101
|
Evolutionary conservation of a core fungal phosphate homeostasis pathway coupled to development in Blastocladiella emersonii. Fungal Genet Biol 2018; 115:20-32. [PMID: 29627365 DOI: 10.1016/j.fgb.2018.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
The model yeast Saccharomyces cerevisiae elicits a transcriptional response to phosphate (Pi) depletion. To determine the origins of the phosphate response (PHO) system, we bioinformatically identified putative PHO components in the predicted proteomes of diverse fungi. Our results suggest that the PHO system is ancient; however, components have been expanded or lost in different fungal lineages. To show that a similar physiological response is present in deeply-diverging fungi we examined the transcriptional and physiological response of PHO genes to Pi depletion in the blastocladiomycete Blastocladiella emersonii. Our physiological experiments indicate that B. emersonii relies solely on high-affinity Na+-independent Pho84-like transporters. In response to Pi depletion, BePho84 paralogues were 4-8-fold transcriptionally upregulated, whereas several other PHO homologues like phosphatases and vacuolar transporter chaperone (VTC) complex components show 2-3-fold transcriptional upregulation. Since Pi has been shown to be important during the development of B. emersonii, we sought to determine if PHO genes are differentially regulated at different lifecycle stages. We demonstrate that a similar set of PHO transporters and phosphatases are upregulated at key points during B. emersonii development. Surprisingly, some genes upregulated during Pi depletion, including VTC components, are repressed at these key stages of development indicating that PHO genes are regulated by different pathways in different developmental and environmental situations. Overall, our findings indicate that a complex PHO network existed in the ancient branches of the fungi, persists in diverse extant fungi, and that this ancient network is likely to be involved in development and cell cycle regulation.
Collapse
|
102
|
Rajasekaran SS, Kim J, Gaboardi GC, Gromada J, Shears SB, Dos Santos KT, Nolasco EL, Ferreira SDS, Illies C, Köhler M, Gu C, Ryu SH, Martins JO, Darè E, Barker CJ, Berggren PO. Inositol hexakisphosphate kinase 1 is a metabolic sensor in pancreatic β-cells. Cell Signal 2018. [PMID: 29522819 PMCID: PMC5899964 DOI: 10.1016/j.cellsig.2018.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Diphosphoinositol pentakisphosphate (IP7) is critical for the exocytotic capacity of the pancreatic β-cell, but its regulation by the primary instigator of β-cell exocytosis, glucose, is unknown. The high Km for ATP of the IP7-generating enzymes, the inositol hexakisphosphate kinases (IP6K1 and 2) suggests that these enzymes might serve as metabolic sensors in insulin secreting β-cells and act as translators of disrupted metabolism in diabetes. We investigated this hypothesis and now show that glucose stimulation, which increases the ATP/ADP ratio, leads to an early rise in IP7 concentration in β-cells. RNAi mediated knock down of the IP6K1 isoform inhibits both glucose-mediated increase in IP7 and first phase insulin secretion, demonstrating that IP6K1 integrates glucose metabolism and insulin exocytosis. In diabetic mouse islets the deranged ATP/ADP levels under both basal and glucose-stimulated conditions are mirrored in both disrupted IP7 generation and insulin release. Thus the unique metabolic sensing properties of IP6K1 guarantees appropriate concentrations of IP7 and thereby both correct basal insulin secretion and intact first phase insulin release. In addition, our data suggest that a specific cell signaling defect, namely, inappropriate IP7 generation may be an essential convergence point integrating multiple metabolic defects into the commonly observed phenotype in diabetes. Glucose increases IP7 levels transiently through IP6K1 in pancreatic β-cells. IP6K1 decodes glucose-driven increases in ATP/ADP ratio into 1st phase insulin release. IP7 production and insulin release mirror perturbed metabolism in diabetic islets. IP6K1 acts as a β-cell metabolic sensor under normal and pathological conditions.
Collapse
Affiliation(s)
- Subu Surendran Rajasekaran
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Jaeyoon Kim
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gian-Carlo Gaboardi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | | | - Stephen B Shears
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239,111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Karen Tiago Dos Santos
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Lima Nolasco
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sabrina de Souza Ferreira
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Chunfang Gu
- Signal Transduction Laboratory/Inositol Signaling Group, NIEHS, Building 101, Room F239,111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Sung Ho Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Joilson O Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elisabetta Darè
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
103
|
Brown NW, Marmelstein AM, Fiedler D. Chemical tools for interrogating inositol pyrophosphate structure and function. Chem Soc Rev 2018; 45:6311-6326. [PMID: 27462803 DOI: 10.1039/c6cs00193a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The inositol pyrophosphates (PP-InsPs) are a unique group of intracellular messengers that represent some of the most highly phosphorylated molecules in nature. Genetic perturbation of the PP-InsP biosynthetic network indicates a central role for these metabolites in maintaining cellular energy homeostasis and in controlling signal transduction networks. However, despite their discovery over two decades ago, elucidating their physiologically relevant isomers, the biochemical pathways connecting these molecules to their associated phenotypes, and their modes of signal transduction has often been stymied by technical challenges. Many of the advances in understanding these molecules to date have been facilitated by the total synthesis of the various PP-InsP isomers and by the development of new methods that are capable of identifying their downstream signalling partners. Chemical tools have also been developed to distinguish between the proposed PP-InsP signal transduction mechanisms: protein binding, and a covalent modification of proteins termed protein pyrophosphorylation. In this article, we review these recent developments, discuss how they have helped to illuminate PP-InsP structure and function, and highlight opportunities for future discovery.
Collapse
Affiliation(s)
- Nathaniel W Brown
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Alan M Marmelstein
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| | - Dorothea Fiedler
- Princeton University, Frick Chemistry Laboratory, Washington Road, Princeton, NJ 08544, USA and Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str 10, 13125 Berlin, Berlin, Germany.
| |
Collapse
|
104
|
Park SJ, Lee S, Park SE, Kim S. Inositol pyrophosphates as multifaceted metabolites in the regulation of mammalian signaling networks. Anim Cells Syst (Seoul) 2017. [DOI: 10.1080/19768354.2017.1408684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Seung Ju Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seulgi Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Eun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
105
|
Puga MI, Rojas-Triana M, de Lorenzo L, Leyva A, Rubio V, Paz-Ares J. Novel signals in the regulation of Pi starvation responses in plants: facts and promises. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:40-49. [PMID: 28587933 DOI: 10.1016/j.pbi.2017.05.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/19/2017] [Indexed: 05/10/2023]
Abstract
Plants have evolved numerous adaptive developmental and metabolic responses to cope with growth in conditions of limited phosphate (Pi). Regulation of these Pi starvation responses (PSR) at the organism level involves not only cellular Pi perception in different organs, but also inter-organ communication of Pi levels via systemic signaling. Here we summarize recent discoveries on Pi starvation sensing and signaling, with special emphasis on structure-function studies that showed a role for inositol polyphosphates (InsP) as intracellular Pi signals, and on genomic studies that identified a large number of mRNAs with inter-organ mobility, which provide an immense source of potential systemic signals in the control of PSR and other responses.
