101
|
Musumeci D, Valente M, Capasso D, Palumbo R, Görlach M, Schmidtke M, Zell R, Roviello GN, Sapio R, Pedone C, Bucci EM. A short PNA targeting coxsackievirus B3 5'-nontranslated region prevents virus-induced cytolysis. J Pept Sci 2006; 12:161-70. [PMID: 16121332 DOI: 10.1002/psc.708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Targeting regulatory RNA regions to interfere with the biosynthesis of a protein is an intriguing alternative to targeting a protein itself. Regulatory regions are often unique in sequence and/or structure and, thus, ideally suited for specific recognition with a low risk of undesired side effects. Targeting regulatory RNA elements, however, is complicated by their complex three-dimensional structure, which poses kinetic and thermodynamic constraints to the recognition by a complementary oligonucleotide. Oligonucleotide mimics, which shift the thermodynamic equilibrium towards complex formation and yield stable complexes with a target RNA, can overcome this problem. Peptide nucleic acids (PNA) represent such a promising class of molecules. PNA are very stable, non-ionic compounds and they are not sensitive to enzymatic degradation. Yet, PNA form specific base pairs with a target sequence. We have designed, synthesised and characterised PNA able to enter infected cells and to bind specifically to a control region of the genomic RNA of coxsackievirus B3 (CVB3), which is an important human pathogen. The results obtained by studying the interaction of such PNA with their RNA target, the entrance into the cell and the viral inhibition are herein presented.
Collapse
|
102
|
Hudecz F, Bánóczi Z, Csík G. Medium-sized peptides as built in carriers for biologically active compounds. Med Res Rev 2006; 25:679-736. [PMID: 15952174 DOI: 10.1002/med.20034] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing number of oligopeptides of natural and/or synthetic origin have been described and considered as targeting structures for delivery bioactive compounds into various cell types. This review will outline the discovery of peptide sequences and the corresponding mid-sized oligopeptides with membrane translocating properties and also summarize de novo designed structures possessing similar features. Conjugates and chimera constructs derived from these sequences with covalently attached bioactive peptide, epitope, oligonucleotide, PNA, drug, reporter molecule will be reviewed. A brief note will refer to the present understanding on the uptake mechanism at the end of each section.
Collapse
Affiliation(s)
- Ferenc Hudecz
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 112, POB 32, Hungary H-1518. hudecz@szerves,chem.elte.hu
| | | | | |
Collapse
|
103
|
Kulyté A, Nekhotiaeva N, Awasthi SK, Good L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J Mol Microbiol Biotechnol 2006; 9:101-9. [PMID: 16319499 DOI: 10.1159/000088840] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense agents that inhibit genes at the mRNA level are attractive tools for genome-wide studies and drug target validation. The approach may be particularly well suited to studies of bacteria that are difficult to manipulate with standard genetic tools. Antisense peptide nucleic acids (PNA) with attached carrier peptides can inhibit gene expression in Escherichia coli and Staphylococcus aureus. Here we asked whether peptide-PNAs could mediate antisense effects in Mycobacterium smegmatis. We first targeted the gfp reporter gene and observed dose- and sequence-dependent inhibition at low micromolar concentrations. Sequence alterations within both the PNA and target mRNA sequences eliminated inhibition, strongly supporting an antisense mechanism of inhibition. Also, antisense PNAs with various attached peptides showed improved anti-gfp effects. Two peptide-PNAs targeted to the essential gene inhA were growth inhibitory and caused cell morphology changes that resemble that of InhA-depleted cells. Therefore, antisense peptide-PNAs can efficiently and specifically inhibit both reporter and endogenous essential genes in mycobacteria.
