101
|
Lemaitre RN, Johnson CO, Hesselson S, Sotoodehnia N, Sotoodhenia N, McKnight B, Sitlani CM, Rea TD, King IB, Kwok PY, Mak A, Li G, Brody J, Larson E, Mozaffarian D, Psaty BM, Huertas-Vazquez A, Tardif JC, Albert CM, Lyytikäinen LP, Arking DE, Kääb S, Huikuri HV, Krijthe BP, Eijgelsheim M, Wang YA, Reinier K, Lehtimäki T, Pulit SL, Brugada R, Müller-Nurasyid M, Newton-Cheh CH, Karhunen PJ, Stricker BH, Goyette P, Rotter JI, Chugh SS, Chakravarti A, Jouven X, Siscovick DS. Common variation in fatty acid metabolic genes and risk of incident sudden cardiac arrest. Heart Rhythm 2014; 11:471-7. [PMID: 24418166 PMCID: PMC3966996 DOI: 10.1016/j.hrthm.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND There is limited information on genetic factors associated with sudden cardiac arrest (SCA). OBJECTIVE To assess the association of common variation in genes in fatty acid pathways with SCA risk. METHODS We selected 85 candidate genes and 1155 single nucleotide polymorphisms (SNPs) tagging common variation in each gene. We investigated the SNP associations with SCA in a population-based case-control study. Cases (n = 2160) were from a repository of SCA in the greater Seattle area. Controls (n = 2615), frequency-matched on age and sex, were from the same area. We used linear logistic regression to examine SNP associations with SCA. We performed permutation-based p-min tests to account for multiple comparisons within each gene. The SNP associations with a corrected P value of <.05 were then examined in a meta-analysis of these SNP associations in 9 replication studies totaling 2129 SCA cases and 23,833 noncases. RESULTS Eight SNPs in or near 8 genes were associated with SCA risk in the discovery study, one of which was nominally significant in the replication phase (rs7737692, minor allele frequency 36%, near the LPCAT1 gene). For each copy of the minor allele, rs7737692 was associated with 13% lower SCA risk (95% confidence interval -21% to -5%) in the discovery phase and 9% lower SCA risk (95% confidence interval -16% to -1%) in the replication phase. CONCLUSIONS While none of the associations reached significance with Bonferroni correction, a common genetic variant near LPCAT1, a gene involved in the remodeling of phospholipids, was nominally associated with incident SCA risk. Further study is needed to validate this observation.
Collapse
Affiliation(s)
- Rozenn N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington.
| | - Catherine O Johnson
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Stephanie Hesselson
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, California
| | | | - Nona Sotoodhenia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Thomas D Rea
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Irena B King
- Department of Medicine, University of New Mexico, Albuquerque, New Mexico
| | - Pui-Yan Kwok
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, California
| | - Angel Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, California
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Jennifer Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Eric Larson
- Group Health Research Institute, Seattle, Washington
| | - Dariush Mozaffarian
- Department of Epidemiology, Harvard University, Boston, Massachusetts; Divisions of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington; Health Services, University of Washington, Seattle, Washington; Group Health Research Institute, Seattle, Washington
| | | | - Jean-Claude Tardif
- Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Christine M Albert
- Divisions of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefan Kääb
- Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-University and Munich Heart Alliance, Munich, Germany
| | - Heikki V Huikuri
- Institute of Clinical Medicine, Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Bouwe P Krijthe
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Netherlands Consortium for Healthy Aging [NCHA], The Netherlands
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ying A Wang
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Kyndaron Reinier
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, California
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Sara L Pulit
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Program in Medical and Population Genetics, the Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Ramon Brugada
- Cardiovascular Genetics Center, Institut Investigació Biomèdica de Girona IDIBGI-Universitat de Girona, Girona, Spain
| | - Martina Müller-Nurasyid
- Department of Medicine I, University Hospital Grosshadern, and Institute of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany; Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Chris H Newton-Cheh
