101
|
|
102
|
Abstract
Autophagy is a fundamental cellular process promoting survival under various environmental stress conditions. Selective types of autophagy have gained much interest recently as they are involved in specific quality control mechanisms removing, for example, aggregated proteins or dysfunctional mitochondria. This is considered to counteract the development of a number of neurodegenerative disorders and aging. Here we review the role of mitophagy and mitochondrial dynamics in ensuring quality control of mitochondria. In particular, we provide possible explanations why mitophagy in yeast, in contrast with the situation in mammals, was found to be independent of mitochondrial fission. We further discuss recent findings linking these processes to nutrient sensing pathways and the general stress response in yeast. In particular, we propose a model for how the stress response protein Whi2 and the Ras/PKA (protein kinase A) signalling pathway are possibly linked and thereby regulate mitophagy.
Collapse
|
103
|
Ramachandran V, Shah KH, Herman PK. The cAMP-dependent protein kinase signaling pathway is a key regulator of P body foci formation. Mol Cell 2011; 43:973-81. [PMID: 21925385 DOI: 10.1016/j.molcel.2011.06.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 01/08/2023]
Abstract
In response to stress, eukaryotic cells accumulate mRNAs and proteins at discrete sites, or foci, in the cytoplasm. However, the mechanisms regulating foci formation, and the biological function of the larger ribonucleoprotein (RNP) assemblies, remain poorly understood. Here, we show that the cAMP-dependent protein kinase (PKA) in Saccharomyces cerevisiae is a key regulator of the assembly of processing bodies (P bodies), an RNP complex implicated in mRNA processing and translation. The data suggest that PKA specifically inhibits the formation of the larger P body aggregates by directly phosphorylating Pat1, a conserved constituent of these foci that functions as a scaffold during the assembly process. Finally, we present evidence indicating that P body foci are required for the long-term survival of stationary phase cells. This work therefore highlights the general relevance of RNP foci in quiescent cells, and provides a framework for the study of the many RNP assemblies that form in eukaryotic cells.
Collapse
Affiliation(s)
- Vidhya Ramachandran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
104
|
Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, Debnath J, Deretic V, Elazar Z, Eskelinen EL, Finkbeiner S, Fueyo-Margareto J, Gewirtz D, Jäättelä M, Kroemer G, Levine B, Melia TJ, Mizushima N, Rubinsztein DC, Simonsen A, Thorburn A, Thumm M, Tooze SA. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011; 7:1273-94. [PMID: 21997368 DOI: 10.4161/auto.7.11.17661] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The study of autophagy is rapidly expanding, and our knowledge of the molecular mechanism and its connections to a wide range of physiological processes has increased substantially in the past decade. The vocabulary associated with autophagy has grown concomitantly. In fact, it is difficult for readers--even those who work in the field--to keep up with the ever-expanding terminology associated with the various autophagy-related processes. Accordingly, we have developed a comprehensive glossary of autophagy-related terms that is meant to provide a quick reference for researchers who need a brief reminder of the regulatory effects of transcription factors and chemical agents that induce or inhibit autophagy, the function of the autophagy-related proteins, and the roles of accessory components and structures that are associated with autophagy.
Collapse
Affiliation(s)
- Daniel J Klionsky
- Life Sciences Institute, and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
106
|
Mao K, Wang K, Zhao M, Xu T, Klionsky DJ. Two MAPK-signaling pathways are required for mitophagy in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011; 193:755-67. [PMID: 21576396 PMCID: PMC3166859 DOI: 10.1083/jcb.201102092] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MAP kinase Slt2 is required for both mitophagy and pexophagy, whereas the MAP kinase Hog1 acts specifically in mitophagy. Macroautophagy (hereafter referred to simply as autophagy) is a catabolic pathway that mediates the degradation of long-lived proteins and organelles in eukaryotic cells. The regulation of mitochondrial degradation through autophagy plays an essential role in the maintenance and quality control of this organelle. Compared with our understanding of the essential function of mitochondria in many aspects of cellular metabolism such as energy production and of the role of dysfunctional mitochondria in cell death, little is known regarding their degradation and especially how upstream signaling pathways control this process. Here, we report that two mitogen-activated protein kinases (MAPKs), Slt2 and Hog1, are required for mitophagy in Saccharomyces cerevisiae. Slt2 is required for the degradation of both mitochondria and peroxisomes (via pexophagy), whereas Hog1 functions specifically in mitophagy. Slt2 also affects the recruitment of mitochondria to the phagophore assembly site (PAS), a critical step in the packaging of cargo for selective degradation.
