101
|
Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: a little give and take. Osteoporos Int 2012; 23:2067-79. [PMID: 22302104 DOI: 10.1007/s00198-012-1915-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
Osteocytes actively participate in almost every phase of mineral handling by bone. They regulate the mineralisation of osteoid during bone formation, and they are also a major RANKL-producing cell. Osteocytes are thus able to liberate bone mineral by regulating osteoclast differentiation and activity in response to a range of stimuli, including bone matrix damage, bone disuse and mechanical unloading, oestrogen deficiency, high-dose glucocorticoid and chemotherapeutic agents. At least some of these activities may be regulated by the osteocyte-secreted product, sclerostin. There is also mounting evidence that in addition to regulating phosphate homeostasis systemically, osteocytes contribute directly to calcium homeostasis in the mature skeleton. Osteocyte cell death and the local loss of control of bone mineralisation may be the cause of focal hypermineralisation of bone and osteopetrosis, as seen in aging and pathology. The sheer number of osteocytes in bone means that "a little give and take" in terms of regulation of bone mineral content translates into a powerful whole organism effect.
Collapse
Affiliation(s)
- G J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma,The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | |
Collapse
|
102
|
Overactive bone morphogenetic protein signaling in heterotopic ossification and Duchenne muscular dystrophy. Cell Mol Life Sci 2012; 70:407-23. [PMID: 22752156 PMCID: PMC3541930 DOI: 10.1007/s00018-012-1054-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are important extracellular cytokines that play critical roles in embryogenesis and tissue homeostasis. BMPs signal via transmembrane type I and type II serine/threonine kinase receptors and intracellular Smad effector proteins. BMP signaling is precisely regulated and perturbation of BMP signaling is connected to multiple diseases, including musculoskeletal diseases. In this review, we will summarize the recent progress in elucidation of BMP signal transduction, how overactive BMP signaling is involved in the pathogenesis of heterotopic ossification and Duchenne muscular dystrophy, and discuss possible therapeutic strategies for treatment of these diseases.
Collapse
|
103
|
Yuen HF, McCrudden CM, Grills C, Zhang SD, Huang YH, Chan KK, Chan YP, Wong MLY, Law S, Srivastava G, Fennell DA, Dickson G, El-Tanani M, Chan KW. Combinatorial use of bone morphogenetic protein 6, noggin and SOST significantly predicts cancer progression. Cancer Sci 2012; 103:1145-54. [PMID: 22364398 PMCID: PMC7685053 DOI: 10.1111/j.1349-7006.2012.02252.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence has indicated a role of the bone morphogenetic proteins (BMP) in the pathogenesis of certain cancers. The signaling of BMP family members is tightly regulated by their antagonists, including noggin and SOST, which are, in turn, positively regulated by BMP, thereby forming a negative feedback loop. Consequently, the expression of these antagonists should be taken into account in studies on the prognostic significance of BMP. In the present paper, we correlated protein and mRNA expression levels of BMP6, noggin and SOST, alone or in combination, with patient survival in various types of cancer. We found that BMP6 alone was not significantly correlated with esophageal squamous cell carcinoma patient survival. Instead, a high level of inhibitor of differentiation 1, a downstream factor of BMP6, was associated with shorter survival in patients whose tumors stained strongly for BMP6. Knockdown of noggin in esophageal cancer cell line EC109, which expresses BMP6 strongly and SOST weakly, enhanced the non-adherent growth of the cells. Noggin and SOST expression levels, when analyzed alone, were not significantly correlated with patient survival. However, high BMP6 activity, defined by strong BMP6 expression coupled with weak noggin or SOST expression, was significantly associated with shorter survival in esophageal squamous cell carcinoma patients. We further confirmed that BMP6 activity could be used as a prognostic indicator in prostate, bladder and colorectal cancers, using publicly available data on BMP6, noggin and SOST mRNA expression and patient survival. Our results strongly suggest that BMP6, noggin and SOST could be used in combination as a prognostic indicator in cancer progression.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
McNulty MS, Bedell VM, Greenwood TM, Craig TA, Ekker SC, Kumar R. Expression of sclerostin in the developing zebrafish (Danio rerio) brain and skeleton. Gene Expr Patterns 2012; 12:228-35. [PMID: 22575304 DOI: 10.1016/j.gep.2012.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/28/2012] [Accepted: 04/27/2012] [Indexed: 11/15/2022]
Abstract
Sclerostin is a highly conserved, secreted, cystine-knot protein which regulates osteoblast function. Humans with mutations in the sclerostin gene (SOST), manifest increased axial and appendicular skeletal bone density with attendant complications. In adult bone, sclerostin is expressed in osteocytes and osteoblasts. Danio rerio sclerostin-like protein is closely related to sea bass sclerostin, and is related to chicken and mammalian sclerostins. Little is known about the expression of sclerostin in early developing skeletal or extra-skeletal tissues. We assessed sclerostin (sost) gene expression in developing zebrafish (D. rerio) embryos with whole mount is situ hybridization methods. The earliest expression of sost mRNA was noted during 12h post-fertilization (hpf). At 15 hpf, sost mRNA was detected in the developing nervous system and in Kupffer's vesicle. At 18, 20 and 22 hpf, expression in rhombic lip precursors was seen. By 24 hpf, expression in the upper and lower rhombic lip and developing spinal cord was noted. Expression in the rhombic lip and spinal cord persisted through 28 hpf and then diminished in intensity through 44 hpf. At 28 hpf, sost expression was noted in developing pharyngeal cartilage; expression in pharyngeal cartilage increased with time. By 48 hpf, sost mRNA was clearly detected in the developing pharyngeal arch cartilage. Sost mRNA was abundantly expressed in the pharyngeal arch cartilage, and in developing pectoral fins, 72, 96 and 120 hpf. Our study is the first detailed analysis of sost gene expression in early metazoan development.
Collapse
Affiliation(s)
- Melissa S McNulty
- Division of Nephrology and Hypertension, Mayo Clinic, 200 1st St., Southwest, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
105
|
Lee SS, Sharma AR, Choi BS, Jung JS, Chang JD, Park S, Salvati EA, Purdue EP, Song DK, Nam JS. The effect of TNFα secreted from macrophages activated by titanium particles on osteogenic activity regulated by WNT/BMP signaling in osteoprogenitor cells. Biomaterials 2012; 33:4251-63. [PMID: 22436801 DOI: 10.1016/j.biomaterials.2012.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/03/2012] [Indexed: 12/22/2022]
Abstract
Wear particles are the major cause of osteolysis associated with failure of implant following total joint replacement. During this pathologic process, activated macrophages mediate inflammatory responses to increase osteoclastogenesis, leading to enhanced bone resorption. In osteolysis caused by wear particles, osteoprogenitors present along with macrophages at the implant interface may play significant roles in bone regeneration and implant osteointegration. Although the direct effects of wear particles on osteoblasts have been addressed recently, the role of activated macrophages in regulation of osteogenic activity of osteoblasts has scarcely been studied. In the present study, we examined the molecular communication between macrophages and osteoprogenitor cells that may explain the effect of wear particles on impaired bone forming activity in inflammatory bone diseases. It has been demonstrated that conditioned medium of macrophages challenged with titanium particles (Ti CM) suppresses early and late differentiation markers of osteoprogenitors, including alkaline phosphatase (ALP) activity, collagen synthesis, matrix mineralization and expression of osteocalcin and Runx2. Moreover, bone forming signals such as WNT and BMP signaling pathways were inhibited by Ti CM. Interestingly, TNFα was identified as a predominant factor in Ti CM to suppress osteogenic activity as well as WNT and BMP signaling activity. Furthermore, Ti CM or TNFα induces the expression of sclerostin (SOST) which is able to inhibit WNT and BMP signaling pathways. It was determined that over-expression of SOST suppressed ALP activity, whereas the inhibition of SOST by siRNA partially restored the effect of Ti CM on ALP activity. This study highlights the role of activated macrophages in regulation of impaired osteogenic activity seen in inflammatory conditions and provides a potential mechanism for autocrine regulation of WNT and BMP signaling mediated by TNFα via induction of SOST in osteprogenitor cells.