- Center for Human Genetic Research and Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts; Framingham Heart Study, National Heart, Lung, and Blood Institute, National Institutes of Health, Framingham, Massachusetts
| | - Pekka J Karhunen
- Department of Forensic Medicine, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Netherlands Consortium for Healthy Aging [NCHA], The Netherlands; Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands; Inspectorate for Health Care, The Hague, The Netherlands
| | - Philippe Goyette
- Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute, Torrance, California; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Sumeet S Chugh
- Cedars-Sinai Medical Center, Heart Institute, Los Angeles, California
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xavier Jouven
- Department of Cardiology, University Paris Descartes, Paris, France; Department of Epidemiology, University Paris Descartes, Paris, France
| | - David S Siscovick
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington; Department of Epidemiology, University of Washington, Seattle, Washington
| |
Collapse
|
102
|
Ehmke M, Luthe K, Schnabel R, Döring F. S-Adenosyl methionine synthetase 1 limits fat storage in Caenorhabditis elegans. GENES & NUTRITION 2014; 9:386. [PMID: 24510589 PMCID: PMC3968293 DOI: 10.1007/s12263-014-0386-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022]
Abstract
Cytosolic lipid droplets are versatile, evolutionarily conserved organelles that are important for the storage and utilization of lipids in almost all cell types. To obtain insight into the physiological importance of lipid droplet size, we isolated and characterized a new S-adenosyl methionine synthetase 1 (SAMS-1)-deficient Caenorhabditis elegans mutant, which have enlarged lipid droplets throughout its life cycle. We found that the sams-1 mutant showed a markedly reduced body size and progeny number; impaired synthesis of phosphatidylcholine, a major membrane phospholipid; and elevated expression of key lipogenic genes, such as dgat-2, resulting in the accumulation of triacylglyceride in fewer, but larger, lipid droplets. The sams-1 mutant store more than 50 % (wild type: 10 %) of its intestinal fat in large lipid droplets, ≥10 μm(3) in size. In response to starvation, SAMS-1 deficiency causes reduced depletion of a subset of lipid droplets located in the anterior intestine. Given the importance of liberation of fatty acids from lipid droplets, we propose that the physiological function of SAMS-1, a highly conserved enzyme involved in one-carbon metabolism, is the limitation of fat storage to ensure proper growth and reproduction.
Collapse
Affiliation(s)
- Madeleine Ehmke
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| | - Katharina Luthe
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Ralf Schnabel
- />Department of Developmental Genetics, Institute of Genetics, TU Braunschweig, Spielmannstr. 7, 38106 Brunswick, Germany
| | - Frank Döring
- />Department of Molecular Prevention, Institute of Human Nutrition and Food Sciences, University of Kiel, Heinrich-Hecht-Platz 10, 24118 Kiel, Germany
| |
Collapse
|
103
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
104
|
Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol Biol Rep 2013; 40:5597-605. [PMID: 24057234 DOI: 10.1007/s11033-013-2661-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 09/14/2013] [Indexed: 01/04/2023]
Abstract
Recently members of mammalian patatin-like phospholipase domain containing (PNPLA) protein family have attracted attention for their critical roles in diverse aspects of lipid metabolism and signal pathway. Until now little has been known about the characteristics of PNPLA1. Here, the full length coding cDNA sequence of human PNPLA1 (hPNPLA1) was cloned for the first time, which encoded a polypeptide with 532 amino acids containing the whole patatin domain. Tissue expression profiles analysis showed that low mRNA levels of hPNPLA1 existed in various tissues, except high expression in the digestive system, bone marrow and spleen. Subcellular distribution of hPNPLA1 tagged with green fluorescence protein mainly localized to lipid droplets. Furthermore, a nonsense mutation of PNPLA1 in human cervical cancer HeLa cells was identified. The hPNPLA1 mutant encoded a protein of 412 amino acids without the C-terminal domain and did not colocalize to lipid droplets, which suggested that the C-terminal region of hPNPLA1 affected lipid droplet binding. These results identified hPNPLA1 and a mutant in HeLa cells, and provided insights into the structure and function of PNPLA1.