Collapse
Affiliation(s)
- María Isabel Puga
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Mónica Rojas-Triana
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Laura de Lorenzo
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Antonio Leyva
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Javier Paz-Ares
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
106
|
Control of plant phosphate homeostasis by inositol pyrophosphates and the SPX domain. Curr Opin Biotechnol 2017; 49:156-162. [PMID: 28889038 DOI: 10.1016/j.copbio.2017.08.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
Proteins containing a SPX domain are involved in phosphate (Pi) homeostasis, including Pi transport and adaptation to Pi deficiency. The SPX domain harbors a basic surface binding Pi at low affinity and inositol pyrophosphates (PP-InsPs) at high affinity. Genetic and biochemical studies revealed that PP-InsPs serve as ligands for the SPX domain. Residues in the PHO1 SPX domain involved in PP-InsPs binding are critical for its Pi export activity, and the interaction between SPX proteins and the PHR1 transcription factor, which results in PHR1 inactivation, is promoted by PP-InsPs. Changes in PP-InsPs levels in response to Pi deficiency may thus contribute to the adaptation of plants to stress via the modulation of the activity of SPX-containing proteins and their interactors. Modulating PP-InsP levels or the affinity/specificity of the SPX domain for PP-InsP could potentially be used to engineer crops to maintain high yield under reduced Pi fertilizer input.
Collapse
|
107
|
Eskes E, Deprez MA, Wilms T, Winderickx J. pH homeostasis in yeast; the phosphate perspective. Curr Genet 2017; 64:155-161. [PMID: 28856407 PMCID: PMC5778149 DOI: 10.1007/s00294-017-0743-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Recent research further clarified the molecular mechanisms that link nutrient signaling and pH homeostasis with the regulation of growth and survival of the budding yeast Saccharomyces cerevisiae. The central nutrient signaling kinases PKA, TORC1, and Sch9 are intimately associated to pH homeostasis, presumably allowing them to concert far-reaching phenotypical repercussions of nutritional cues. To exemplify such repercussions, we briefly describe consequences for phosphate uptake and signaling and outline interactions between phosphate homeostasis and the players involved in intra- and extracellular pH control. Inorganic phosphate uptake, its subcellular distribution, and its conversion into polyphosphates are dependent on the proton gradients created over different membranes. Conversely, polyphosphate metabolism appears to contribute in determining the intracellular pH. Additionally, inositol pyrophosphates are emerging as potent determinants of growth potential, in this way providing feedback from phosphate metabolism onto the central nutrient signaling kinases. All these data point towards the importance of phosphate metabolism in the reciprocal regulation of nutrient signaling and pH homeostasis.
Collapse
Affiliation(s)
- Elja Eskes
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Marie-Anne Deprez
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Tobias Wilms
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium
| | - Joris Winderickx
- Functional Biology, KU Leuven, Kasteelpark Arenberg 31 box 2433, 3001, Heverlee, Belgium.
| |
Collapse
|
108
|
Cordeiro CD, Saiardi A, Docampo R. The inositol pyrophosphate synthesis pathway in Trypanosoma brucei is linked to polyphosphate synthesis in acidocalcisomes. Mol Microbiol 2017; 106:319-333. [PMID: 28792096 DOI: 10.1111/mmi.13766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
Inositol pyrophosphates are novel signaling molecules possessing high-energy pyrophosphate bonds and involved in a number of biological functions. Here, we report the correct identification and characterization of the kinases involved in the inositol pyrophosphate biosynthetic pathway in Trypanosoma brucei: inositol polyphosphate multikinase (TbIPMK), inositol pentakisphosphate 2-kinase (TbIP5K) and inositol hexakisphosphate kinase (TbIP6K). TbIP5K and TbIP6K were not identifiable by sequence alone and their activities were validated by enzymatic assays with the recombinant proteins or by their complementation of yeast mutants. We also analyzed T. brucei extracts for the presence of inositol phosphates using polyacrylamide gel electrophoresis and high-performance liquid chromatography. Interestingly, we could detect inositol phosphate (IP), inositol 4,5-bisphosphate (IP2 ), inositol 1,4,5-trisphosphate (IP3 ), and inositol hexakisphosphate (IP6 ) in T. brucei different stages. Bloodstream forms unable to produce inositol pyrophosphates, due to downregulation of TbIPMK expression by conditional knockout, have reduced levels of polyphosphate and altered acidocalcisomes. Our study links the inositol pyrophosphate pathway to the synthesis of polyphosphate in acidocalcisomes, and may lead to better understanding of these organisms and provide new targets for drug discovery.
Collapse
Affiliation(s)
- Ciro D Cordeiro
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, Gower Street, London, UK
| | - Roberto Docampo
- Department of Cellular Biology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
109
|
Phosphate Acquisition and Virulence in Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5030048. [PMID: 28829379 PMCID: PMC5620639 DOI: 10.3390/microorganisms5030048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
The ability of pathogenic fungi to acquire essential macro and micronutrients during infection is a well-established virulence trait. Recent studies in the major human fungal pathogens Candida albicans and Cryptococcus neoformans have revealed that acquisition of the essential macronutrient, phosphate, is essential for virulence. The phosphate sensing and acquisition pathway in fungi, known as the PHO pathway, has been extensively characterized in the model yeast Saccharomyces cerevisiae. In this review, we highlight recent advances in phosphate sensing and signaling mechanisms, and use the S. cerevisiae PHO pathway as a platform from which to compare the phosphate acquisition and storage strategies employed by several human pathogenic fungi. We also explore the multi-layered roles of phosphate acquisition in promoting fungal stress resistance to pH, cationic, and oxidative stresses, and describe emerging roles for the phosphate storage molecule polyphosphate (polyP). Finally, we summarize the recent studies supporting the necessity of phosphate acquisition in mediating the virulence of human fungal pathogens, highlighting the concept that this requirement is intimately linked to promoting resistance to host-imposed stresses.
Collapse
|
110
|
Shears SB. Intimate connections: Inositol pyrophosphates at the interface of metabolic regulation and cell signaling. J Cell Physiol 2017; 233:1897-1912. [PMID: 28542902 DOI: 10.1002/jcp.26017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 12/11/2022]
Abstract
Inositol pyrophosphates are small, diffusible signaling molecules that possess the most concentrated three-dimensional array of phosphate groups in Nature; up to eight phosphates are crammed around a six-carbon inositol ring. This review discusses the physico-chemical properties of these unique molecules, and their mechanisms of action. Also provided is information on the enzymes that regulate the levels and hence the signaling properties of these molecules. This review pursues the idea that many of the biological effects of inositol pyrophosphates can be rationalized by their actions at the interface of cell signaling and metabolism that is essential to cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
111
|
Abstract
Genetic ablation of inositol pyrophosphate synthesis has established the fundamental importance of this class of molecules to the eukaryote cell. These studies, however, must be complemented by cell biology and biochemical approaches to appreciate the signalling involved in the processes regulated by inositol pyrophosphates. A recent study by Chanduri et al. published in the Biochemical Journal, by integrating multiple experimental approaches, demonstrated that inositol pyrophosphates regulate intracellular vesicular movement. In particular, the vesicular transport along the microtubule that is driven by the motor protein complex dynein. Importantly, one subunit of this cellular motor, dynein 1 intermediate chain 2, undergoes serine pyrophosphorylation, a post-translational modification driven by inositol pyrophosphates. The pyrophosphorylation status of this dynein intermediate chain regulates its interaction with dynactin, which recruits the motor to vesicles. This mechanistically might explain how inositol pyrophosphates control intracellular membrane trafficking. By dissecting the serine pyrophosphorylation process, this work increases our awareness of this modification, underappreciated by the scientific literature but probably not by the eukaryotic cell.