Collapse
Affiliation(s)
- Sang-Soo Lee
- Infectious Disease Medical Research Center & Department of Pharmacology, College of Medicine, Hallym University, Chucheon, Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC. TGF-β regulates sclerostin expression via the ECR5 enhancer. Bone 2012; 50:663-9. [PMID: 22155511 PMCID: PMC3278543 DOI: 10.1016/j.bone.2011.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/09/2011] [Accepted: 11/16/2011] [Indexed: 10/14/2022]
Abstract
Wnt signaling is critical for skeletal development and homeostasis. Sclerostin (Sost) has emerged as a potent inhibitor of Wnt signaling and, thereby, bone formation. Thus, strategies to reduce sclerostin expression may be used to treat osteoporosis or non-union fractures. Transforming growth factor-beta (TGF-β) elicits various effects upon the skeleton both in vitro and in vivo depending on the duration and timing of administration. In vitro and in vivo studies demonstrate that TGF-β increases osteoprogenitor differentiation but decreases matrix mineralization of committed osteoblasts. Because sclerostin decreases matrix mineralization, this study aimed to examine whether TGF-β achieves such inhibitory effects via transcriptional modulation of Sost. Using the UMR106.01 mature osteoblast cell line, we demonstrated that TGF-βTGF-β(1)-β(2)-β(3) and Activin A increase Sost transcript expression. Pharmacologic inhibition of Alk4/5/7 in vitro and in vivo decreased endogenous Sost expression, and siRNA against Alk4 and Alk5 demonstrated their requirement for endogenous Sost expression. TGF-β(1) targeted the Sost bone enhancer ECR5 and did not affect the transcriptional activity of the endogenous Sost promoter. These results indicate that TGF-β(1) controls Sost transcription in mature osteoblasts, suggesting that sclerostin may mediate the inhibitory effect of TGF-β upon osteoblast differentiation.
Collapse
Affiliation(s)
- Gabriela G. Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
- School of Natural Sciences, University of California, Merced, CA, USA
| | | | - Olivier Leupin
- Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Deepa Murugesh
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| | - Nicole M. Collette
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA
| | - Damian C. Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
107
|
Abstract
Inactivating mutations of the SOST gene cause a reduction in sclerostin levels and are associated with high bone mass. The clinical phenotypes, sclerosteosis and van Buchem's disease, were described in 1950s. Much later, it was learned that both diseases are due to loss-of-function mutations in the SOST gene. As a regulator of an important osteoanabolic pathway, Wnt, inactivation of SOST leads to a stimulation of the pathway it regulates. The high bone mass in patients with either sclerosteosis or van Buchem's disease is associated with unusual skeletal strength; they do not fracture. Knowledge of this molecule and its actions led rather quickly to the development of anti-sclerostin antibodies that lead to marked increases in bone mass in both animals and human subjects. Blocking sclerostin action with anti-sclerostin antibodies is a promising new therapeutic approach to osteoanabolic therapy of osteoporosis.
Collapse
Affiliation(s)
- Aline G Costa
- Department of Medicine, Division of Endocrinology, Metabolic Bone Diseases Unit, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
108
|
Kattamuri C, Luedeke DM, Thompson TB. Expression and purification of recombinant protein related to DAN and cerberus (PRDC). Protein Expr Purif 2012; 82:389-95. [PMID: 22381466 DOI: 10.1016/j.pep.2012.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 10/28/2022]
Abstract
Bone morphogenetic proteins (BMPs) are secreted protein ligands that control numerous biological processes, such as cell differentiation and cell proliferation. Ligands are regulated by a large number of structurally diverse extracellular antagonists. PRDC or protein related to DAN and cerberus is a BMP antagonist of the DAN family, which is defined by a conserved pattern of cysteine residues that form a ring structure. Here we present the expression and purification of recombinant mouse PRDC (mPRDC) from bacterial (Escherichia coli) inclusion bodies through oxidative refolding. Functional mPRDC was isolated from a nonfunctional component through reverse phase chromatography and shown to inhibit BMP2 and BMP4 in a cell-based luciferase reporter assay. Recombinant mPRDC also bound directly to BMP2, BMP4 and BMP7, but not activin A. Furthermore, circular dichroism indicated that mPRDC is folded and contains a higher than anticipated helical content for a DAN family member protein.
Collapse
Affiliation(s)
- Chandramohan Kattamuri
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Sciences Building, Cincinnati, OH 45267, United States
| | | | | |
Collapse
|
109
|
Morse LR, Sudhakar S, Danilack V, Tun C, Lazzari A, Gagnon DR, Garshick E, Battaglino RA. Association between sclerostin and bone density in chronic spinal cord injury. J Bone Miner Res 2012; 27:352-9. [PMID: 22006831 PMCID: PMC3288145 DOI: 10.1002/jbmr.546] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) results in profound bone loss due to muscle paralysis and the inability to ambulate. Sclerostin, a Wnt signaling pathway antagonist produced by osteocytes, is a potent inhibitor of bone formation. Short-term studies in rodent models have shown increased sclerostin in response to mechanical unloading that is reversed with reloading. These studies suggest that complete spinal cord injury, a condition resulting in mechanical unloading of the paralyzed lower extremities, will be associated with high sclerostin levels. We assessed the relationship between circulating sclerostin and bone density in 39 subjects with chronic SCI and 10 without SCI. We found that greater total limb bone mineral content was significantly associated with greater circulating levels of sclerostin. Sclerostin levels were reduced, not elevated, in subjects with SCI who use a wheelchair compared with those with SCI who walk regularly. Similarly, sclerostin levels were lower in subjects with SCI who use a wheelchair compared with persons without SCI who walk regularly. These findings suggest that circulating sclerostin is a biomarker of osteoporosis severity, not a mediator of ongoing bone loss, in long-term, chronic paraplegia. This is in contrast to the acute sclerostin-mediated bone loss shown in animal models of mechanical unloading in which high sclerostin levels suppress bone formation. Because these data indicate important differences in the relationship between mechanical unloading, sclerostin, and bone in chronic SCI compared with short-term rodent models, it is likely that sclerostin is not a good therapeutic target to treat chronic SCI-induced osteoporosis.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Amizuka N, Hongo H, Sasaki M, Hasegawa T, Suzuki R, Tabata C, Sobhan U, Masuki H, Ying G, de Freitas PHL, Oda K, Li M. The distribution of osteocytic lacunar–canalicular system, and immunolocalization of FGF23 and sclerostin in osteocytes. J Oral Biosci 2012. [DOI: 10.1016/j.job.2011.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
111
|
Larman BW, Karolak MJ, Lindner V, Oxburgh L. Distinct bone morphogenetic proteins activate indistinguishable transcriptional responses in nephron epithelia including Notch target genes. Cell Signal 2012; 24:257-64. [PMID: 21945409 PMCID: PMC3205934 DOI: 10.1016/j.cellsig.2011.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/22/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
Endogenous Bone Morphogenetic Protein (BMP) signaling plays a significant role in the kidney's recovery from acute injury and exogenous administration of BMP7 has therapeutic potential in numerous rodent models of renal injury and disease. However, in the healthy kidney endogenous BMP7 ligand is vigorously counteracted by extracellular antagonists such as USAG1 and CHRDL1. Little is known about the degree of BMP signaling and the ligands driving it in the healthy adult kidney. In this study we characterize basal BMP signaling in the healthy tubular nephron, and show that BMP2 is expressed in proximal nephron epithelial cells. Comparative gene profiling of proximal tubule cell responses to BMP2 and BMP7 does not reveal any qualitative difference, suggesting that identical BMP gene targets may be activated in healthy and injured organs. Interestingly, our gene profiling analysis shows that BMP signaling activates a number of Notch regulated transcription factors, including HEY1. As in other biological systems, HEY1 functions as a negative feedback regulator of BMP2 expression in the proximal tubule. In summary, this work reveals endogenous BMP signaling patterns in the healthy human and mouse kidneys, and identifies novel gene targets, some of which are involved in the complex regulation of BMP signaling in the adult kidney.
Collapse
Affiliation(s)
- Barry W Larman
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, United States
| | | | | | | |
Collapse
|
112
|
Devarajan-Ketha H, Craig TA, Madden BJ, Robert Bergen H, Kumar R. The sclerostin-bone protein interactome. Biochem Biophys Res Commun 2011; 417:830-5. [PMID: 22206666 DOI: 10.1016/j.bbrc.2011.12.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 12/13/2011] [Indexed: 01/25/2023]
Abstract
The secreted glycoprotein, sclerostin alters bone formation. To gain insights into the mechanism of action of sclerostin, we examined the interactions of sclerostin with bone proteins using a sclerostin affinity capture technique. Proteins from decalcified rat bone were captured on a sclerostin-maltose binding protein (MBP) amylose column, or on a MBP amylose column. The columns were extensively washed with low ionic strength buffer, and bound proteins were eluted with buffer containing 1M sodium chloride. Eluted proteins were separated by denaturing sodium-dodecyl sulfate gel electrophoresis and were identified by mass spectrometry. Several previously unidentified full-length sclerostin-interacting proteins such as alkaline phosphatase, carbonic anhydrase, gremlin-1, fetuin A, midkine, annexin A1 and A2, and collagen α1, which have established roles in bone formation or resorption processes, were bound to the sclerostin-MBP amylose resin but not to the MBP amylose resin. Other full-length sclerostin-interacting proteins such as casein kinase II and secreted frizzled related protein 4 that modulate Wnt signaling were identified. Several peptides derived from proteins such as Phex, asporin and follistatin that regulate bone metabolism also bound sclerostin. Sclerostin interacts with multiple proteins that alter bone formation and resorption and is likely to function by altering several biologically relevant pathways in bone.
