101
|
Guaiquil VH, Golde DW, Beckles DL, Mascareno EJ, Siddiqui MAQ. Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemic hearts. Free Radic Biol Med 2004; 37:1419-29. [PMID: 15454281 DOI: 10.1016/j.freeradbiomed.2004.06.041] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 06/14/2004] [Accepted: 06/24/2004] [Indexed: 11/23/2022]
Abstract
Reactive oxygen species play a central role in myocardial ischemic injury and are a target for therapeutic intervention. Vitamin C is an essential antioxidant yet difficult to deliver in pharmacologic concentration to the myocardium. We found that adult rat cardiomyocytes accumulate vitamin C by transporting dehydroascorbic acid (DHA), the oxidized form of vitamin C, but do not transport ascorbic acid. Loading cells with vitamin C by DHA treatment resulted in resistance to hypoxia- and hypoxia/reoxygenation-induced cell death associated with the quenching of reactive oxygen species. When rats were injected with DHA before coronary occlusion, the ascorbic acid content in the heart was six to eight times higher than in untreated controls and myocardial infarction was reduced by 62%. DHA also provided significant protection when administered intravenously 2 h after coronary occlusion. In cardiomyocytes subjected to hypoxia/reoxygenation, DHA treatment resulted in decreased apoptosis associated with inhibition of Bax expression, caspase-3 activation, and cytochrome c translocation into the cytoplasm. DHA treatment also inhibited Jak2, STAT1, and STAT5 phosphorylation, and increased STAT3 phosphorylation, in hypoxic cardiomyocytes and ischemic myocardial tissue. Our findings suggest that DHA may be useful as a cardioprotectant in ischemic heart disease.
Collapse
Affiliation(s)
- Victor H Guaiquil
- Center for Cardiovascular and Muscle Research, Department of Anatomy and Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11023, USA
| | | | | | | | | |
Collapse
|
102
|
Vitamin C blocks TNF-α-induced NF-kB activation and ICAM-1 expression in human neuroblastoma cells. Arch Pharm Res 2004; 27:1073. [DOI: 10.1007/bf02975434] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Indexed: 12/24/2022]
|
103
|
Cárcamo JM, Pedraza A, Bórquez-Ojeda O, Zhang B, Sanchez R, Golde DW. Vitamin C is a kinase inhibitor: dehydroascorbic acid inhibits IkappaBalpha kinase beta. Mol Cell Biol 2004; 24:6645-52. [PMID: 15254232 PMCID: PMC444845 DOI: 10.1128/mcb.24.15.6645-6652.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Revised: 03/09/2004] [Accepted: 05/10/2004] [Indexed: 01/04/2023] Open
Abstract
Reactive oxygen species (ROS) are key intermediates in cellular signal transduction pathways whose function may be counterbalanced by antioxidants. Acting as an antioxidant, ascorbic acid (AA) donates two electrons and becomes oxidized to dehydroascorbic acid (DHA). We discovered that DHA directly inhibits IkappaBalpha kinase beta (IKKbeta) and IKKalpha enzymatic activity in vitro, whereas AA did not have this effect. When cells were loaded with AA and induced to generate DHA by oxidative stress in cells expressing a constitutive active IKKbeta, NF-kappaB activation was inhibited. Our results identify a dual molecular action of vitamin C in signal transduction and provide a direct linkage between the redox state of vitamin C and NF-kappaB signaling events. AA quenches ROS intermediates involved in the activation of NF-kappaB and is oxidized to DHA, which directly inhibits IKKbeta and IKKalpha enzymatic activity. These findings define a function for vitamin C in signal transduction other than as an antioxidant and mechanistically illuminate how vitamin C down-modulates NF-kappaB signaling.
