express higher levels of S1P receptor-1 (S1P(1)) compared with C57BL/6 cells, which express higher levels of S1P receptor-2 (S1P(2)). In addition, the migration of C57BL/6 cells can be increased by inhibiting S1P(2), whereas inhibiting S1P(1) expression slows the migration of FVB cells. Taken together these studies suggest that expression of S1P receptors vary within inbred mouse strains and that S1P is critical for SMC migration and lesion formation after injury.
Collapse
MESH Headings
- Animals
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Carotid Artery Injuries/physiopathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- In Vitro Techniques
- Male
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Plasminogen Activators/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/metabolism
Collapse
Affiliation(s)
- Shinya Inoue
- Department of Pathology, University of Washington, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T. Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 2007; 362:928-34. [PMID: 17765871 DOI: 10.1016/j.bbrc.2007.08.078] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 08/15/2007] [Indexed: 11/17/2022]
Abstract
GPR55 is an orphan G protein-coupled receptor. In this study, we explored a possible endogenous ligand for GPR55 using HEK293 cells which expressed GPR55. We found that lysophosphatidylinositol induced rapid phosphorylation of the extracellular signal-regulated kinase in transiently or stably GPR55-expressing cells. On the other hand, lysophosphatidylinositol did not induce phosphorylation of the extracellular signal-regulated kinase in vector-transfected cells. Lysophosphatidic acid and sphingosine 1-phosphate also induced phosphorylation of the extracellular signal-regulated kinase in GPR55-expressing cells. However, these lipid phosphoric acids elicited similar responses in vector-transfected cells. Various types of other lysolipids as well as the cannabinoid receptor ligands did not induce phosphorylation of the extracellular signal-regulated kinase. We also found that lysophosphatidylinositol elicited a rapid Ca2+ transient in GPR55-expressing cells. Lysophosphatidylinositol also stimulated the binding of GTPgammaS to the GPR55-expressing cell membranes. These results strongly suggest that GPR55 is a specific and functional receptor for lysophosphatidylinositol.
Collapse
Affiliation(s)
- Saori Oka
- Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa 229-0195, Japan
| | | | | | | | | |
Collapse
|
136
|
Wacker BK, Alford SK, Scott EA, Das Thakur M, Longmore GD, Elbert DL. Endothelial cell migration on RGD-peptide-containing PEG hydrogels in the presence of sphingosine 1-phosphate. Biophys J 2007; 94:273-85. [PMID: 17827231 PMCID: PMC2134859 DOI: 10.1529/biophysj.107.109074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a potent chemokinetic agent for endothelial cells that is released by activated platelets. We previously developed Arg-Gly-Asp (RGD)-containing polyethylene glycol biomaterials for the controlled delivery of S1P to promote endothelialization. Here, we studied the effects of cell adhesion strength on S1P-stimulated endothelial cell migration in the presence of arterial levels of fluid shear stress, since an upward shift in optimal cell adhesion strengths may be beneficial for promoting long-term cell adhesion to materials. Two RGD peptides with different integrin-binding specificities were added to the polyethylene glycol hydrogels. A linear RGD bound primarily to beta(3) integrins, whereas a cyclic RGD bound through both beta(1) and beta(3) integrins. We observed increased focal adhesion formation and better long-term adhesion in flow with endothelial cells on linear RGD peptide, versus cyclic RGD, even though initial adhesion strengths were higher for cells on cyclic RGD. Addition of 100 nM S1P increased cell speed and random motility coefficients on both RGD peptides, with the largest increases found on cyclic RGD. For both peptides, much of the increase in cell migration speed was found for smaller cells (<1522 microm(2) projected area), although the large increases on cyclic RGD were also due to medium-sized cells (2288-3519 microm(2)). Overall, a compromise between high cell migration rates and long-term adhesion will be important in the design of materials that endothelialize after implantation.