Collapse
Affiliation(s)
- Hemamalini Devarajan-Ketha
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
113
|
Duren DL, Blangero J, Sherwood RJ, Seselj M, Dyer T, Cole SA, Lee M, Choh AC, Chumlea WC, Siervogel RM, Czerwinski SA, Towne B. Cortical bone health shows significant linkage to chromosomes 2p, 3p, and 17q in 10-year-old children. Bone 2011; 49:1213-8. [PMID: 21907839 PMCID: PMC3221785 DOI: 10.1016/j.bone.2011.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/15/2011] [Accepted: 08/23/2011] [Indexed: 11/21/2022]
Abstract
Genes play an important role in lifelong skeletal health. Genes that influence bone building during childhood have the potential to affect bone health not only throughout childhood but also into adulthood. Given that peak bone mass is a significant predictor of adult fracture risk, it is imperative that the genetic underpinnings of the normal pediatric skeleton are uncovered. In a sample of 600 10-year-old children from 144 families in the Fels Longitudinal Study, we examined radiographic cortical bone measures of the second metacarpal. Morphometic measurements included bone width, medial and lateral cortical thicknesses, and the calculated cortical index representing the amount of cortex relative to bone width. We then conducted genome-wide linkage analysis on these traits in 440 genotyped individuals using the SOLAR analytic platform. Significant quantitative trait loci (QTL) were identified for bone traits on three separate chromosomes. A QTL for medial cortical thickness was localized to chromosome 2p25.2. A QTL for lateral cortical thickness was localized to chromosomal region 3p26.1-3p25.3. Finally, a QTL detected for cortical index was localized to the 17q21.2 chromosomal region. Each region contains plausible candidate genes for pediatric skeletal health, some of which confirm findings from studies of adulthood bone, and for others represent novel candidate genes for skeletal health.
Collapse
Affiliation(s)
- Dana L Duren
- Department of Community Health, Wright State University Boonshoft School of Medicine, Dayton, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Chi L, Saarela U, Railo A, Prunskaite-Hyyryläinen R, Skovorodkin I, Anthony S, Katsu K, Liu Y, Shan J, Salgueiro AM, Belo JA, Davies J, Yokouchi Y, Vainio SJ. A secreted BMP antagonist, Cer1, fine tunes the spatial organization of the ureteric bud tree during mouse kidney development. PLoS One 2011; 6:e27676. [PMID: 22114682 PMCID: PMC3219680 DOI: 10.1371/journal.pone.0027676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/21/2011] [Indexed: 01/02/2023] Open
Abstract
The epithelial ureteric bud is critical for mammalian kidney development as it generates the ureter and the collecting duct system that induces nephrogenesis in dicrete locations in the kidney mesenchyme during its emergence. We show that a secreted Bmp antagonist Cerberus homologue (Cer1) fine tunes the organization of the ureteric tree during organogenesis in the mouse embryo. Both enhanced ureteric expression of Cer1 and Cer1 knock out enlarge kidney size, and these changes are associated with an altered three-dimensional structure of the ureteric tree as revealed by optical projection tomography. Enhanced Cer1 expression changes the ureteric bud branching programme so that more trifid and lateral branches rather than bifid ones develop, as seen in time-lapse organ culture. These changes may be the reasons for the modified spatial arrangement of the ureteric tree in the kidneys of Cer1+ embryos. Cer1 gain of function is associated with moderately elevated expression of Gdnf and Wnt11, which is also induced in the case of Cer1 deficiency, where Bmp4 expression is reduced, indicating the dependence of Bmp expression on Cer1. Cer1 binds at least Bmp2/4 and antagonizes Bmp signalling in cell culture. In line with this, supplementation of Bmp4 restored the ureteric bud tip number, which was reduced by Cer1+ to bring it closer to the normal, consistent with models suggesting that Bmp signalling inhibits ureteric bud development. Genetic reduction of Wnt11 inhibited the Cer1-stimulated kidney development, but Cer1 did not influence Wnt11 signalling in cell culture, although it did inhibit the Wnt3a-induced canonical Top Flash reporter to some extent. We conclude that Cer1 fine tunes the spatial organization of the ureteric tree by coordinating the activities of the growth-promoting ureteric bud signals Gndf and Wnt11 via Bmp-mediated antagonism and to some degree via the canonical Wnt signalling involved in branching.
Collapse
Affiliation(s)
- Lijun Chi
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Antti Railo
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ilya Skovorodkin
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Shelagh Anthony
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenjiro Katsu
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Yu Liu
- Texas A&M Health Science Center, Center for Development and Diseases, Institute of Biosciences and Technology, Houston, Texas, United States of America
| | - Jingdong Shan
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ana Marisa Salgueiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - José António Belo
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Regenerative Medicine Program, Algarve, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Faro, Portugal
| | - Jamie Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Yuji Yokouchi
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Department of Medical Biochemistry and Molecular Biology, Center for Cell Matrix Research, Institute of Biomedicine Oulu, Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
115
|
Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One 2011; 6:e25900. [PMID: 21991382 PMCID: PMC3186800 DOI: 10.1371/journal.pone.0025900] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 02/06/2023] Open
Abstract
Sclerostin is a product of mature osteocytes embedded in mineralised bone and is a negative regulator of bone mass and osteoblast differentiation. While evidence suggests that sclerostin has an anti-anabolic role, the possibility also exists that sclerostin has catabolic activity. To test this we treated human primary pre-osteocyte cultures, cells we have found are exquisitely sensitive to sclerostin, or mouse osteocyte-like MLO-Y4 cells, with recombinant human sclerostin (rhSCL) and measured effects on pro-catabolic gene expression. Sclerostin dose-dependently up-regulated the expression of receptor activator of nuclear factor kappa B (RANKL) mRNA and down-regulated that of osteoprotegerin (OPG) mRNA, causing an increase in the RANKL∶OPG mRNA ratio. To examine the effects of rhSCL on resulting osteoclastic activity, MLO-Y4 cells plated onto a bone-like substrate were primed with rhSCL for 3 days and then either mouse splenocytes or human peripheral blood mononuclear cells (PBMC) were added. This resulted in cultures with elevated osteoclastic resorption (approximately 7-fold) compared to untreated co-cultures. The increased resorption was abolished by co-addition of recombinant OPG. In co-cultures of MLO-Y4 cells with PBMC, SCL also increased the number and size of the TRAP-positive multinucleated cells formed. Importantly, rhSCL had no effect on TRAP-positive cell formation from monocultures of either splenocytes or PBMC. Further, rhSCL did not induce apoptosis of MLO-Y4 cells, as determined by caspase activity assays, demonstrating that the osteoclastic response was not driven by dying osteocytes. Together, these results suggest that sclerostin may have a catabolic action through promotion of osteoclast formation and activity by osteocytes, in a RANKL-dependent manner.
Collapse
Affiliation(s)
- Asiri R. Wijenayaka
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Masakazu Kogawa
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Hui Peng Lim
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Lynda F. Bonewald
- University of Missouri - Kansas City School of Dentistry, Department of Oral Biology, Kansas City, Missouri, United States of America
| | - David M. Findlay
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
| | - Gerald J. Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
116
|
He JW, Yue H, Hu WW, Hu YQ, Zhang ZL. Contribution of the sclerostin domain-containing protein 1 (SOSTDC1) gene to normal variation of peak bone mineral density in Chinese women and men. J Bone Miner Metab 2011; 29:571-81. [PMID: 21221677 DOI: 10.1007/s00774-010-0253-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 11/21/2010] [Indexed: 02/05/2023]
Abstract
A genome-wide linkage analysis in Chinese families revealed a significant quantitative trait loci on chromosome 7p21.1 for femoral neck bone mineral density (BMD) (LOD = 3.68), and a potential candidate gene, sclerostin domain-containing protein 1 (SOSTDC1), is located in this region. SOSTDC1 belongs to a class of bone morphogenetic protein (BMP) antagonists that bind BMPs and regulate their signaling. We therefore genotyped 6 tag single nucleotide polymorphisms (tag-SNPs) in SOSTDC1 gene using allele-specific PCR method and investigated the association between SOSTDC1 gene polymorphisms and peak BMD variation in 401 Chinese female-offspring nuclear families (including 1260 subjects) and 400 Chinese male-offspring nuclear families (including 1215 subjects), respectively. Using both family-based (quantitative transmission disequilibrium test) and population-based (ANOVA) methods of analyses, BMD values were adjusted for age, height and weight. In female-offspring nuclear families, we found a significant within family association between rs16878759 and the lumbar spine peak BMD (P = 0.003) and rs16878759 accounted for 1.4% of the lumbar spine peak BMD variation. Moreover, haplotype CCC (containing rs12699800, rs16878759, and rs17619769) had a significant within family association with the lumbar spine peak BMD (P = 0.001) and accounted for 1.9% of the peak BMD variation at this bone site. However, in the male-offspring nuclear families, we failed to detect any significant association between any SNP or haplotype and peak BMD at any bone site. In conclusion, our results indicate for the first time that the genetic polymorphisms in SOSTDC1 have an effect on attainment and maintenance of peak bone mass in Chinese women.