Collapse
Affiliation(s)
- Juan M Cárcamo
- Program in Molecular Pharmacology and Chemistry, Box 451, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
104
|
Lutsenko EA, Carcamo JM, Golde DW. A human sodium-dependent vitamin C transporter 2 isoform acts as a dominant-negative inhibitor of ascorbic acid transport. Mol Cell Biol 2004; 24:3150-6. [PMID: 15060139 PMCID: PMC381605 DOI: 10.1128/mcb.24.8.3150-3156.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vitamin C is transported as ascorbic acid (AA) through the sodium-ascorbate cotransporters (SVCT1 and -2) and as dehydroascorbic acid (DHA) through the facilitative glucose transporters. All cells have glucose transporters and take up DHA that is trapped intracellularly by reduction and accumulated as AA. SVCT2 is widely expressed in cells and tissues at the mRNA level; however, only specialized cells directly transport AA. We undertook a molecular analysis of SVCT2 expression and discovered a transcript encoding a short form of human SVCT2 (hSVCT2-short) in which 345 bp is deleted without a frame shift. The deletion involves domains 5 and 6 and part of domain 4. cDNA encoding this isoform was isolated and expressed in 293T cells, where the protein was detected on the plasma membrane. Transport studies, however, revealed that hSVCT2-short gave rise to a nonfunctional transporter protein. hSVCT2-short arises by alternative splicing and encodes a protein that strongly inhibited the function of SVCT2 and, to a lesser extent, SVCT1 in a dominant-negative manner, probably by protein-protein interaction. The expression of hSVCT2-short varies among cells. PCR analysis of cDNA isolated from melanocytes capable of transporting AA revealed a predominance of the full-length isoform, while HL-60 cells, which express SVCT2 at the mRNA level and were incapable of transporting AA, showed a predominance of the short isoform. These findings suggest a mechanism of AA uptake regulation whereby an alternative SVCT2 gene product inhibits transport through the two known AA transporters.
Collapse
Affiliation(s)
- Eugene A Lutsenko
- Program in Molecular Pharmacology and Chemistry, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
105
|
Affiliation(s)
- David W Golde
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| |
Collapse
|
106
|
Saran A, Spinola M, Pazzaglia S, Peissel B, Tiveron C, Tatangelo L, Mancuso M, Covelli V, Giovannelli L, Pitozzi V, Pignatiello C, Milani S, Dolara P, Dragani TA. Loss of tyrosinase activity confers increased skin tumor susceptibility in mice. Oncogene 2004; 23:4130-5. [PMID: 15007389 DOI: 10.1038/sj.onc.1207565] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tyrosinase (Tyr) gene encodes the enzyme tyrosinase that catalyses the conversion of L-tyrosine into DOPA (3,4-dihydroxyphenylalanine)-quinone. The albino mutation abrogates functional activity of tyrosinase resulting in deficiency of melanin pigment production in skin and retina. Tyr maps to a region in the central position of Chromosome 7 that contains a skin tumor-modifier locus. We rescued the albino mutation in transgenic mice to assess a possible role of Tyr gene in two-stage skin carcinogenesis. Transgenic expression of the functional Tyr(Cys) allele in albino mice (Tyr(Ser)) caused a reduction in skin papilloma multiplicity, in four independent experiments and at three dose levels of DMBA (9,10-dimethyl-1,2-benzanthracene). In vitro mechanistic studies demonstrated that transfection of the Tyr(Cys) allele in a human squamous cell carcinoma cell line (NCI-H520) increases tyrosinase enzyme activity and confers resistance to hydrogen peroxide-induced oxidative DNA damage. These results provide direct evidence that the Tyr gene can act as a skin cancer-modifier gene, whose mechanism of action may involve modulation of oxidative DNA damage.
Collapse
Affiliation(s)
- Anna Saran
- Biotechnology Unit, ENEA CR Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Abstract
Several studies have reported that even a moderate daily dose of supplementary vitamin C (200 mg) induces the formation of genotoxins from lipid hydroperoxides, thereby resulting in DNA damage and initiation of carcinogenesis. However, other reports questioned the experimental designs used and suggested that the chemopreventive effects of vitamin C may be linked to the inhibition of tumor promotion as well as to the blocking of tumor initiation. In this article, we discuss issues of contention and some controversies related to the potential chemopreventive effects of vitamin C in carcinogenesis.