Collapse
|
105
|
Vendel Nielsen L, Krogager TP, Young C, Ferreri C, Chatgilialoglu C, Nørregaard Jensen O, Enghild JJ. Effects of elaidic acid on lipid metabolism in HepG2 cells, investigated by an integrated approach of lipidomics, transcriptomics and proteomics. PLoS One 2013; 8:e74283. [PMID: 24058537 PMCID: PMC3772929 DOI: 10.1371/journal.pone.0074283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/16/2013] [Indexed: 12/11/2022] Open
Abstract
Trans fatty acid consumption in the human diet can cause adverse health effects, such as cardiovascular disease, which is associated with higher total cholesterol, a higher low density lipoprotein-cholesterol level and a decreased high density lipoprotein-cholesterol level. The aim of the study was to elucidate the hepatic response to the most abundant trans fatty acid in the human diet, elaidic acid, to help explain clinical findings on the relationship between trans fatty acids and cardiovascular disease. The human HepG2 cell line was used as a model to investigate the hepatic response to elaidic acid in a combined proteomic, transcriptomic and lipidomic approach. We found many of the proteins responsible for cholesterol synthesis up-regulated together with several proteins involved in the esterification and hepatic import/export of cholesterol. Furthermore, a profound remodeling of the cellular membrane occurred at the phospholipid level. Our findings contribute to the explanation on how trans fatty acids from the diet can cause modifications in plasma cholesterol levels by inducing abundance changes in several hepatic proteins and the hepatic membrane composition.
Collapse
Affiliation(s)
- Lone Vendel Nielsen
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Toke P. Krogager
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Clifford Young
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carla Ferreri
- I.S.O.F. — Consiglio Nazionale delle Ricerche, Bologna, Italy
| | | | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jan J. Enghild
- Interdisciplinary NanoScience Center, iNANO, Aarhus University, Aarhus, Denmark
- Center for insoluble protein structure, InSPIN, at the Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
106
|
Monoubiquitination of ancient ubiquitous protein 1 promotes lipid droplet clustering. PLoS One 2013; 8:e72453. [PMID: 24039768 PMCID: PMC3764060 DOI: 10.1371/journal.pone.0072453] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/17/2013] [Indexed: 01/08/2023] Open
Abstract
Lipid droplets, the intracellular storage organelles for neutral lipids, exist in a wide range of sizes and of morphologically distinct organization, from loosely dispersed lipid droplets to tightly packed lipid droplet clusters. We show that the lipid droplet protein AUP1 induces cluster formation. A fraction of AUP1 is monoubiquitinated at various lysine residues. This process depends on its internal CUE domain, which is a known ubiquitin-binding domain. AUP1 with a deleted or point mutagenized CUE domain, as well as a lysine-free mutant, are not ubiquitinated and do not induce lipid droplet clustering. When such ubiquitination deficient mutants are fused to ubiquitin, clustering is restored. AUP1 mutants with defective droplet targeting fail to induce clustering. Also, another lipid droplet protein, NSDHL, with a fused ubiquitin does not induce clustering. The data indicate that monoubiquitinated AUP1 on the lipid droplet surface specifically induces clustering, and suggest a homophilic interaction with a second AUP1 molecule or a heterophilic interaction with another ubiquitin-binding protein.
Collapse
|
107
|
Demignot S, Beilstein F, Morel E. Triglyceride-rich lipoproteins and cytosolic lipid droplets in enterocytes: key players in intestinal physiology and metabolic disorders. Biochimie 2013; 96:48-55. [PMID: 23871915 DOI: 10.1016/j.biochi.2013.07.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/08/2013] [Indexed: 02/07/2023]
Abstract
During the post-prandial phase, intestinal triglyceride-rich lipoproteins (TRL) i.e. chylomicrons are the main contributors to the serum lipid level, which is linked to coronary artery diseases. Hypertriglyceridemia can originate from decreased clearance or increased production of TRL. During lipid absorption, enterocytes produce and secrete chylomicrons and transiently store lipid droplets (LDs) in the cytosol. The dynamic fluctuation of triglycerides in cytosolic LDs suggests that they contribute to TRL production and may thus control the length and amplitude of the post-prandial hypertriglyceridemia. In this review, we will describe the recent advances in the characterization of enterocytic LDs. The role of LDs in chylomicron production and secretion as well as potential previously unsuspected functions in the metabolism of vitamins, steroids and prostaglandins and in viral infection will also be discussed.