Collapse
Affiliation(s)
- Bradley K Wacker
- Department of Biomedical Engineering and Center for Materials Innovation, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
137
|
Tani M, Kawakami A, Nagai M, Shimokado K, Kondo K, Yoshida M. Sphingosine 1-phosphate (S1P) inhibits monocyte-endothelial cell interaction by regulating of RhoA activity. FEBS Lett 2007; 581:4621-6. [PMID: 17825823 DOI: 10.1016/j.febslet.2007.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 08/03/2007] [Accepted: 08/03/2007] [Indexed: 11/28/2022]
Abstract
Recent studies suggest that sphingosine 1-phosphate (S1P) protects against atherosclerosis. We assessed the effects of S1P on monocyte-endothelial interaction in the presence of inflammatory mediators. Pretreatment of THP-1 cells with S1P abolished Phorbol 12 myristate 13-acetate (PMA)-induced THP-1 cell adhesion to human umbilical vein endothelial cells (HUVECs). S1P inhibited PMA-induced activation of RhoA, but not PKCs. S1P activated p190Rho GTPase activation protein (GAP) only in the presence of PMA, suggesting an inhibitory effect of S1P and PMA to suppress RhoA. In conclusion, S1P inhibited monocyte-endothelial interactions by inhibiting RhoA activity which may explain its anti-atherogenic effects.
Collapse
Affiliation(s)
- Mariko Tani
- Bioethics Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bldg. D-809, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | |
Collapse
|
138
|
Omori K, Shikata Y, Sarai K, Watanabe N, Wada J, Goda N, Kataoka N, Shikata K, Makino H. Edaravone mimics sphingosine-1-phosphate-induced endothelial barrier enhancement in human microvascular endothelial cells. Am J Physiol Cell Physiol 2007; 293:C1523-31. [PMID: 17686998 DOI: 10.1152/ajpcell.00524.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Edaravone is a potent scavenger of hydroxyl radicals and is quite successful in patients with acute cerebral ischemia, and several organ-protective effects have been reported. Treatment of human microvascular endothelial cells with edaravone (1.5 microM) resulted in the enhancement of transmonolayer electrical resistance coincident with cortical actin enhancement and redistribution of focal adhesion proteins and adherens junction proteins to the cell periphery. Edaravone also induced small GTPase Rac activation and focal adhesion kinase (FAK; Tyr(576)) phosphorylation associated with sphingosine-1-phosphate receptor type 1 (S1P(1)) transactivation. S1P(1) protein depletion by the short interfering RNA technique completely abolished edaravone-induced FAK (Tyr(576)) phosphorylation and Rac activation. This is the first report of edaravone-induced endothelial barrier enhancement coincident with focal adhesion remodeling and cytoskeletal rearrangement associated with Rac activation via S1P(1) transactivation. Considering the well-established endothelial barrier-protective effect of S1P, endothelial barrier enhancement as a consequence of S1P(1) transactivation may at least partly be the potent mechanisms for the organ-protective effect of edaravone and is suggestive of edaravone as a therapeutic agent against systemic vascular barrier disorder.
Collapse
Affiliation(s)
- Kazuyoshi Omori
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Soldi R, Mandinova A, Venkataraman K, Hla T, Vadas M, Pitson S, Duarte M, Graziani I, Kolev V, Kacer D, Kirov A, Maciag T, Prudovsky I. Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Exp Cell Res 2007; 313:3308-18. [PMID: 17643421 PMCID: PMC2001265 DOI: 10.1016/j.yexcr.2007.05.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 05/08/2007] [Accepted: 05/24/2007] [Indexed: 12/28/2022]
Abstract
Sphingosine kinase 1 catalyzes the formation of sphingosine-1-phosphate, a lipid mediator involved in the regulation of angiogenesis. Sphingosine kinase 1 is constitutively released from cells, even though it lacks a classical signal peptide sequence. Because copper-dependent non-classical stress-induced release of FGF1 also regulates angiogenesis, we questioned whether sphingosine kinase 1 is involved in the FGF1 release pathway. We report that (i) the coexpression of sphingosine kinase 1 with FGF1 inhibited the release of sphingosine kinase 1 at 37 degrees C; (ii) sphingosine kinase 1 was released at 42 degrees C in complex with FGF1; (iii) sphingosine kinase 1 null cells failed to release FGF1 at stress; (iv) sphingosine kinase 1 is a high affinity copper-binding protein which formed a complex with FGF1 in a cell-free system, and (v) sphingosine kinase 1 over expression rescued the release of FGF1 from inhibition by the copper chelator, tetrathiomolybdate. We propose that sphingosine kinase 1 is a component of the copper-dependent FGF1 release pathway.