Collapse
Affiliation(s)
- Jin-Wei He
- Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
117
|
Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, Wijenayaka AR, Zelenchuk L, Evdokiou A, Findlay DM. Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J Bone Miner Res 2011; 26:1425-36. [PMID: 21312267 PMCID: PMC3358926 DOI: 10.1002/jbmr.345] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The identity of the cell type responsive to sclerostin, a negative regulator of bone mass, is unknown. Since sclerostin is expressed in vivo by mineral-embedded osteocytes, we tested the hypothesis that sclerostin would regulate the behavior of cells actively involved in mineralization in adult bone, the preosteocyte. Differentiating cultures of human primary osteoblasts exposed to recombinant human sclerostin (rhSCL) for 35 days displayed dose- and time-dependent inhibition of in vitro mineralization, with late cultures being most responsive in terms of mineralization and gene expression. Treatment of advanced (day 35) cultures with rhSCL markedly increased the expression of the preosteocyte marker E11 and decreased the expression of mature markers DMP1 and SOST. Concomitantly, matrix extracellular phosphoglycoprotein (MEPE) expression was increased by rhSCL at both the mRNA and protein levels, whereas PHEX was decreased, implying regulation through the MEPE-ASARM axis. We confirmed that mineralization by human osteoblasts is exquisitely sensitive to the triphosphorylated ASARM-PO4 peptide. Immunostaining revealed that rhSCL increased the endogenous levels of MEPE-ASARM. Importantly, antibody-mediated neutralization of endogenous MEPE-ASARM antagonized the effect of rhSCL on mineralization, as did the PHEX synthetic peptide SPR4. Finally, we found elevated Sost mRNA expression in the long bones of HYP mice, suggesting that sclerostin may drive the increased MEPE-ASARM levels and mineralization defect in this genotype. Our results suggest that sclerostin acts through regulation of the PHEX/MEPE axis at the preosteocyte stage and serves as a master regulator of physiologic bone mineralization, consistent with its localization in vivo and its established role in the inhibition of bone formation.
Collapse
Affiliation(s)
- Gerald J Atkins
- Bone Cell Biology Group, Discipline of Orthopaedics and Trauma, University of Adelaide, and the Hanson Institute, Adelaide, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R. Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 2011; 96:E1159-62. [PMID: 21543425 PMCID: PMC3135202 DOI: 10.1210/jc.2011-0254] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Sclerostin alters bone formation. The precise and reproducible measurement of sclerostin concentrations in biological samples is important for assessment of metabolic bone disease. We determined sclerostin concentrations in serum and plasma using two commercially available ELISA. METHODS We measured sclerostin concentrations in serum or heparin-plasma obtained from 25 normal human subjects using two commercial ELISA available from Biomedica Medizinprodukte GmbH and TECOmedical AG. RESULTS With the Biomedica assay, serum sclerostin concentrations were 0.99 ± 0.12 ng/ml (mean ± sem), and plasma concentrations were 1.47 ± 0.13 ng/ml (paired t test, P < 0.001). With the TECO assay, serum sclerostin levels were 0.71 ± 0.05 ng/ml, and plasma sclerostin concentrations were 0.80 ± 0.06 ng/ml (paired t test, P < 0.001). Serum and plasma sclerostin concentrations were significantly different when determined by the two assays (serum, P = 0.015; plasma, P < 0.001). Recovery of added recombinant sclerostin to serum was less than expected with both Biomedica and TECO assays (P < 0.001, paired t test). CONCLUSIONS The concentrations of sclerostin in serum and plasma are different when determined by the two assays. Serum or plasma sclerostin concentrations with current assays should be interpreted with caution. The data suggest that the same assay should be used for comparing groups of patients or patients being followed longitudinally. Standardization of sclerostin assays is required before being introduced into general clinical laboratory use.
Collapse
Affiliation(s)
- Melissa McNulty
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
119
|
Rybchyn MS, Slater M, Conigrave AD, Mason RS. An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts. J Biol Chem 2011; 286:23771-9. [PMID: 21566129 DOI: 10.1074/jbc.m111.251116] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sclerostin is an important regulator of bone homeostasis and canonical Wnt signaling is a key regulator of osteogenesis. Strontium ranelate is a treatment for osteoporosis that has been shown to reduce fracture risk, in part, by increasing bone formation. Here we show that exposure of human osteoblasts in primary culture to strontium increased mineralization and decreased the expression of sclerostin, an osteocyte-specific secreted protein that acts as a negative regulator of bone formation by inhibiting canonical Wnt signaling. Strontium also activated, in an apparently separate process, an Akt-dependent signaling cascade via the calcium-sensing receptor that promoted the nuclear translocation of β-catenin. We propose that two discrete pathways linked to canonical Wnt signaling contribute to strontium-induced osteogenic effects in osteoblasts.
Collapse
Affiliation(s)
- Mark S Rybchyn
- Department of Physiology and Bosch Institute, University of Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
120
|
Genetos DC, Yellowley CE, Loots GG. Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One 2011; 6:e17772. [PMID: 21436889 PMCID: PMC3059227 DOI: 10.1371/journal.pone.0017772] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 02/14/2011] [Indexed: 11/19/2022] Open
Abstract
The Wnt signaling pathway is a robust regulator of skeletal homeostasis. Gain-of-function mutations promote high bone mass, whereas loss of Lrp5 or Lrp6 co-receptors decrease bone mass. Similarly, mutations in antagonists of Wnt signaling influence skeletal integrity, in an inverse relation to Lrp receptor mutations. Loss of the Wnt antagonist Sclerostin (Sost) produces the generalized skeletal hyperostotic condition of sclerosteosis, which is characterized by increased bone mass and density due to hyperactive osteoblast function. Here we demonstrate that prostaglandin E2 (PGE2), a paracrine factor with pleiotropic effects on osteoblasts and osteoclasts, decreases Sclerostin expression in osteoblastic UMR106.01 cells. Decreased Sost expression correlates with increased expression of Wnt/TCF target genes Axin2 and Tcf3. We also show that the suppressive effect of PGE2 is mediated through a cyclic AMP/PKA pathway. Furthermore, selective agonists for the PGE2 receptor EP2 mimic the effect of PGE2 upon Sost, and siRNA reduction in Ptger2 prevents PGE2-induced Sost repression. These results indicate a functional relationship between prostaglandins and the Wnt/β-catenin signaling pathway in bone.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America.
| | | | | |
Collapse
|
121
|
Ohazama A, Porntaveetus T, Ota MS, Herz J, Sharpe PT. Lrp4: A novel modulator of extracellular signaling in craniofacial organogenesis. Am J Med Genet A 2011; 152A:2974-83. [PMID: 21108386 DOI: 10.1002/ajmg.a.33372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The low-density lipoprotein (LDL) receptor family is a large evolutionarily conserved group of transmembrane proteins. It has been shown that LDL receptor family members can also function as direct signal transducers or modulators for a broad range of cellular signaling pathways. We have identified a novel mode of signaling pathway integration/coordination that occurs outside cells during development that involves an LDL receptor family member. Physical interaction between an extracellular protein (Wise) that binds BMP ligands and an Lrp receptor (Lrp4) that modulates Wnt signaling, acts to link these two pathways. Mutations in either Wise or Lrp4 in mice produce multiple, but identical abnormalities in tooth development that are linked to alterations in BMP and Wnt signaling. Teeth, in common with many other organs, develop by a series of epithelial-mesenchymal interactions, orchestrated by multiple cell signaling pathways. In tooth development, Lrp4 is expressed exclusively in epithelial cells and Wise mainly in mesenchymal cells. Our hypothesis, based on the mutant phenotypes, cell signaling activity changes and biochemical interactions between Wise and Lrp4 proteins, is that Wise and Lrp4 together act as an extracellular mechanism of coordinating BMP and Wnt signaling activities in epithelial-mesenchymal cell communication during development.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | | | | | | | | |
Collapse
|
122
|
Masuki H, Li M, Hasegawa T, Suzuki R, Ying G, Zhusheng L, Oda K, Yamamoto T, Kawanami M, Amizuka N. Immunolocalization of DMP1 and sclerostin in the epiphyseal trabecule and diaphyseal cortical bone of osteoprotegerin deficient mice. Biomed Res 2011; 31:307-18. [PMID: 21079361 DOI: 10.2220/biomedres.31.307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to define the osteocytic function in accelerated bone remodeling, we examined the distribution of the osteocytic lacunar-canalicular system (OLCS) and osteocyte-secreting molecules--dentin matrix protein (DMP) 1 and sclerostin--in the epiphyses and cortical bones of osteoprotegerin deficient (OPG(-/-)) mice. Silver impregnation visualized a well-arranged OLCS in the wild-type epiphyses and cortical bone, whereas OPG(-/-) mice had an irregular OLCS in the epiphyses, but well-arranged canaliculi in the cortical bone. DMP1-positive osteocytes were evenly distributed throughout the wild-type epiphyses and cortical bone, as well as the OPG(-/-) cortical bone. However, OPG(-/-) epiphyses revealed weak DMP1-immunoreactivity. Thus, osteocytes appear to synthesize more DMP1 as the OLCS becomes regular. In contrast, sclerostin-immunoreactivity was significantly diminished in the OPG(-/-) epiphyses and cortical bone. In OPG(-/-) epiphyses and cortical bone, triple staining demonstrated few sclerostin-positive osteocytes in the periphery of a thick cell layer of alkaline phosphatase-positive osteoblasts and many tartrate resistant acid phosphatase-positive osteoclasts. Summarizing, the regular distribution of OLCS may affect DMP1 synthesis, while the cellular activities of osteoclasts and osteoblasts rather than the regularity of OLCS may ultimately influence sclerostin synthesis.