Collapse
Affiliation(s)
- Sylvie Demignot
- Université Pierre et Marie Curie, UMR S 872, Centre de Recherche des Cordeliers, Paris, France; Inserm, U 872, Paris, France; Ecole Pratique des Hautes Etudes, Laboratoire de Pharmacologie Cellulaire et Moléculaire, Paris, France; Université Paris Descartes, UMR S 872, Paris, France; Institut de Cardiométabolisme et Nutrition (ICAN), Paris, France.
| | | | | |
Collapse
|
108
|
Arisawa K, Ichi I, Yasukawa Y, Sone Y, Fujiwara Y. Changes in the phospholipid fatty acid composition of the lipid droplet during the differentiation of 3T3-L1 adipocytes. J Biochem 2013; 154:281-9. [DOI: 10.1093/jb/mvt051] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
109
|
Lagace TA, Ridgway ND. The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2499-510. [PMID: 23711956 DOI: 10.1016/j.bbamcr.2013.05.018] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/09/2013] [Accepted: 05/15/2013] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is an interconnected network of tubular and planar membranes that supports the synthesis and export of proteins, carbohydrates and lipids. Phospholipids, in particular phosphatidylcholine (PC), are synthesized in the ER where they have essential functions including provision of membranes required for protein synthesis and export, cholesterol homeostasis, and triacylglycerol storage and secretion. Coordination of these biological processes is essential, as highlighted by findings that link phospholipid metabolism in the ER with perturbations in lipid storage/secretion and stress responses, ultimately contributing to obesity/diabetes, atherosclerosis and neurological disorders. Phospholipid synthesis is not uniformly distributed in the ER but is localized at membrane interfaces or contact zones with other organelles, and in dynamic, proliferating ER membranes. The topology of phospholipid synthesis is an important consideration when establishing the etiology of diseases that arise from ER dysfunction. This review will highlight our current understanding of the contribution of phospholipid synthesis to proper ER function, and how alterations contribute to aberrant stress responses and disease. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.
Collapse
Affiliation(s)
- Thomas A Lagace
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | |
Collapse
|
110
|
Gaebler A, Milan R, Straub L, Hoelper D, Kuerschner L, Thiele C. Alkyne lipids as substrates for click chemistry-based in vitro enzymatic assays. J Lipid Res 2013; 54:2282-2290. [PMID: 23709689 DOI: 10.1194/jlr.d038653] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Click chemistry is evolving as a powerful tool in biological applications because it allows the sensitive and specific detection of compounds with alkyne or azido groups. Here we describe the use of alkyne lipids as substrates for in vitro enzymatic assays of lipid modifying enzymes. The small alkyne moiety is introduced synthetically at the terminus of the hydrocarbon chain of various substrate lipids. After the assay, the label is click-reacted with the azide-bearing fluorogenic dye 3-azido-7-hydroxycoumarin, followed by the separation of the lipid mix by thin-layer chromatography and fluorescence detection, resulting in high sensitivity and wide-range linearity. Kinetic analyses using alkyne-labeled substrates for lysophosphatidic acid acyltransferases, lysophosphatidylcholine acyltransferases, and ceramide synthases resulted in Michaelis-Menten constants similar to those for radiolabeled or natural substrates. We tested additional alkyne substrates for several hydrolases and acyltransferases in lipid metabolism. In this pilot study we establish alkyne lipids as a new class of convenient substrates for in vitro enzymatic assays.
Collapse
Affiliation(s)
- Anne Gaebler
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Robin Milan
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Leon Straub
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Dominik Hoelper
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Lars Kuerschner
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Christoph Thiele
- LIMES Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
111
|
Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem 2013; 154:21-8. [DOI: 10.1093/jb/mvt048] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
112
|
Suzuki M, Iio Y, Saito N, Fujimoto T. Protein kinase Cη is targeted to lipid droplets. Histochem Cell Biol 2013; 139:505-11. [PMID: 23436195 DOI: 10.1007/s00418-013-1083-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca(2+) concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | |
Collapse
|
113
|
Hardwick JP, Eckman K, Lee YK, Abdelmegeed MA, Esterle A, Chilian WM, Chiang JY, Song BJ. Eicosanoids in metabolic syndrome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:157-266. [PMID: 23433458 DOI: 10.1016/b978-0-12-404717-4.00005-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism. The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS.