Collapse
Affiliation(s)
- Raffaella Soldi
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Anna Mandinova
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Krishnan Venkataraman
- Center for Vascular Biology, Dept. of Cell Biology, School of Medicine, University of Connecticut, Farmington, CT 06030-3501
| | - Timoty Hla
- Center for Vascular Biology, Dept. of Cell Biology, School of Medicine, University of Connecticut, Farmington, CT 06030-3501
| | - Mathew Vadas
- Hanson Institute, Human Immunology, Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | - Stuart Pitson
- Hanson Institute, Human Immunology, Institute of Medical and Veterinary Science, Adelaide, SA 5000, Australia
| | - Maria Duarte
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Irene Graziani
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Vihren Kolev
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Doreen Kacer
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Aleksandr Kirov
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Thomas Maciag
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074
| | - Igor Prudovsky
- *Address Correspondence to: Igor Prudovsky, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074. Telephone: 207-885-8146; Fax 207-885-8179;
| |
Collapse
|
140
|
Oskeritzian CA, Milstien S, Spiegel S. Sphingosine-1-phosphate in allergic responses, asthma and anaphylaxis. Pharmacol Ther 2007; 115:390-9. [PMID: 17669501 PMCID: PMC2082108 DOI: 10.1016/j.pharmthera.2007.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 12/12/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many cellular processes, acting not only as an extracellular ligand to its specific G protein-coupled receptors, but also as a putative intracellular messenger with yet unidentified targets. Mast cells are tissue-dwelling pivotal early effectors of allergic responses, which produce and secrete S1P that can bind to its receptors present on mast cells to influence their activation and functions. In this review, we will first discuss the current knowledge of S1P production by two isozymes of sphingosine kinase (SphK). Mechanisms of SphK activation will be discussed, with an emphasis on experimental approaches developed to study their differential activation and biological roles in the context of mast cells. The relevance of mast cells in the etiology of allergic disorders, asthma and anaphylaxis is well established. In this review, this concept will be revisited, focusing on the contribution of S1P production and secretion to the symptoms associated with dysregulated inflammatory responses. To conclude, counteracting the proinflammatory effects of S1P could be envisioned as a therapeutic strategy to treat allergic disorders, exacerbated airway inflammation, and anaphylactic reactions, and various options will be discussed, such as the development of pharmacological tools to inhibit SphKs, S1P neutralizing monoclonal antibody, and S1P receptor antagonists.
Collapse
Affiliation(s)
- Carole A Oskeritzian
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | | | |
Collapse
|
141
|
Aoki S, Yatomi Y, Shimosawa T, Yamashita H, Kitayama J, Tsuno NH, Takahashi K, Ozaki Y. The suppressive effect of sphingosine 1-phosphate on monocyte-endothelium adhesion may be mediated by the rearrangement of the endothelial integrins alpha(5)beta(1) and alpha(v)beta(3). J Thromb Haemost 2007; 5:1292-301. [PMID: 17403093 DOI: 10.1111/j.1538-7836.2007.02559.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sphingosine 1-phosphate (S1P), known to play important roles in vascular biology, is a bioactive lysophospholipid mediator that maintains endothelial integrity via its cell-surface receptors (S1Ps). In this in vitro study, we aimed to examine the role of S1P in monocyte-endothelium adhesion, which is an important event in the pathophysiology of atherosclerosis. METHODS AND RESULTS S1P pretreatment of human umbilical vein endothelial cells (ECs), but not U937 cells, effectively suppressed U937-EC adhesion independently from the expression of adhesion molecules, namely ICAM-1, VCAM-1, and E-selectin. This S1P-induced suppressive effect was inhibited by the blockage of S1P(1) and S1P(3) receptors and the specific inhibitors of G(i) protein, Src family proteins, phosphatidylinositol 3-kinase, and Rac1, indicating involvement of these key downstream pathways. Moreover, the RGD peptide and antibodies, which neutralize adhesion via alpha(5)beta(1) and alpha(v)beta(3), effectively inhibited U937-EC adhesion with a degree similar to S1P pretreatment. Both an adhesion assay and flow-cytometric analysis demonstrated that U937 cells adhered through integrins alpha(5)beta(1) and alpha(v)beta(3) expressed on the apical surface of monolayer ECs, and S1P shifted the localization of these integrins from the apical surface to the basal surface. CONCLUSIONS From the present results, we propose that S1P may contribute to the maintenance of vascular integrity and the regulation of atherogenesis through the rearrangement of endothelial integrins.