Collapse
Affiliation(s)
- Hideo Masuki
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 2010; 6:877-82. [PMID: 21164019 DOI: 10.2215/cjn.06550810] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The serum proteins sclerostin and Dickkopf-1 (Dkk-1) are soluble inhibitors of canonical wnt signaling and were recently identified as components of parathyroid hormone (PTH) signal transduction. This study investigated the associations between sclerostin and Dkk-1 with histomorphometric parameters of bone turnover, mineralization, and volume in stage 5 chronic kidney disease patients on dialysis (CKD-5D). DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS In a cross-sectional study, 60 CKD-5D patients underwent bone biopsies followed by histomorphometry. Levels of sclerostin, Dkk-1, and intact PTH (iPTH) were determined in blood. RESULTS Serum levels of sclerostin and iPTH correlated negatively. In unadjusted analyses, sclerostin correlated negatively with histomorphometric parameters of turnover, osteoblastic number, and function. In adjusted analyses, sclerostin remained a strong predictor of parameters of bone turnover and osteoblast number. An observed correlation between sclerostin and cancellous bone volume was lost in regression analyses. Sclerostin was superior to iPTH for the positive prediction of high bone turnover and number of osteoblasts. In contrast, iPTH was superior to sclerostin for the negative prediction for high bone turnover and had similar predictive values than sclerostin for the number of osteoblasts. Serum levels of Dkk-1 did not correlate with iPTH or with any histomorphometric parameter. CONCLUSIONS Our data describe a promising role for serum measurements of sclerostin in addition to iPTH in the diagnosis of high bone turnover in CKD-5D patients, whereas measurements of Dkk-1 do not seem to be useful for this purpose.
Collapse
Affiliation(s)
- Daniel Cejka
- Division of Nephrology, Medical University Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Bone morphogenetic proteins: a critical review. Cell Signal 2010; 23:609-20. [PMID: 20959140 DOI: 10.1016/j.cellsig.2010.10.003] [Citation(s) in RCA: 493] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 09/14/2010] [Accepted: 10/01/2010] [Indexed: 12/14/2022]
Abstract
Bone Morphogenetic Proteins (BMPs) are potent growth factors belonging to the Transforming Growth Factor Beta superfamily. To date over 20 members have been identified in humans with varying functions during processes such as embryogenesis, skeletal formation, hematopoiesis and neurogenesis. Though their functions have been identified, less is known regarding levels of regulation at the extracellular matrix, membrane surface, and receptor activation. Further, current models of activation lack the integration of these regulatory mechanisms. This review focuses on the different levels of regulation, ranging from the release of BMPs into the extracellular components to receptor activation for different BMPs. It also highlights areas in research that is lacking or contradictory.
Collapse
|
125
|
Craig TA, Kumar R. Sclerostin-erbB-3 interactions: modulation of erbB-3 activity by sclerostin. Biochem Biophys Res Commun 2010; 402:421-4. [PMID: 20951118 DOI: 10.1016/j.bbrc.2010.10.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 11/17/2022]
Abstract
To gain insights into the mechanism of action of sclerostin, a protein that regulates bone mass, we performed yeast two-hybrid analyses using human SOST (sclerostin) cDNA cloned into pGBKT7 DNA-binding domain vector as a bait, and a normalized, high-complexity, universal cDNA library in a GAL4 activating domain vector. We identified an interaction between sclerostin and the carboxyl-terminal portion of the receptor tyrosine-protein kinase erbB-3. To determine the biological relevance of this interaction, we treated MC3T3-E1 mouse osteoblast cells transfected with either a SOST expression plasmid or a control vector, with recombinant heregulin/neuregulin. Phospho-p44/42 (Thr202/Tyr204) MAPK was assessed in heregulin/neuregulin treated cells. We observed an increase in phospho-p44/42 (Thr202/Tyr204) MAPK concentrations in SOST transfected cells but not in cells transfected with a control vector, thus demonstrating a modulatory effect of sclerostin on heregulin/neuregulin signaling in osteoblasts. The data demonstrate that sclerostin functions in part, by modulating the activity of erbB-3.
Collapse
Affiliation(s)
- Theodore A Craig
- Nephrology and Hypertension Research, Department of Internal Medicine, MS 1-120, Mayo Clinic, 200 1st St., Southwest, Rochester, MN 55905, USA
| | | |
Collapse
|
126
|
Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. J Bone Miner Res 2010; 25:1897-904. [PMID: 20564241 DOI: 10.1002/jbmr.161] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Paszty
- Metabolic Disorders, Amgen Inc, Thousand Oaks, CA 91320-1799, USA.
| | | | | |
Collapse
|
127
|
Genetos DC, Toupadakis CA, Raheja LF, Wong A, Papanicolaou SE, Fyhrie DP, Loots GG, Yellowley CE. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 2010; 110:457-67. [PMID: 20336693 DOI: 10.1002/jcb.22559] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in sclerostin function or expression cause sclerosing bone dysplasias, involving decreased antagonism of Wnt/Lrp5 signaling. Conversely, deletion of the VHL tumor suppressor in osteoblasts, which stabilize HIF-alpha isoforms and thereby enables HIF-alpha/beta-driven gene transcription, increases bone mineral content and cross-sectional area compared to wild-type controls. We examined the influence of cellular hypoxia (1% oxygen) upon sclerostin expression and canonical Wnt signaling. Osteoblasts and osteocytes cultured under hypoxia revealed decreased sclerostin transcript and protein, and increased expression and nuclear localization of activated beta-catenin. Similarly, both hypoxia and the hypoxia mimetic DFO increased beta-catenin gene reporter activity. Hypoxia and its mimetics increased expression of the BMP antagonists gremlin and noggin and decreased Smad-1/5/8 phosphorylation. As a partial explanation for the mechanism of regulation of sclerostin by oxygen, MEF2 reporter assays revealed decreased activity. Modulation of VEGF signaling under normoxia or hypoxia revealed no influence upon Sost transcription. These data suggest that hypoxia inhibits sclerostin expression, through enhanced antagonism of BMP signaling independent of VEGF.
Collapse
Affiliation(s)
- Damian C Genetos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, UC Davis, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
Osteoporosis is an important and complex disorder that is highly prevalent worldwide. This disease poses a major challenge to modern medicine and its treatment is associated with high costs. Numerous studies have endeavored to decipher the pathogenesis of this disease. The clinical assessment of patients often incorporates information about a family history of osteoporotic fractures. Indeed, the observation of an increased risk of fracture in an individual with a positive parental history of hip fracture provides strong evidence for the heritability of osteoporosis. The onset and progression of osteoporosis are generally controlled by multiple genetic and environmental factors, as well as interactions between them, with rare cases determined by a single gene. In an attempt to identify the genetic markers of complex diseases such as osteoporosis, there has been a move away from traditional linkage mapping studies and candidate gene association studies to higher-density genome-wide association studies. The advent of high-throughput technology enables genotyping of millions of DNA markers in the human genome, and consequently the identification and characterization of causal variants and loci that underlie osteoporosis. This Review presents an overview of the major findings since 2007 and clinical applications of these genome-wide linkage and association studies.
Collapse
|
129
|
Moester MJC, Papapoulos SE, Löwik CWGM, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 2010; 87:99-107. [PMID: 20473488 PMCID: PMC2903685 DOI: 10.1007/s00223-010-9372-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/23/2010] [Indexed: 01/12/2023]
Abstract
In recent years study of rare human bone disorders has led to the identification of important signaling pathways that regulate bone formation. Such diseases include the bone sclerosing dysplasias sclerosteosis and van Buchem disease, which are due to deficiency of sclerostin, a protein secreted by osteocytes that inhibits bone formation by osteoblasts. The restricted expression pattern of sclerostin in the skeleton and the exclusive bone phenotype of good quality of patients with sclerosteosis and van Buchem disease provide the basis for the design of therapeutics that stimulate bone formation. We review here current knowledge of the regulation of the expression and formation of sclerostin, its mechanism of action, and its potential as a bone-building treatment for patients with osteoporosis.