Collapse
Affiliation(s)
- Ki Won Lee
- Department of Food Science and Technology, School of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
108
|
Kamiya J, Aoki Y. Associations between hyperglycaemia and somatic transversion mutations in mitochondrial DNA of people with diabetes mellitus. Diabetologia 2003; 46:1559-66. [PMID: 14530862 DOI: 10.1007/s00125-003-1215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2003] [Revised: 07/09/2003] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Considering that increased oxidative stress induced by hyperglycaemia plays a possible role in the pathogenesis of diabetic complications and that mitochondrial DNA (mDNA) is thought to be more vulnerable than nuclear DNA, we investigated what somatic mutations actually occur in the mDNA of diabetic patients. We also studied the relations between those mutations and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) which is known to increase considerably in people with diabetes. METHODS We identified somatic mutations by subcloning and sequencing two segments of mDNA [control region (nt 15996-16401) and the segment encompassing t-RNA(Leu(UUR))(nt 3149-3404)] in the peripheral blood cells of six diabetic women and control subjects matched for age and sex. This was done in 20 colonies each. In each case we also assayed urinary 8-OHdG. RESULTS No difference in the aggregate somatic mutational burden of mDNA was found between patients and control subjects. However, the incidence of somatic transversion mutations in mDNA was significantly higher in diabetic patients than in control subjects (13.93+/-4.57 x 10(-5) vs 1.27+/-1.27 x 10(-5) mutations per base pair; p=0.031, according to Mann-Whitney U-test). There was no significant difference in transition mutations. A correlation was found between the transversion mutational burden and HbA(1)c values, but not between it and 8-OHdG content in the urine. CONCLUSIONS/INTERPRETATION We showed that somatic transversion point mutations of mDNA increase in diabetic patients. Such transversion mutations can become a new biomarker for mDNA damage associated with hyperglycaemia and possibly caused by oxidative stress but not reflected by urinary 8-OHdG.
Collapse
Affiliation(s)
- J Kamiya
- The Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto-city, Nagano-prefecture, Japan.
| | | |
Collapse
|
109
|
Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2003; 2:7. [PMID: 14498993 PMCID: PMC201008 DOI: 10.1186/1475-2891-2-7] [Citation(s) in RCA: 355] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 08/21/2003] [Indexed: 12/30/2022] Open
Abstract
Ascorbic acid is one of the important water soluble vitamins. It is essential for collagen, carnitine and neurotransmitters biosynthesis. Most plants and animals synthesize ascorbic acid for their own requirement. However, apes and humans can not synthesize ascorbic acid due to lack of an enzyme gulonolactone oxidase. Hence, ascorbic acid has to be supplemented mainly through fruits, vegetables and tablets. The current US recommended daily allowance (RDA) for ascorbic acid ranges between 100-120 mg/per day for adults. Many health benefits have been attributed to ascorbic acid such as antioxidant, anti-atherogenic, anti-carcinogenic, immunomodulator and prevents cold etc. However, lately the health benefits of ascorbic acid has been the subject of debate and controversies viz., Danger of mega doses of ascorbic acid? Does ascorbic acid act as a antioxidant or pro-oxidant? Does ascorbic acid cause cancer or may interfere with cancer therapy? However, the Panel on dietary antioxidants and related compounds stated that the in vivo data do not clearly show a relationship between excess ascorbic acid intake and kidney stone formation, pro-oxidant effects, excess iron absorption. A number of clinical and epidemiological studies on anti-carcinogenic effects of ascorbic acid in humans did not show any conclusive beneficial effects on various types of cancer except gastric cancer. Recently, a few derivatives of ascorbic acid were tested on cancer cells, among them ascorbic acid esters showed promising anticancer activity compared to ascorbic acid. Ascorbyl stearate was found to inhibit proliferation of human cancer cells by interfering with cell cycle progression, induced apoptosis by modulation of signal transduction pathways. However, more mechanistic and human in vivo studies are needed to understand and elucidate the molecular mechanism underlying the anti-carcinogenic property of ascorbic acid. Thus, though ascorbic acid was discovered in 17th century, the exact role of this vitamin/nutraceutical in human biology and health is still a mystery in view of many beneficial claims and controversies.