Collapse
Affiliation(s)
- S Aoki
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Levine YC, Li GK, Michel T. Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK -> Rac1 -> Akt -> endothelial nitric-oxide synthase pathway. J Biol Chem 2007; 282:20351-64. [PMID: 17519230 DOI: 10.1074/jbc.m702182200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endothelial isoform of nitric-oxide synthase (eNOS), a key determinant of vascular homeostasis, is a calcium/calmodulin-dependent phosphoprotein regulated by diverse cell surface receptors. Vascular endothelial growth factor (VEGF) and sphingosine 1-phosphate (S1P) stimulate eNOS activity through Akt/phosphoinositide 3-kinase and calcium-dependent pathways. AMP-activated protein kinase (AMPK) also activates eNOS in endothelial cells; however, the molecular mechanisms linking agonist-mediated AMPK regulation with eNOS activation remain incompletely understood. We studied the role of AMPK in VEGF- and S1P-mediated eNOS activation and found that both agonists led to a striking increase in AMPK phosphorylation in pathways involving the calcium/calmodulin-dependent protein kinase kinase beta. Treatment with tyrosine kinase inhibitors or the phosphoinositide 3-kinase inhibitor wortmannin demonstrated differential effects of VEGF versus S1P. Small interfering RNA (siRNA)-mediated knockdown of AMPKalpha1or Akt1 impaired the stimulatory effects of both VEGF and S1P on eNOS activation. AMPKalpha1 knockdown impaired agonist-mediated Akt phosphorylation, whereas Akt1 knockdown did not affect AMPK activation, thus suggesting that AMPK lies upstream of Akt in the pathway leading from receptor activation to eNOS stimulation. Importantly, we found that siRNA-mediated knockdown of AMPKalpha1 abrogates agonist-mediated activation of the small GTPase Rac1. Conversely, siRNA-mediated knockdown of Rac1 decreased the agonist-mediated phosphorylation of AMPK substrates without affecting that of AMPK, implicating Rac1 as a molecular link between AMPK and Akt in agonist-mediated eNOS activation. Finally, siRNA-mediated knockdown of caveolin-1 significantly enhanced AMPK phosphorylation, suggesting that AMPK is negatively regulated by caveolin-1. Taken together, these results suggest that VEGF and S1P differentially regulate AMPK and establish a central role for an agonist-modulated AMPK --> Rac1 --> Akt axis in the control of eNOS in endothelial cells.
Collapse
Affiliation(s)
- Yehoshua C Levine
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
143
|
Zhao Y, Tan YZ, Zhou LF, Wang HJ, Mao Y. Morphological Observation and In Vitro Angiogenesis Assay of Endothelial Cells Isolated From Human Cerebral Cavernous Malformations. Stroke 2007; 38:1313-9. [PMID: 17322085 DOI: 10.1161/01.str.0000259914.21997.89] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Little is known about the role of endothelial cells (ECs) in the pathogenesis of cerebral cavernous malformation because of the difficulties to obtain highly pure ECs. Thus, this study attempted to establish a reliable procedure to isolate and culture ECs from human cerebral cavernous malformation lesions. The biological features and the angiogenic potential of the cultured ECs were also investigated. METHODS A modified protocol was developed to isolate and culture cerebral cavernous malformation endothelial cells (CECs)from surgically resected human specimens. The biological features of CECs were investigated by electron microscope, immunostaining, real-time polymerase chain reaction, fluorescence-activated cell sorter, and Western blotting. The tube formation by CECs was examined in an in vitro angiogenesis model with or without the addition of vascular endothelial growth factor. RESULTS CECs from the specimens