Collapse
Affiliation(s)
- M. J. C. Moester
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - S. E. Papapoulos
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - C. W. G. M. Löwik
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - R. L. van Bezooijen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
130
|
Su JL, Chiou J, Tang CH, Zhao M, Tsai CH, Chen PS, Chang YW, Chien MH, Peng CY, Hsiao M, Kuo ML, Yen ML. CYR61 regulates BMP-2-dependent osteoblast differentiation through the {alpha}v{beta}3 integrin/integrin-linked kinase/ERK pathway. J Biol Chem 2010; 285:31325-36. [PMID: 20675382 DOI: 10.1074/jbc.m109.087122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteoporosis is one of the most common bone pathologies. A number of novel molecules have been reported to increase bone formation including cysteine-rich protein 61 (CYR61), a ligand of integrin receptor, but mechanisms remain unclear. It is known that bone morphogenetic proteins (BMPs), especially BMP-2, are crucial regulators of osteogenesis. However, the interaction between CYR61 and BMP-2 is unclear. We found that CYR61 significantly increases proliferation and osteoblastic differentiation in MC3T3-E1 osteoblasts and primary cultured osteoblasts. CYR61 enhances mRNA and protein expression of BMP-2 in a time- and dose-dependent manner. Moreover, CYR61-mediated proliferation and osteoblastic differentiation are significantly decreased by knockdown of BMP-2 expression or inhibition of BMP-2 activity. In this study we found integrin α(v)β(3) is critical for CYR61-mediated BMP-2 expression and osteoblastic differentiation. We also found that integrin-linked kinase, which is downstream of the α(v)β(3) receptor, is involved in CYR61-induced BMP-2 expression and subsequent osteoblastic differentiation through an ERK-dependent pathway. Taken together, our results show that CYR61 up-regulates BMP-2 mRNA and protein expression, resulting in enhanced cell proliferation and osteoblastic differentiation through activation of the α(v)β(3) integrin/integrin-linked kinase/ERK signaling pathway.
Collapse
Affiliation(s)
- Jen-Liang Su
- Graduate Institute of Cancer Biology, College of Medicine, and the eGraduate Institute of Basic Medical Science, China Medical University, Taichung 404,Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Nili M, Shinde U, Rotwein P. Soluble repulsive guidance molecule c/hemojuvelin is a broad spectrum bone morphogenetic protein (BMP) antagonist and inhibits both BMP2- and BMP6-mediated signaling and gene expression. J Biol Chem 2010; 285:24783-92. [PMID: 20530805 DOI: 10.1074/jbc.m110.130286] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Inactivating mutations in hemojuvelin/repulsive guidance molecule c (HJV/RGMc) cause juvenile hemochromatosis (JH), a rapidly progressive iron overload disorder in which expression of hepcidin, a key liver-derived iron-regulatory hormone, is severely diminished. Several growth factors in the bone morphogenetic protein (BMP) family, including BMP2 and BMP6, can stimulate production of hepcidin, a biological effect that may be modified by RGMc. Here we demonstrate that soluble RGMc proteins are potent BMP inhibitors. We find that 50- and 40-kDa RGMc isoforms, when added to cells as highly purified IgG Fc fusion proteins, are able to block the acute effects of both BMP2 and BMP6 at the levels of Smad induction and gene activation, and thus represent a potentially unique class of broad-spectrum BMP antagonists. Whole transcript microarray analysis revealed that BMP2 and BMP6 each stimulated expression of a nearly identical cohort of approximately 40 mRNAs in Hep3B cells and demonstrated that 40-kDa RGMc was an effective inhibitor of both growth factors, although its potency was less than that of the known BMP2-selective antagonist, Noggin. We additionally show that JH-linked RGMc mutant proteins that retain the ability to bind BMPs are also able to function as BMP inhibitors, and like the wild type soluble RGMc species, can block BMP-activated hepcidin gene expression. The latter results raise the question of whether disease severity in JH will vary depending on the ability of a given mutant RGMc protein to interact with BMPs.
Collapse
Affiliation(s)
- Mahta Nili
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA
| | | | | |
Collapse
|
132
|
Gooi JH, Pompolo S, Karsdal MA, Kulkarni NH, Kalajzic I, McAhren SHM, Han B, Onyia JE, Ho PWM, Gillespie MT, Walsh NC, Chia LY, Quinn JMW, Martin TJ, Sims NA. Calcitonin impairs the anabolic effect of PTH in young rats and stimulates expression of sclerostin by osteocytes. Bone 2010; 46:1486-97. [PMID: 20188226 DOI: 10.1016/j.bone.2010.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 11/28/2022]
Abstract
The therapeutic goal of increasing bone mass by co-treatment of parathyroid hormone (PTH) and an osteoclast inhibitor has been complicated by the undefined contribution of osteoclasts to the anabolic activity of PTH. To determine whether active osteoclasts are required at the time of PTH administration, we administered a low dose of the transient osteoclast inhibitor salmon calcitonin (sCT) to young rats receiving an anabolic PTH regimen. Co-administration of sCT significantly blunted the anabolic effect of PTH as measured by peripheral quantitative computer tomography (pQCT) and histomorphometry in the femur and tibia, respectively. To determine gene targets of sCT, we carried out quantitative real time PCR and microarray analysis of metaphyseal samples 1.5, 4 and 6.5h after administration of a single injection of PTH, sCT or PTH+sCT. Known targets of PTH action, IL-6, ephrinB2 and RANKL, were not modified by co-administration with sCT. Surprisingly, at all time points, we noted a significant upregulation of sclerostin mRNA by sCT treatment, as well as down-regulation of two other osteocyte gene products, MEPE and DMP1. Immunohistochemistry confirmed that sCT administration increased the percentage of osteocytes expressing sclerostin, suggesting a mechanism by which sCT reduced the anabolic effect of PTH. Neither mRNA for CT receptor (Calcr) nor labeled CT binding could be detected in sclerostin-enriched cells differentiated from primary calvarial osteoblasts. In contrast, osteocytes freshly isolated from calvariae expressed a high level of Calcr mRNA. Furthermore immunohistochemistry revealed co-localization of CT receptor (CTR) and sclerostin in some osteocytes in calvarial sections. Taken together these data indicate that co-treatment with sCT can blunt the anabolic effect of PTH and this may involve direct stimulation of sclerostin production by osteocytes. These data directly implicate calcitonin as a negative regulator of bone formation through a previously unsuspected mechanism.
Collapse
Affiliation(s)
- J H Gooi
- Department of Medicine at St. Vincent's Hospital, St. Vincent's Institute and University of Melbourne, Fitzroy, 3065, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
134
|
Extracellular BMP-antagonist regulation in development and disease: tied up in knots. Trends Cell Biol 2010; 20:244-56. [PMID: 20188563 DOI: 10.1016/j.tcb.2010.01.008] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/11/2023]
Abstract
Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.
Collapse
|
135
|
Craig TA, Sommer SL, Beito TG, Kumar R. Production and characterization of monoclonal antibodies to human sclerostin. Hybridoma (Larchmt) 2010; 28:377-81. [PMID: 19857121 DOI: 10.1089/hyb.2009.0036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We developed and characterized monoclonal antibodies directed against the amino-terminal and carboxy-terminal regions of human and mouse sclerostin (scl). Amino-terminal and carboxy-terminal scl peptides with limited homology to scl domain-containing protein-1 were synthesized using f-moc chemistry. The peptides were conjugated to keyhole limpet hemocyanin and the conjugates were used for immunization of mice. Monoclonal antibodies were obtained and characterized using bacterially expressed and insect cell-expressed recombinant scl. The amino-terminal (IgG 2aK) and carboxy-terminal (IgG 2bK) antibodies bound bioactive sclerostin that was expressed in an insect-cell expression system with dissociation constants in the nanomolar range. The antibodies are potentially useful agents that can be used for modulating sclerostin bioactivity.
Collapse
Affiliation(s)
- Theodore A Craig
- Nephrology Research, Department of Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
136
|
Nifuji A, Ideno H, Takanabe R, Noda M. Extracellular Modulators Regulate Bone Morphogenic Proteins in Skeletal Tissue. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
137
|
Abstract
The purpose of this review is to provide a better understanding for the LRP co-receptor-mediated Wnt pathway signaling. Using proteomics, we have also subdivided the LRP receptor family into six sub-families, encompassing the twelve family members. This review includes a discussion of proteins containing a cystine-knot protein motif (i.e., Sclerostin, Dan, Sostdc1, Vwf, Norrin, Pdgf, Mucin) and discusses how this motif plays a role in mediating Wnt signaling through interactions with LRP.
