101
|
Bavireddi H, Vasudeva Murthy R, Gade M, Sangabathuni S, Chaudhary PM, Alex C, Lepenies B, Kikkeri R. Understanding carbohydrate-protein interactions using homologous supramolecular chiral Ru(ii)-glyconanoclusters. NANOSCALE 2016; 8:19696-19702. [PMID: 27874116 DOI: 10.1039/c6nr06431k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Multivalent glycodendrimers make promising tools to tackle the basic and translational research in the field of carbohydrate-mediated interactions. Despite advances in glycodendrimers and glycopolymers, the multivalent probes available to date are still far from being ideal biological mimics. This work demonstrates the inherent chirality of glycodendrimers to be one of the promising factors to generate different spatial carbohydrate micro-environments to modulate specific carbohydrate-protein interactions. By exploiting the host-guest strategy, chiral Ru(ii) complexes (Δ and Λ) and mannose capped β-cyclodextrin (β-CD), we generated a library of homologous metallo-glycodendrimers (MGDs) with sizes of 50-70 nm. These nanoclusters can enantioselectively bind to specific C-type lectins and displayed selectivity in cellular uptake. We also discovered their potential clathrin-mediated endocytotic pathway in DC-SIGN and SIGNR3-transfected cell lines. Finally, in vivo biodistribution and sequestration of MGDs was determined to understand the role of chirality mediated spatial arrangement in carbohydrate-mediated interactions.
Collapse
Affiliation(s)
- Harikrishna Bavireddi
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | | | - Madhuri Gade
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | - Sivakoti Sangabathuni
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | | | - Catherine Alex
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Hannover, Germany
| | - Raghavendra Kikkeri
- Indian Institution of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India.
| |
Collapse
|
102
|
Ding D, Yao Y, Zhang S, Su C, Zhang Y. C-type lectins facilitate tumor metastasis. Oncol Lett 2016; 13:13-21. [PMID: 28123516 PMCID: PMC5245148 DOI: 10.3892/ol.2016.5431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Songbai Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chunjie Su
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yonglian Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
103
|
Bertolotti B, Oroszová B, Sutkeviciute I, Kniežo L, Fieschi F, Parkan K, Lovyová Z, Kašáková M, Moravcová J. Nonhydrolyzable C-disaccharides, a new class of DC-SIGN ligands. Carbohydr Res 2016; 435:7-18. [DOI: 10.1016/j.carres.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/01/2023]
|
104
|
Le NPL, Bowden TA, Struwe WB, Crispin M. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:1655-68. [PMID: 27105835 PMCID: PMC4922387 DOI: 10.1016/j.bbagen.2016.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/20/2022]
Abstract
Human serum IgG contains multiple glycoforms which exhibit a range of binding properties to effector molecules such as cellular Fc receptors. Emerging knowledge of how the Fc glycans contribute to the antibody structure and effector functions has opened new avenues for the exploitation of defined antibody glycoforms in the treatment of diseases. Here, we review the structure and activity of antibody glycoforms and highlight developments in antibody glycoengineering by both the manipulation of the cellular glycosylation machinery and by chemoenzymatic synthesis. We discuss wide ranging applications of antibody glycoengineering in the treatment of cancer, autoimmunity and inflammation. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Ngoc Phuong Lan Le
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas A Bowden
- Division of Structural Biology, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
105
|
Rao XJ, Wu P, Shahzad T, Liu S, Chen L, Yang YF, Shi Q, Yu XQ. Characterization of a dual-CRD galectin in the silkworm Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:149-159. [PMID: 26944801 DOI: 10.1016/j.dci.2016.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/28/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Galectins (S-type lectins) are an ancient family of lectins with the β-galactoside binding activity. In mammals, galectins play essential roles in many biological processes, such as development, immune homeostasis and tumor progression. However, few studies have been devoted to their functions in insects. Here, we characterized the only dual-CRD galectin in the silkworm Bombyx mori (BmGalectin-4). BmGalectin-4 cDNA possesses an open reading frame of 1089 bp, which encodes a putative galectin of 363 amino acids containing tandem carbohydrate recognition domains (CRDs). BmGalectin-4 was expressed in various tissues but the protein was most abundant in fertilized eggs. Its transcript level in fertilized eggs was upregulated upon bacterial challenge. Recombinant BmGalectin-4 purified from Escherichia coli bound to bacterial cell wall components and bacterial cells. In addition, the recombinant protein induced bacterial agglutination, but did not have antibacterial activity against selected microorganisms. Taken together, our results suggest that BmGalectin-4 may function as a pattern recognition receptor primarily in silkworm fertilized eggs.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Peng Wu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Toufeeq Shahzad
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Ling Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Yun-Fan Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Qiao Shi
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
106
|
Sattin S, Bernardi A. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends Biotechnol 2016; 34:483-495. [DOI: 10.1016/j.tibtech.2016.01.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/31/2022]
|
107
|
Léger P, Tetard M, Youness B, Cordes N, Rouxel RN, Flamand M, Lozach PY. Differential Use of the C-Type Lectins L-SIGN and DC-SIGN for Phlebovirus Endocytosis. Traffic 2016; 17:639-56. [PMID: 26990254 DOI: 10.1111/tra.12393] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Bunyaviruses represent a growing threat to humans and livestock globally. The receptors, cellular factors and endocytic pathways used by these emerging pathogens to infect cells remain largely unidentified and poorly characterized. DC-SIGN is a C-type lectin highly expressed on dermal dendritic cells that has been found to act as an authentic entry receptor for many phleboviruses (Bunyaviridae), including Rift Valley fever virus (RVFV), Toscana virus (TOSV) and Uukuniemi virus (UUKV). We found that these phleboviruses can exploit another C-type lectin, L-SIGN, for infection. L-SIGN shares 77% sequence homology with DC-SIGN and is expressed on liver sinusoidal endothelial cells. L-SIGN is required for UUKV binding but not for virus internalization. An endocytosis-defective mutant of L-SIGN was still able to mediate virus uptake and infection, indicating that L-SIGN acts as an attachment receptor for phleboviruses rather than an endocytic receptor. Our results point out a fundamental difference in the use of the C-type lectins L-SIGN and DC-SIGN by UUKV to enter cells, although both proteins are closely related in terms of molecular structure and biological function. This study sheds new light on the molecular mechanisms by which phleboviruses target the liver and also highlights the added complexity in virus-receptor interactions beyond attachment.
Collapse
Affiliation(s)
- Psylvia Léger
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marilou Tetard
- INRS-Institut Armand-Frappier, Laval, Canada.,Current address: Inserm UMR_S1134, Paris, France
| | - Berthe Youness
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada.,Reproduction Genetics Unit, Department of Gynecological Endocrinology and Reproductive Medicine, University Hospital, Heidelberg, Germany
| | - Nicole Cordes
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ronan N Rouxel
- INRS-Institut Armand-Frappier, Laval, Canada.,UR_0892 Unité de Virologie et Immunologie Moléculaire, INRA, CRJ, Jouy-en-Josas, France
| | - Marie Flamand
- Structural Virology, Institut Pasteur, Paris, France
| | - Pierre-Yves Lozach
- CellNetworks - Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.,INRS-Institut Armand-Frappier, Laval, Canada
| |
Collapse
|
108
|
Cruz-Aguilar M, Castillo-Rodal AI, Schcolnik-Cabrera A, Bonifaz LC, Molina G, López-Vidal Y. TLR4 and DC-SIGN receptors recognized Mycobacterium scrofulaceum promoting semi-activated phenotype on bone marrow dendritic cells. Tuberculosis (Edinb) 2016; 99:31-40. [PMID: 27450002 DOI: 10.1016/j.tube.2016.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 01/25/2023]
Abstract
Nontuberculous mycobacteria (NTM) are recognized as emerging pathogens and their immune regulatory mechanisms are not well described yet. From them, Mycobacterium avium is known to be a weak activator of dendritic cells (DCs) that impairs the response induced by BCG vaccine. However, whether other NTM such as Mycobacterium scrofulaceum may modulate the activation of DCs, has not been extensively studied. Here, we exposed bone marrow-derived DCs (BMDCs) to M. scrofulaceum and we analyzed the effect on the activation of DCs. We found that M. scrofulaceum has a comparable ability to induce a semi-mature DC phenotype, which was produced by its interaction with DC-SIGN and TLR4 receptors in a synergic effect. BMDCs exposed to M. scrofulaceum showed high expression of PD-L2 and production of IL-10, as well as low levels of co-stimulatory molecules and pro-inflammatory cytokines. In addition to immunophenotype induced on DCs, changes in morphology, re-organization of cytoskeleton and decreased migratory capacity are consistent with a semi-mature phenotype. However, unlike other pathogenic mycobacteria, the DC-semi-mature phenotype induced by M. scrofulaceum was reversed after re-exposure to BCG, suggesting that modulation mechanisms of DC-activation used by M. scrofulaceum are different to other known pathogenic mycobacteria. This is the first report about the immunophenotypic characterization of DC stimulated by M. scrofulaceum.