Collapse
|
112
|
Has Inositol Played Any Role in the Origin of Life? Life (Basel) 2017; 7:life7020024. [PMID: 28587245 PMCID: PMC5492146 DOI: 10.3390/life7020024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/26/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022] Open
Abstract
Phosphorus, as phosphate, plays a paramount role in biology. Since phosphate transfer reactions are an integral part of contemporary life, phosphate may have been incorporated into the initial molecules at the very beginning. To facilitate the studies into early phosphate utilization, we should look retrospectively to phosphate-rich molecules present in today’s cells. Overlooked by origin of life studies until now, inositol and the inositol phosphates, of which some species possess more phosphate groups that carbon atoms, represent ideal molecules to consider in this context. The current sophisticated association of inositol with phosphate, and the roles that some inositol phosphates play in regulating cellular phosphate homeostasis, intriguingly suggest that inositol might have played some role in the prebiotic process of phosphate exploitation. Inositol can be synthesized abiotically and, unlike glucose or ribose, is chemically stable. This stability makes inositol the ideal candidate for the earliest organophosphate molecules, as primitive inositol phosphates. I also present arguments suggesting roles for some inositol phosphates in early chemical evolution events. Finally, the possible prebiotic synthesis of inositol pyrophosphates could have generated high-energy molecules to be utilized in primitive trans-phosphorylating processes.
Collapse
|
113
|
Yang SY, Huang TK, Kuo HF, Chiou TJ. Role of vacuoles in phosphorus storage and remobilization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3045-3055. [PMID: 28077447 DOI: 10.1093/jxb/erw481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. We also highlight the importance of vacuolar P in buffering the cytoplasmic Pi concentration to maintain cellular homeostasis when the external P supply fluctuates, and present additional roles for vacuolar polyP and InsP besides being a P reserve. Furthermore, we discuss the possibility of alternative pathways to recycle Pi from other P metabolites in vacuoles. Finally, future perspectives for researching this topic and its potential application in agriculture are proposed.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
114
|
Gerasimaite R, Pavlovic I, Capolicchio S, Hofer A, Schmidt A, Jessen HJ, Mayer A. Inositol Pyrophosphate Specificity of the SPX-Dependent Polyphosphate Polymerase VTC. ACS Chem Biol 2017; 12:648-653. [PMID: 28186404 DOI: 10.1021/acschembio.7b00026] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The free energy of nucleotide hydrolysis depends on phosphate concentration. Cells regulate cytosolic phosphate levels by orchestrating phosphate acquisition and storage through inositol pyrophosphates (PP-InsP) and SPX domains. Here, we report the synthesis of the novel 5-PPP-InsP5 containing a triphosphate subunit. Using this and a series of synthetic PP-InsP, we examined the ligand specificity of the SPX domain in the PP-InsP-controlled yeast polyphosphate polymerase VTC. SPX decodes the relative positioning of the phosphoric anhydrides, their structure (diphosphate vs triphosphate), and the presence of other phosphates on the inositol ring. Despite the higher potency of 1,5-(PP)2-InsP4, 5-PP-InsP5 is the primary activator of VTC in cells, indicating that its higher concentration compensates for its lower potency. 1,5-(PP)2-InsP4 levels rise and could become relevant under stress conditions. Thus, SPX domains may integrate PP-InsP dependent signaling to adapt cytosolic phosphate concentrations to different metabolic situations.
Collapse
Affiliation(s)
- Ruta Gerasimaite
- Department
of Biochemistry, University of Lausanne, Chemin de Boveresses 155, 1066 Epalinges, Switzerland
| | - Igor Pavlovic
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Samanta Capolicchio
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Alexandre Hofer
- Department
of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andrea Schmidt
- Department
of Biochemistry, University of Lausanne, Chemin de Boveresses 155, 1066 Epalinges, Switzerland
| | - Henning J. Jessen
- Institute
of Organic Chemistry, Albert-Ludwigs University of Freiburg, Albertstrasse 21, 79104 Freiburg, Germany
| | - Andreas Mayer
- Department
of Biochemistry, University of Lausanne, Chemin de Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
115
|
Azevedo C, Saiardi A. Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective. Trends Biochem Sci 2017; 42:219-231. [DOI: 10.1016/j.tibs.2016.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
|
116
|
Shah A, Ganguli S, Sen J, Bhandari R. Inositol Pyrophosphates: Energetic, Omnipresent and Versatile Signalling Molecules. J Indian Inst Sci 2017; 97:23-40. [PMID: 32214696 PMCID: PMC7081659 DOI: 10.1007/s41745-016-0011-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
Inositol pyrophosphates (PP-IPs) are a class of energy-rich signalling molecules found in all eukaryotic cells. These are derivatives of inositol that contain one or more diphosphate (or pyrophosphate) groups in addition to monophosphates. The more abundant and best studied PP-IPs are diphosphoinositol pentakisphosphate (IP7) and bis-diphosphoinositol tetrakisphosphate (IP8). These molecules can influence protein function by two mechanisms: binding and pyrophosphorylation. The former involves the specific interaction of a particular inositol pyrophosphate with a binding site on a protein, while the latter is a unique attribute of inositol pyrophosphates, wherein the β-phosphate moiety is transferred from a PP-IP to a pre-phosphorylated serine residue in a protein to generate pyrophosphoserine. Both these events can result in changes in the target protein’s activity, localisation or its interaction with other partners. As a consequence of their ubiquitous presence in all eukaryotic organisms and all cell types examined till date, and their ability to modify protein function, PP-IPs have been found to participate in a wide range of metabolic, developmental, and signalling pathways. This review highlights
many of the known functions of PP-IPs in the context of their temporal and spatial distribution in eukaryotic cells.
Collapse
Affiliation(s)
- Akruti Shah
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Shubhra Ganguli
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Jayraj Sen
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
- Graduate Studies, Manipal University, Manipal, Karnataka India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana India
| |
Collapse
|
117
|
Gu C, Nguyen HN, Hofer A, Jessen HJ, Dai X, Wang H, Shears SB. The Significance of the Bifunctional Kinase/Phosphatase Activities of Diphosphoinositol Pentakisphosphate Kinases (PPIP5Ks) for Coupling Inositol Pyrophosphate Cell Signaling to Cellular Phosphate Homeostasis. J Biol Chem 2017; 292:4544-4555. [PMID: 28126903 PMCID: PMC5377771 DOI: 10.1074/jbc.m116.765743] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Proteins responsible for Pi homeostasis are critical for all life. In Saccharomyces cerevisiae, extracellular [Pi] is "sensed" by the inositol-hexakisphosphate kinase (IP6K) that synthesizes the intracellular inositol pyrophosphate 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) as follows: during a period of Pi starvation, there is a decline in cellular [ATP]; the unusually low affinity of IP6Ks for ATP compels 5-InsP7 levels to fall in parallel (Azevedo, C., and Saiardi, A. (2017) Trends. Biochem. Sci. 42, 219-231. Hitherto, such Pi sensing has not been documented in metazoans. Here, using a human intestinal epithelial cell line (HCT116), we show that levels of both 5-InsP7 and ATP decrease upon [Pi] starvation and subsequently recover during Pi replenishment. However, a separate inositol pyrophosphate, 1,5-bisdiphosphoinositol 2,3,4,6-tetrakisphosphate (InsP8), reacts more dramatically (i.e. with a wider dynamic range and greater sensitivity). To understand this novel InsP8 response, we characterized kinetic properties of the bifunctional 5-InsP7 kinase/InsP8 phosphatase activities of full-length diphosphoinositol pentakisphosphate kinases (PPIP5Ks). These data fulfil previously published criteria for any bifunctional kinase/phosphatase to exhibit concentration robustness, permitting levels of the kinase product (InsP8 in this case) to fluctuate independently of varying precursor (i.e. 5-InsP7) pool size. Moreover, we report that InsP8 phosphatase activities of PPIP5Ks are strongly inhibited by Pi (40-90% within the 0-1 mm range). For PPIP5K2, Pi sensing by InsP8 is amplified by a 2-fold activation of 5-InsP7 kinase activity by Pi within the 0-5 mm range. Overall, our data reveal mechanisms that can contribute to specificity in inositol pyrophosphate signaling, regulating InsP8 turnover independently of 5-InsP7, in response to fluctuations in extracellular supply of a key nutrient.