Collapse
Affiliation(s)
- Agné Kulyté
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | |
Collapse
|
104
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
105
|
Abstract
Nucleic acid-based RNA detection is a promising field in molecular biotechnology that is leading to the rapid and accurate identification of microorganisms, diagnosis of infections and imaging of gene expression. The specificity of short synthetic DNA probes raises the hope of distinguishing small differences in sequence, ultimately achieving single nucleotide resolution. Recent work using quenched fluorescently labeled oligonucleotide probes as sensors for RNA in bacterial and human cells has overcome several difficult hurdles on the way to these goals, including delivery of probes to live cells, accessing RNA sites containing a high degree of secondary structure, and eliminating many sources of background. Two new classes of quenched oligonucleotide probes, molecular beacons and quenched auto-ligation probes, have shown the most promise for in situ RNA detection. High-specificity detection, at the single-nucleotide resolution level, is now possible in solution with these classes of probes. However, for applications in intact cells, signal and background issues still need to be addressed before the full potential of these methods is achieved.
Collapse
Affiliation(s)
- Adam P Silverman
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
106
|
Dryselius R, Nekhotiaeva N, Good L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J Antimicrob Chemother 2005; 56:97-103. [PMID: 15914490 DOI: 10.1093/jac/dki173] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The few available distinct classes of antimicrobials limits the scope for single and combination drug treatment of resistant infections. OBJECTIVE To evaluate antimicrobial effectiveness from combinations of protein-specific drugs and mRNA-specific antisense inhibitors. METHODS Interactions between conventional antimicrobial drugs and mRNA-specific translation inhibiting antisense peptide nucleic acids were assessed in Escherichia coli and Staphylococcus aureus cultures using pairwise combinations in a chequerboard arrangement. Fractional inhibitory concentration indices (FICIs) were calculated and grouped according to the functional relationship between the inhibitor targets. Antisense specificity controls included different antisense sequences targeting the same mRNA, as well as biochemical quantification of active protein expressed from the essential fabI gene and from the lacZ reporter gene after single and combined inhibitor treatment. RESULTS FICIs were higher for inhibitor combinations with unrelated targets than for combinations with functionally related targets. Inhibitor combinations with shared genetic targets displayed the lowest FICIs, with several qualifying for the conservative definition of antimicrobial synergy (FICI < or = 0.5). Furthermore, low FICIs arise as the hyperbolic dose-response curves for each separate inhibitor are maintained in combination. CONCLUSION Interactions between mRNA- and protein-level inhibitors with the same genetic target can be synergistic and may provide a strategy to improve antimicrobial efficacy, facilitate drug mechanism of action studies and aid the search for new antimicrobials.
Collapse
Affiliation(s)
- Rikard Dryselius
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
107
|
Mäe M, Myrberg H, Jiang Y, Paves H, Valkna A, Langel U. Internalisation of cell-penetrating peptides into tobacco protoplasts. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1669:101-7. [PMID: 15893512 DOI: 10.1016/j.bbamem.2005.01.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Accepted: 01/12/2005] [Indexed: 11/29/2022]
Abstract
Cells are protected from the surrounding environment by plasma membrane which is impenetrable for most hydrophilic molecules. In the last 10 years cell-penetrating peptides (CPPs) have been discovered and developed. CPPs enter mammalian cells and carry cargo molecules over the plasma membrane with a molecular weight several times their own. Known transformation methods for plant cells have relatively low efficiency and require improvement. The possibility to use CPPs as potential delivery vectors for internalisation in plant cells has been studied in the present work. We analyse and compare the uptake of the fluorescein-labeled CPPs, transportan, TP10, penetratin and pVEC in Bowes human melanoma cells and Nicotiana tabacum cultivar (cv.) SR-1 protoplasts (plant cells without cell wall). We study the internalisation efficiency of CPPs with fluorescence microscopy, spectrofluorometry and fluorescence-activated cell sorter (FACS). All methods indicate, for the first time, that these CPPs can internalise into N. tabacum cv. SR-1 protoplasts. Transportan has the highest uptake efficacy among the studied peptides, both in mammalian cells and plant protoplast. The internalisation of CPPs by plant protoplasts may open up a new effective method for transfection in plants.
