101
|
Abstract
In electrically nonexcitable cells, Ca2+influx is essential for regulating a host of kinetically distinct processes involving exocytosis, enzyme control, gene regulation, cell growth and proliferation, and apoptosis. The major Ca2+entry pathway in these cells is the store-operated one, in which the emptying of intracellular Ca2+stores activates Ca2+influx (store-operated Ca2+entry, or capacitative Ca2+entry). Several biophysically distinct store-operated currents have been reported, but the best characterized is the Ca2+release-activated Ca2+current, ICRAC. Although it was initially considered to function only in nonexcitable cells, growing evidence now points towards a central role for ICRAC-like currents in excitable cells too. In spite of intense research, the signal that relays the store Ca2+content to CRAC channels in the plasma membrane, as well as the molecular identity of the Ca2+sensor within the stores, remains elusive. Resolution of these issues would be greatly helped by the identification of the CRAC channel gene. In some systems, evidence suggests that store-operated channels might be related to TRP homologs, although no consensus has yet been reached. Better understood are mechanisms that inactivate store-operated entry and hence control the overall duration of Ca2+entry. Recent work has revealed a central role for mitochondria in the regulation of ICRAC, and this is particularly prominent under physiological conditions. ICRACtherefore represents a dynamic interplay between endoplasmic reticulum, mitochondria, and plasma membrane. In this review, we describe the key electrophysiological features of ICRACand other store-operated Ca2+currents and how they are regulated, and we consider recent advances that have shed insight into the molecular mechanisms involved in this ubiquitous and vital Ca2+entry pathway.
Collapse
Affiliation(s)
- Anant B Parekh
- Department of Physiology, University of Oxford, United Kingdom.
| | | |
Collapse
|
102
|
Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW. The mammalian TRPC cation channels. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:21-36. [PMID: 15590053 DOI: 10.1016/j.bbamcr.2004.08.015] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 08/27/2004] [Accepted: 08/28/2004] [Indexed: 01/27/2023]
Abstract
Transient Receptor Potential-Canonical (TRPC) channels are mammalian homologs of Transient Receptor Potential (TRP), a Ca(2+)-permeable channel involved in the phospholipase C-regulated photoreceptor activation mechanism in Drosophila. The seven mammalian TRPCs constitute a family of channels which have been proposed to function as store-operated as well as second messenger-operated channels in a variety of cell types. TRPC channels, together with other more distantly related channel families, make up the larger TRP channel superfamily. This review summarizes recent findings on the structure, regulation and function of the apparently ubiquitous TRPC cation channels.
Collapse
Affiliation(s)
- Guillermo Vazquez
- The Calcium Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
103
|
Rosado JA, Redondo PC, Sage SO, Pariente JA, Salido GM. Store-operated Ca2+ entry: Vesicle fusion or reversible trafficking and de novo conformational coupling? J Cell Physiol 2005; 205:262-9. [PMID: 15880447 DOI: 10.1002/jcp.20399] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Store-operated Ca2+ entry (SOCE), a mechanism regulated by the filling state of the intracellular Ca2+ stores, is a major pathway for Ca2+ influx. Hypotheses to explain the communication between the Ca2+ stores and plasma membrane (PM) have considered both the existence of small messenger molecules, such as a Ca2+-influx factor (CIF), and both stable and de novo conformational coupling between proteins in the Ca2+ store and PM. Alternatively, a secretion-like coupling model based on vesicle fusion and channel insertion in the PM has been proposed, which shares some properties with the de novo conformational coupling model, such as the role of the actin cytoskeleton and soluble N-ethylmaleimide (NEM)-sensitive-factor attachment proteins receptor (SNARE) proteins. Here we review recent progress made in the characterization of the de novo conformational coupling and the secretion-like coupling models for SOCE. We pay particular attention into the involvement of SNARE proteins and the actin cytoskeleton in both SOCE models. SNAREs are recognized as proteins involved in exocytosis, participating in vesicle transport, membrane docking, and fusion. As with secretion, a role for the cortical actin network in Ca2+ entry has been demonstrated in a number of cell types. In resting cells, the cytoskeleton may prevent the interaction between the Ca2+ stores and the PM, or preventing fusion of vesicles containing Ca2+ channels with the PM. These are processes in which SNARE proteins might play a crucial role upon cell activation by directing a precise interaction between the membrane of the transported organelle and the PM.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain.