Collapse
Affiliation(s)
- Chunfang Gu
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Hoai-Nghia Nguyen
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Alexandre Hofer
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Henning J Jessen
- Institute of Organic Chemistry, Albert Ludwigs University, Albertstrasse 21, 79104 Freiburg, Germany, and
| | - Xuming Dai
- Division of Cardiology, McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Huanchen Wang
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Stephen B Shears
- From the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709,
| |
Collapse
|
118
|
Pho4 Is Essential for Dissemination of Cryptococcus neoformans to the Host Brain by Promoting Phosphate Uptake and Growth at Alkaline pH. mSphere 2017; 2:mSphere00381-16. [PMID: 28144629 PMCID: PMC5266496 DOI: 10.1128/msphere.00381-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022] Open
Abstract
Phosphate acquisition by fungi is regulated by the phosphate-sensing and acquisition (PHO) signaling pathway. Cryptococcus neoformans disseminates from the lung to the brain and is the commonest cause of fungal meningitis worldwide. To investigate the contribution of PHO signaling to cryptococcal dissemination, we characterized a transcription factor knockout strain (hlh3Δ/pho4Δ) defective in phosphate acquisition. Despite little similarity with other fungal Pho4 proteins, Hlh3/Pho4 functioned like a typical phosphate-responsive transcription factor in phosphate-deprived cryptococci, accumulating in nuclei and triggering expression of genes involved in phosphate acquisition. The pho4Δ mutant strain was susceptible to a number of stresses, the effect of which, except for alkaline pH, was alleviated by phosphate supplementation. Even in the presence of phosphate, the PHO pathway was activated in wild-type cryptococci at or above physiological pH, and under these conditions, the pho4Δ mutant had a growth defect and compromised phosphate uptake. The pho4Δ mutant was hypovirulent in a mouse inhalation model, where dissemination to the brain was reduced dramatically, and markedly hypovirulent in an intravenous dissemination model. The pho4Δ mutant was not detected in blood, nor did it proliferate significantly when cultured with peripheral blood monocytes. In conclusion, dissemination of infection and the pathogenesis of meningitis are dependent on cryptococcal phosphate uptake and stress tolerance at alkaline pH, both of which are Pho4 dependent. IMPORTANCE Cryptococcal meningitis is fatal without treatment and responsible for more than 500,000 deaths annually. To be a successful pathogen, C. neoformans must obtain an adequate supply of essential nutrients, including phosphate, from various host niches. Phosphate acquisition in fungi is regulated by the PHO signaling cascade, which is activated when intracellular phosphate decreases below a critical level. Induction of phosphate acquisition genes leads to the uptake of free phosphate via transporters. By blocking the PHO pathway using a Pho4 transcription factor mutant (pho4Δ mutant), we demonstrate the importance of the pathway for cryptococcal dissemination and the establishment of brain infection in murine models. Specifically, we show that reduced dissemination of the pho4Δ mutant to the brain is due to an alkaline pH tolerance defect, as alkaline pH mimics the conditions of phosphate deprivation. The end result is inhibited proliferation in host tissues, particularly in blood.
Collapse
|
119
|
Wilson MSC, Saiardi A. Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling. Top Curr Chem (Cham) 2017; 375:14. [PMID: 28101851 PMCID: PMC5396384 DOI: 10.1007/s41061-016-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.
Collapse
Affiliation(s)
- Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
120
|
Pizzio GA, Hirschi KD, Gaxiola RA. Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1). FRONTIERS IN PLANT SCIENCE 2017; 8:1572. [PMID: 28955362 PMCID: PMC5601048 DOI: 10.3389/fpls.2017.01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/28/2017] [Indexed: 05/06/2023]
Abstract
Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity.
Collapse
Affiliation(s)
- Gaston A. Pizzio
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
- *Correspondence: Gaston A. Pizzio, ; Roberto A. Gaxiola,
| | - Kendal D. Hirschi
- USDA ARS Children’s Nutrition Research Center, Baylor College of Medicine, HoustonTX, United States
| | - Roberto A. Gaxiola
- School of Life Sciences, Arizona State University, TempeAZ, United States
- *Correspondence: Gaston A. Pizzio, ; Roberto A. Gaxiola,
| |
Collapse
|
121
|
Gerasimaitė R, Mayer A. Ppn2, a novel Zn2+-dependent polyphosphatase in the acidocalcisome-like yeast vacuole. J Cell Sci 2017; 130:1625-1636. [DOI: 10.1242/jcs.201061] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/13/2017] [Indexed: 12/12/2022] Open
Abstract
Acidocalcisome-like organelles are found in all kingdoms of life. Many of their functions, such as the accumulation and storage of metal ions, nitrogen and phosphate, the activation of blood clotting and inflammation, depend on the controlled synthesis and turnover of polyphosphate (polyP), a polymer of inorganic phosphate linked by phosphoric anhydride bonds. The exploration of the role of acidocalcisomes in metabolism and physiology requires manipulation of polyP turnover, yet the complete set of proteins responsible for this turnover is unknown. Here, we identify a novel type of polyphosphatase operating in the acidocalcisome-like vacuoles of yeast, Ppn2. Ppn2 belongs to the PPP-superfamily of metallo-phosphatases, is activated by Zn2+ ions and exclusively shows endopolyphosphatase activity. It is sorted to vacuoles via the multivesicular body pathway. Together with Ppn1, Ppn2 constitutes a major fraction of polyphosphatase activity that is necessary to mobilize polyP stores, for example in response to phosphate scarcity. This finding opens the way to manipulating polyP metabolism more profoundly and deciphering its roles in phosphate and energy homeostasis, as well as in signaling.
Collapse
Affiliation(s)
- Rūta Gerasimaitė
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland
| |
Collapse
|
122
|
Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles. Biochem Soc Trans 2016; 44:234-9. [PMID: 26862210 DOI: 10.1042/bst20150213] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research.