Collapse
Affiliation(s)
- Maarja Mäe
- Department of Neurochemistry and Neurotoxicology, Stockholm University, Svante Arrhenius väg 21A, SE-106 91 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
108
|
Nekhotiaeva N, Awasthi SK, Nielsen PE, Good L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol Ther 2005; 10:652-9. [PMID: 15451449 DOI: 10.1016/j.ymthe.2004.07.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/07/2004] [Indexed: 01/21/2023] Open
Abstract
Gene function studies in bacteria lag behind progress in genome sequencing, in part because current reverse genetics technology based on genome disruption does not allow subtle control of gene expression for all genes in a range of species. Essential genes and clustered regions are particularly problematic. Antisense technology offers an attractive alternative for microbial genomics. Unfortunately, bacteria lack RNAi mechanisms and conventional oligonucleotides are not taken up efficiently. However, in Escherichia coli, efficient and gene-specific antisense knock down is possible using antisense peptide nucleic acids (PNAs) attached to carrier peptides (KFFKFFKFFK). Carrier peptides can enter a range of microbial species, and in this study we asked whether peptide-PNAs could mediate antisense effects in Staphylococcus aureus. Using low micromolar concentrations we observed dose- and sequence-dependent inhibition of the reporter gene gfp and endogenous gene phoB. Also, antisense peptide-PNAs targeted to the essential genes fmhB, gyrA, and hmrB were growth inhibitory. Control peptide-PNAs were much less effective, and sequence alterations within the PNA and target mRNA sequences reduced or eliminated inhibition. Further development is needed to raise the antibacterial potential of PNAs, but the present results show that the approach can be used to study gene function and requirement in this important pathogen.
Collapse
Affiliation(s)
- Natalia Nekhotiaeva
- Center for Genomics and Bioinformatics, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
109
|
Ni Y, Chen RR. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng 2005; 87:804-11. [PMID: 15329939 DOI: 10.1002/bit.20202] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Whole-cell biocatalysts are preferred in many biocatalysis applications. However, due to permeability barriers imposed by cell envelopes, whole-cell catalyzed reactions are reportedly 10-100-fold slower than reactions catalyzed by free enzymes. In this study, we accelerated whole-cell biocatalysis by reducing the membrane permeability barrier using molecular engineering approaches. Escherichia coli cells with genetically altered outer membrane structures were used. Specifically, a lipopolysaccarides mutant SM101 and a Braun's lipoprotein mutant E609L were used along with two model substrates that differ substantially in size and hydrophobicity, nitrocefin, and a tetrapeptide N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The reduction of the outer membrane permeability by genetic methods led to significant increases (up to 380%) in reaction rates of whole-cell catalyzed reactions. The magnitude of increase in biocatalysis rates was dependent on the substrates and on the nature of mutations introduced in the outer membrane structure. Notably, mutations in outer membrane can render the outer membrane completely permeable to one substrate, a barrierless condition that maximizes the reaction rate. The impact of the mutations introduced on the permeability barrier of the membranes was compared to the impact of polymixin B nonapeptide, a known potent permeabilizer acting on lipopolysaccharides. Our results suggest that genetic modifications to enhance the permeability of hydrophilic molecules should target the Lipid A region. However, strategies other than reduction of Lipid A synthesis should be considered. As we have demonstrated with tetrapeptide, membrane engineering can be much more effective in reducing a permeability barrier than are exogenous permeabilizers. This work, to our knowledge, is the first use of a molecular membrane engineering approach to address substrate permeability limitations encountered in biocatalysis applications.