unaffected by the intraoperative bipolar coagulation were cultivated successfully with higher than 95% purity. Comparing to the ECs from control brain tissue, CECs presented primitive nucleus in ultrathin section, expressed higher levels of vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, and spontaneously formed tube structures in a 3-dimensional collagen matrix. The tube formation by CECs was significantly promoted by vascular endothelial growth factor treatment. CONCLUSIONS A modified protocol for the attainment of purified CECs and the first in vitro angiogenesis model of CECs were successfully established. We provided initial evidence that CECs had enhanced angiogenic potential and showed increased responsiveness to vascular endothelial growth factor.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
144
|
Abstract
UNLABELLED The sphingomyelin metabolites ceramide, sphingosine 1-phosphate (S1P) and sphingosylphosphorylcholine (SPC) are emerging modulators of vascular tone. While ceramide appears to act primarily intracellularly, S1P and SPC appear to mainly work via specific receptors, although those for SPC have not yet been defined unequivocally. Each of the sphingomyelin metabolites can induce both vasoconstriction and vasodilatation and, in some cases--ceramide on the one hand, and S1P and SPC on the other hand--have opposite effects on vascular tone. The differences in effects between vessels may relate to the relative roles of endothelial and smooth muscle cells in mediating them, as well as to the distinct expression patterns of S1P receptors among vascular beds and among endothelial and smooth muscle cells. Recent evidence suggests that vascular tone is not only modulated by sphingomyelin metabolites which are exogenously added or reach the vessel wall via the bloodstream but also by those formed locally by cells in the vessel wall. Such local formation can be induced by known vasoactive agents such as angiotensin II and may serve a signalling function. CONCLUSION We conclude that sphingomyelin metabolites are important endogenous modulators of vascular function, which may contribute to the pathophysiology of some diseases and be targets for therapeutic interventions.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology & Pharmacotherapy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
145
|
Koide Y, Uemoto K, Hasegawa T, Sada T, Murakami A, Takasugi H, Sakurai A, Mochizuki N, Takahashi A, Nishida A. Pharmacophore-based design of sphingosine 1-phosphate-3 receptor antagonists that include a 3,4-dialkoxybenzophenone scaffold. J Med Chem 2007; 50:442-54. [PMID: 17266196 DOI: 10.1021/jm060834d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sphingosine 1-phosphate (S1P) receptors are G-protein-coupled receptors. Among the five identified subtypes S1P1-5, the S1P3 receptor expressed on vascular endothelial cells has been shown to play an important role in cell proliferation, migration, and inflammation. A pharmacophore-based database search was used to identify a potent scaffold for an S1P3 receptor antagonist by common feature-based alignment and further validated using the Güner-Henry (GH) scoring method. Assumed excluded volumes were merged into this model to evaluate the steric effect with the S1P3 receptor. Three commercially available compounds were identified as S1P3 receptor antagonists, with IC50 values <5 microM. The synthesis of further derivatives revealed that the 3,4-dialkoxybenzophenone scaffold is a potent component of an S1P3 receptor antagonist. Our results indicate that pharmacophore-based design of S1P3 receptor antagonists can be used to expand the possibility of structural modification through scaffold-hopping based on a database search.