Collapse
|
123
|
Abstract
Post-translational modifications (PTMs) add regulatory features to proteins that help establish the complex functional networks that make up higher organisms. Advances in analytical detection methods have led to the identification of more than 200 types of PTMs. However, some modifications are unstable under the present detection methods, anticipating the existence of further modifications and a much more complex map of PTMs. An example is the recently discovered protein modification polyphosphorylation. Polyphosphorylation is mediated by inorganic polyphosphate (polyP) and represents the covalent attachment of this linear polymer of orthophosphate to lysine residues in target proteins. This modification has eluded MS analysis as both polyP itself and the phosphoramidate bonds created upon its reaction with lysine residues are highly unstable in acidic conditions. Polyphosphorylation detection was only possible through extensive biochemical characterization. Two targets have been identified: nuclear signal recognition 1 (Nsr1) and its interacting partner, topoisomerase 1 (Top1). Polyphosphorylation occurs within a conserved N-terminal polyacidic serine (S) and lysine (K) rich (PASK) cluster. It negatively regulates Nsr1-Top1 interaction and impairs Top1 enzymatic activity, namely relaxing supercoiled DNA. Modulation of cellular levels of polyP regulates Top1 activity by modifying its polyphosphorylation status. Here we discuss the significance of the recently identified new role of inorganic polyP.
Collapse
|
124
|
Shears SB, Baughman BM, Gu C, Nair VS, Wang H. The significance of the 1-kinase/1-phosphatase activities of the PPIP5K family. Adv Biol Regul 2016; 63:98-106. [PMID: 27776974 DOI: 10.1016/j.jbior.2016.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/13/2016] [Accepted: 10/15/2016] [Indexed: 01/29/2023]
Abstract
The inositol pyrophosphates (diphosphoinositol polyphosphates), which include 1-InsP7, 5-InsP7, and InsP8, are highly 'energetic' signaling molecules that play important roles in many cellular processes, particularly with regards to phosphate and bioenergetic homeostasis. Two classes of kinases synthesize the PP-InsPs: IP6Ks and PPIP5Ks. The significance of the IP6Ks - and their 5-InsP7 product - has been widely reported. However, relatively little is known about the biological significance of the PPIP5Ks. The purpose of this review is to provide an update on developments in our understanding of key features of the PPIP5Ks, which we believe strengthens the hypothesis that their catalytic activities serve important cellular functions. Central to this discussion is the recent discovery that the PPIP5K is a rare example of a single protein that catalyzes a kinase/phosphatase futile cycle.
Collapse
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| | - Brandi M Baughman
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Chunfang Gu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Vasudha S Nair
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Huanchen Wang
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 101 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
125
|
Desfougères Y, Gerasimaitė RU, Jessen HJ, Mayer A. Vtc5, a Novel Subunit of the Vacuolar Transporter Chaperone Complex, Regulates Polyphosphate Synthesis and Phosphate Homeostasis in Yeast. J Biol Chem 2016; 291:22262-22275. [PMID: 27587415 PMCID: PMC5064005 DOI: 10.1074/jbc.m116.746784] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
SPX domains control phosphate homeostasis in eukaryotes. Ten genes in yeast encode SPX-containing proteins, among which YDR089W is the only one of unknown function. Here, we show that YDR089W encodes a novel subunit of the vacuole transporter chaperone (VTC) complex that produces inorganic polyphosphate (polyP). The polyP synthesis transfers inorganic phosphate (Pi) from the cytosol into the acidocalcisome- and lysosome-related vacuoles of yeast, where it can be released again. It was therefore proposed for buffer changes in cytosolic Pi concentration (Thomas, M. R., and O'Shea, E. K. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 9565-9570). Vtc5 physically interacts with the VTC complex and accelerates the accumulation of polyP synthesized by it. Deletion of VTC5 reduces polyP accumulation in vivo and in vitro Its overexpression hyperactivates polyP production and triggers the phosphate starvation response via the PHO pathway. Because this Vtc5-induced starvation response can be reverted by shutting down polyP synthesis genetically or pharmacologically, we propose that polyP synthesis rather than Vtc5 itself is a regulator of the PHO pathway. Our observations suggest that polyP synthesis not only serves to establish a buffer for transient drops in cytosolic Pi levels but that it can actively decrease or increase the steady state of cytosolic Pi.
Collapse
Affiliation(s)
- Yann Desfougères
- From the Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland and
| | - R Uta Gerasimaitė
- From the Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland and
| | - Henning Jacob Jessen
- the Institute of Organic Chemistry, Albert-Ludwigs-University, 79104 Freiburg, Germany
| | - Andreas Mayer
- From the Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland and
| |
Collapse
|
126
|
Li C, Lev S, Saiardi A, Desmarini D, Sorrell TC, Djordjevic JT. Inositol Polyphosphate Kinases, Fungal Virulence and Drug Discovery. J Fungi (Basel) 2016; 2:jof2030024. [PMID: 29376941 PMCID: PMC5753137 DOI: 10.3390/jof2030024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/23/2016] [Accepted: 08/30/2016] [Indexed: 12/31/2022] Open
Abstract
Opportunistic fungi are a major cause of morbidity and mortality world-wide, particularly in immunocompromised individuals. Developing new treatments to combat invasive fungal disease is challenging given that fungal and mammalian host cells are eukaryotic, with similar organization and physiology. Even therapies targeting unique fungal cell features have limitations and drug resistance is emerging. New approaches to the development of antifungal drugs are therefore needed urgently. Cryptococcus neoformans, the commonest cause of fungal meningitis worldwide, is an accepted model for studying fungal pathogenicity and driving drug discovery. We recently characterized a phospholipase C (Plc1)-dependent pathway in C. neoformans comprising of sequentially-acting inositol polyphosphate kinases (IPK), which are involved in synthesizing inositol polyphosphates (IP). We also showed that the pathway is essential for fungal cellular function and pathogenicity. The IP products of the pathway are structurally diverse, each consisting of an inositol ring, with phosphate (P) and pyrophosphate (PP) groups covalently attached at different positions. This review focuses on (1) the characterization of the Plc1/IPK pathway in C. neoformans; (2) the identification of PP-IP₅ (IP₇) as the most crucial IP species for fungal fitness and virulence in a mouse model of fungal infection; and (3) why IPK enzymes represent suitable candidates for drug development.
Collapse
Affiliation(s)
- Cecilia Li
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Sophie Lev
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| | - Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Julianne T Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, NSW 2145, Australia.
- Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
127
|
Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 ( IP6K3 ) gene promoter to the susceptibility to late onset Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1766-73. [DOI: 10.1016/j.bbadis.2016.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 01/16/2023]
|
128
|
Trilisenko LV, Andreeva NA, Eldarov MA, Dumina MV, Kulakovskaya TV. Polyphosphates and Polyphosphatase Activity in the Yeast Saccharomyces cerevisiae during Overexpression of the DDP1 Gene. BIOCHEMISTRY (MOSCOW) 2016; 80:1312-7. [PMID: 26567575 DOI: 10.1134/s0006297915100120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of overexpression of yeast diphosphoinositol polyphosphate phosphohydrolase (DDP1) having endopolyphosphatase activity on inorganic polyphosphate metabolism in Saccharomyces cerevisiae were studied. The endopolyphosphatase activity in the transformed strain significantly increased compared to the parent strain. This activity was observed with polyphosphates of different chain length, being suppressed by 2 mM tripolyphosphate or ATP. The content of acid-soluble and acid-insoluble polyphosphates under DDP1 overexpression decreased by 9 and 28%, respectively. The average chain length of salt-soluble and alkali-soluble fractions did not change in the overexpressing strain, and that of acid-soluble polyphosphate increased under phosphate excess. At the initial stage of polyphosphate recovery after phosphorus starvation, the chain length of the acid-soluble fraction in transformed cells was lower compared to the recipient strain. This observation suggests the complex nature of DDP1 involvement in the regulation of polyphosphate content and chain length in yeasts.