Collapse
Affiliation(s)
- Marisa Cruz-Aguilar
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Antonia I Castillo-Rodal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica, Instituto Mexicano del Seguro Social, México, DF, Mexico.
| | - Gabriela Molina
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico.
| |
Collapse
|
109
|
Loke I, Kolarich D, Packer NH, Thaysen-Andersen M. Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 2016; 51:31-55. [PMID: 27086127 DOI: 10.1016/j.mam.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 02/07/2023]
Abstract
Proteins are frequently modified by complex carbohydrates (glycans) that play central roles in maintaining the structural and functional integrity of cells and tissues in humans and lower organisms. Mannose forms an essential building block of protein glycosylation, and its functional involvement as components of larger and diverse α-mannosidic glycoepitopes in important intra- and intercellular glycoimmunological processes is gaining recognition. With a focus on the mannose-rich asparagine (N-linked) glycosylation type, this review summarises the increasing volume of literature covering human and non-human protein mannosylation, including their structures, biosynthesis and spatiotemporal expression. The review also covers their known interactions with specialised host and microbial mannose-recognising C-type lectin receptors (mrCLRs) and antibodies (mrAbs) during inflammation and pathogen infection. Advances in molecular mapping technologies have recently revealed novel immuno-centric mannose-terminating truncated N-glycans, termed paucimannosylation, on human proteins. The cellular presentation of α-mannosidic glycoepitopes on N-glycoproteins appears tightly regulated; α-mannose determinants are relative rare glycoepitopes in physiological extracellular environments, but may be actively secreted or leaked from cells to transmit potent signals when required. Simultaneously, our understanding of the molecular basis on the recognition of mannosidic epitopes by mrCLRs including DC-SIGN, mannose receptor, mannose binding lectin and mrAb is rapidly advancing, together with the functional implications of these interactions in facilitating an effective immune response during physiological and pathophysiological conditions. Ultimately, deciphering these complex mannose-based receptor-ligand interactions at the detailed molecular level will significantly advance our understanding of immunological disorders and infectious diseases, promoting the development of future therapeutics to improve patient clinical outcomes.
Collapse
Affiliation(s)
- Ian Loke
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
110
|
Zhang H, Palma AS, Zhang Y, Childs RA, Liu Y, Mitchell DA, Guidolin LS, Weigel W, Mulloy B, Ciocchini AE, Feizi T, Chai W. Generation and characterization of β1,2-gluco-oligosaccharide probes from Brucella abortus cyclic β-glucan and their recognition by C-type lectins of the immune system. Glycobiology 2016; 26:1086-1096. [PMID: 27053576 PMCID: PMC5072146 DOI: 10.1093/glycob/cww041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 12/16/2022] Open
Abstract
The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in infected hosts be they mammals or plants. However, there has been a lack of information on proteins which recognize these molecules. This is partly due to the extremely limited availability of the sequence-defined oligosaccharides and derived probes for use in the study of their interactions. Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after removal of succinyl side chains, to prepare linearized oligosaccharides which were used to generate microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization 2-13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated earlier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serum mannose-binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodulation mediated by β1,2-glucans in mammalian systems.
Collapse
Affiliation(s)
- Hongtao Zhang
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Angelina S Palma
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK .,UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, NOVA Universidade de Lisboa, Caparica 2829-516, Portugal
| | - Yibing Zhang
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Robert A Childs
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Yan Liu
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Daniel A Mitchell
- CSRI-UHCW, Walsgrave Campus, University of Warwick, Coventry CV2 2DX, UK
| | - Leticia S Guidolin
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina
| | | | - Barbara Mulloy
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo A. Ugalde", Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín, San Martín, Buenos Aires 1650, Argentina
| | - Ten Feizi
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Wengang Chai
- Glycosciences Laboratory, Department of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
111
|
Abstract
In this chapter, a comprehensive overview of the known ligands for the C-type lectins (CTLs) is provided. Emphasis has been placed on the chemical structure of the glycans that bind to the different CTLs and the amount of structural variation (or overlap) that each CTL can tolerate. In this way, both the synthetic carbohydrate chemist and the immunologist can more readily gain insight into the existing structure-activity space for the CTL ligands and, ideally, see areas of synergy that will help identify and refine the ligands for these receptors.
Collapse
Affiliation(s)
- Sho Yamasaki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
112
|
Rienks M, Papageorgiou AP. Novel regulators of cardiac inflammation: Matricellular proteins expand their repertoire. J Mol Cell Cardiol 2016; 91:172-8. [DOI: 10.1016/j.yjmcc.2016.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
|
113
|
Kotar A, Tomašič T, Lenarčič Živković M, Jug G, Plavec J, Anderluh M. STD NMR and molecular modelling insights into interaction of novel mannose-based ligands with DC-SIGN. Org Biomol Chem 2016; 14:862-75. [DOI: 10.1039/c5ob01916h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
STD-NMR and molecular modelling study of four α-d-mannosides show new contacts in DC-SIGN binding site to help develop potent DC-SIGN antagonists.
Collapse
Affiliation(s)
- Anita Kotar
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
| | - Tihomir Tomašič
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | | | - Gregor Jug
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| | - Janez Plavec
- Slovenian NMR center
- National Institute of Chemistry
- 1000 Ljubljana
- Slovenia
- EN-FIST Centre of Excellence
| | - Marko Anderluh
- Faculty of Pharmacy
- University of Ljubljana
- 1000 Ljubljana
- Slovenia
| |
Collapse
|
114
|
Arsov Z, Švajger U, Mravljak J, Pajk S, Kotar A, Urbančič I, Štrancar J, Anderluh M. Internalization and Accumulation in Dendritic Cells of a Small pH-Activatable Glycomimetic Fluorescent Probe as Revealed by Spectral Detection. Chembiochem 2015; 16:2660-7. [DOI: 10.1002/cbic.201500376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Urban Švajger
- Blood Transfusion Centre of Slovenia; Šlajmerjeva 6 1000 Ljubljana Slovenia
| | - Janez Mravljak
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| | - Stane Pajk
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Anita Kotar
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
- Slovenian NMR Centre; National Institute of Chemistry; Hajdrihova 19 1000 Ljubljana Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
| | - Janez Štrancar
- Laboratory of Biophysics; Department of Condensed Matter Physics; Jozef Stefan Institute; Jamova 39 1000 Ljubljana Slovenia
- Center of Excellence NAMASTE; Jamova 39 1000 Ljubljana Slovenia
| | - Marko Anderluh
- Department of Medicinal Chemistry; Faculty of Pharmacy; University of Ljubljana; Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
115
|
Ordanini S, Varga N, Porkolab V, Thépaut M, Belvisi L, Bertaglia A, Palmioli A, Berzi A, Trabattoni D, Clerici M, Fieschi F, Bernardi A. Designing nanomolar antagonists of DC-SIGN-mediated HIV infection: ligand presentation using molecular rods. Chem Commun (Camb) 2015; 51:3816-9. [PMID: 25648900 DOI: 10.1039/c4cc09709b] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DC-SIGN antagonists were designed combining one selective monovalent glycomimetic ligand with trivalent dendrons separated by a rigid core of controlled length. The design combines multiple multivalency effects to achieve inhibitors of HIV infection, which are active in nanomolar concentration.