Collapse
Affiliation(s)
- Yuuki Koide
- Drug Research Department, Tokyo Research Laboratories, TOA EIYO Ltd., 2-293-3 Amanuma, Oomiya, Saitama 330-0834, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Park KS, Kim MK, Lee HY, Kim SD, Lee SY, Kim JM, Ryu SH, Bae YS. S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem Biophys Res Commun 2007; 356:239-44. [PMID: 17349972 DOI: 10.1016/j.bbrc.2007.02.112] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/24/2022]
Abstract
OVCAR3 ovarian cancer cells express three sphingosine 1-phosphate (S1P) receptors, S1P(1), S1P(2), and S1P(3), but not S1P(4). Stimulation of OVCAR3 cells with S1P induced intracellular calcium increases, which were partly inhibited by VPC 23019 (an S1P(1/3) antagonist). S1P-induced calcium increases were mediated by phospholipase C and pertussis toxin (PTX)-sensitive G-proteins in OVCAR3 cells. S1P stimulated extracellular signal-regulated kinase, p38 kinase, and Akt which were inhibited by PTX. S1P-stimulated chemotactic migration of OVCAR3 cells in a PTX-sensitive manner, indicating crucial role of G(i) protein(s) in the process. S1P-induced chemotactic migration of OVCAR3 cells was completely inhibited by LY294002 and SB203580. Pretreatment of VPC 23019 (an S1P(1/3) antagonist) completely inhibited S1P-induced chemotaxis. S1P also induced invasion of OVCAR3 cells, which was also inhibited by VPC 23019. Taken together, this study suggests that S1P stimulate chemotactic migration and cellular invasion, and VPC 23019-sensitive S1P receptor(s) might be involved in the processes.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 602-714, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Novgorodov AS, El-Alwani M, Bielawski J, Obeid LM, Gudz TI. Activation of sphingosine-1-phosphate receptor S1P5 inhibits oligodendrocyte progenitor migration. FASEB J 2007; 21:1503-14. [PMID: 17255471 DOI: 10.1096/fj.06-7420com] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-phosphate (S1P) acts as an extracellular ligand for a family of G-protein coupled receptors that are crucial in cell migration. S1P5 is exclusively expressed in oligodendrocytes and oligodendrocyte precursor cells (OPCs), which migrate considerable distances during brain development. The current studies suggest a physiological role for S1P and S1P5 in regulation of OPC migration. mRNA expression levels of S1P2 and S1P5 are comparable in OPCs, but S1P binding specifically to the S1P5 receptor blocked OPC migration (IC50=29 nM). Thus, knocking down S1P5 using siRNA prevented the S1P-induced decrease in OPC migration, whereas knocking down S1P2 did not have any effect. S1P-induced modulation of OPC migration was insensitive to pertussis toxin, suggesting that S1P5-initiated signaling is not mediated by the G alpha(i)-protein coupled pathway. Furthermore, S1P5 appears to engage the G alpha(12/13) protein coupled Rho/ROCK signaling pathway to impede OPC migration. To modulate OPC motility, extracellular S1P could be derived from the export of intracellular S1P generated in response to glutamate treatment of OPCs. These studies suggest that S1P could be a part of the neuron-oligodendroglial communication network regulating OPC migration and may provide directional guidance cues for migrating OPCs in the developing brain.
Collapse
Affiliation(s)
- Alexander S Novgorodov
- Department of Neuroscience, Medical University of South Carolina, 114 Doughty St. Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
148
|
Xin C, Ren S, Eberhardt W, Pfeilschifter J, Huwiler A. The immunomodulator FTY720 and its phosphorylated derivative activate the Smad signalling cascade and upregulate connective tissue growth factor and collagen type IV expression in renal mesangial cells. Br J Pharmacol 2007; 147:164-74. [PMID: 16299553 PMCID: PMC1615856 DOI: 10.1038/sj.bjp.0706452] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1.--The immunomodulating agent FTY720 is a substrate for the sphingosine kinase and the phosphorylated form is able to bind to sphingosine 1-phosphate (S1P) receptors. In this study, we show that exposure of renal mesangial cells to phospho-FTY720 leads to a rapid and transient activation of several protein kinase cascades, including the mitogen- and stress-activated protein kinases. The nonphosphorylated FTY720 also increased MAPK phosphorylation, but with a reduced potency and a more delayed time course. In addition, phospho-FTY720 and FTY720 are able to increase phosphorylation of Smad proteins which are classical members of the transforming growth factor-beta (TGF-beta) signalling device, thus suggesting a crosstalk between FTY720 and TGF-beta signalling. 2.--Pretreatment with the S1P(3) receptor antagonist suramin inhibits FTY720 and phospho-FTY720-induced Smad phosphorylation, whereas pertussis toxin pretreatment, which blocks G(i/0) proteins, has no effect on Smad phosphorylation. 3.--Since TGF-beta is a potent profibrotic cytokine in mesangial cells and upregulates the connective tissue growth factor (CTGF) and collagen as important hallmarks in the fibrotic sequelae, we investigated whether FTY720 and phospho-FTY720 are able to mimic these effects of TGF-beta. Indeed, FTY720 and phospho-FTY720 markedly upregulate CTGF and collagen type IV protein expressions. In addition, the tissue inhibitor of metalloproteinase-1 is transcriptionally activated by FTY720, whereas cytokine-induced matrix metalloproteinase-9 is down-regulated by FTY720. 4.--Depletion of the TGF-beta receptor type II by the siRNA transfection technique blocks not only Smad phosphorylation but also CTGF upregulation. Similarly, Smad-4 depletion by siRNA transfection also abrogates CTGF upregulation induced by FTY720 and phospho-FTY720. 5.--In summary, our data show that FTY720 and phospho-FTY720 not only activate the Smad signalling cascade in mesangial cells, but also upregulate the expression of CTGF and collagen. These findings suggest that FTY720 may have additional effects besides the established immunomodulatory action and, importantly, a profibrotic activity has to be considered in future experimental approaches.