Collapse
Affiliation(s)
- Ye Ni
- Chemical Engineering Department, Virginia Commonwealth University, 601 W. Main St., Richmond 23284-3028, USA
| | | |
Collapse
|
110
|
|
111
|
Oehlke J, Lorenz D, Wiesner B, Bienert M. Studies on the cellular uptake of substance P and lysine-rich, KLA-derived model peptides. J Mol Recognit 2005; 18:50-9. [PMID: 15386618 DOI: 10.1002/jmr.691] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the last decade many peptides have been shown to be internalized into various cell types by different, poorly characterized mechanisms. This review focuses on uptake studies with substance P (SP) aimed at unravelling the mechanism of peptide-induced mast cell degranulation, and on the characterization of the cellular uptake of designed KLA-derived model peptides. Studies on structure-activity relationships and receptor autoradiography failed to detect specific peptide receptors for the undecapeptide SP on mast cells. In view of these findings, a direct interaction of cationic peptides with heterotrimeric G proteins without the participation of a receptor has been proposed. Such a process would require insertion into and translocation of peptides across the plasma membrane. In order to clarify whether a transport of cationic peptides into rat peritoneal mast cells is possible, transport studies were performed by confocal laser scanning microscopy (CLSM) using fluorescence-labeled Arg(3),Orn(7)-SP and its D-amino acid analog, all-D-Arg(3),Orn(7)-SP, as well as by electron microscopic autoradiography using (3)H-labelled SP and (125)I-labelled all-D-SP. The results obtained by CLSM directly showed translocation of SP peptides into pertussis toxin-treated cells. Kinetic experiments indicated that the translocation process was rapid, occurring within a few seconds. Mast cell degranulation induced by analog of magainin 2 amide, neuropeptide Y and the model peptide acetyl-KLALKLALKALKAALKLA-amide was also found to be very fast, pointing to an extensive translocation of the peptides. In order to learn more about structural requirements for the cellular uptake of peptides, the translocation behavior of a set of systematically modified KLA-based model peptides has been studied in detail. By two different protocols for determining the amount of internalized peptide, evidence was found that the structure of the peptides only marginally affects their uptake, whereas the efflux of cationic, amphipathic peptides is strikingly diminished, thus allowing their enrichment within the cells. Although the mechanism of cellular uptake, consisting of energy-dependent and -independent contributions, is not well understood, KLA-derived peptides have been shown to deliver various cargos (PNAs, peptides) into cells. The results obtained with SP- and KLA-derived peptides are discussed in the context of the current literature.
Collapse
Affiliation(s)
- Johannes Oehlke
- Institute of Molecular Pharmacology, 13125 Berlin-Buch, Germany
| | | | | | | |
Collapse
|
112
|
Abstract
Peptide nucleic acids (PNA) are deoxyribonucleic acid (DNA) mimics with a pseudopeptide backbone. PNA is an extremely good structural mimic of DNA (or of ribonucleic acid [RNA]), and PNA oligomers are able to form very stable duplex structures with Watson-Crick complementary DNA and RNA (or PNA) oligomers, and they can also bind to targets in duplex DNA by helix invasion. Therefore, these molecules are of interest in many areas of chemistry, biology, and medicine, including drug discovery, genetic diagnostics, molecular recognition, and the origin of life. Recent progress in studies of PNA properties and applications is reviewed.
Collapse
Affiliation(s)
- Peter E Nielsen
- Center for Biomolecular Recognition, IMBG, The Panum Institute, University of Copenhagen, Blegdamsvej 3C, Copenhagen DK-2200N, Denmark.
| |
Collapse
|
113
|
Dryselius R, Aswasti SK, Rajarao GK, Nielsen PE, Good L. The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides 2004; 13:427-33. [PMID: 15025910 DOI: 10.1089/154545703322860753] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Antisense peptide nucleic acids (PNA) can inhibit bacterial gene expression with gene and sequence specificity. Using attached carrier peptides that aid cell permeation, the antisense effects when targeting essential genes are sufficient to prevent growth and even kill bacteria. However, many design uncertainties remain, including the difficult question of target sequence selection. In this study, we synthesized 90 antisense peptide-PNAs to target sequences in a head to tail manner across the entire length of the mRNA encoding beta-lactamase. The results from this scan pointed to the start codon region as most sensitive to inhibition. To confirm and refine the result, a higher-resolution scan was conducted over the start codon region of the beta-lactamase gene and the essential Escherichia coli acpP gene. For both genes, the start codon region, including the Shine-Dalgarno motif, was sensitive, whereas antisense agents targeted outside of this region were largely ineffective. These results are in accord with natural antisense mechanisms, which typically hinder the start codon region, and the sensitivity of this region should hold true for most bacterial genes as well as for other RNase H-independent antisense agents that rely on a steric blocking mechanism. Therefore, although other design parameters are also important, the start codon region in E. coli mRNA is the most reliable target site for antisense PNAs.