Collapse
Affiliation(s)
- L V Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | |
Collapse
|
129
|
Suess PM, Gomer RH. Extracellular Polyphosphate Inhibits Proliferation in an Autocrine Negative Feedback Loop in Dictyostelium discoideum. J Biol Chem 2016; 291:20260-9. [PMID: 27519410 DOI: 10.1074/jbc.m116.737825] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Indexed: 11/06/2022] Open
Abstract
Polyphosphate is a polymer of phosphate residues linked by high energy phosphoanhydride bonds. Despite being highly conserved throughout nature, its function is poorly understood. Here we show that Dictyostelium cells accumulate extracellular polyphosphate, and this acts to inhibit proliferation at high cell densities. In shaking culture, extracellular polyphosphate concentrations increase as cell density increases, and if the concentration of polyphosphate observed at the stationary phase is added to cells at mid-log, proliferation is halted. Adding an exopolyphosphatase to cell cultures or stationary phase conditioned medium decreases polyphosphate levels and abrogates the anti-proliferative effect. The cells show saturable binding of polyphosphate, suggesting the presence of a cell surface polyphosphate receptor. Extracellular polyphosphate accumulation is potentiated by decreased nutrient levels, potentially as a means to anticipate starvation. Loss of the Dictyostelium polyphosphate kinase DdPpk1 causes intracellular polyphosphate levels to become undetectable and negatively affects fitness, cytokinesis, and germination. However, cells lacking DdPpk1 accumulate ∼50% normal levels of extracellular polyphosphate, suggesting an additional means of synthesis. We found that cells lacking inositol hexakisphosphate kinase, which is responsible for the synthesis of the inositol pyrophosphates IP7 and IP8, reach abnormally high cell densities and show decreased extracellular polyphosphate levels. Two different enzymes thus appear to mediate the synthesis of Dictyostelium extracellular polyphosphate, which is used as a signal in an autocrine negative feedback loop to regulate cell proliferation.
Collapse
Affiliation(s)
- Patrick M Suess
- From the Department of Biology, Texas A&M University, College Station, Texas 77843-3474
| | - Richard H Gomer
- From the Department of Biology, Texas A&M University, College Station, Texas 77843-3474
| |
Collapse
|
130
|
Thota SG, Bhandari R. The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 2016; 40:593-605. [PMID: 26333405 DOI: 10.1007/s12038-015-9549-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inositol pyrophosphates are water soluble derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. The best characterised inositol pyrophosphates, are IP7 (diphosphoinositol pentakisphosphate or PP-IP5), and IP8 (bisdiphosphoinositol tetrakisphosphate or (PP)2-IP4). These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome synthesis. Identified more than 20 years ago, there is still only a rudimentary understanding of the mechanisms by which inositol pyrophosphates participate in these myriad pathways governing cell physiology and homeostasis. The unique stereochemical and bioenergetic properties these molecules possess as a consequence of the presence of one or two pyrophosphate moieties in the vicinity of densely packed monophosphates are likely to form the molecular basis for their participation in multiple signalling and metabolic pathways. The aim of this review is to provide first time researchers in this area with an introduction to inositol pyrophosphates and a comprehensive overview on their cellular functions.
Collapse
Affiliation(s)
- Swarna Gowri Thota
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500 001, India
| | | |
Collapse
|
131
|
Desfougères Y, Neumann H, Mayer A. Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion. J Cell Sci 2016; 129:2817-28. [PMID: 27252384 DOI: 10.1242/jcs.184382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/26/2016] [Indexed: 11/20/2022] Open
Abstract
Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.
Collapse
Affiliation(s)
- Yann Desfougères
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| | - Heinz Neumann
- GZMB, Institut für Molekulare Strukturbiologie, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Andreas Mayer
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, Epalinges 1066, Switzerland
| |
Collapse
|
132
|
Bru S, Martínez-Laínez JM, Hernández-Ortega S, Quandt E, Torres-Torronteras J, Martí R, Canadell D, Ariño J, Sharma S, Jiménez J, Clotet J. Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae. Mol Microbiol 2016; 101:367-80. [PMID: 27072996 DOI: 10.1111/mmi.13396] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4Δ) or hydrolyse polyP (ppn1Δ, ppx1Δ) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA.
Collapse
Affiliation(s)
- Samuel Bru
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Sara Hernández-Ortega
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - David Canadell
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Ariño
- Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | - Javier Jiménez
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
133
|
Docampo R, Huang G. Acidocalcisomes of eukaryotes. Curr Opin Cell Biol 2016; 41:66-72. [PMID: 27125677 DOI: 10.1016/j.ceb.2016.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 01/01/2023]
Abstract
Acidocalcisomes are organelles rich in polyphosphate and cations and acidified by proton pumps. Although they have also been described in prokaryotes they have been better characterized in unicellular and multicellular eukaryotes. Eukaryotic acidocalcisomes belong to the group of lysosome-related organelles. They have a variety of functions, from the storage of cations and phosphorus to calcium signaling, autophagy, osmoregulation, blood coagulation, and inflammation. Acidocalcisomes of several unicellular eukaryotes possess a variety of transporters, channels and pumps implying a large energetic requirement for their maintenance and suggesting other important functions waiting to be discovered.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| | - Guozhong Huang
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
134
|
Wild R, Gerasimaite R, Jung JY, Truffault V, Pavlovic I, Schmidt A, Saiardi A, Jessen HJ, Poirier Y, Hothorn M, Mayer A. Control of eukaryotic phosphate homeostasis by inositol polyphosphate sensor domains. Science 2016; 352:986-90. [DOI: 10.1126/science.aad9858] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022]
|
135
|
Abstract
Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships.
Collapse
|
136
|
Steidle EA, Chong LS, Wu M, Crooke E, Fiedler D, Resnick AC, Rolfes RJ. A Novel Inositol Pyrophosphate Phosphatase in Saccharomyces cerevisiae: Siw14 PROTEIN SELECTIVELY CLEAVES THE β-PHOSPHATE FROM 5-DIPHOSPHOINOSITOL PENTAKISPHOSPHATE (5PP-IP5). J Biol Chem 2016; 291:6772-83. [PMID: 26828065 DOI: 10.1074/jbc.m116.714907] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 11/06/2022] Open
Abstract
Inositol pyrophosphates are high energy signaling molecules involved in cellular processes, such as energetic metabolism, telomere maintenance, stress responses, and vesicle trafficking, and can mediate protein phosphorylation. Although the inositol kinases underlying inositol pyrophosphate biosynthesis are well characterized, the phosphatases that selectively regulate their cellular pools are not fully described. The diphosphoinositol phosphate phosphohydrolase enzymes of the Nudix protein family have been demonstrated to dephosphorylate inositol pyrophosphates; however, theSaccharomyces cerevisiaehomolog Ddp1 prefers inorganic polyphosphate over inositol pyrophosphates. We identified a novel phosphatase of the recently discovered atypical dual specificity phosphatase family as a physiological inositol pyrophosphate phosphatase. Purified recombinant Siw14 hydrolyzes the β-phosphate from 5-diphosphoinositol pentakisphosphate (5PP-IP5or IP7)in vitro. In vivo,siw14Δ yeast mutants possess increased IP7levels, whereas heterologousSIW14overexpression eliminates IP7from cells. IP7levels increased proportionately whensiw14Δ was combined withddp1Δ orvip1Δ, indicating independent activity by the enzymes encoded by these genes. We conclude that Siw14 is a physiological phosphatase that modulates inositol pyrophosphate metabolism by dephosphorylating the IP7isoform 5PP-IP5to IP6.