| | | | | | | | | |
Collapse
|
104
|
Abstract
The platelet surface membrane possesses three P2 receptors activated by extracellular adenosine nucleotides; one member of the ionotropic receptor family (P2X(1)) and two members of the G-protein-coupled receptor family (P2Y(1) and P2Y(12)). P2Y(1) and P2Y(12) receptors have firmly established roles in platelet activation during thrombosis and haemostasis, whereas the importance of the P2X(1) receptor has been more controversial. However, recent studies have demonstrated that P2X(1) receptors can generate significant functional platelet responses alone and in synergy with other receptor pathways. In addition, studies in transgenic animals indicate an important role for P2X(1) receptors in platelet activation, particularly under conditions of shear stress and thus during arterial thrombosis. This review discusses the background behind discovery of P2X(1) receptors in platelets and their precursor cell, the megakaryocyte, and how signalling via these ion channels may participate in platelet activation.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | |
Collapse
|
105
|
Laporte R, Hui A, Laher I. Pharmacological modulation of sarcoplasmic reticulum function in smooth muscle. Pharmacol Rev 2004; 56:439-513. [PMID: 15602008 DOI: 10.1124/pr.56.4.1] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The sarco/endoplasmic reticulum (SR/ER) is the primary storage and release site of intracellular calcium (Ca2+) in many excitable cells. The SR is a tubular network, which in smooth muscle (SM) cells distributes close to cellular periphery (superficial SR) and in deeper aspects of the cell (deep SR). Recent attention has focused on the regulation of cell function by the superficial SR, which can act as a buffer and also as a regulator of membrane channels and transporters. Ca2+ is released from the SR via two types of ionic channels [ryanodine- and inositol 1,4,5-trisphosphate-gated], whereas accumulation from thecytoplasm occurs exclusively by an energy-dependent sarco-endoplasmic reticulum Ca2+-ATPase pump (SERCA). Within the SR, Ca2+ is bound to various storage proteins. Emerging evidence also suggests that the perinuclear portion of the SR may play an important role in nuclear transcription. In this review, we detail the pharmacology of agents that alter the functions of Ca2+ release channels and of SERCA. We describe their use and selectivity and indicate the concentrations used in investigating various SM preparations. Important aspects of cell regulation and excitation-contractile activity coupling in SM have been uncovered through the use of such activators and inhibitors of processes that determine SR function. Likewise, they were instrumental in the recent finding of an interaction of the SR with other cellular organelles such as mitochondria. Thus, an appreciation of the pharmacology and selectivity of agents that interfere with SR function in SM has greatly assisted in unveiling the multifaceted nature of the SR.
Collapse
Affiliation(s)
- Régent Laporte
- Ferring Research Institute, Inc., Ferring Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
106
|
Grayson TH, Haddock RE, Murray TP, Wojcikiewicz RJH, Hill CE. Inositol 1,4,5-trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries. Cell Calcium 2004; 36:447-58. [PMID: 15488594 DOI: 10.1016/j.ceca.2004.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 03/29/2004] [Accepted: 04/20/2004] [Indexed: 11/22/2022]
Abstract
In blood vessels, the ability to control vascular tone depends on extracellular calcium entry and the release of calcium from inositol 1,4,5-trisphosphate receptor (IP3R)-gated stores located in both the endothelial and smooth muscle cells of the vascular wall. Therefore, we examined mRNA expression and protein distribution of IP3R subtypes in intact aorta, basilar and mesenteric arteries of the rat. IP3R1 mRNA was predominantly expressed in all three arteries. Immunohistochemistry showed that IP3R1 was present in both the muscle and endothelial cell layers, while IP3R2 and IP3R3 were largely restricted to the endothelium. Weak expression of IP3R2 was observed in the smooth muscle of the basilar artery. Co-localisation studies of IP3R subtypes with known cellular elements showed no association of any of the three subtypes with the endothelial cell plasma membrane, but a close association between the subtypes and actin filaments was observed in all cell layers. IP3R2 was found to be present near the endothelial cell nucleus. We are the first to demonstrate differential IP3R subtype distribution between the cell layers of the intact vascular wall and hypothesise that this may underlie the diversity of IP3R-dependent responses, such as vasoconstriction, vasodilation and vasomotion, displayed by arteries.