Collapse
Affiliation(s)
- James P Hardwick
- Biochemistry and Molecular Pathology, Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA.
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:589-94. [PMID: 23246574 DOI: 10.1016/j.bbalip.2012.12.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis. Here, we discuss very recent data on the composition, origin, transport and function of the phospholipid monolayer with a particular emphasis on the phosphatidylcholine metabolism on and for lipid droplets. In addition, we highlight two very important quantitative aspects: (i) The amount of phospholipid required for lipid droplet monolayer expansion is remarkably small and (ii) to maintain the invariably round shape of lipid droplets, a cell must have a highly sensitive but so far unknown mechanism that regulates the ratio of phospholipid to neutral lipid in lipid droplets. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Anke Penno
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | | | | |
Collapse
|
115
|
Stevanovic A, Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 2012. [PMID: 23197321 DOI: 10.1194/jlr.m033852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ancient ubiquitous protein 1 (AUP1) is a multifunctional protein, which acts on both lipid droplets (LDs) and the endoplasmic reticulum (ER) membrane. Double localization to these two organelles, featuring very different membrane characteristics, was observed also for several other integral proteins, but little is known about the signals and mechanisms behind dual protein targeting to ER and LDs. Here we dissect the AUP1 targeting signals by analyses of localization and topology of several deletion and point mutants. We found that AUP1 is inserted into the membrane of the ER in a monotopic hairpin fashion, and subsequently transported to the hemi-membrane of LDs. A single domain localized in the N-terminal part of AUP1 enables its ER residence, the monotopic insertion, and the LD localization. Different specific residues within this multifunctional domain are responsible for achieving the complex spatial distribution pattern. A mutation of three amino acids, which changes AUP1 topology from hairpin to transmembrane, abolishes LD localization. These findings suggest that the cell is able to target a protein to multiple intracellular locations using a single domain.
Collapse
Affiliation(s)
- Ana Stevanovic
- LIMES Life and Medical Sciences Institute, University of Bonn, D-53115 Bonn, Germany
| | | |
Collapse
|
116
|
Abstract
The alveolar type II epithelial (ATII) cell is highly specialised for the synthesis and storage, in intracellular lamellar bodies, of phospholipid destined for secretion as pulmonary surfactant into the alveolus. Regulation of the enzymology of surfactant phospholipid synthesis and metabolism has been extensively characterised at both molecular and functional levels, but understanding of surfactant phospholipid metabolism in vivo in either healthy or, especially, diseased lungs is still relatively poorly understood. This review will integrate recent advances in the enzymology of surfactant phospholipid metabolism with metabolic studies in vivo in both experimental animals and human subjects. It will highlight developments in the application of stable isotope-labelled precursor substrates and mass spectrometry to probe lung phospholipid metabolism in terms of individual molecular lipid species and identify areas where a more comprehensive metabolic model would have considerable potential for direct application to disease states.
Collapse
|
117
|
Ellis B, Kaercher L, Snavely C, Zhao Y, Zou C. Lipopolysaccharide triggers nuclear import of Lpcat1 to regulate inducible gene expression in lung epithelia. World J Biol Chem 2012; 3:159-66. [PMID: 22905292 PMCID: PMC3421133 DOI: 10.4331/wjbc.v3.i7.159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/10/2012] [Accepted: 02/17/2012] [Indexed: 02/05/2023] Open
Abstract
AIM: To report that Lpcat1 plays an important role in regulating lipopolysaccharide (LPS) inducible gene transcription.
METHODS: Gene expression in Murine Lung Epithelial MLE-12 cells with LPS treatment or Haemophilus influenza and Escherichia coli infection was analyzed by employing quantitative Reverse Transcription Polymerase Chain Reaction techniques. Nucleofection was used to deliver Lenti-viral system to express or knock down Lpcat1 in MLE cells. Subcellular protein fractionation and Western blotting were utilized to study Lpcat1 nuclear relocation.