Collapse
Affiliation(s)
- Stefania Ordanini
- Università degli Studi di Milano (UniMI), Dip. Chimica, via Golgi 19, 20133, Milano, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Chabrol E, Thépaut M, Dezutter-Dambuyant C, Vivès C, Marcoux J, Kahn R, Valladeau-Guilemond J, Vachette P, Durand D, Fieschi F. Alteration of the langerin oligomerization state affects Birbeck granule formation. Biophys J 2015; 108:666-77. [PMID: 25650933 DOI: 10.1016/j.bpj.2014.10.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 11/16/2022] Open
Abstract
Langerin, a trimeric C-type lectin specifically expressed in Langerhans cells, has been reported to be a pathogen receptor through the recognition of glycan motifs by its three carbohydrate recognition domains (CRD). In the context of HIV-1 (human immunodeficiency virus-1) transmission, Langerhans cells of genital mucosa play a protective role by internalizing virions in Birbeck Granules (BG) for elimination. Langerin (Lg) is directly involved in virion binding and BG formation through its CRDs. However, nothing is known regarding the mechanism of langerin assembly underlying BG formation. We investigated at the molecular level the impact of two CRD mutations, W264R and F241L, on langerin structure, function, and BG assembly using a combination of biochemical and biophysical approaches. Although the W264R mutation causes CRD global unfolding, the F241L mutation does not affect the overall structure and gp120 (surface HIV-1 glycoprotein of 120 kDa) binding capacities of isolated Lg-CRD. In contrast, this mutation induces major functional and structural alterations of the whole trimeric langerin extracellular domain (Lg-ECD). As demonstrated by small-angle x-ray scattering comparative analysis of wild-type and mutant forms, the F241L mutation perturbs the oligomerization state and the global architecture of Lg-ECD. Correlatively, despite conserved intrinsic lectin activity of the CRD, avidity property of Lg-ECD is affected as shown by a marked decrease of gp120 binding. Beyond the change of residue itself, the F241L mutation induces relocation of the K200 side chain also located within the interface between protomers of trimeric Lg-ECD, thereby explaining the defective oligomerization of mutant Lg. We conclude that not only functional CRDs but also their correct spatial presentation are critical for BG formation as well as gp120 binding.
Collapse
MESH Headings
- Animals
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Cell Line
- Chromatography, High Pressure Liquid
- Cross-Linking Reagents/pharmacology
- Crystallography, X-Ray
- Cytoplasmic Granules/metabolism
- Fibroblasts/metabolism
- Fibroblasts/ultrastructure
- HIV Envelope Protein gp120/metabolism
- Humans
- Lectins, C-Type/chemistry
- Lectins, C-Type/metabolism
- Mannans/metabolism
- Mannose-Binding Lectins/chemistry
- Mannose-Binding Lectins/metabolism
- Mice
- Models, Molecular
- Mutant Proteins/chemistry
- Mutant Proteins/metabolism
- Mutation/genetics
- Protein Binding/drug effects
- Protein Multimerization/drug effects
- Protein Structure, Tertiary
- Scattering, Small Angle
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transfection
Collapse
Affiliation(s)
- Eric Chabrol
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Michel Thépaut
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | | | - Corinne Vivès
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Julien Marcoux
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Richard Kahn
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France
| | - Jenny Valladeau-Guilemond
- Centre Léon Bérard-UMR INSERM 1052-CNRS 5286, Centre de recherche en Cancérologie de Lyon, Lyon, France
| | - Patrice Vachette
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France
| | - Dominique Durand
- Institut de Biologie Intégrative de la Cellule, CEA, CNRS, Université Paris Sud, Gif sur Yvette, France.
| | - Franck Fieschi
- University Grenoble Alpes, IBS, Grenoble, France; CNRS, UMR 5075, Grenoble France; CEA, UMR 5075, Grenoble France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
117
|
Liu X, Zhang H, Su L, Yang P, Xin Z, Zou J, Ren S, Zuo Y. Low expression of dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein in lung cancer and significant correlations with brain metastasis and natural killer cells. Mol Cell Biochem 2015; 407:151-60. [PMID: 26150177 PMCID: PMC7101997 DOI: 10.1007/s11010-015-2465-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
Abstract
Dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin-related protein (DC-SIGNR) is a type II transmembrane protein which has been reported to bind a variety of pathogens as well as participate in immunoregulation. But the association between the level of DC-SIGNR and lung cancer is unknown. To investigate the clinical diagnostic significance of DC-SIGNR in lung cancer, we investigated serum DC-SIGNR levels in 173 lung cancer patients and 134 healthy individuals using enzyme-linked immunosorbent assay (ELISA). Results showed that serum DC-SIGNR levels in lung cancer patients were lower than that in healthy controls (P = 0.0003). A cut-off value of 3.8998 ng/L for DC-SIGNR predicted the presence of lung cancer with 78.03% sensitivity and 49.25% specificity (area under the curve = 0.6212, P = 0.0003). Strikingly, serum DC-SIGNR levels were significantly higher in lung cancer patients with brain metastasis compared to those without metastasis (P = 0.0283). Moreover, the serum concentrations of DC-SIGNR in lung cancer patients also correlated significantly with serum natural killer cells percentage (P = 0.0017). In addition, immunohistochemistry assay demonstrated that the expression of DC-SIGNR in lung tissues of 31 lung cancer patients and 13 tuberculosis patients was significantly lower than that in 18 normal lung tissues (P = 0.0418, 0.0289), and there is no significant difference between tuberculosis tissues and lung cancer tissues (P = 0.2696). These results suggest that DC-SIGNR maybe a promising biological molecule that has the potential for clinical research of lung cancer, whereas its underlying roles are needed to be investigated in further studies.
Collapse
Affiliation(s)
- Xiaoli Liu
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, 116044, China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Drickamer K, Taylor ME. Recent insights into structures and functions of C-type lectins in the immune system. Curr Opin Struct Biol 2015; 34:26-34. [PMID: 26163333 PMCID: PMC4681411 DOI: 10.1016/j.sbi.2015.06.003] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/22/2015] [Accepted: 06/19/2015] [Indexed: 12/05/2022]
Abstract
Sugar-binding C-type carbohydrate-recognition domains fall in five structural groups. Structures for many of these domains, covering all of the groups, have been obtained. Not all human C-type lectins have clear orthologues in other mammals such as mice. Different mechanisms by which C-type lectins initiate signalling remain to be defined. Hetero-oligomeric receptors add to the complexity of overlapping specificities.
The majority of the C-type lectin-like domains in the human genome likely to bind sugars have been investigated structurally, although novel mechanisms of sugar binding are still being discovered. In the immune system, adhesion and endocytic receptors that bind endogenous mammalian glycans are often conserved, while pathogen-binding C-type lectins on cells of the innate immune system are more divergent. Lack of orthology between some human and mouse receptors, as well as overlapping specificities of many receptors and formation of receptor hetero-oligomers, can make it difficult to define the roles of individual receptors. There is good evidence that C-type lectins initiate signalling pathways in several different ways, but this function remains the least well understood from a mechanistic perspective.
Collapse
Affiliation(s)
- Kurt Drickamer
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Maureen E Taylor
- Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom.
| |
Collapse
|
119
|
Boks MA, Ambrosini M, Bruijns SC, Kalay H, van Bloois L, Storm G, Garcia-Vallejo JJ, van Kooyk Y. MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. J Control Release 2015; 216:37-46. [PMID: 26151293 DOI: 10.1016/j.jconrel.2015.06.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DC) are attractive targets for cancer immunotherapy as they initiate strong and long-lived tumour-specific T cell responses. DC can be effectively targeted in vivo with tumour antigens by using nanocarriers such as liposomes. Cross-presentation of tumour antigens is enhanced with strong adjuvants such as TLR ligands. However, often these adjuvants have off-target effects, and would benefit from a DC-specific targeting strategy, similar to the tumour antigen. The goal of this study was to develop a strategy for specifically targeting DC with tumour antigen and adjuvant by using glycoliposomes. We have generated liposomes containing the glycan Lewis(Le)(X) which is highly specific for the C-type lectin receptor DC-SIGN expressed by DC. Le(X)-modified liposomes were taken up by human monocyte-derived DC in a DC-SIGN-specific manner. As adjuvants we incorporated the TLR ligands Pam3CySK4, Poly I:C, MPLA and R848 into liposomes and compared their adjuvant capacity on DC. Incorporation of the TLR4 ligand MPLA into glycoliposomes induced DC maturation and production of pro-inflammatory cytokines, in a DC-SIGN-specific manner, and DC activation was comparable to administration of soluble MPLA. Incorporation of MPLA into glycoliposomes significantly enhanced antigen cross-presentation of the melanoma tumour antigen gp100280-288 peptide to CD8(+) T cells compared to non-glycosylated MPLA liposomes. Importantly, antigen cross-presentation of the gp100280-288 peptide was significantly higher using MPLA glycoliposomes compared to the co-administration of soluble MPLA with glycoliposomes. Taken together, our data demonstrates that specific targeting of a gp100 tumour antigen and the adjuvant MPLA to DC-SIGN-expressing DC enhances the uptake of peptide-containing liposomes, the activation of DC, and induces tumour antigen-specific CD8(+) T cell responses. These data demonstrate that adjuvant-containing glycoliposome-based vaccines targeting DC-SIGN(+) DC represent a powerful new approach for CD8(+) T cell activation.