Collapse
|
138
|
Ubaidus S, Li M, Sultana S, de Freitas PHL, Oda K, Maeda T, Takagi R, Amizuka N. FGF23 is mainly synthesized by osteocytes in the regularly distributed osteocytic lacunar canalicular system established after physiological bone remodeling. JOURNAL OF ELECTRON MICROSCOPY 2009; 58:381-392. [PMID: 19549991 DOI: 10.1093/jmicro/dfp032] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study aimed to evaluate whether the immunolocalization of fibroblast growth factor (FGF) 23 and dentin matrix protein 1 (DMP1) is associated with the spatial regularity of the osteocyte lacunar canalicular system(s) (OLCS). Femora of 12-weeks-old male ICR mice were fixed with 4% paraformaldehyde, decalcified with a 10% EDTA solution and then embedded in paraffin. We have devised a triple staining procedure that combines silver impregnation, alkaline phosphatase (ALPase) immunohistochemistry and tartrate-resistant acid phosphatase (TRAPase) enzyme histochemistry on a single paraffin section. This procedure permitted the visualization of ALPase-positive plump osteoblasts and several TRAPase-positive osteoclasts on those bone matrices featuring irregularly arranged OLCS, and of ALPase-positive bone lining cells on the bone matrix displaying the well-arranged OLCS. As observations proceeded from the metaphysis toward the diaphysis, the endosteal cortical bone displayed narrower bands of calcein labeling, accompanied by increased regularity of the OLCS. This implies that the speed of bone deposition during bone remodeling would affect the regularity of the OLCS. While DMP1 was evenly localized in all regions of the cortical bones, FGF23 was more abundantly localized in osteocytes of cortical bones with regularly arranged OLCS. In cortical bones, the endosteal area featuring regular OLCS exhibited more intense FGF23 immunoreaction when compared to the periosteal region, which tended to display irregular OLCS. In summary, FGF23 appears to be synthesized principally by osteocytes in the regularly distributed OLCS that have been established after bone remodeling.
Collapse
Affiliation(s)
- Sobhan Ubaidus
- Center for Transdisciplinary Research, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Choi HY, Dieckmann M, Herz J, Niemeier A. Lrp4, a novel receptor for Dickkopf 1 and sclerostin, is expressed by osteoblasts and regulates bone growth and turnover in vivo. PLoS One 2009; 4:e7930. [PMID: 19936252 PMCID: PMC2775917 DOI: 10.1371/journal.pone.0007930] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 10/27/2009] [Indexed: 12/14/2022] Open
Abstract
Lrp4 is a multifunctional member of the low density lipoprotein-receptor gene family and a modulator of extracellular cell signaling pathways in development. For example, Lrp4 binds Wise, a secreted Wnt modulator and BMP antagonist. Lrp4 shares structural elements within the extracellular ligand binding domain with Lrp5 and Lrp6, two established Wnt co-receptors with important roles in osteogenesis. Sclerostin is a potent osteocyte secreted inhibitor of bone formation that directly binds Lrp5 and Lrp6 and modulates both BMP and Wnt signaling. The anti-osteogenic effect of sclerostin is thought to be mediated mainly by inhibition of Wnt signaling through Lrp5/6 within osteoblasts. Dickkopf1 (Dkk1) is another potent soluble Wnt inhibitor that binds to Lrp5 and Lrp6, can displace Lrp5-bound sclerostin and is itself regulated by BMPs. In a recent genome-wide association study of bone mineral density a significant modifier locus was detected near the SOST gene at 17q21, which encodes sclerostin. In addition, nonsynonymous SNPs in the LRP4 gene were suggestively associated with bone mineral density. Here we show that Lrp4 is expressed in bone and cultured osteoblasts and binds Dkk1 and sclerostin in vitro. MicroCT analysis of Lrp4 deficient mutant mice revealed shortened total femur length, reduced cortical femoral perimeter, and reduced total femur bone mineral content (BMC) and bone mineral density (BMD). Lumbar spine trabecular bone volume per total volume (BV/TV) was significantly reduced in the mutants and the serum and urinary bone turnover markers alkaline phosphatase, osteocalcin and desoxypyridinoline were increased. We conclude that Lrp4 is a novel osteoblast expressed Dkk1 and sclerostin receptor with a physiological role in the regulation of bone growth and turnover, which is likely mediated through its function as an integrator of Wnt and BMP signaling pathways.
Collapse
Affiliation(s)
- Hong Y. Choi
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Marco Dieckmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Institut für Physiologische Chemie und Pathobiochemie, Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| | - Andreas Niemeier
- Department of Orthopaedics and IBMII: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
140
|
Dimai HP, Pietschmann P, Resch H, Preisinger E, Fahrleitner-Pammer A, Dobnig H, Klaushofer K. [Austrian guidance for the pharmacological treatment of osteoporosis in postmenopausal women--update 2009]. Wien Med Wochenschr 2009:1-34. [PMID: 19484202 DOI: 10.1007/s10354-009-0656-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 01/08/2009] [Indexed: 12/19/2022]
Abstract
Osteoporosis is a systemic skeletal disease characterized by diminished bone mass and deterioration of bone microarchitecture, leading to increased fragility and subsequent increased fracture risk. Therapeutic measures therefore aim at reducing individual fracture risk. In Austria, the following drugs, all of which have been proven to reduce fracture risk, are currently registered for the treatment of postmenopausal osteoporosis: alendronate, risedronate, etidronate, ibandronate, raloxifene, teriparatide (1-34 PTH), 1-84 PTH, strontium ranelate and salmon calcitonin. Fluorides are still available, but their role in daily practice has become negligible. Currently, there is no evidence that a combination of two or more of these drugs could improve anti-fracture potency. However, treatment with PTH should be followed by the treatment with an anticatabolic drug such as bisphosphonates. Calcium and vitamin D constitute an important adjunct to any osteoporosis treatment.
Collapse
Affiliation(s)
- Hans Peter Dimai
- Klinische Abteilung für Endokrinologie und Nuklearmedizin, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
A variety of new treatments for osteoporosis have become available within the last several years, and a number of emerging treatments remain in late clinical stage development. New and emerging treatments include more potent members, or more convenient formulations, of existing classes of therapy, but a number of the emerging treatments are first-generation compounds addressing specific therapeutic targets based on recent advances in understanding of basic bone biology. These new and emerging treatments include agents with anticatabolic effects, compounds with anabolic effects, and one agent possibly containing both anticatabolic and anabolic effects. The increasing variety of new and emerging treatments increases the possibility that effective therapy will be targeted to the specific needs of the individual patient.
Collapse
Affiliation(s)
- Bart L Clarke
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
142
|
Bone morphogenic protein 6: a member of a novel class of prognostic factors expressed by normal and malignant plasma cells inhibiting proliferation and angiogenesis. Oncogene 2009; 28:3866-79. [PMID: 19718049 DOI: 10.1038/onc.2009.257] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pathogenesis of multiple myeloma is associated with an aberrant expression of pro-proliferative, pro-angiogenic and bone-metabolism-modifying factors by malignant plasma cells. Given the frequently long time span from diagnosis of early-stage plasma cell dyscrasias to overt myeloma and the mostly low proliferation rate of malignant plasma cells, we hypothesize these to similarly express a novel class of inhibitory factors of potential prognostic relevance. Bone morphogenic proteins (BMPs) represent possible candidates as they inhibit proliferation, stimulate bone formation and have an effect on the survival of cancer patients. We assessed the expression of BMPs and their receptors by Affymetrix DNA microarrays (n=779) including CD138-purified primary myeloma cell samples (n=635) of previously untreated patients. BMP6 is the only BMP expressed by malignant and normal plasma cells. Its expression is significantly lower in proliferating myeloma cells, myeloma cell lines or plasmablasts. BMP6 significantly inhibits the proliferation of myeloma cell lines, survival of primary myeloma cells and in vitro angiogenesis. A high BMP6 expression in primary myeloma cell samples delineates significantly superior overall survival for patients undergoing high-dose chemotherapy independent of conventional prognostic factors (International Staging System (ISS) stage, beta(2) microglobulin).
Collapse
|
143
|
Lintern KB, Guidato S, Rowe A, Saldanha JW, Itasaki N. Characterization of wise protein and its molecular mechanism to interact with both Wnt and BMP signals. J Biol Chem 2009; 284:23159-68. [PMID: 19553665 PMCID: PMC2755721 DOI: 10.1074/jbc.m109.025478] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/22/2009] [Indexed: 11/06/2022] Open
Abstract
Cross-talk of BMP and Wnt signaling pathways has been implicated in many aspects of biological events during embryogenesis and in adulthood. A secreted protein Wise and its orthologs (Sostdc1, USAG-1, and Ectodin) have been shown to modulate Wnt signaling and also inhibit BMP signals. Modulation of Wnt signaling activity by Wise is brought about by an interaction with the Wnt co-receptor LRP6, whereas BMP inhibition is by binding to BMP ligands. Here we have investigated the mode of action of Wise on Wnt and BMP signals. It was found that Wise binds LRP6 through one of three loops formed by the cystine knot. The Wise deletion construct lacking the LRP6-interacting loop domain nevertheless binds BMP4 and inhibits BMP signals. Moreover, BMP4 does not interfere with Wise-LRP6 binding, suggesting separate domains for the physical interaction. Functional assays also show that the ability of Wise to block Wnt1 activity through LRP6 is not impeded by BMP4. In contrast, the ability of Wise to inhibit BMP4 is prevented by additional LRP6, implying a preference of Wise in binding LRP6 over BMP4. In addition to the interaction of Wise with BMP4 and LRP6, the molecular characteristics of Wise, such as glycosylation and association with heparan sulfate proteoglycans on the cell surface, are suggested. This study helps to understand the multiple functions of Wise at the molecular level and suggests a possible role for Wise in balancing Wnt and BMP signals.