Collapse
MESH Headings
- Animals
- Arteries/chemistry
- Arteries/metabolism
- Calcium Channels/analysis
- Calcium Channels/biosynthesis
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Muscle, Smooth, Vascular/chemistry
- Muscle, Smooth, Vascular/metabolism
- Protein Subunits/analysis
- Protein Subunits/biosynthesis
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/biosynthesis
Collapse
Affiliation(s)
- T Hilton Grayson
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
107
|
Brownlow SL, Harper AGS, Harper MT, Sage SO. A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 2004; 35:107-13. [PMID: 14706284 DOI: 10.1016/j.ceca.2003.08.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have previously suggested that store-mediated Ca2+ entry (SMCE) in human platelets may be activated by a secretion-like coupling model, involving de novo coupling of the type II inositol 1,4,5-trisphosphate receptor (IP(3)RII) to the putative Ca2+ entry channel, hTRPC1. In other cells, hTRPC1 has been reported to be associated with cholesterol-rich lipid raft domains (LRDs) in the plasma membrane. Here we have shown that hTRPC1 is largely associated with detergent-resistant platelet membranes, from which it is partially released when the cells are depleted of cholesterol by treatment with methyl-beta-cyclodextrin (MBCD). MBCD treatment inhibited thapsigargin (TG)-evoked SMCE in a concentration-dependent manner, reducing it to 38.1+/-4.1% at a concentration of 10mM. Similarly, the Ca2+ entry evoked by thrombin (1unit/ml) was reduced to 48.2+/-4.5% of control following MBCD (10mM) treatment. Thrombin- and TG-evoked coupling between IP(3)RII and hTRPC1 was also reduced following cholesterol depletion. These results suggest that hTRPC1 is associated with LRDs in human platelets and that these domains are important for its participation in SMCE.
Collapse
Affiliation(s)
- Sharon L Brownlow
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | | | | | |
Collapse
|
108
|
Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 2004; 559:685-706. [PMID: 15272031 PMCID: PMC1665181 DOI: 10.1113/jphysiol.2004.068734] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/20/2004] [Indexed: 12/25/2022] Open
Abstract
Throughout the body there are smooth muscle cells controlling a myriad of tubes and reservoirs. The cells show enormous diversity and complexity compounded by a plasticity that is critical in physiology and disease. Over the past quarter of a century we have seen that smooth muscle cells contain--as part of a gamut of ion-handling mechanisms--a family of cationic channels with significant permeability to calcium, potassium and sodium. Several of these channels are sensors of calcium store depletion, G-protein-coupled receptor activation, membrane stretch, intracellular Ca2+, pH, phospholipid signals and other factors. Progress in understanding the channels has, however, been hampered by a paucity of specific pharmacological agents and difficulty in identifying the underlying genes. In this review we summarize current knowledge of these smooth muscle cationic channels and evaluate the hypothesis that the underlying genes are homologues of Drosophila TRP (transient receptor potential). Direct evidence exists for roles of TRPC1, TRPC4/5, TRPC6, TRPV2, TRPP1 and TRPP2, and more are likely to be added soon. Some of these TRP proteins respond to a multiplicity of activation signals--promiscuity of gating that could enable a variety of context-dependent functions. We would seem to be witnessing the first phase of the molecular delineation of these cationic channels, something that should prove a leap forward for strategies aimed at developing new selective pharmacological agents and understanding the activation mechanisms and functions of these channels in physiological systems.