Collapse
Affiliation(s)
- Martine A Boks
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Sven C Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
120
|
te Riet J, Reinieren-Beeren I, Figdor CG, Cambi A. AFM force spectroscopy reveals how subtle structural differences affect the interaction strength betweenCandida albicansand DC-SIGN. J Mol Recognit 2015; 28:687-98. [DOI: 10.1002/jmr.2481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Joost te Riet
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology; Radboud Institute for Molecular Life Sciences, Radboud UMC; P.O. Box 9101 6500HB Nijmegen The Netherlands
| |
Collapse
|
121
|
Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G, Dell A, Haslam S, Lloyd KA, Moore SC, Sandlie I, Blundell PA, Pleass RJ. Developing the IVIG biomimetic, hexa-Fc, for drug and vaccine applications. Sci Rep 2015; 5:9526. [PMID: 25912958 PMCID: PMC5224519 DOI: 10.1038/srep09526] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/26/2015] [Indexed: 12/20/2022] Open
Abstract
The remarkable clinical success of Fc-fusion proteins has driven intense investigation for even more potent replacements. Using quality-by-design (QbD) approaches, we generated hexameric-Fc (hexa-Fc), a ~20 nm oligomeric Fc-based scaffold that we here show binds low-affinity inhibitory receptors (FcRL5, FcγRIIb, and DC-SIGN) with high avidity and specificity, whilst eliminating significant clinical limitations of monomeric Fc-fusions for vaccine and/or cancer therapies, in particular their poor ability to activate complement. Mass spectroscopy of hexa-Fc reveals high-mannose, low-sialic acid content, suggesting that interactions with these receptors are influenced by the mannose-containing Fc. Molecular dynamics (MD) simulations provides insight into the mechanisms of hexa-Fc interaction with these receptors and reveals an unexpected orientation of high-mannose glycans on the human Fc that provides greater accessibility to potential binding partners. Finally, we show that this biosynthetic nanoparticle can be engineered to enhance interactions with the human neonatal Fc receptor (FcRn) without loss of the oligomeric structure, a crucial modification for these molecules in therapy and/or vaccine strategies where a long plasma half-life is critical.
Collapse
Affiliation(s)
- Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Jan Terje Andersen
- Centre for Immune Regulation (CIR) and Department of Immunology, Oslo University Hospital Rikshospitalet, P.O. Box 4956, Oslo N-0424, Norway
| | - Anja Fuchs
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy J Wilson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David Mekhaiel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jianfeng He
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Zhifeng Shao
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 P. R. China
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry CV2 2DX, UK
| | - Gang Wu
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Stuart Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7
| | - Katy A Lloyd
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Shona C Moore
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Inger Sandlie
- 1] Centre for Immune Regulation (CIR) and Department of Immunology, Oslo University Hospital Rikshospitalet, P.O. Box 4956, Oslo N-0424, Norway [2] CIR and Department of Biosciences, University of Oslo, N-0316 Oslo, Norway
| | - Patricia A Blundell
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Richard J Pleass
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
122
|
Lectins from opportunistic bacteria interact with acquired variable-region glycans of surface immunoglobulin in follicular lymphoma. Blood 2015; 125:3287-96. [PMID: 25784678 DOI: 10.1182/blood-2014-11-609404] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
B-cell antigen receptor (BCR) expression is a key feature of most B-cell lymphomas, but the mechanisms of BCR signal induction and the involvement of autoantigen recognition remain unclear. In follicular lymphoma (FL) B cells, BCR expression is retained despite a chromosomal translocation that links the antiapoptotic gene BCL2 to the regulatory elements of immunoglobulin genes, thereby disrupting 1 heavy-chain allele. A remarkable feature of FL-BCRs is the acquisition of potential N-glycosylation sites during somatic hypermutation. The introduced glycans carry mannose termini, which create potential novel binding sites for mannose-specific lectins. Here, we investigated the effect of N-linked variable-region glycosylation for BCR interaction with cognate antigen and with lectins of different origins. N-glycans were found to severely impair BCR specificity and affinity to the initial cognate antigen. In addition, we found that lectins from Pseudomonas aeruginosa and Burkholderia cenocepacia bind and stimulate FL cells. Human exposure to these bacteria can occur by contact with soil and water. In addition, they represent opportunistic pathogens in susceptible hosts. Understanding the role of bacterial lectins might elucidate the pathogenesis of FL and establish novel therapeutic approaches.
Collapse
|
123
|
El-Awady AR, Miles B, Scisci E, Kurago ZB, Palani CD, Arce RM, Waller JL, Genco CA, Slocum C, Manning M, Schoenlein PV, Cutler CW. Porphyromonas gingivalis evasion of autophagy and intracellular killing by human myeloid dendritic cells involves DC-SIGN-TLR2 crosstalk. PLoS Pathog 2015; 10:e1004647. [PMID: 25679217 PMCID: PMC4352937 DOI: 10.1371/journal.ppat.1004647] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022] Open
Abstract
Signaling via pattern recognition receptors (PRRs) expressed on professional antigen presenting cells, such as dendritic cells (DCs), is crucial to the fate of engulfed microbes. Among the many PRRs expressed by DCs are Toll-like receptors (TLRs) and C-type lectins such as DC-SIGN. DC-SIGN is targeted by several major human pathogens for immune-evasion, although its role in intracellular routing of pathogens to autophagosomes is poorly understood. Here we examined the role of DC-SIGN and TLRs in evasion of autophagy and survival of Porphyromonas gingivalis in human monocyte-derived DCs (MoDCs). We employed a panel of P. gingivalis isogenic fimbriae deficient strains with defined defects in Mfa-1 fimbriae, a DC-SIGN ligand, and FimA fimbriae, a TLR2 agonist. Our results show that DC-SIGN dependent uptake of Mfa1+P. gingivalis strains by MoDCs resulted in lower intracellular killing and higher intracellular content of P. gingivalis. Moreover, Mfa1+P. gingivalis was mostly contained within single membrane vesicles, where it survived intracellularly. Survival was decreased by activation of TLR2 and/or autophagy. Mfa1+P. gingivalis strain did not induce significant levels of Rab5, LC3-II, and LAMP1. In contrast, P. gingivalis uptake through a DC-SIGN independent manner was associated with early endosomal routing through Rab5, increased LC3-II and LAMP-1, as well as the formation of double membrane intracellular phagophores, a characteristic feature of autophagy. These results suggest that selective engagement of DC-SIGN by Mfa-1+P. gingivalis promotes evasion of antibacterial autophagy and lysosome fusion, resulting in intracellular persistence in myeloid DCs; however TLR2 activation can overcome autophagy evasion and pathogen persistence in DCs. Among the most successful of human microbes are intracellular pathogens. By entering the intracellular milieu, these pathogens are protected from harsh environmental factors in the host, including the humoral and cellular immune responses. Porphyromonas gingivalis is an opportunistic pathogen that colonizes the oral mucosa and accesses the bloodstream and distant sites such as the blood vessel walls, brain, placenta and other organs. Still unclear is how P. gingivalis traverses from oral mucosa to these distant sites. Dendritic cells are highly migratory antigen presenting cells that “patrol” the blood, skin, mucosa and all the major organ systems. Capture of microbes by dendritic cells activates a tightly regulated series of events, including directed migration towards the secondary lymphoid organs, where processed antigens are ostensibly presented to T cells. Autophagy is now recognized as an integral component of microbial clearance, antigen processing and presentation by dendritic cells. We report here that P. gingivalis is able to subvert autophagic destruction within dendritic cells. This occurs through its glycoprotein fimbriae, called Mfa-1, which targets the C-type lectin DC-SIGN on dendritic cells. The other major fimbriae on P. gingivalis, FimA, targets TLR2, which promotes autophagic destruction of P. gingivalis. We conclude that DC-SIGN-TLR2 crosstalk determines the intracellular fate of this pathogen within dendritic cells, and may have profound implications for the treatment of many chronic diseases involving low-grade infections.