Collapse
Affiliation(s)
- Cuiyan Xin
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Shuyu Ren
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Eberhardt
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Andrea Huwiler
- Pharmazentrum frankfurt Izafes, Klinikum der Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
- Author for correspondence:
| |
Collapse
|
149
|
Jeon ES, Lee MJ, Sung SM, Kim JH. Sphingosylphosphorylcholine induces apoptosis of endothelial cells through reactive oxygen species-mediated activation of ERK. J Cell Biochem 2007; 100:1536-47. [PMID: 17131361 DOI: 10.1002/jcb.21141] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sphingosylphosphorylcholine (SPC) produces reactive oxygen species (ROS) in MS1 pancreatic islet endothelial cells. In the present study, we explored the physiological significance of the SPC-induced ROS generation in endothelial cells. SPC induced cell death of MS1 cells at higher than 10 microM concentration through a caspase-3-dependent pathway. SPC treatment induced sustained activation of an extracellular signal-regulated kinase (ERK), in contrast to transient activation of ERK in response to platelet-derived growth factor (PDGF)-BB, which stimulated proliferation of MS1 cells. Both the SPC-induced cell death and ERK activation were abolished by pretreatment of the cells with the MEK inhibitor U0126 or by overexpression of a dominant negative mutant of MEK1 (DN-MEK1). Pretreatment of the cells with N-acetylcysteine, an antioxidant, completely prevented the SPC-induced ROS generation, apoptosis, and ERK activation, whereas the ROS generation was not abrogated by treatment with U0126. Consistent with these results, SPC induced cell death of human umbilical vein endothelial cells (HUVECs) through ROS-mediated activation of ERK. These results suggest that the SPC-induced generation of ROS plays a crucial role in the cell death of endothelial cells through ERK-dependent pathway.
Collapse
Affiliation(s)
- Eun Su Jeon
- Medical Research Center for Ischemic Tissue Regeneration and Medical Research Institute, College of Medicine, Pusan National University, Busan 602-739, Republic of Korea
| | | | | | | |
Collapse
|
150
|
Koh E, Bandle R, Clair T, Roberts DD, Stracke ML. Trichostatin A and 5-aza-2'-deoxycytidine switch S1P from an inhibitor to a stimulator of motility through epigenetic regulation of S1P receptors. Cancer Lett 2006; 250:53-62. [PMID: 17189669 DOI: 10.1016/j.canlet.2006.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 09/11/2006] [Accepted: 09/22/2006] [Indexed: 12/31/2022]
Abstract
The histone deacetylase inhibitor, trichostatin A (TSA), and the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (Aza-dC), induced epigenetic regulation of sphingosine-1-phosphate (S1P) receptors in human melanoma cells, switching S1P from motility inhibitor to stimulator. Quantitative PCR revealed increased expression of S1P(1) and S1P(3), associated with S1P-induced chemotaxis, and decreased expression of S1P(2), associated with motility inhibition. Expression of lysophosphatidic acid (LPA) receptors was less affected. The TSA effect was reversible suggesting no mutational change, and Aza-dC treatment resulted in demethylation of a putative S1P(1) promoter. S1P receptors, therefore, appear to be susceptible to epigenetic regulation, accompanied by altered cellular functionality.
Collapse
Affiliation(s)
- Eunjin Koh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1500, USA.
| | | | | | | | | |
Collapse
|