Collapse
Affiliation(s)
- D J Beech
- School of Biomedical Sciences, University of Leeds, LS2 9JT, UK.
| | | | | |
Collapse
|
109
|
Redondo PC, Harper AGS, Salido GM, Pariente JA, Sage SO, Rosado JA. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. J Physiol 2004; 558:99-109. [PMID: 15121806 PMCID: PMC1664928 DOI: 10.1113/jphysiol.2004.064899] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Store-mediated Ca2+ entry (SMCE) is a major mechanism for Ca2+ influx in non-excitable cells. Recently, a conformational coupling mechanism allowing coupling between transient receptor potential channels (TRPCs) and IP3 receptors has been proposed to activate SMCE. Here we have investigated the role of two soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs), which are involved in membrane trafficking and docking, in SMCE in human platelets. We found that the synaptosome-associated protein (SNAP-25) and the vesicle-associated membrane proteins (VAMP) coimmunoprecipitate with hTRPC1 in platelets. Treatment with botulinum toxin (BoNT) E or with tetanus toxin (TeTx), induced cleavage and inactivation of SNAP-25 and VAMPs, respectively. BoNTs significantly reduced thapsigargin- (TG) and agonist-evoked SMCE. Treatment with BoNTs once SMCE had been activated decreased Ca2+ entry, indicating that SNAP-25 is required for the activation and maintenance of SMCE. In contrast, treatment with TeTx had no effect on either the activation or the maintenance of SMCE in platelets. Finally, treatment with BoNT E impaired the coupling between naturally expressed hTRPC1 and IP3 receptor type II in platelets. From these findings we suggest SNAP-25 has a role in SMCE in human platelets.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | | | | | | | | | | |
Collapse
|
110
|
Ahmmed GU, Mehta D, Vogel S, Holinstat M, Paria BC, Tiruppathi C, Malik AB. Protein kinase Calpha phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 2004; 279:20941-9. [PMID: 15016832 DOI: 10.1074/jbc.m313975200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TRPC1 (transient receptor potential canonical-1) channel is a constituent of the nonselective cation channel that mediates Ca2+ entry through store-operated channels (SOCs) in human endothelial cells. We investigated the role of protein kinase Calpha (PKCalpha) phosphorylation of TRPC1 in regulating the opening of SOCs. Thrombin or thapsigargin added to the external medium activated Ca2+ entry after Ca2+ store depletion, which we monitored by changes in cellular Fura 2 fluorescence. Internal application of the metabolism-resistant analog of inositol 1,4,5-trisphosphate (IP3) activated an inward cationic current within 1 min, which we recorded using the whole cell patch clamp technique. La3+ or Gd3+ abolished the current, consistent with the known properties of SOCs. Pharmacological (Gö6976) or genetic (kinase-defective mutant) inhibition of PKCalpha markedly inhibited IP3-induced activation of the current. Thrombin or thapsigargin also activated La3+-sensitive Ca2+ entry in a PKCalpha-dependent manner. We determined the effects of a specific antibody directed against an extracellular epitope of TRPC1 to address the functional importance of TRPC1. External application of the antibody blocked thrombin- or IP3-induced Ca2+ entry. In addition, we showed that addithrombin or thapsigargin induced phosphorylation of TRPC1 within 1 min. Thrombin failed to induce TRPC1 phosphorylation in the absence of PKCalpha activation. Phosphorylation of TRPC1 and the resulting Ca2+ entry were essential for the increase in permeability induced by thrombin in confluent endothelial monolayers. These results demonstrate that PKCalpha phosphorylation of TRPC1 is an important determinant of Ca2+ entry in human endothelial cells.
Collapse
Affiliation(s)
- Gias U Ahmmed
- Department of Pharmacology, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Dalrymple A, Slater DM, Poston L, Tribe RM. Physiological induction of transient receptor potential canonical proteins, calcium entry channels, in human myometrium: influence of pregnancy, labor, and interleukin-1 beta. J Clin Endocrinol Metab 2004; 89:1291-300. [PMID: 15001625 DOI: 10.1210/jc.2003-031428] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study investigated gestational regulation of transient receptor potential canonical (TrpC) proteins, putative calcium entry channels in human myometrium, and the potential modulation of TrpC expression by IL-1 beta, a cytokine implicated in labor. Total RNA and proteins were isolated from myometrial biopsies obtained from NP women, pregnant women at term not in labor (TNL), or term active labor (TAL) and from primary cultured human myometrial smooth muscle cells incubated with IL-1 beta or IL-1 beta with or without nimesulide. Semiquantitative RT-PCR demonstrated significant up-regulation of TrpC1 in TAL and TNL (P < or = 0.01) and TrpC6 (P < or = 0.01) and TrpC7 (P < or = 0.05) in TAL samples. TrpC3 and TrpC4 mRNA expression was unaffected. Western blot demonstrated significant up-regulation of TrpC1 in TAL and TNL (P < or = 0.05) and TrpC3 (P < or = 0.01), TrpC4 (P < or = 0.05), and TrpC6 (P < or = 0.01) in TAL samples. IL-1 beta did not alter TrpC1, 3, 4, 6, or 7 mRNA expression; but IL-1 beta exclusively up-regulated TrpC3 protein expression (P < or = 0.05). TrpC3 up-regulation was unaffected by cyclooxygenase blockade. These data demonstrate physiological regulation of TrpC mRNA and protein and suggest an important role for TrpC proteins in human myometrium during labor.