Collapse
Affiliation(s)
- Ahmed R. El-Awady
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Brodie Miles
- Department of Medicine, University of Colorado, Aurora, Colorado, United States of America
| | - Elizabeth Scisci
- School of Dental Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Zoya B. Kurago
- Department of Oral Health and Diagnostic Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Chithra D. Palani
- Department of Oral Health and Diagnostic Sciences, Georgia Regents University, Augusta, Georgia, United States of America
| | - Roger M. Arce
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jennifer L. Waller
- Department of Biostatistics and Epidemiology, Georgia Regents University, Augusta, Georgia, United States of America
| | - Caroline A. Genco
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Connie Slocum
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew Manning
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
| | - Patricia V. Schoenlein
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, Georgia, United States of America
| | - Christopher W. Cutler
- Department of Periodontics, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
124
|
Human lectins and their roles in viral infections. Molecules 2015; 20:2229-71. [PMID: 25642836 PMCID: PMC6272597 DOI: 10.3390/molecules20022229] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/20/2022] Open
Abstract
Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
Collapse
|
125
|
Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 2015; 4:187. [PMID: 25629008 PMCID: PMC4290680 DOI: 10.3389/fcimb.2014.00187] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope of Mycobacterium tuberculosis and related human pathogens. It reproduces several salient properties of M. tuberculosis in phagocytic cells, including inhibition of pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and inhibition of apoptosis as well as autophagy. In this review, we present our current knowledge on lipoarabinomannan structure and ability to manipulate the endocytic pathway as well as phagocyte functions. A special focus is put on the molecular mechanisms employed and the signaling pathways hijacked. Available information is discussed in the context of M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| |
Collapse
|
126
|
Fayssel N, Bensghir R, Ouladlahsen A, Abdelghaffar H, Sodqi M, Lahlou K, Benjelloun S, Marhoum El Filali K, Ezzikouri S, Wakrim L. Association of CD209L tandem repeats polymorphism with susceptibility to human immunodeficiency virus-1 infection, disease progression, and treatment outcomes: a Moroccan cohort study. Clin Microbiol Infect 2014; 21:513.e1-5. [PMID: 25656622 DOI: 10.1016/j.cmi.2014.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023]
Abstract
In order to investigate the association between length variation of the CD209L neck region and human immunodeficiency virus (HIV)-1 susceptibility, disease progression, and treatment response outcomes, we genotyped 139 HIV-1-seropositive and 109 seronegative individuals. The heterozygous genotype 6/5 showed a significant increased risk of HIV-1 infection (OR 3.03, 95% CI 0.99-9.33, p 0.046). Moreover, after highly active antiretroviral therapy (HAART), HIV-1-seropositive individuals carrying the 6/5, 7/5 and 7/7 genotypes and alleles 5, 6 and 7 showed good CD4(+) T-cell recovery. In addition, individuals with the 7/5, 6/6 and 7/7 genotypes showed a significant decrease in viral load during the treatment period as compared with baseline (p < 0.05). Interestingly, we found that alleles 4 and 6 were associated with protection against AIDS progression. D209L variation may influence susceptibility to HIV-1, response to treatment, and disease progression.
Collapse
Affiliation(s)
- N Fayssel
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - R Bensghir
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - A Ouladlahsen
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - H Abdelghaffar
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - M Sodqi
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - K Lahlou
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - S Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | - K Marhoum El Filali
- Laboratoire de Biochimie, Environnement & Agroalimentaire, Université Hassan II, Facultédes Sciences et Techniques, Mohammedia-Casablanca, Morocco
| | - S Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| | - L Wakrim
- Virology Unit, Immunovirology Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco.
| |
Collapse
|
127
|
Chang JR, Song EH, Nakatani-Webster E, Monkkonen L, Ratner DM, Catalano CE. Phage lambda capsids as tunable display nanoparticles. Biomacromolecules 2014; 15:4410-9. [PMID: 25319793 DOI: 10.1021/bm5011646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanoparticle technologies provide a powerful tool for the development of reagents for use in both therapeutic and diagnostic, or "theragnostic" biomedical applications. Two broad classes of particles are under development, viral and synthetic systems, each with their respective strengths and limitations. Here we adapt the phage lambda system to construct modular "designer" nanoparticles that blend these two approaches. We have constructed a variety of modified "decoration" proteins that allow site-specific modification of the shell with both protein and nonproteinaceous ligands including small molecules, carbohydrates, and synthetic display ligands. We show that the chimeric proteins can be used to simultaneously decorate the shell in a tunable surface density to afford particles that are physically homogeneous and that can be manufactured to display a variety of ligands in a defined composition. These designer nanoparticles set the stage for development of lambda as a theragnostic nanoparticle system.
Collapse
Affiliation(s)
- Jenny R Chang
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington H-172, Health Sciences Building, Box 357610, Seattle, Washington 98195-7610, United States
| | | | | | | | | | | |
Collapse
|
128
|
Carbohydrate-dependent binding of langerin to SodC, a cell wall glycoprotein of Mycobacterium leprae. J Bacteriol 2014; 197:615-25. [PMID: 25422308 DOI: 10.1128/jb.02080-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Langerhans cells participate in the immune response in leprosy by their ability to activate T cells that recognize the pathogen, Mycobacterium leprae, in a langerin-dependent manner. We hypothesized that langerin, the distinguishing C-type lectin of Langerhans cells, would recognize the highly mannosylated structures in pathogenic Mycobacterium spp. The coding region for the extracellular and neck domain of human langerin was cloned and expressed to produce a recombinant active trimeric form of human langerin (r-langerin). Binding assays performed in microtiter plates, by two-dimensional (2D) Western blotting, and by surface plasmon resonance demonstrated that r-langerin possessed carbohydrate-dependent affinity to glycoproteins in the cell wall of M. leprae. This lectin, however, yielded less binding to mannose-capped lipoarabinomannan (ManLAM) and even lower levels of binding to phosphatidylinositol mannosides. However, the superoxide dismutase C (SodC) protein of the M. leprae cell wall was identified as a langerin-reactive ligand. Tandem mass spectrometry verified the glycosylation of a recombinant form of M. leprae SodC (rSodC) produced in Mycobacterium smegmatis. Analysis of r-langerin affinity by surface plasmon resonance revealed a carbohydrate-dependent affinity of rSodC (equilibrium dissociation constant [KD] = 0.862 μM) that was 20-fold greater than for M. leprae ManLAM (KD = 18.69 μM). These data strongly suggest that a subset of the presumptively mannosylated M. leprae glycoproteins act as ligands for langerin and may facilitate the interaction of M. leprae with Langerhans cells.
Collapse
|
129
|
García-Vallejo JJ, Unger WWJ, Kalay H, van Kooyk Y. Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncoimmunology 2014; 2:e23040. [PMID: 23525136 PMCID: PMC3601176 DOI: 10.4161/onci.23040] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In vivo dendritic-cell targeting constitutes a promising strategy for anticancer vaccination. Here, we discuss the usage of multivalent DC-SIGN-targeting glycan platforms that allow for the efficient routing of antigens to the endo-lysosomal pathway as well as to a yet uncharacterized cross-presentation mechanism inducing CD4+ and CD8+ T-cell responses.
Collapse
Affiliation(s)
- Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology; VU University Medical Center; Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
130
|
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition. Front Cell Infect Microbiol 2014; 4:145. [PMID: 25353009 PMCID: PMC4196476 DOI: 10.3389/fcimb.2014.00145] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides such as α- and β-glucans, chitin, and glycoproteins extensively modified with both N- and O-linked carbohydrates are the major components of fungal surfaces. The fungal cell wall is an excellent target for the action of antifungal agents, since most of its components are absent from mammalian cells. Recognition of these carbohydrate-containing molecules by the innate immune system triggers inflammatory responses and activation of microbicidal mechanisms by leukocytes. This review will discuss the structure of surface fungal glycoconjugates and polysaccharides and their recognition by innate immune receptors.
Collapse
Affiliation(s)
- Eliana Barreto-Bergter
- Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Rodrigo T Figueiredo
- Instituto de Ciências Biomédicas/Unidade de Xerém, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
131
|
Pederson K, Mitchell DA, Prestegard JH. Structural characterization of the DC-SIGN-Lewis(X) complex. Biochemistry 2014; 53:5700-9. [PMID: 25121780 PMCID: PMC4159204 DOI: 10.1021/bi5005014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is a C-type lectin highly expressed on the surface of antigen-presenting dendritic cells. DC-SIGN mediates interactions among dendritic cells, pathogens, and a variety of epithelia, myeloid cells, and endothelia by binding to high mannose residues on pathogenic invaders or fucosylated residues on the membranes of other immune cells. Although these interactions are normally beneficial, they can also contribute to disease. The structural characterization of binding geometries is therefore of interest as a basis for the construction of mimetics that can mediate the effects of abnormal immune response. Here, we report the structural characteristics of the interaction of the DC-SIGN carbohydrate recognition domain (CRD) with a common fucosylated entity, the Lewis(X) trisaccharide (Le(X)), using NMR methods. Titration of the monomeric DC-SIGN CRD with Le(X) monitored by 2D NMR revealed significant perturbations of DC-SIGN cross-peak positions in (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra and identified residues near the binding site. Additionally, saturation transfer difference (STD) and transferred nuclear Overhauser effect (trNOE) NMR experiments, using a tetrameric form of DC-SIGN, identified binding epitopes and bound conformations of the Le(X) ligand. The restraints derived from these multiple experiments were used to generate models for the binding of Le(X) to the DC-SIGN CRD. Ranking of the models based on the fit of model-based simulations of the trNOE data and STD buildup curves suggested conformations distinct from those seen in previous crystal structures. The new conformations offer insight into how differences between binding of Lewis(X) and mannose-terminated saccharides may be propagated.