Collapse
Affiliation(s)
- Kai Mao
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
107
|
Yeh YY, Shah KH, Chou CC, Hsiao HH, Wrasman KM, Stephan JS, Stamatakos D, Khoo KH, Herman PK. The identification and analysis of phosphorylation sites on the Atg1 protein kinase. Autophagy 2011; 7:716-26. [PMID: 21460632 DOI: 10.4161/auto.7.7.15155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a conserved, degradative process that has been implicated in a number of human diseases and is a potential target for therapeutic intervention. It is therefore important that we develop a thorough understanding of the mechanisms regulating this trafficking pathway. The Atg1 protein kinase is a key element of this control as a number of signaling pathways target this enzyme and its associated protein partners. These studies have established that Atg1 activities are controlled, at least in part, by protein phosphorylation. To further this understanding, we used a combined mass spectrometry and molecular biology approach to identify and characterize additional sites of phosphorylation in the Saccharomyces cerevisiae Atg1. Fifteen candidate sites of phosphorylation were identified, including nine that had not been noted previously. Interestingly, our data suggest that the phosphorylation at one of these sites, Ser-34, is inhibitory for both Atg1 kinase activity and autophagy. This site is located within a glycine-rich loop that is highly conserved in protein kinases. Phosphorylation at this position in several cyclin-dependent kinases has also been shown to result in diminished enzymatic activity. In addition, these studies identified Ser-390 as the site of autophosphorylation responsible for the anomalous migration exhibited by Atg1 on SDS-polyacrylamide gels. Finally, a mutational analysis suggested that a number of the sites identified here are important for full autophagy activity in vivo. In all, these studies identified a number of potential sites of regulation within Atg1 and will serve as a framework for future work with this enzyme.
Collapse
Affiliation(s)
- Yuh-Ying Yeh
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
This review focuses on the interrelationship between ageing and autophagy. There is a striking similarity between the signalling aspects of these two processes. Both ageing and autophagy involve several of the signalling components such as insulin/IGF-1, AMPK, Ras-cAMP-PKA, Sch9 and mTOR. Ageing and ageing-mediated defective autophagy involve accumulation of lipofuscin. Components of anti-ageing and autophagy include SirTs and FoxOs. Nutritional deprivation or calorie restriction as well as several nutriceuticals including resveratrol, spermidine, curcumin and piperine can enhance autophagy and increase lifespan. Such striking similarities indicate that lifespan is strongly dependent on autophagy.
Collapse
Affiliation(s)
- Goran Petrovski
- Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | |
Collapse
|
109
|
Sheen JH, Zoncu R, Kim D, Sabatini DM. Defective regulation of autophagy upon leucine deprivation reveals a targetable liability of human melanoma cells in vitro and in vivo. Cancer Cell 2011; 19:613-28. [PMID: 21575862 PMCID: PMC3115736 DOI: 10.1016/j.ccr.2011.03.012] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 08/10/2010] [Accepted: 03/15/2011] [Indexed: 02/08/2023]
Abstract
Autophagy is of increasing interest as a target for cancer therapy. We find that leucine deprivation causes the caspase-dependent apoptotic death of melanoma cells because it fails to appropriately activate autophagy. Hyperactivation of the RAS-MEK pathway, which is common in melanoma, prevents leucine deprivation from inhibiting mTORC1, the main repressor of autophagy under nutrient-rich conditions. In an in vivo tumor xenograft model, the combination of a leucine-free diet and an autophagy inhibitor synergistically suppresses the growth of human melanoma tumors and triggers widespread apoptosis of the cancer cells. Together, our study represents proof of principle that anticancer effects can be obtained with a combination of autophagy inhibition and strategies to deprive tumors of leucine.
Collapse
Affiliation(s)
- Joon-Ho Sheen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|
110
|
Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 2011; 13:589-98. [PMID: 21478857 PMCID: PMC3088644 DOI: 10.1038/ncb2220] [Citation(s) in RCA: 1345] [Impact Index Per Article: 96.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 01/31/2011] [Indexed: 12/12/2022]
Abstract
A plethora of cellular processes, including apoptosis, depend on regulated changes in mitochondrial shape and ultrastructure. The role of mitochondria and of their morphology during autophagy, a bulk degradation and recycling process of eukaryotic cells' constituents, is not well understood. Here we show that mitochondrial morphology determines the cellular response to macroautophagy. When autophagy is triggered, mitochondria elongate in vitro and in vivo. During starvation, cellular cyclic AMP levels increase and protein kinase A (PKA) is activated. PKA in turn phosphorylates the pro-fission dynamin-related protein 1 (DRP1), which is therefore retained in the cytoplasm, leading to unopposed mitochondrial fusion. Elongated mitochondria are spared from autophagic degradation, possess more cristae, increased levels of dimerization and activity of ATP synthase, and maintain ATP production. Conversely, when elongation is genetically or pharmacologically blocked, mitochondria consume ATP, precipitating starvation-induced death. Thus, regulated changes in mitochondrial morphology determine the fate of the cell during autophagy.