Collapse
Affiliation(s)
- A Dalrymple
- Parturition Research Group, Maternal and Fetal Research Unit, Department of Women's Health, Guy's, King's and St. Thomas' School of Medicine, St. Thomas' Hospital Campus, London, SE1 7EH, United Kingdom
| | | | | | | |
Collapse
|
112
|
Rosado JA, Redondo PC, Salido GM, Gómez-Arteta E, Sage SO, Pariente JA. Hydrogen Peroxide Generation Induces pp60 Activation in Human Platelets. J Biol Chem 2004; 279:1665-75. [PMID: 14581479 DOI: 10.1074/jbc.m307963200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reactive oxygen species, such as H2O2, have been recognized as intracellular messengers involved in several cell functions. Here we report the activation of the tyrosine kinase pp60(src) by H2O2, a mechanism required for the activation of store-mediated Ca2+ entry (SMCE) in human platelets. Treatment of platelets with H2O2 resulted in a time- and concentration-dependent activation of pp60(src). Incubation with GF 109203X, a protein kinase C (PKC) inhibitor, prevented H2O2-induced pp60(src) activation. In contrast, dimethyl-BAPTA loading did not affect this response, suggesting that activation of pp60(src) by H2O2 is independent of increases in [Ca2+](i). Cytochalasin D, an inhibitor of actin polymerization, significantly reduced H2O2-induced pp60(src) activation. We found that platelet stimulation with thapsigargin (TG) plus ionomycin (Iono) or thrombin induced rapid H2O2 production, a mechanism independent of elevations in [Ca2+](i). Treatment of platelets with catalase attenuated TG plus Iono- and thrombin-induced activation of pp60(src). In addition, catalase as well as the pp60(src) inhibitor, PP1, reduced both the activation of SMCE and the coupling between the hTrp1 and the IP(3)R type II without having any effect on the maintenance of SMCE. Consistent with the role of PKC in the activation of pp60(src) by H2O2, the PKC inhibitors GF 109202X and Ro-31-8220 were found to reduced SMCE in platelets. This study suggests that platelet activation with TG plus Iono or thrombin is associated with H2O2 production, which acts as a second messenger by stimulating pp60(src) by a PKC-dependent pathway and is involved in the activation of SMCE in these cells.
Collapse
Affiliation(s)
- Juan A Rosado
- Department of Physiology, Faculty of Veterinary Sciences, University of Extremadura, Cáceres 10071, Spain.