Collapse
Affiliation(s)
- Rikard Dryselius
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
114
|
Abstract
Cell membranes act as protective walls to exclude most molecules that are not actively imported by living cells. This is an efficient way for a cell to prevent uncontrolled influx or efflux of solutes, which otherwise would be harmful to it. Only compounds within a narrow range of molecular size, polarity and net charge are able to diffuse effectively through cell membranes. In order to overcome this barrier for effective delivery of membrane-impermeable molecules, several chemical and physical methods have been developed. These methods, e.g. electroporation, and more recent methods as cationic lipids/liposomes, have been shown to be effective for delivering hydrophobic macromolecules. The drawbacks of these harsh methods are, primarily, the unwanted cellular effects exerted by them, and, secondly, their limitation to in vitro applications. The last decade's discovery of cell-penetrating peptides translocating themselves across cell membranes of various cell lines, along with a cargo 100-fold their own size, via a seemingly energy-independent process, opens up the possibility for efficient delivery of DNA, antisense peptide nucleic acids, oligonucleotides, proteins and small molecules into cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Pontus Lundberg
- Department of Neurochemistry and Neurotoxicology, Svante Arrhenius väg 21A, Stockholm University, S-10691 Stockholm, Sweden.
| | | |
Collapse
|
115
|
Sarno R, Ha H, Weinsetel N, Tolmasky ME. Inhibition of aminoglycoside 6'-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides. Antimicrob Agents Chemother 2004; 47:3296-304. [PMID: 14506044 PMCID: PMC201158 DOI: 10.1128/aac.47.10.3296-3304.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amikacin has been very useful in the treatment of infections caused by multiresistant bacteria because it is refractory to the actions of most modifying enzymes. However, the spread of AAC(6')-I-type acetyltransferases, enzymes capable of catalyzing inactivation of amikacin, has rendered this antibiotic all but useless in some parts of the world. The aminoglycoside 6'-N-acetyltransferase type Ib, which is coded for by the aac(6')-Ib gene, mediates resistance to amikacin and other aminoglycosides. RNase H mapping and computer prediction of the secondary structure led to the identification of five regions accessible for interaction with antisense oligodeoxynucleotides in the aac(6')-Ib mRNA. Oligodeoxynucleotides targeting these regions could bind to native mRNA with different efficiencies and mediated RNase H digestion. Selected oligodeoxynucleotides inhibited AAC(6')-Ib synthesis in cell-free coupled transcription-translation assays. After their introduction into an Escherichia coli strain harboring aac(6')-Ib by electroporation, some of these oligodeoxynucleotides decreased the level of resistance to amikacin. Our results indicate that use of antisense compounds could be a viable strategy to preserve the efficacies of existing antibiotics to which bacteria are becoming increasingly resistant.