Collapse
Affiliation(s)
- K Akhilender Naidu
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore 570 013, India.
| |
Collapse
|
110
|
Kashino G, Kodama S, Nakayama Y, Suzuki K, Fukase K, Goto M, Watanabe M. Relief of oxidative stress by ascorbic acid delays cellular senescence of normal human and Werner syndrome fibroblast cells. Free Radic Biol Med 2003; 35:438-43. [PMID: 12899945 DOI: 10.1016/s0891-5849(03)00326-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary human cells have a definite life span and enter into cellular senescence before ceasing cell growth. Oxidative stress produced by aerobic metabolism has been shown to accelerate cellular senescence. Here, we demonstrated that ascorbic acid, used as an antioxygenic reagent, delayed cellular senescence in a continuous culture of normal human embryonic cells, human adult skin fibroblast cells, and Werner syndrome (WS) cells. The results using human embryonic cells showed that treatment with ascorbic acid phospholic ester magnesium salt (APM) decreased the level of oxidative stress, and extended the replicative life span. The effect of APM to extend the replicative life span was also shown in normal human adult cells and WS cells. To understand the mechanism of extension of cellular life span, we determined the telomere lengths of human embryonic cells, both with and without APM treatment, and demonstrated that APM treatment reduced the rate of telomere shortening. The present results indicate that constitutive oxidative stress plays a role in determining the replicative life span and that suppression of oxidative stress by an antioxidative agent, APM, extends the replicative life span by reducing the rate of telomere shortening.
Collapse
Affiliation(s)
- Genro Kashino
- Division of Radiation Biology, Department of Radiology and Radiation Biology, Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | |
Collapse
|
111
|
Yoshikawa Y, Suzuki M, Chen N, Zinchenko AA, Murata S, Kanbe T, Nakai T, Oana H, Yoshikawa K. Ascorbic acid induces a marked conformational change in long duplex DNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3101-6. [PMID: 12846844 DOI: 10.1046/j.1432-1033.2003.03699.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ascorbic acid is often regarded as an antioxidant in vivo, where it protects against cancer by scavenging DNA-damaging reactive oxygen species. However, the detailed mechanism of the action of ascorbic acid on genetic DNA is still unclear. We examined the effect of ascorbic acid on the higher-order structure of DNA through real-time observation by fluorescence microscopy. We found that ascorbic acid generates a pearling structure in single giant DNA molecules, with elongated and compact regions coexisting along a molecular chain. Results from electron microscopy and atomic force microscopy indicate that the compact regions assume a loosely packed conformation. A possible mechanism for the induction of this conformational change is discussed in relation to the interplay between the higher-order and second-order structures of DNA.
Collapse
Affiliation(s)
- Yuko Yoshikawa
- Department of Food and Nutrition, Nagoya Bunri College, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Cooke MS, Mistry N, Ahmad J, Waller H, Langford L, Bevan RJ, Evans MD, Jones GDD, Herbert KE, Griffiths HR, Lunec J. Deoxycytidine glyoxal: lesion induction and evidence of repair following vitamin C supplementation in vivo. Free Radic Biol Med 2003; 34:218-25. [PMID: 12521603 DOI: 10.1016/s0891-5849(02)01240-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oxidative DNA damage is postulated to be involved in carcinogenesis, and as a consequence, dietary antioxidants have received much interest. A recent report indicates that vitamin C facilitates the decomposition of hydroperoxides in vitro, generating reactive aldehydes. We present evidence for the in vivo generation of glyoxal, an established product of lipid peroxidation, glucose/ascorbate autoxidation, or free radical attack of deoxyribose, following supplementation of volunteers with 400 mg/d vitamin C. Utilizing a monoclonal antibody to a deoxycytidine-glyoxal adduct (gdC), we measured DNA lesion levels in peripheral blood mononuclear cells. Supplementation resulted in significant (p =.001) increases in gdC levels at weeks 11, 16, and 21, with corresponding increases in plasma malondialdehyde levels and, coupled with previous findings, is strongly suggestive of a pro-oxidative effect. However, continued supplementation revealed a highly significant (p =.0001) reduction in gdC levels. Simultaneous analysis of cyclobutane thymine dimers revealed no increase upon supplementation but, as with gdC, levels decreased. Although no single mechanism is identified, our data demonstrate a pro-oxidant event in the generation of reactive aldehydes following vitamin C supplementation in vivo. These results are also consistent with our hypothesis for a role of vitamin C in an adaptive/repair response and indicate that nucleotide excision repair specifically may be affected.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Clinical Biochemistry, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|