RESULTS: Lpcat1 translocates into the nucleus from the cytoplasm in murine lung epithelia (MLE) after LPS treatment. Haemophilus influenza and Escherichia coli, two LPS-containing pathogens that cause pneumonia, triggered Lpcat1 nuclear translocation from the cytoplasm. The LPS inducible gene expression profile was determined by quantitative reverse transcription polymerase chain reaction after silencing Lpcat1 or overexpression of the enzyme in MLE cells. We detected that 17 out of a total 38 screened genes were upregulated, 14 genes were suppressed, and 7 genes remained unchanged in LPS treated cells in comparison to controls. Knockdown of Lpcat1 by shRNA dramatically changed the spectrum of the LPS inducible gene transcription, as 18 genes out of 38 genes were upregulated, of which 20 genes were suppressed or unchanged. Notably, in Lpcat1 overexpressed cells, 25 genes out of 38 genes were reduced in the setting of LPS treatment.
CONCLUSION: These observations suggest that Lpcat1 relocates into the nucleus in response to bacterial infection to differentially regulate gene transcriptional repression.
Collapse
Affiliation(s)
- Bryon Ellis
- Bryon Ellis, Leah Kaercher, Courtney Snavely, Yutong Zhao, Chunbin Zou, Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| | | | | | | | | |
Collapse
|
118
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 263] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
119
|
Hutchins PM, Murphy RC. Cholesteryl ester acyl oxidation and remodeling in murine macrophages: formation of oxidized phosphatidylcholine. J Lipid Res 2012; 53:1588-97. [PMID: 22665166 DOI: 10.1194/jlr.m026799] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cholesterol is an essential component of eukaryotic cell membranes, regulating fluidity and permeability of the bilayer. Outside the membrane, cholesterol is esterified to fatty acids forming cholesterol esters (CEs). Metabolism of CEs is characterized by recurrent hydrolysis and esterification as part of the CE cycle; however, since recombinant 15-lipoxygenase (15-LO) was shown to oxidize cholesteryl linoleate of LDL, there has been interest in CE oxidation, particularly in the context atherogenesis. Studies of oxidized CE (oxCE) metabolism have focused on hydrolysis and subsequent reverse cholesterol transport with little emphasis on the fate the newly released oxidized fatty acyl component. Here, using mass spectrometry to analyze lipid oxidation products, CE metabolism in murine peritoneal macrophages was investigated. Ex vivo macrophage incubations revealed that cellular 15-LO directly oxidized multiple CE substrates from intracellular stores and from extracellular sources. Freshly harvested murine macrophages also contained 15-LO-specific oxCEs, suggesting the enzyme may act as a CE-oxidase in vivo. The metabolic fate of oxCEs, particularly the hydrolysis and remodeling of oxidized fatty acyl chains, was also examined in the macrophage. Metabolism of deuterated CE resulted in the genesis of deuterated, oxidized phosphatidylcholine (oxPC). Further experiments revealed these oxPC species were formed chiefly from the hydrolysis of oxidized CE and subsequent reacylation of the oxidized acyl components into PC.
Collapse
Affiliation(s)
- Patrick M Hutchins
- Department of Pharmacology, University of Colorado Denver, Aurora, CO 80045, USA
| | | |
Collapse
|
120
|
Soupene E, Rothschild J, Kuypers FA, Dean D. Eukaryotic protein recruitment into the Chlamydia inclusion: implications for survival and growth. PLoS One 2012; 7:e36843. [PMID: 22590624 PMCID: PMC3348897 DOI: 10.1371/journal.pone.0036843] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 04/16/2012] [Indexed: 11/28/2022] Open
Abstract
Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen that multiplies within a parasitophorous vacuole called an inclusion. We report that the location of several host-cell proteins present in the cytosol, the nucleus, and membranes was altered during Ct development. The acyl-CoA synthetase enzyme ACSL3 and the soluble acyl-CoA binding protein ACBD6 were mobilized from organelle membranes and the nucleus, respectively, into the lumen of the inclusion. The nuclear protein ZNF23, a pro-apoptosis factor, was also translocated into the inclusion lumen. ZNF23, among other proteins, might be targeted by Ct to inhibit host cell apoptosis, thereby enabling bacterial survival. In contrast, the acyl-CoA:lysophosphatidylcholine acyltransferase LPCAT1, an endoplasmic reticulum membrane protein, was recruited to the inclusion membrane. The coordinated action of ACBD6, ACSL3 and LPCAT1 likely supports remodeling and scavenging of host lipids into bacterial-specific moieties essential to Ct growth. To our knowledge, these are the first identified host proteins known to be intercepted and translocated into the inclusion.