| | | | | | | | | | | |
Collapse
|
113
|
Woodard GE, Rosado JA. G-Protein Coupled Receptors and Calcium Signaling in Development. Curr Top Dev Biol 2004; 65:189-210. [PMID: 15642384 DOI: 10.1016/s0070-2153(04)65007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Geoffrey E Woodard
- Metabolic Diseases Branch, National Institute of Diabetes Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
114
|
Affiliation(s)
- H Llewelyn Roderick
- Laboratory of Molecular Signalling, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | |
Collapse
|
115
|
Brownlow SL, Sage SO. Rapid agonist-evoked coupling of type II Ins(1,4,5)P3 receptor with human transient receptor potential (hTRPC1) channels in human platelets. Biochem J 2003; 375:697-704. [PMID: 12908873 PMCID: PMC1223726 DOI: 10.1042/bj20030929] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 08/07/2003] [Accepted: 08/11/2003] [Indexed: 02/02/2023]
Abstract
Depletion of intracellular Ca2+ stores results in the activation of SMCE (store-mediated Ca2+ entry) in many cells. The mechanism of activation of SMCE is poorly understood. In human platelets, a secretion-like coupling model may be involved. This proposes that store depletion results in trafficking of portions of the endoplasmic reticulum to the plasma membrane, enabling coupling between proteins in the two membranes. In support of this, we have shown that, in human platelets, agonist-evoked Ca2+ store depletion results in de novo and reversible coupling of the Ins P3RII [type II inositol (1,4,5)trisphosphate receptor] with the putative Ca2+ entry channel hTRPC1 [human canonical transient receptor potential 1 (protein); Rosado, Brownlow and Sage (2002) J. Biol. Chem. 277, 42157-42163]. A crucial test of the hypothesis that this coupling activates SMCE is that it should occur rapidly enough to account for agonist-evoked Ca2+ entry. In the present study, we have used quenched- and stopped-flow approaches to determine the latencies of thrombin-evoked coupling of Ins P3RII with hTRPC1 and of thrombin-evoked bivalent cation entry using Mn2+ quenching of fura 2 fluorescence. Thrombin-evoked Mn2+ entry was detected with a latency of 0.81+/-0.07 s (S.E.M., n =7) or 1.36+/-0.09 s (S.E.M., n =7) at a concentration of 1.0 or 0.1 unit/ml respectively. Coupling between Ins P3RII and hTRPC1, assessed at 100 ms intervals, was first detected with a latency of 0.9 or 1.4 s after stimulation with thrombin at a concentration of 1.0 or 0.1 unit/ml respectively. These results support the hypothesis that de novo coupling of Ins P3RII with hTRPC1 could activate SMCE in human platelets.
Collapse
Affiliation(s)
- Sharon L Brownlow
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
116
|
Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall RD, Malik AB. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 2003; 278:33492-500. [PMID: 12766172 DOI: 10.1074/jbc.m302401200] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We tested the hypothesis that RhoA, a monomeric GTP-binding protein, induces association of inositol trisphosphate receptor (IP3R) with transient receptor potential channel (TRPC1), and thereby activates store depletion-induced Ca2+ entry in endothelial cells. We showed that RhoA upon activation with thrombin associated with both IP3R and TRPC1. Thrombin also induced translocation of a complex consisting of Rho, IP3R, and TRPC1 to the plasma membrane. IP3R and TRPC1 translocation and association required Rho activation because the response was not seen in C3 transferase (C3)-treated cells. Rho function inhibition using Rho dominant-negative mutant or C3 dampened Ca2+ entry regardless of whether Ca2+ stores were emptied by thrombin, thapsigargin, or inositol trisphosphate. Rho-induced association of IP3R with TRPC1 was dependent on actin filament polymerization because latrunculin (which inhibits actin polymerization) prevented both the association and Ca2+ entry. We also showed that thrombin produced a sustained Rho-dependent increase in cytosolic Ca2+ concentration [Ca2+]i in endothelial cells overexpressing TRPC1. We further showed that Rho-activated Ca2+ entry via TRPC1 is important in the mechanism of the thrombin-induced increase in endothelial permeability. In summary, Rho activation signals interaction of IP3R with TRPC1 at the plasma membrane of endothelial cells, and triggers Ca2+ entry following store depletion and the resultant increase in endothelial permeability.