Collapse
Affiliation(s)
| | - Sonia Guidato
- From the Divisions of Developmental Neurobiology and
| | - Alison Rowe
- From the Divisions of Developmental Neurobiology and
| | - José W. Saldanha
- Mathematical Biology, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Nobue Itasaki
- From the Divisions of Developmental Neurobiology and
| |
Collapse
|
144
|
Katsube KI, Sakamoto K, Tamamura Y, Yamaguchi A. Role of CCN, a vertebrate specific gene family, in development. Dev Growth Differ 2009; 51:55-67. [PMID: 19128405 DOI: 10.1111/j.1440-169x.2009.01077.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CCN family of genes constitutes six members of small secreted cysteine rich proteins, which exists only in vertebrates. The major members of CCN are CCN1 (Cyr61), CCN2 (CTGF), and CCN3 (Nov). CCN4, CCN5, and CCN6 were formerly reported to be in the Wisp family, but they are now integrated into CCN due to the resemblance of their four principal modules: insulin like growth factor binding protein, von Willebrand factor type C, thrombospondin type 1, and carboxy-terminal domain. CCNs show a wide and highly variable expression pattern in adult and in embryonic tissues, but most studies have focused on their principal role in osteo/chondrogenesis and vasculo/angiogenesis from the aspect of migration, growth, and differentiation of mesenchymal cells. CCN proteins simultaneously integrate and modulate the signals of integrins, bone morphogenetic protein, vascular endothelial growth factor, Wnt, and Notch by direct binding. However, the priority in the use of the signals is different depending on the cell status. Even the equivalent counterparts show a difference in signal usage among species. It may be that the evolution of the CCN family continues to keep pace with vertebrate evolution itself.
Collapse
Affiliation(s)
- Ken-ichi Katsube
- Oral Pathology, Graduate School of Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | |
Collapse
|
145
|
Abstract
Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-beta superfamily and are involved in the cascades of body patterning and morphogenesis. The activities of BMPs are precisely regulated at various stages, and extracellulary, mainly regulated by certain classes of molecules termed as BMP antagonists and pro-BMP factors. BMP antagonists inhibit BMP function by prohibiting them from binding their cognate receptors, whereas pro-BMP factors stimulate BMP function. In this review, the functions of these BMP regulators will be discussed. (c) 2009 International Union of Biochemistry and Molecular Biology, Inc.
Collapse
Affiliation(s)
- Motoko Yanagita
- Career-Path Promotion Unit for Young Life Scientists, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
146
|
Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem 2009; 284:10890-900. [PMID: 19208630 DOI: 10.1074/jbc.m807994200] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The secreted glycoprotein sclerostin has recently emerged as a key negative regulator of Wnt signaling in bone and has stimulated considerable interest as a potential target for therapeutics designed to treat conditions associated with low bone mass, such as osteoporosis. We have determined the structure of sclerostin, which resulted in the identification of a previously unknown binding site for heparin, suggestive of a functional role in localizing sclerostin to the surface of target cells. We have also mapped the interaction site for an antibody that blocks the inhibition of Wnt signaling by sclerostin. This shows minimal overlap with the heparin binding site and highlights a key role for this region of sclerostin in protein interactions associated with the inhibition of Wnt signaling. The conserved N- and C-terminal arms of sclerostin were found to be unstructured, highly flexible, and unaffected by heparin binding, which suggests a role in stabilizing interactions with target proteins.
Collapse
Affiliation(s)
- Vaclav Veverka
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Ideno H, Takanabe R, Shimada A, Imaizumi K, Araki R, Abe M, Nifuji A. Protein related to DAN and cerberus (PRDC) inhibits osteoblastic differentiation and its suppression promotes osteogenesis in vitro. Exp Cell Res 2009; 315:474-84. [DOI: 10.1016/j.yexcr.2008.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/18/2008] [Accepted: 11/23/2008] [Indexed: 10/21/2022]
|
148
|
Abstract
Recent discoveries in humans and mice have revealed that the Wnt (Wingless and Int-1) signaling pathway is responsible for a complex array of functions in maintaining bone homeostasis. The Wnt proteins are key modulators of mesenchymal lineage specification and regulate most aspects of osteoblast physiology and postnatal bone acquisition by controlling the differentiation and activity of osteoblasts and osteoclasts. Initial reports have indicated that activators of Wnt signaling are potent promoters of osteogenesis; however, systemic hyperactivation of the canonical Wnt pathway could potentially accelerate neoplastic transformation and subsequent tumor growth. Alternatively, recent investigations of natural soluble antagonists of Wnt signaling in bone suggest the possibilities of bone-specific therapies targeting the negative regulators of Wnt pathway, especially sclerostin. With this new knowledge, novel pharmacologic interventions that alter Wnt signaling are being evaluated for the management of osteoporosis. In this article, we briefly describe the Wnt signaling elements, their characterized role in bone, and summarize the current knowledge on the potential to enhance bone formation through the manipulation of Wnt signaling antagonists.
Collapse
Affiliation(s)
- Mohammad Shahnazari
- Department of Medicine, UC Davis Medical Center, 4800 Second Avenue, Suite 2600, Sacramento, CA 95817, USA
| | | | | | | |
Collapse
|
149
|
Abstract
The importance of bone-morphogenetic proteins in prostate cancer is well recognized. Bone-morphogenetic protein-6 overexpression has been shown to increase the aggressiveness and invasiveness of prostate cancer cells. Recent studies on noggin and sclerostin, potent inhibitors of bone-morphogenetic protein signaling, have found that noggin also modifies the ability of prostate cancer cells to metastasize to bone. Taken together, these results suggest that bone-morphogenetic protein-6 signaling is important in prostate cancer progression. Our study investigated the expression of bone-morphogenetic protein-6, noggin and sclerostin in human prostate specimens (n=136) by immunohistochemical staining. We found that bone-morphogenetic protein-6 was increased (P<0.001), whereas sclerostin was decreased (P=0.004) in prostate cancer compared with nodular hyperplasia. In addition, significantly higher level of bone-morphogenetic protein-6 expression was observed in high-grade prostate cancer with Gleason score >or=7 (P=0.027). Bone-morphogenetic protein-6, noggin and sclerostin alone could not predict the development of distant metastasis in our patient cohort. However, high level of bone-morphogenetic protein-6 and low level of noggin, or high level of bone-morphogenetic protein-6 and low level of both noggin and sclerostin expression in primary prostate cancer significantly predicted development of distant metastasis. The predictive value was still valid when only high-grade prostate cancers were included or when patients with secondary lesion other than bone were excluded. Taken together, these results suggest that a high level of bone-morphogenetic protein-6 signaling, resulting from increased expression of bone-morphogenetic protein-6 and decreased expression of its inhibitors, might promote the development of prostate cancer metastases. Our results also imply the potential use of bone-morphogenetic protein-6, noggin and sclerostin expression together as a prognostic predictor for metastatic progression of prostate cancer.
Collapse
|
150
|
Park JW, Park ES, Choi EN, Park HY, Jung SC. Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 2008; 401:90-9. [PMID: 19073163 DOI: 10.1016/j.cca.2008.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/15/2008] [Accepted: 11/18/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase (PAH), which catalyzes the conversion of phenylalanine to tyrosine. The resultant hyperphenylalaninemia causes mental retardation, seizure, and abnormalities in behavior and movement. METHODS We analyzed gene expression profiles in brain tissues of Pah(enu2) mice to elucidate the mechanisms involved in phenylalanine-induced neurological damage. The altered gene expression was confirmed by real-time PCR and Western blotting. To identify markers associated with neurological damage, we examined TTR expression in serum by Western blotting. RESULTS Gene expression profiling of brain tissue from a mouse model of PKU revealed overexpression of transthyretin (Ttr), sclerostin domain containing 1 (Sostdc1), alpha-Klotho (Kl), prolactin receptor (Prlr), and early growth response 2 (Egr2). In contrast to its overexpression in the brain, TTR expression was low in the sera of PKU mice offered unrestricted access to a diet containing phenylalanine. Expression of TTR decreased in a time-dependent manner in phenylalanine-treated HepG2 cells. CONCLUSIONS These findings indicate that Ttr, Sostdc1, Kl, Prlr, and Egr2 can be involved in the pathogenesis of PKU and that phenylalanine might have a direct effect on the level of TTR in serum.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | | |
Collapse
|