Collapse
Affiliation(s)
- Kari Pederson
- Complex Carbohydrate Research Center, University of Georgia , Athens, Georgia 30602, United States
| | | | | |
Collapse
|
132
|
Rauen J, Kreer C, Paillard A, van Duikeren S, Benckhuijsen WE, Camps MG, Valentijn ARPM, Ossendorp F, Drijfhout JW, Arens R, Burgdorf S. Enhanced cross-presentation and improved CD8+ T cell responses after mannosylation of synthetic long peptides in mice. PLoS One 2014; 9:e103755. [PMID: 25137039 PMCID: PMC4138033 DOI: 10.1371/journal.pone.0103755] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/02/2014] [Indexed: 11/18/2022] Open
Abstract
The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells. MR-mediated internalization targeted the mannosylated SLPs into early endosomes, from where they were cross-presented very efficiently compared to non-mannosylated SLPs. The influence of SLP mannosylation was specific for cross-presentation, as no influence on MHC II-restricted presentation was observed. Additionally, we showed that vaccination of mice with mannosylated SLPs containing epitopes from either ovalbumin or HPV E7 resulted in enhanced proliferation and activation of antigen-specific CD8+ T cells. These findings demonstrate that mannosylation of SLPs augments the induction of a cytotoxic T cell response in vitro and in vivo and might be a promising approach to induce cytotoxic T cell responses in e.g. cancer therapy and anti-viral immunity.
Collapse
Affiliation(s)
- Judith Rauen
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christoph Kreer
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Arlette Paillard
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Suzanne van Duikeren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Willemien E. Benckhuijsen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Marcel G. Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - A. Rob P. M. Valentijn
- Department of Bio-organic Synthesis, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan W. Drijfhout
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Sven Burgdorf
- Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
133
|
Abstract
Dengue virus (DENV) is an emerging mosquito-borne human pathogen that affects millions of individuals each year by causing severe and potentially fatal syndromes. Despite intense research efforts, no approved vaccine or antiviral therapy is yet available. Overcoming this limitation requires detailed understanding of the intimate relationship between the virus and its host cell, providing the basis to devise optimal prophylactic and therapeutic treatment options. With the advent of novel high-throughput technologies including functional genomics, transcriptomics, proteomics, and lipidomics, new important insights into the DENV replication cycle and the interaction of this virus with its host cell have been obtained. In this chapter, we provide a comprehensive overview on the current status of the DENV research field, covering every step of the viral replication cycle with a particular focus on virus-host cell interaction. We will also review specific chemical inhibitors targeting cellular factors and processes of relevance for the DENV replication cycle and their possible exploitation for the development of next generation antivirals.
Collapse
|
134
|
Nasr N, Lai J, Botting RA, Mercier SK, Harman AN, Kim M, Turville S, Center RJ, Domagala T, Gorry PR, Olbourne N, Cunningham AL. Inhibition of two temporal phases of HIV-1 transfer from primary Langerhans cells to T cells: the role of langerin. THE JOURNAL OF IMMUNOLOGY 2014; 193:2554-64. [PMID: 25070850 DOI: 10.4049/jimmunol.1400630] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epidermal Langerhans cells (eLCs) uniquely express the C-type lectin receptor langerin in addition to the HIV entry receptors CD4 and CCR5. They are among the first target cells to encounter HIV in the anogenital stratified squamous mucosa during sexual transmission. Previous reports on the mechanism of HIV transfer to T cells and the role of langerin have been contradictory. In this study, we examined HIV replication and langerin-mediated viral transfer by authentic immature eLCs and model Mutz-3 LCs. eLCs were productively infected with HIV, whereas Mutz-3 LCs were not susceptible because of a lack of CCR5 expression. Two successive phases of HIV viral transfer to T cells via cave/vesicular trafficking and de novo replication were observed with eLCs as previously described in monocyte-derived or blood dendritic cells, but only first phase transfer was observed with Mutz-3 LCs. Langerin was expressed as trimers after cross-linking on the cell surface of Mutz-3 LCs and in this form preferentially bound HIV envelope protein gp140 and whole HIV particles via the carbohydrate recognition domain (CRD). Both phases of HIV transfer from eLCs to T cells were inhibited when eLCs were pretreated with a mAb to langerin CRD or when HIV was pretreated with a soluble langerin trimeric extracellular domain or by a CRD homolog. However, the langerin homolog did not inhibit direct HIV infection of T cells. These two novel soluble langerin inhibitors could be developed to prevent HIV uptake, infection, and subsequent transfer to T cells during early stages of infection.
Collapse
Affiliation(s)
- Najla Nasr
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Joey Lai
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Rachel A Botting
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Sarah K Mercier
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Andrew N Harman
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Min Kim
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Stuart Turville
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia
| | - Rob J Center
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Teresa Domagala
- Apollo Life Sciences Pty, Beaconsfield, New South Wales 2015, Australia
| | - Paul R Gorry
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; and
| | - Norman Olbourne
- Sydney Institute of Plastic and Reconstructive Surgery, Chatswood, New South Wales 2067, Australia
| | - Anthony L Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales 2145, Australia; University of Sydney, Sydney, New South Wales 2000, Australia;
| |
Collapse
|
135
|
da Silva RC, Cunha Tavares NDA, Moura R, Coelho A, Guimarães RL, Araújo J, Crovella S, Brandão LAC, Silva JDA. DC-SIGN polymorphisms are associated to type 1 diabetes mellitus. Immunobiology 2014; 219:859-65. [PMID: 25092567 DOI: 10.1016/j.imbio.2014.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/10/2014] [Accepted: 07/15/2014] [Indexed: 12/11/2022]
Abstract
Type I diabetes mellitus (T1DM) is an autoimmune disorder featured by raised glucoses levels. It has been hypothesised that raised glucose levels in T1DM might be recognised as PAMPs, leading to immune response by overloading the cell receptors for pathogens recognition. DC-SIGN is a transmembrane protein, present in dendritic cells (DC) and macrophages: it has an important role in inflammatory response and T cells activation. Notably, DC-SIGN activation and triggering of the immune response depend on the type of ligand, which may lead to a pro or anti-inflammatory pathway. In our association study, we analysed the SNPs rs4804803 (-336 A>G) and rs735239 (-871 A>G), both at DC-SIGN promoter region, in 210 T1DM patients and 157 healthy controls, also looking for a correlation with the age of onset of the disease. We found that the allele G and genotypes G/G and A/G of SNP-871 (rs735239), as well as the alleles G-G (rs735239-rs4804803) and genotypes combined AA-GG (rs735239-rs4804803) were associated with protection of T1DM development. We did not find association between these variations with the age of onset of the disease and the presence of other autoimmune disorders. Our results suggest that SNPs in DC-SIGN promoter region can be associated to protection for T1DM in the Northeast Brazilian population.
Collapse
Affiliation(s)
- Ronaldo Celerino da Silva
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Ronald Moura
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Antônio Coelho
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Rafael Lima Guimarães
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Jacqueline Araújo
- Pediatric Endocrinology Unit of Clinical Hospital, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sergio Crovella
- Department of Genetics, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Lucas André Cavalcanti Brandão
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil; Pathology Department, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - Jaqueline de Azevêdo Silva
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil.
| |
Collapse
|
136
|
Mitić N, Milutinović B, Janković M. CA-125 of fetal origin can act as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin. Cell Mol Biol Lett 2014; 19:249-61. [PMID: 24764143 PMCID: PMC6275607 DOI: 10.2478/s11658-014-0194-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 04/14/2014] [Indexed: 01/25/2023] Open
Abstract
CA-125 (coelomic epithelium-related antigen) forms the extracellular portion of transmembrane mucin 16 (MUC16). It is shed after proteolytic degradation. Due to structural heterogeneity, CA-125 ligand capacity and biological roles are not yet understood. In this study, we assessed CA-125 as a ligand for dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN), which is a C-type lectin showing specificity for mannosylated and fucosylated structures. It plays a role as a pattern recognition molecule for viral and bacterial glycans or as an adhesion receptor. We probed a human DC-SIGN-Fc chimera with CA-125 of fetal or cancer origin using solid- or fluid-phase binding and inhibition assays. The results showed that DC-SIGN binds to CA-125 of fetal origin and that this interaction is carbohydrate-dependent. By contrast, cancer-derived CA-125 displayed negligible binding. Inhibition assays indicated differences in the potency of CA-125 to interfere with DC-SIGN binding to pathogen-related glycoconjugates, such as mannan and Helicobacter pylori antigens. The differences in ligand properties between CA-125 of fetal and cancer origin may be due to specificities of glycosylation. This might influence various functions of dendritic cells based on their subset diversity and maturation-related functional capacity.