Collapse
Affiliation(s)
- Eric Soupene
- Center for Sickle Cell Disease and Thalassemia, Children's Hospital Oakland Research Institute, Oakland, California, United States of America.
| | | | | | | |
Collapse
|
121
|
Poppelreuther M, Rudolph B, Du C, Großmann R, Becker M, Thiele C, Ehehalt R, Füllekrug J. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res 2012; 53:888-900. [PMID: 22357706 PMCID: PMC3329388 DOI: 10.1194/jlr.m024562] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.
Collapse
Affiliation(s)
- Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Berenice Rudolph
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Chen Du
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Regina Großmann
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Melanie Becker
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | | | - Robert Ehehalt
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and.
| |
Collapse
|
122
|
Yang L, Ding Y, Chen Y, Zhang S, Huo C, Wang Y, Yu J, Zhang P, Na H, Zhang H, Ma Y, Liu P. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lipid Res 2012; 53:1245-53. [PMID: 22534641 DOI: 10.1194/jlr.r024117] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets are cellular organelles that consists of a neutral lipid core covered by a monolayer of phospholipids and many proteins. They are thought to function in the storage, transport, and metabolism of lipids, in signaling, and as a specialized microenvironment for metabolism in most types of cells from prokaryotic to eukaryotic organisms. Lipid droplets have received a lot of attention in the last 10 years as they are linked to the progression of many metabolic diseases and hold great potential for the development of neutral lipid-derived products, such as biofuels, food supplements, hormones, and medicines. Proteomic analysis of lipid droplets has yielded a comprehensive catalog of lipid droplet proteins, shedding light on the function of this organelle and providing evidence that its function is conserved from bacteria to man. This review summarizes many of the proteomic studies on lipid droplets from a wide range of organisms, providing an evolutionary perspective on this organelle.
Collapse
Affiliation(s)
- Li Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Abstract
Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
124
|
The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell 2012; 103:499-517. [PMID: 21787361 PMCID: PMC3181828 DOI: 10.1042/bc20110024] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)-rich lipoprotein] assembly and secretion. The accumulation of circulating intestine-derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose-gradient centrifugation from differentiated Caco-2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD-associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC-MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte-specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl-CoA synthetases) and for TAG hydrolysis. In differentiated Caco-2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3-β-hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA-IV (apolipoprotein A-IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA-IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high-fat diet. Conclusions. We report for the first time the protein endowment of Caco-2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell-specific manner.
Collapse
|
125
|
Larsson S, Resjö S, Gomez MF, James P, Holm C. Characterization of the lipid droplet proteome of a clonal insulin-producing β-cell line (INS-1 832/13). J Proteome Res 2012; 11:1264-73. [PMID: 22268682 DOI: 10.1021/pr200957p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipids are known to play a crucial role both in the normal control of insulin release and in the deterioration of β-cell function, as observed in type 2 diabetes. Despite this established dual role of lipids, little is known about lipid storage and handling in β-cells. Here, we isolated lipid droplets from oleate-incubated INS-1 832/13 cells and characterized the lipid droplet proteome. In a total of four rounds of droplet isolation and proteomic analysis by HPLC-MS/MS, we identified 96 proteins that were specific to droplets. The proteins fall into six categories based on function or previously observed localization: metabolism, endoplasmic reticulum/ribosomes, mitochondria, vesicle formation and transport, signaling, and miscellaneous. The protein profile reinforces the emerging picture of the lipid droplet as an active and dynamic organelle involved in lipid homeostasis and intracellular trafficking. Proteins belonging to the category mitochondria were highly represented, suggesting that the β-cell mitochondria and lipid droplets form a metabolic unit of potential relevance for insulin secretion.