Collapse
Affiliation(s)
- Ligia C Gomes
- Dulbecco-Telethon Institute, Via Orus 2, 35129 Padova, Italy
| | | | | |
Collapse
|
111
|
Graef M, Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J 2011; 30:2101-14. [PMID: 21468027 DOI: 10.1038/emboj.2011.104] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Martin Graef
- Department of Molecular and Cellular Biology, Davis University of California, Davis, CA, USA
| | | |
Collapse
|
112
|
Mendl N, Occhipinti A, Müller M, Wild P, Dikic I, Reichert AS. Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene WHI2. J Cell Sci 2011; 124:1339-50. [PMID: 21429936 DOI: 10.1242/jcs.076406] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Dysfunctional mitochondria show a reduced capacity for fusion and, as mitochondrial fission is maintained, become spatially separated from the intact network. By that mechanism, dysfunctional mitochondria have been proposed to be targeted for selective degradation by mitophagy, thereby providing a quality control system for mitochondria. In yeast, conflicting results concerning the role of mitochondrial dynamics in mitophagy have been reported. Here, we investigate the effects on mitophagy of altering mitochondrial fission and fusion, using biochemical, as well as fluorescence-based, assays. Rapamycin-induced mitophagy was shown to depend upon the autophagy-related proteins Atg11, Atg20 and Atg24, confirming that a selective type of autophagy occurred. Both fragmentation of mitochondria and inhibition of oxidative phosphorylation were not sufficient to trigger mitophagy, and neither deletion of the fission factors Dnm1, Fis1, Mdv1 or Caf4 nor expression of dominant-negative variants of Dnm1 impaired mitophagy. The diminished mitophagy initially observed in a Δfis1 mutant was not due to the absence of Fis1 but rather due to a secondary mutation in WHI2, which encodes a factor reported to function in the general stress response and the Ras-protein kinase A (PKA) signaling pathway. We propose that, in yeast, mitochondrial fission is not a prerequisite for the selective degradation of mitochondria, and that mitophagy is linked to the general stress response and the Ras-PKA signaling pathway.
Collapse
Affiliation(s)
- Nadine Mendl
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
113
|
Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2010; 187:441-54. [PMID: 21078689 DOI: 10.1534/genetics.110.123372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
Collapse
|
114
|
Manjithaya R, Subramani S. Autophagy: a broad role in unconventional protein secretion? Trends Cell Biol 2010; 21:67-73. [PMID: 20961762 DOI: 10.1016/j.tcb.2010.09.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/15/2010] [Accepted: 09/22/2010] [Indexed: 01/06/2023]
Abstract
Autophagy, a cellular 'self-eating' process in eukaryotic cells, exists in both a basal and in an activated state that is induced in response to starvation. Basal and induced autophagy are associated with the packaging of cellular components, including damaged and/or redundant organelles, into double-membrane vesicles called autophagosomes, followed by autophagosome fusion with lysosomes, in which their contents are degraded and recycled. Recent results highlight a novel role for autophagy that does not involve lysosomal degradation of autophagosomal contents, but instead involves their redirection towards the extracellular delivery of an unconventionally secreted protein. Here, we discuss these findings, evaluate the strength of evidence, consider their implications for the field of protein trafficking, and suggest the next steps required to probe this interesting pathway.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0322, USA
| | | |
Collapse
|
115
|
Cherra SJ, Kulich SM, Uechi G, Balasubramani M, Mountzouris J, Day BW, Chu CT. Regulation of the autophagy protein LC3 by phosphorylation. ACTA ACUST UNITED AC 2010; 190:533-9. [PMID: 20713600 PMCID: PMC2928022 DOI: 10.1083/jcb.201002108] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Macroautophagy is a major catabolic pathway that impacts cell survival, differentiation, tumorigenesis, and neurodegeneration. Although bulk degradation sustains carbon sources during starvation, autophagy contributes to shrinkage of differentiated neuronal processes. Identification of autophagy-related genes has spurred rapid advances in understanding the recruitment of microtubule-associated protein 1 light chain 3 (LC3) in autophagy induction, although braking mechanisms remain less understood. Using mass spectrometry, we identified a direct protein kinase A (PKA) phosphorylation site on LC3 that regulates its participation in autophagy. Both metabolic (rapamycin) and pathological (MPP(+)) inducers of autophagy caused dephosphorylation of endogenous LC3. The pseudophosphorylated LC3 mutant showed reduced recruitment to autophagosomes, whereas the nonphosphorylatable mutant exhibited enhanced puncta formation. Finally, autophagy-dependent neurite shortening induced by expression of a Parkinson disease-associated G2019S mutation in leucine-rich repeat kinase 2 was inhibited by dibutyryl-cyclic adenosine monophosphate, cytoplasmic expression of the PKA catalytic subunit, or the LC3 phosphorylation mimic. These data demonstrate a role for phosphorylation in regulating LC3 activity.