Collapse
MESH Headings
- ADP Ribose Transferases/pharmacology
- Actins/chemistry
- Botulinum Toxins/pharmacology
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/metabolism
- Calcium Channels/physiology
- Cells, Cultured
- Electrophoresis, Polyacrylamide Gel
- Electrophysiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Genes, Dominant
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Confocal
- Models, Biological
- Patch-Clamp Techniques
- Precipitin Tests
- Protein Binding
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- TRPC Cation Channels
- Thapsigargin/chemistry
- Thapsigargin/pharmacology
- Thrombin/chemistry
- Time Factors
- Transfection
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/chemistry
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology, College of Medicine, The University of Illinois, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
TRPC1 is a membrane protein that is highly conserved in mammals, amphibians and birds. It is widely expressed in cells throughout the body including in the heart and nervous system. Amino acid sequence analysis and over-expression studies indicate it is an ion channel that allows the transmembrane flux of small cations including sodium and calcium. In some cell types it is apparent that at least a fraction of TRPC1 exists in the plasma membrane. Inhibition of TRPC1 expression or block by TRPC1-specific antibody leads to attenuation of the plasma membrane calcium influx that occurs in response to depletion of calcium levels in sarcoplasmic or endoplasmic reticulum. TRPC1 would, therefore, seem to be a key subunit of store-operated channels (SOCs). TRPC1 is, nevertheless, unlikely to act alone. There is good evidence that it can heteromultimerise with the related proteins TRPC4, TRPC5 and polycystin-2; a tetrameric arrangement is envisaged, but not demonstrated. Like its relative in Drosophila, TRPC1 looks likely to function in a signalplex, a protein complex including inositol 1,4,5-triphosphate (IP(3)) receptor, plasma membrane calcium-ATPase, caveolin-1 and calmodulin. Its localisation in membranes is punctate and associated with functionally discrete calcium signals. TRPC1's function may not only be linked to SOCs but also to other cellular events including the nuclear translocation of the NFAT transcription factor. There is still much to be learned about this fundamental protein.
Collapse
Affiliation(s)
- D J Beech
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
118
|
Abstract
The Ca2+ release-activated Ca2+ (CRAC) channel is a highly Ca2+-selective store-operated channel that is expressed in T lymphocytes, mast cells, and other hematopoietic cells. In T cells, CRAC channels are essential for generating the prolonged intracellular Ca2+ ([Ca2+](i)) elevation required for the expression of T-cell activation genes. Here we review recent work addressing CRAC channel regulation, pore properties, and the search for CRAC channel genes. Of the current models for CRAC current (I(CRAC)) activation, several new studies argue against a conformational coupling mechanism in which IP(3) receptors communicate store depletion to CRAC channels through direct physical interaction. The study of CRAC channels has been complicated by the fact that they lose activity in the absence of extracellular Ca2+. Attempts to maintain current size by removing intracellular Mg2+ have been found to unmask Mg2+-inhibited cation (MIC/MagNuM/TRPM7) channels, which have been mistaken in several studies for the CRAC channel. Recent studies under conditions that prevent MIC activation reveal that CRAC channels use high-affinity binding of Ca2+ in the pore to achieve high Ca2+ selectivity but have a surprisingly low conductance for both Ca2+ (approximately 10fS) and Na+ (approximately 0.2pS). Pore properties provide a unique fingerprint that provides a stringent test for potential CRAC channel genes and suggest models for the ion selectivity mechanism.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Beckman Center B-111A, Stanford, CA 94305, USA
| | | |
Collapse
|
119
|
Abstract
Members of the transient receptor potential (TRP) family for which mRNA can be demonstrated in neutrophil granulocytes with RT-PCR include TRPC6 (as only "short" TRP), TRPM2, TRPV1, TRPV2, TRPV5 and TRPV6. When these are analyzed in heterologous overexpression experiments, TRPM2 is the only cation channel with characteristic properties that can be used as fingerprint to provide functional evidence for its expression in neutrophil granulocytes. As cells transfected with TRPM2, neutrophil granulocytes display non-selective cation currents and typical channel activity evoked by intracellular ADP-ribose and NAD. Thus, stimulation of TRPM2 is likely to occur after activation of CD38 (producing ADP-ribose) and during the oxidative burst (enhancing the NAD concentration). This novel mode of cation entry regulation may be of particular importance for the response of granulocytes to chemoattractants. TRPV6 is a likely but not exclusive candidate as subunit of the channels mediating store-operated Ca2+ entry (SOCE). Evidence for SOCE in granulocytes has been presented with the fura-2 technique but not with electrophysiological methods although Ca2+-selective store-operated currents can be demonstrated in HL-60 cells, a cell culture model of neutrophil granulocytes.
Collapse
Affiliation(s)
- Inka Heiner
- Institut für Physiologie, Universitätsklinikum der RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|