Collapse
Affiliation(s)
- Sara Larsson
- Department of Experimental Medical Science, Division of Diabetes, Metabolism and Endocrinology, Lund Univeristy , BMC C11, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
126
|
Li H, Lee JH, Kim SY, Yun HY, Baek KJ, Kwon NS, Yoon Y, Jeong JH, Kim DS. Phosphatidylcholine induces apoptosis of 3T3-L1 adipocytes. J Biomed Sci 2011; 18:91. [PMID: 22145579 PMCID: PMC3261832 DOI: 10.1186/1423-0127-18-91] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/07/2011] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Phosphatidylcholine (PPC) formulation is used for lipolytic injection, even though its mechanism of action is not well understood. METHODS The viability of 3T3-L1 pre-adipocytes and differentiated 3T3-L1 cells was measured after treatment of PPC alone, its vehicle sodium deoxycholate (SD), and a PPC formulation. Western blot analysis was performed to examine PPC-induced signaling pathways. RESULTS PPC, SD, and PPC formulation significantly decreased 3T3-L1 cell viability in a concentration-dependent manner. PPC alone was not cytotoxic to CCD-25Sk human fibroblasts at concentrations <1 mg/ml, whereas SD and PPC formulation were cytotoxic. Western blot analysis demonstrated that PPC alone led to the phosphorylation of the stress signaling proteins, such as p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, and activated caspase-9, -8, -3 as well as cleavage of poly(ADP-ribose) polymerase. However, SD did not activate the apoptotic pathways. Instead, SD and PPC formulation induced cell membrane lysis, which may lead to necrosis of cells. CONCLUSIONS PPC results in apoptosis of 3T3-L1 cells.
Collapse
Affiliation(s)
- Hailan Li
- Departments of Biochemistry, Chung-Ang University College of Medicine, Dongjak-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 2011; 287:2273-9. [PMID: 22090029 DOI: 10.1074/jbc.r111.309088] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets (LDs) are organelles found in most types of cells in the tissues of vertebrates, invertebrates, and plants, as well as in bacteria and yeast. They differ from other organelles in binding a unique complement of proteins and lacking an aqueous core but share aspects of protein trafficking with secretory membrane compartments. In this minireview, we focus on recent evidence supporting an endoplasmic reticulum origin for LD formation and discuss recent findings regarding LD maturation and fusion.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
128
|
Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, Newman HW, Schmidt-Supprian M, Vance DE, Mann M, Farese RV, Walther TC. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase. Cell Metab 2011; 14:504-15. [PMID: 21982710 PMCID: PMC3735358 DOI: 10.1016/j.cmet.2011.07.013] [Citation(s) in RCA: 396] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/06/2011] [Accepted: 07/26/2011] [Indexed: 01/22/2023]
Abstract
Lipid droplets (LDs) are cellular storage organelles for neutral lipids that vary in size and abundance according to cellular needs. Physiological conditions that promote lipid storage rapidly and markedly increase LD volume and surface. How the need for surface phospholipids is sensed and balanced during this process is unknown. Here, we show that phosphatidylcholine (PC) acts as a surfactant to prevent LD coalescence, which otherwise yields large, lipolysis-resistant LDs and triglyceride (TG) accumulation. The need for additional PC to coat the enlarging surface during LD expansion is provided by the Kennedy pathway, which is activated by reversible targeting of the rate-limiting enzyme, CTP:phosphocholine cytidylyltransferase (CCT), to growing LD surfaces. The requirement, targeting, and activation of CCT to growing LDs were similar in cells of Drosophila and mice. Our results reveal a mechanism to maintain PC homeostasis at the expanding LD monolayer through targeted activation of a key PC synthesis enzyme.
Collapse
Affiliation(s)
- Natalie Krahmer
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|