Collapse
MESH Headings
- Acetyltransferases/antagonists & inhibitors
- Acetyltransferases/genetics
- Acetyltransferases/metabolism
- Amikacin/pharmacology
- Base Sequence
- Binding Sites
- Cell-Free System
- Colony Count, Microbial
- Drug Resistance, Multiple, Bacterial/drug effects
- Drug Resistance, Multiple, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/physiology
- Enzyme Inhibitors/pharmacology
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Ribonuclease H/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Renee Sarno
- Department of Biological Science, College of Natural Science and Mathematics, California State University Fullerton, Fullerton, California 92834-6850, USA
| | | | | | | |
Collapse
|
116
|
Geller BL, Deere JD, Stein DA, Kroeker AD, Moulton HM, Iversen PL. Inhibition of gene expression in Escherichia coli by antisense phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother 2003; 47:3233-9. [PMID: 14506035 PMCID: PMC201127 DOI: 10.1128/aac.47.10.3233-3239.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 04/24/2003] [Accepted: 07/02/2003] [Indexed: 11/20/2022] Open
Abstract
Antisense phosphorodiamidate morpholino oligomers (PMOs) were tested for the ability to inhibit gene expression in Escherichia coli. PMOs targeted to either a myc-luciferase reporter gene product or 16S rRNA did not inhibit luciferase expression or growth. However, in a strain with defective lipopolysaccharide (lpxA mutant), which has a leaky outer membrane, PMOs targeted to the myc-luciferase or acyl carrier protein (acpP) mRNA significantly inhibited their targets in a dose-dependent response. A significant improvement was made by covalently joining the peptide (KFF)(3)KC to the end of PMOs. In strains with an intact outer membrane, (KFF)(3)KC-myc PMO inhibited luciferase expression by 63%. A second (KFF)(3)KC-PMO conjugate targeted to lacI mRNA induced beta-galactosidase in a dose-dependent response. The end of the PMO to which (KFF)(3)KC is attached affected the efficiency of target inhibition but in various ways depending on the PMO. Another peptide-lacI PMO conjugate was synthesized with the cationic peptide CRRRQRRKKR and was found not to induce beta-galactosidase. We conclude that the outer membrane of E. coli inhibits entry of PMOs and that (KFF)(3)KC-PMO conjugates are transported across both membranes and specifically inhibit expression of their genetic targets.
Collapse
MESH Headings
- Acyl Carrier Protein/genetics
- Acyl Carrier Protein/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Cell Membrane Permeability
- Dose-Response Relationship, Drug
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Gene Expression/drug effects
- Genes, Reporter/drug effects
- Genes, Reporter/genetics
- Genes, myc/drug effects
- Genes, myc/genetics
- Lac Repressors
- Luciferases/antagonists & inhibitors
- Luciferases/genetics
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- Morpholines/chemistry
- Morpholines/metabolism
- Morpholines/pharmacology
- Morpholinos
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/metabolism
- Oligonucleotides, Antisense/pharmacology
- RNA, Ribosomal, 16S/drug effects
- RNA, Ribosomal, 16S/genetics
- Repressor Proteins/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- B L Geller
- Oregon State University. AVI Biopharma, Inc., Corvallis, Oregon 97331-3804, USA.
| | | | | | | | | | | |
Collapse
|
117
|
Moulton HM, Hase MC, Smith KM, Iversen PL. HIV Tat peptide enhances cellular delivery of antisense morpholino oligomers. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2003; 13:31-43. [PMID: 12691534 DOI: 10.1089/108729003764097322] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Phosphorodiamidate morpholino oligomers (PMO) are uncharged antisense molecules that bind complementary sequences of RNA, inhibiting gene expression by preventing translation or by interfering with pre-mRNA splicing. The techniques used to deliver PMO into cultured cells have been mostly mechanical methods. These delivery methods, although useful, have limitations. We investigated the ability of the HIV Tat peptide (pTat) and other cationic peptides to deliver PMO into cultured cells. Fluorescence was seen in 100% of HeLa cells treated with pTat-PMO-fluorescein conjugate. pTat-PMO conjugate targeted to c-myc mRNA downregulated c-myc reporter gene expression with an IC50 of 25 microM and achieved nearly 100% inhibition. pTat-PMO conjugate targeted to a mutant splice site of beta-globin pre-mRNA dose-dependently corrected splicing and upregulated expression of the functional reporter gene. Neither unconjugated PMO nor unconjugated pTat caused antisense activities. However, compared with mechanically mediated delivery, pTat-mediated PMO delivery required higher concentrations of PMO (>10 microM) to cause antisense activity and caused some toxicity. Most pTat-PMO conjugate was associated with cell membranes, and internalized conjugate was localized in vesicles, cytosol, and nucleus. The other three cationic peptides are much less effective than pTat. pTat significantly enhances delivery of PMO in 100% of cells assayed. pTat-mediated delivery is a much simpler procedure to perform than other delivery methods.
Collapse
|