Collapse
Affiliation(s)
- Ninoslav Mitić
- Institute for the Application of Nuclear Energy, INEP, Department for Immunochemistry and Glycobiology, University of Belgrade, Banatska 31b, 11080, Zemun, Serbia,
| | | | | |
Collapse
|
137
|
Zhang Q, Su L, Collins J, Chen G, Wallis R, Mitchell DA, Haddleton DM, Becer CR. Dendritic Cell Lectin-Targeting Sentinel-like Unimolecular Glycoconjugates To Release an Anti-HIV Drug. J Am Chem Soc 2014; 136:4325-32. [DOI: 10.1021/ja4131565] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qiang Zhang
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Lu Su
- State
Key Laboratory of Molecular Engineering of Polymers, Ministry of Education
and Department of Macromolecular Science, Fudan University, 220
Handan Road, Shanghai 200433, China
| | - Jennifer Collins
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - Guosong Chen
- State
Key Laboratory of Molecular Engineering of Polymers, Ministry of Education
and Department of Macromolecular Science, Fudan University, 220
Handan Road, Shanghai 200433, China
| | - Russell Wallis
- Department
of Biochemistry, University of Leicester, LE1 9HN Leicester, United Kingdom
| | - Daniel A. Mitchell
- Clinical
Sciences Research Laboratories, Warwick Medical School, University of Warwick, CV2 2DX Coventry, United Kingdom
| | - David M. Haddleton
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7AL Coventry, United Kingdom
- School
of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
| |
Collapse
|
138
|
Monovalent mannose-based DC-SIGN antagonists: Targeting the hydrophobic groove of the receptor. Eur J Med Chem 2014; 75:308-26. [DOI: 10.1016/j.ejmech.2014.01.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 01/09/2023]
|
139
|
Adaptive immune activation: glycosylation does matter. Nat Chem Biol 2014; 9:776-84. [PMID: 24231619 DOI: 10.1038/nchembio.1403] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Major histocompatibility complex (MHC) class I and II are glycoproteins that can present antigenic peptides at the cell surface for recognition and activation of circulating T lymphocytes. Here, the importance of the modification of protein antigens by glycans on cellular uptake, proteolytic processing, presentation by MHC and subsequent T-cell priming is reviewed. Antigen glycosylation is important for a number of diseases and vaccine design. All of the key proteins involved in antigen recognition and the orchestration of downstream effector functions are glycosylated. The influence of protein glycosylation on immune function and disease is covered.
Collapse
|
140
|
Comparison of the carbohydrate preference of SIGNR1 as a phagocytic receptor with the preference as an adhesion molecule. Int Immunopharmacol 2014; 19:27-36. [PMID: 24434373 DOI: 10.1016/j.intimp.2013.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/28/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
C-type lectin receptors expressed on cell surfaces of antigen-presenting cells can serve as not only cell adhesion molecules but also as phagocytic receptors, and therefore, are potentially useful for antigen targeting for vaccination. In the present study, we compared the carbohydrate preference of the C-type lectin SIGNR1 as a cell adhesion molecule with that of SIGNR1 as a phagocytic receptor, using a series of neoglycolipids (NGLs) and the mouse macrophage-like cells stably expressing SIGNR1. When SIGNR1-mediated cell adhesion was assessed based on the binding of the cells to NGL-coated solid phases, the order of degree of cell adhesion was Le(b)-≈Le(a)-≈Le(x)-≥Man5->Man3-≥α1-3Man2->α1-6Man2-DPPE. By contrast, when SIGNR1-mediated phagocytosis was assessed based on the uptake of NGL-coated liposomes, the order of phagocytosis of the liposomes by the cells was Le(a)-≈Man3->Man5-≈α1-3Man2->Le(x)->Le(b)->α1-6Man2-DPPE. Collectively, SIGNR1 mediates cell adhesion to Lewis blood group antigen-containing NGL-coated solid phases more preferably than those coated with terminal mannose-containing NGLs, but mediates the phagocytosis of the Man3-DPPE- and Le(a)-DPPE-coated liposomes most preferably among the tested NGLs. Thus, the subtle carbohydrate preference of SIGNR1 on the cell surface is altered depending on the function, and the preferable carbohydrate for phagocytosis elucidated using NGL-coated liposomes might be used as the appropriate targeting signals for antigen delivery.
Collapse
|
141
|
Bernhard OK, Diefenbach RJ, Cunningham AL. New insights into viral structure and virus–cell interactions through proteomics. Expert Rev Proteomics 2014; 2:577-88. [PMID: 16097890 DOI: 10.1586/14789450.2.4.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although genomics techniques such as DNA microarrays have been widely used in virology, much more limited use has been made of proteomics. Although difficult, proteomics can greatly contribute to an understanding of virus-cell interactions, including the ternary structure of viral receptors at the cell surface, post-translational modifications and isoforms of critical viral and cellular proteins and even to the structure of viruses. Proteomics techniques also offer the potential for discovering markers for diagnostic and prognostic tests of viral infections in vivo. This review describes the use of several proteomic approaches for the analysis of HIV-cellular receptor interactions, the molecular mechanisms of transport of herpes simplex virus within neurons, and the structure of the tegument of herpes simplex virus.
Collapse
Affiliation(s)
- Oliver K Bernhard
- Joint ProteomicS Laboratory, The Ludwig Institute for Cancer Research & The Walter and Eliza Hall Institute for Medical Research, Royal Melbourne Hospital, Royal Parade, Parkville, VIC 3050, Australia.
| | | | | |
Collapse
|
142
|
Liu P, Wang X, Itano MS, Neumann AK, de Silva AM, Jacobson K, Thompson NL. Low copy numbers of DC-SIGN in cell membrane microdomains: implications for structure and function. Traffic 2013; 15:179-96. [PMID: 24313910 DOI: 10.1111/tra.12138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 12/17/2022]
Abstract
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC-SIGN, a C-type lectin, in membrane microdomains. DC-SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC-SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4-8 molecules of DC-SIGN, consistent with our preliminary super-resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (∼ 50 nm) pathogen, dengue virus, leading to infection of host cells.
Collapse
Affiliation(s)
- Ping Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7090, USA
| | | | | | | | | | | | | |
Collapse
|
143
|
Ezzikouri S, Rebbani K, Fakhir FZ, Alaoui R, Nadir S, Diepolder H, Thursz M, Khakoo SI, Benjelloun S. The allele 4 of neck region liver-lymph node-specific ICAM-3-grabbing integrin variant is associated with spontaneous clearance of hepatitis C virus and decrease of viral loads. Clin Microbiol Infect 2013; 20:O325-32. [PMID: 24283933 PMCID: PMC7129123 DOI: 10.1111/1469-0691.12403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/29/2013] [Accepted: 09/15/2013] [Indexed: 12/12/2022]
Abstract
L‐SIGN is a C‐type lectin expressed on liver sinusoidal endothelial cells involved in the capture of hepatitis C virus and trans‐infection of adjacent hepatocyte cells. The neck region of L‐SIGN is highly polymorphic, with three to nine tandem repeats of 23 residues. This polymorphism is associated with a number of infectious diseases, but has not been explored in HCV. We therefore investigated the impact of L‐SIGN neck region length variation on the outcome of HCV infection. We studied 322 subjects, 150 patients with persistent HCV infection, 63 individuals with spontaneous clearance and 109 healthy controls. In healthy subjects, we found a total of nine genotypes, with the 7/7 genotype being the most frequent (33%) followed by the 7/6 (22.9%) and the 7/5 (18.3%). The frequencies of the alleles were as follows: 7‐LSIGN (56.4%), 6‐LSIGN (20.2%), 5‐L‐SIGN (18.3%) and 4‐L‐SIGN (5%). The frequency of the 7/4 genotype was higher in spontaneous resolvers (14.3%) as compared with the persistent group (4%) (OR = 0.25, 95% CI = 0.07–0.82, p 0.022). In addition, we found that 4‐L‐SIGN was associated with spontaneous resolution of HCV infection (OR = 0.30, 95%CI, 0.12–0.74, p 0.005). Interestingly, patients with 4‐L‐SIGN had lower viral loads when compared with carriers of the 5 (p 0.001), 6 (p 0.021) and 7‐alleles (p 0.048). The results indicate that neck region polymorphism of L‐SIGN can influence the outcome of HCV infection and the four‐tandem repeat is associated with clearance of HCV infection.