Collapse
Affiliation(s)
- Elizabeth A Steidle
- From the Department of Biology, Georgetown University, Washington, D. C. 20057
| | - Lucy S Chong
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Mingxuan Wu
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Elliott Crooke
- the Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, D. C. 20057
| | - Dorothea Fiedler
- the Department of Chemistry, Princeton University, Princeton, New Jersey 08544, and
| | - Adam C Resnick
- the Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104,
| | - Ronda J Rolfes
- From the Department of Biology, Georgetown University, Washington, D. C. 20057,
| |
Collapse
|
137
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
138
|
Developmental accumulation of inorganic polyphosphate affects germination and energetic metabolism in Dictyostelium discoideum. Proc Natl Acad Sci U S A 2016; 113:996-1001. [PMID: 26755590 DOI: 10.1073/pnas.1519440113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inorganic polyphosphate (polyP) is composed of linear chains of phosphate groups linked by high-energy phosphoanhydride bonds. However, this simple, ubiquitous molecule remains poorly understood. The use of nonstandardized analytical methods has contributed to this lack of clarity. By using improved polyacrylamide gel electrophoresis we were able to visualize polyP extracted from Dictyostelium discoideum. We established that polyP is undetectable in cells lacking the polyphosphate kinase (DdPpk1). Generation of this ppk1 null strain revealed that polyP is important for the general fitness of the amoebae with the mutant strain displaying a substantial growth defect. We discovered an unprecedented accumulation of polyP during the developmental program, with polyP increasing more than 100-fold. The failure of ppk1 spores to accumulate polyP results in a germination defect. These phenotypes are underpinned by the ability of polyP to regulate basic energetic metabolism, demonstrated by a 2.5-fold decrease in the level of ATP in vegetative ppk1. Finally, the lack of polyP during the development of ppk1 mutant cells is partially offset by an increase of both ATP and inositol pyrophosphates, evidence for a model in which there is a functional interplay between inositol pyrophosphates, ATP, and polyP.
Collapse
|
139
|
Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J Microbiol Biotechnol 2016; 32:27. [DOI: 10.1007/s11274-015-1983-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
140
|
Pavlovic I, Thakor DT, Jessen HJ. Synthesis of 2-diphospho-myo-inositol 1,3,4,5,6-pentakisphosphate and a photocaged analogue. Org Biomol Chem 2016; 14:5559-62. [DOI: 10.1039/c6ob00094k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diphosphoinositol polyphosphates (inositol pyrophosphates, X-InsP7) are a family of second messengers with important roles in eukaryotic biology. A new approach targeting 2-InsP7 and a photocaged analogue is described.
Collapse
Affiliation(s)
- I. Pavlovic
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - D. T. Thakor
- Department of Chemistry
- University of Zürich
- 8057 Zürich
- Switzerland
| | - H. J. Jessen
- Department of Chemistry and Pharmacy
- Albert-Ludwigs University Freiburg
- 79104 Freiburg
- Germany
| |
Collapse
|
141
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
142
|
Azevedo C, Saiardi A. Why always lysine? The ongoing tale of one of the most modified amino acids. Adv Biol Regul 2015; 60:144-150. [PMID: 26482291 DOI: 10.1016/j.jbior.2015.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 11/26/2022]
Abstract
The complex physiology of living organisms must be finely-tuned to permit the flexibility required to respond to the changing environment. Evolution has provided an interconnected and intricate array of regulatory mechanisms to facilitate this fine-tuning. The number of genes cannot alone explain the complexity of these mechanisms. Rather, signalling is regulated at multiple levels, from genomic to transcriptional, translational and post-translational. Post-translational modification (PTM) of proteins offers an additional level of regulation after protein synthesis that allows a rapid, controlled and reversible response to environmental cues. Many amino acid side chains are post-translationally modified. These modifications can either be enzymatic, such as the phosphorylation of serine, threonine and tyrosine residues, or non-enzymatic, such as the nitrosylation of cysteine residues. Strikingly, lysine residues are targeted by a particularly high number of PTMs including acetylation, methylation, ubiquitination and sumoylation. Additionally, lysines have recently been identified as the target of the non-enzymatic PTM polyphosphorylation. This novel PTM sees linear chains of inorganic polyphosphates (polyP) covalently attached to lysine residues. Interestingly, polyphosphorylation is indirectly dependent on inositol pyrophosphates, a class of cellular messengers. The attachment of polyP to lysine occurs through the phosphoramidate bond, which, unlike the phosphester bond, is unstable under the conditions used in common mass spectroscopy. This characteristic, together with the diversity of lysine PTMs, suggests that many other lysine modifications may still remain unidentified, raising the intriguing possibility that lysine PTMs may be the major means by which signalling pathways modify protein behaviour.
Collapse
Affiliation(s)
- Cristina Azevedo
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
143
|
Wang X, Schröder HC, Müller WEG. Polyphosphate as a metabolic fuel in Metazoa: A foundational breakthrough invention for biomedical applications. Biotechnol J 2015; 11:11-30. [PMID: 26356505 DOI: 10.1002/biot.201500168] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
In animals, energy-rich molecules like ATP are generated in the intracellular compartment from metabolites, e.g. glucose, taken up by the cells. Recent results revealed that inorganic polyphosphates (polyP) can provide an extracellular system for energy transport and delivery. These polymers of multiple phosphate units, linked by high-energy phosphoanhydride bonds, use blood platelets as transport vehicles to reach their target cells. In this review it is outlined how polyP affects cell metabolism. It is discussed that polyP influences cell activity in a dual way: (i) as a metabolic fuel transferring metabolic energy through the extracellular space; and (ii) as a signaling molecule that amplifies energy/ATP production in mitochondria. Several metabolic pathways are triggered by polyP, among them biomineralization/hydroxyapatite formation onto bone cells. The accumulation of polyP in the platelets allows long-distance transport of the polymer in the extracellular space. The discovery of polyP as metabolic fuel and signaling molecule initiated the development of novel techniques for encapsulation of polyP into nanoparticles. They facilitate cellular uptake of the polymer by receptor-mediated endocytosis and allow the development of novel strategies for therapy of metabolic diseases associated with deviations in energy metabolism or mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Rheinland-Pfalz, Germany.
| |
Collapse
|
144
|
Gopalakrishnan V, Purushothaman P, Bhaskar A. Proteomic analysis of plasma proteins in diabetic retinopathy patients by two dimensional electrophoresis and MALDI-Tof-MS. J Diabetes Complications 2015; 29:928-36. [PMID: 26129748 DOI: 10.1016/j.jdiacomp.2015.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/28/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Diabetic retinopathy is a highly specific vascular complication of diabetes mellitus and progresses from mild non-proliferative abnormalities characterized by increased vascular permeability to moderate and severe proliferative diabetic retinopathy characterized by the growth of blood vessels on the retina. The aim of the study was to identify the differentially expressed proteins in diabetic retinopathy using two-dimensional electrophoresis. METHODS Blood sample was drawn from subjects with diabetes mellitus (without retinopathy) who served as controls and patients with diabetic retinopathy in tubes containing EDTA as anticoagulant. Albumin and immunoglobulin IgG collectively removed to enrich proteins of lower abundance. 2de was carried out to see if there are any differentially expressed proteins. RESULTS Approximately 48 and 61 spots were identified in control and diabetic retinopathy respectively, of which three protein spots RBP1 (retinol-binding protein 1), NUD10 (Diphosphoinositol polyphosphohydrolase 3 alpha), NGB (neuroglobin) were down regulated and HBG2 (hemoglobin) and BY55 (CD 160 antigen) were upregulated in diabetic retinopathy. These five protein spots were excised and were subjected to in-gel tryptic digestion, and their identities were determined by ultraflex MALDI-TOF-MS. CONCLUSION We report a comprehensive patient-based plasma proteomic approach to the identification of potential biomarkers for diabetic retinopathy screening and detection. SIGNIFICANCE OF THE STUDY We identified 5 different proteins that were differentially expressed in the plasma of control diabetic patients (without retinopathy). Among these five proteins the expression of neuroglobin (NGB) protein varied significantly and may be a potential biomarker in diabetic retinopathy.