Collapse
Affiliation(s)
- S Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Pasteur Institute of Morocco, Casablanca, Morocco
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Martinez MG, Bialecki MA, Belouzard S, Cordo SM, Candurra NA, Whittaker GR. Utilization of human DC-SIGN and L-SIGN for entry and infection of host cells by the New World arenavirus, Junín virus. Biochem Biophys Res Commun 2013; 441:612-617. [PMID: 24183720 PMCID: PMC4096786 DOI: 10.1016/j.bbrc.2013.10.106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022]
Abstract
The C-type lectins hDC-SIGN and hL-SIGN are important for entry of Junín arenavirus. hDC-SIGN and hL-SIGN substantially augment the use of transferrin receptor. hL-SIGN may act as a co-receptor for Junín arenavirus.
The target cell tropism of enveloped viruses is regulated by interactions between viral proteins and cellular receptors determining susceptibility at a host cell, tissue or species level. However, a number of additional cell-surface moieties can also bind viral envelope glycoproteins and could act as capture receptors, serving as attachment factors to concentrate virus particles on the cell surface, or to disseminate the virus infection to target organs or susceptible cells within the host. Here, we used Junín virus (JUNV) or JUNV glycoprotein complex (GPC)-pseudotyped particles to study their ability to be internalized by the human C-type lectins hDC- or hL-SIGN. Our results provide evidence that hDC- and hL-SIGN can mediate the entry of Junín virus into cells, and may play an important role in virus infection and dissemination in the host.
Collapse
Affiliation(s)
- M Guadalupe Martinez
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA.,Laboratorio de Virología, Departamento de Química Biológica IQUIBICEN - CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón II, Piso 4, 1428, Buenos Aires, Argentina
| | - Michele A Bialecki
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA
| | - Sandrine Belouzard
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA
| | - Sandra M Cordo
- Laboratorio de Virología, Departamento de Química Biológica IQUIBICEN - CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón II, Piso 4, 1428, Buenos Aires, Argentina
| | - Nélida A Candurra
- Laboratorio de Virología, Departamento de Química Biológica IQUIBICEN - CONICET. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Pabellón II, Piso 4, 1428, Buenos Aires, Argentina
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
145
|
Abstract
The C-type lectins DC-SIGN, DC-SIGNR and LSECtin are encoded by the lectin gene cluster on chromosome 19p13.3 and perform cell-adhesion and pathogen recognition functions on dendritic cells, liver cells and lymph node sinusoidal endothelial cells. DC-SIGN and DC-SIGNR share similar overall gene and protein molecule structures, and they exhibit high affinity for high-mannose carbohydrates. LSECtin, a Ca2+-dependent C-type lectin, interacts with mannose, NAcGlc and fucose. These lectins allow pathogen recognition (e.g., viruses, bacteria and allergens) and cell adhesion for dendritic and endothelial cells in different tissues, which may enhance the infection and facilitate the spread of those pathogens. A better understanding of these lectins may yield information about how pathogens are captured by particular cells and how they spread in different tissues. These studies would provide more detail about the physiopathological mechanisms of viral and bacterial infections and may also lead to new strategies to treat or prevent infections.
Collapse
Affiliation(s)
- Feng Zhang
- 1Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | | | | |
Collapse
|
146
|
Dynamic Micelles of Mannoside Glycolipids are more Efficient than Polymers for Inhibiting HIV-1 trans-Infection. Bioconjug Chem 2013; 24:1813-23. [DOI: 10.1021/bc4000806] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
147
|
Targeting antigens to dendritic cell receptors for vaccine development. JOURNAL OF DRUG DELIVERY 2013; 2013:869718. [PMID: 24228179 PMCID: PMC3817681 DOI: 10.1155/2013/869718] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/11/2013] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are highly specialized antigen presenting cells of the immune system which play a key role in regulating immune responses. Depending on the method of antigen delivery, DCs stimulate immune responses or induce tolerance. As a consequence of the dual function of DCs, DCs are studied in the context of immunotherapy for both cancer and autoimmune diseases. In vaccine development, a major aim is to induce strong, specific T-cell responses. This is achieved by targeting antigen to cell surface molecules on DCs that efficiently channel the antigen into endocytic compartments for loading onto MHC molecules and stimulation of T-cell responses. The most attractive cell surface receptors, expressed on DCs used as targets for antigen delivery for cancer and other diseases, are discussed.
Collapse
|
148
|
Feinberg H, Jégouzo SAF, Rowntree TJW, Guan Y, Brash MA, Taylor ME, Weis WI, Drickamer K. Mechanism for recognition of an unusual mycobacterial glycolipid by the macrophage receptor mincle. J Biol Chem 2013; 288:28457-65. [PMID: 23960080 PMCID: PMC3789947 DOI: 10.1074/jbc.m113.497149] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/16/2013] [Indexed: 12/31/2022] Open
Abstract
Binding of the macrophage lectin mincle to trehalose dimycolate, a key glycolipid virulence factor on the surface of Mycobacterium tuberculosis and Mycobacterium bovis, initiates responses that can lead both to toxicity and to protection of these pathogens from destruction. Crystallographic structural analysis, site-directed mutagenesis, and binding studies with glycolipid mimics have been used to define an extended binding site in the C-type carbohydrate recognition domain (CRD) of bovine mincle that encompasses both the headgroup and a portion of the attached acyl chains. One glucose residue of the trehalose Glcα1-1Glcα headgroup is liganded to a Ca(2+) in a manner common to many C-type CRDs, whereas the second glucose residue is accommodated in a novel secondary binding site. The additional contacts in the secondary site lead to a 36-fold higher affinity for trehalose compared with glucose. An adjacent hydrophobic groove, not seen in other C-type CRDs, provides a docking site for one of the acyl chains attached to the trehalose, which can be targeted with small molecule analogs of trehalose dimycolate that bind with 52-fold higher affinity than trehalose. The data demonstrate how mincle bridges between the surfaces of the macrophage and the mycobacterium and suggest the possibility of disrupting this interaction. In addition, the results may provide a basis for design of adjuvants that mimic the ability of mycobacteria to stimulate a response to immunization that can be employed in vaccine development.
Collapse
Affiliation(s)
- Hadar Feinberg
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Sabine A. F. Jégouzo
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | | | - Yue Guan
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Matthew A. Brash
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Maureen E. Taylor
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - William I. Weis
- From the Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305 and
| | - Kurt Drickamer
- the Department of Life Sciences, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
149
|
Abstract
The recent introduction of saturation transfer difference (STD) NMR has increased the tools for the study of protein–carbohydrate complexes. This is useful when it is combined with transfer nuclear Overhauser enhancement spectroscopy (NOESY) measurement, or when it is interpreted using the expected calculated values of transference, yielding additional, very valuable information for the study of this type of complex. The objective of this work is to cover the advances of the STD technique as exemplified by the investigations of DC-SIGN (dendritic cell-specific ICAM-3 grabbing non-integrin) recognition by simple carbohydrates or mimics of them, based on structures containing a terminal mannose or fucose. We also will discuss the methods for quantification of the STD values based on the initial growing rates with the saturation time.
Collapse
|
150
|
Prabagar MG, Choi HJ, Park JY, Loh S, Kang YS. Intravenous immunoglobulin-mediated immunosuppression and the development of an IVIG substitute. Clin Exp Med 2013; 14:361-73. [PMID: 23996469 DOI: 10.1007/s10238-013-0255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
Immunoglobulins are glycoproteins produced by the cells of the immune system. Their primary function is to protect the body from pathogenic infection. Moreover, a concentrated polyclonal mixture of immunoglobulin G (IgG), the so-called intravenous IgG (IVIG), has been used to treat various chronic and systemic disorders of the immune system. Studies on the effects of IVIG in autoimmune disease models have revealed that IgG Fc fragments confer protection against various autoimmune diseases. The identification of this IgG Fc immunomodulatory component is important for the development of IVIG substitutes. The focus of this review is to introduce one of the Fc regulatory entities and to provide a summary of the current knowledge of the putative general mechanisms underlying IVIG activity in vivo on the basis of these Fc fragments. We also address the recent insights into several approaches for the development of IVIG substitutes.
Collapse
Affiliation(s)
- Miglena G Prabagar
- Department of Biomedical Science and Technology, SMART Institute of Advanced Biomedical Science, Institute of Functional Genomics, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea
| | | | | | | | | |
Collapse
|