Collapse
Affiliation(s)
- Vidhya Gopalakrishnan
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur, 603 203, Tamil Nadu, India
| | - Parthiban Purushothaman
- Department of Ophthalmology, KAPV Government Medical College, and Annal Gandhi Govt. Medical Hospital, Trichy, 620 017, Tamil Nadu, India
| | - Anusha Bhaskar
- Centre for Research and Development, PRIST University, Vallam, Thanjavur, 614 403, Tamil Nadu, India.
| |
Collapse
|
145
|
Williams MJ, Eriksson A, Shaik M, Voisin S, Yamskova O, Paulsson J, Thombare K, Fredriksson R, Schiöth HB. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling. Mol Endocrinol 2015; 29:1303-19. [PMID: 26168034 DOI: 10.1210/me.2015-1077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.
Collapse
Affiliation(s)
- Michael J Williams
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Anders Eriksson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Muksheed Shaik
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Sarah Voisin
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Olga Yamskova
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Johan Paulsson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Ketan Thombare
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Division of Functional Pharmacology, Uppsala University, 75 124 Uppsala, Sweden
| |
Collapse
|
146
|
Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 2015; 466:105-14. [PMID: 25423617 PMCID: PMC4325516 DOI: 10.1042/bj20140798] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosome biogenesis is an essential cellular process regulated by the metabolic state of a cell. We examined whether inositol pyrophosphates, energy-rich derivatives of inositol that act as metabolic messengers, play a role in ribosome synthesis in the budding yeast, Saccharomyces cerevisiae. Yeast strains lacking the inositol hexakisphosphate (IP6) kinase Kcs1, which is required for the synthesis of inositol pyrophosphates, display increased sensitivity to translation inhibitors and decreased protein synthesis. These phenotypes are reversed on expression of enzymatically active Kcs1, but not on expression of the inactive form. The kcs1Δ yeast cells exhibit reduced levels of ribosome subunits, suggesting that they are defective in ribosome biogenesis. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in kcs1Δ yeast strains, suggesting that RNA polymerase I (Pol I) activity may be reduced in these cells. We determined that the Pol I subunits, A190, A43 and A34.5, can accept a β-phosphate moiety from inositol pyrophosphates to undergo serine pyrophosphorylation. Although there is impaired rRNA synthesis in kcs1Δ yeast cells, we did not find any defect in recruitment of Pol I on rDNA, but observed that the rate of transcription elongation was compromised. Taken together, our findings highlight inositol pyrophosphates as novel regulators of rRNA transcription. Inositol pyrophosphates are phosphate-rich metabolic messengers that regulate many cellular processes. We observed that RNA polymerase I is pyrophosphorylated by inositol pyrophosphates, and its transcription elongation activity was reduced in budding yeast strains devoid of inositol pyrophosphates.
Collapse
|
147
|
Positively-charged semi-tunnel is a structural and surface characteristic of polyphosphate-binding proteins: an in-silico study. PLoS One 2015; 10:e0123713. [PMID: 25879219 PMCID: PMC4400040 DOI: 10.1371/journal.pone.0123713] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.
Collapse
|
148
|
Azevedo C, Livermore T, Saiardi A. Protein Polyphosphorylation of Lysine Residues by Inorganic Polyphosphate. Mol Cell 2015; 58:71-82. [DOI: 10.1016/j.molcel.2015.02.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/02/2014] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
149
|
Andreeva N, Trilisenko L, Eldarov M, Kulakovskaya T. Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities. PLoS One 2015; 10:e0119594. [PMID: 25742176 PMCID: PMC4350845 DOI: 10.1371/journal.pone.0119594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
The polyphosphatase PPN1 of Saccharomyces cerevisiae shows an exopolyphosphatase activity splitting phosphate from chain end and an endopolyphosphatase activity fragmenting high molecular inorganic polyphosphates into shorter polymers. We revealed the compounds switching these activities of PPN1. Phosphate release and fragmentation of high molecular polyphosphate prevailed in the presence of Co2+ and Mg2+, respectively. Phosphate release and polyphosphate chain shortening in the presence of Co2+ were inhibited by ADP but not affected by ATP and argininе. The polyphosphate chain shortening in the presence of Mg2+ was activated by ADP and arginine but inhibited by ATP.
Collapse
Affiliation(s)
- Nadezhda Andreeva
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia
| | - Ludmila Trilisenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia
| | - Mikhail Eldarov
- Centre “Bioengineering”, Russian Academy of Sciences, pr. Shestidesyatiletiya Oktyabrya 7–1, Moscow, 117312, Russia
| | - Tatiana Kulakovskaya
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, 142290, Russia
| |
Collapse
|
150
|
Williams SP, Gillaspy GE, Perera IY. Biosynthesis and possible functions of inositol pyrophosphates in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:67. [PMID: 25729385 PMCID: PMC4325660 DOI: 10.3389/fpls.2015.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
Inositol phosphates (InsPs) are intricately tied to lipid signaling, as at least one portion of the inositol phosphate signaling pool is derived from hydrolysis of the lipid precursor, phosphatidyl inositol (4,5) bisphosphate. The focus of this review is on the inositol pyrophosphates, which are a novel group of InsP signaling molecules containing diphosphate or triphosphate chains (i.e., PPx) attached to the inositol ring. These PPx-InsPs are emerging as critical players in the integration of cellular metabolism and stress signaling in non-plant eukaryotes. Most eukaryotes synthesize the precursor molecule, myo-inositol (1,2,3,4,5,6)-hexakisphosphate (InsP6), which can serve as a signaling molecule or as storage compound of inositol, phosphorus, and minerals (referred to as phytic acid). Even though plants produce huge amounts of precursor InsP6 in seeds, almost no attention has been paid to whether PPx-InsPs exist in plants, and if so, what roles these molecules play. Recent work has delineated that Arabidopsis has two genes capable of PP-InsP5 synthesis, and PPx-InsPs have been detected across the plant kingdom. This review will detail the known roles of PPx-InsPs in yeast and animal systems, and provide a description of recent data on the synthesis and accumulation of these novel molecules in plants, and potential roles in signaling.
Collapse
Affiliation(s)
- Sarah P. Williams
- Biochemistry, Virginia Polytechnic and State UniversityBlacksburg, VA, USA
| | - Glenda E. Gillaspy
- Biochemistry, Virginia Polytechnic and State UniversityBlacksburg, VA, USA
| | - Imara Y. Perera
- Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
| |
Collapse
|