Collapse
Affiliation(s)
- Salvatore J Cherra
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Yang Z, Geng J, Yen WL, Wang K, Klionsky DJ. Positive or negative roles of different cyclin-dependent kinase Pho85-cyclin complexes orchestrate induction of autophagy in Saccharomyces cerevisiae. Mol Cell 2010; 38:250-64. [PMID: 20417603 DOI: 10.1016/j.molcel.2010.02.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 10/28/2009] [Accepted: 02/16/2010] [Indexed: 12/26/2022]
Abstract
As a major intracellular degradation pathway, autophagy is tightly regulated to prevent cellular dysfunction in all eukaryotic cells. The rapamycin-sensitive Tor kinase complex 1 is a major regulator of autophagy. Several other nutrient-sensory kinases also play critical roles to precisely modulate autophagy; however, the network of regulatory mechanisms remains largely elusive. We used genetic analyses to elucidate the mechanism by which the stress-responsive, cyclin-dependent kinase Pho85 and its corresponding cyclin complexes antagonistically modulate autophagy in Saccharomyces cerevisiae. When complexed with cyclins Pho80 and Pcl5, Pho85 negatively regulates autophagy through downregulating the protein kinase Rim15 and the transcription factors Pho4 and Gcn4. The cyclins Clg1, Pcl1, and Pho80, in concert with Pho85, positively regulate autophagy through promoting the degradation of Sic1, a negative regulator of autophagy that targets Rim15. Our results suggest a model in which Pho85 and its cyclin complexes have opposing roles in autophagy regulation.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | | | | | | | |
Collapse
|
117
|
Autophosphorylation within the Atg1 activation loop is required for both kinase activity and the induction of autophagy in Saccharomyces cerevisiae. Genetics 2010; 185:871-82. [PMID: 20439775 DOI: 10.1534/genetics.110.116566] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionarily conserved degradative pathway that has been implicated in a number of physiological events important for human health. This process was originally identified as a response to nutrient deprivation and is thought to serve in a recycling capacity during periods of nutritional stress. Autophagy activity appears to be highly regulated and multiple signaling pathways are known to target a complex of proteins that contains the Atg1 protein kinase. The data here extend these observations and identify a particular phosphorylation event on Atg1 as a potential control point within the autophagy pathway in Saccharomyces cerevisiae. This phosphorylation occurs at a threonine residue, T226, within the Atg1 activation loop that is conserved in all Atg1 orthologs. Replacing this threonine with a nonphosphorylatable residue resulted in a loss of Atg1 protein kinase activity and a failure to induce autophagy. This phosphorylation required the presence of a functional Atg1 kinase domain and two known regulators of Atg1 activity, Atg13 and Atg17. Interestingly, the levels of this modification were found to increase dramatically upon exposure to conditions that induce autophagy. In addition, T226 phosphorylation was associated with an autophosphorylated form of Atg1 that was found specifically in cells undergoing the autophagy process. In all, these data suggest that autophosphorylation within the Atg1 activation loop may represent a point of regulatory control for this degradative process.
Collapse
|
118
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
119
|
Protein kinase C inhibits autophagy and phosphorylates LC3. Biochem Biophys Res Commun 2010; 395:471-6. [PMID: 20398630 DOI: 10.1016/j.bbrc.2010.04.030] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/05/2010] [Indexed: 01/12/2023]
Abstract
During autophagy, the microtubule-associated protein light chain 3 (LC3), a specific autophagic marker in mammalian cells, is processed from the cytosolic form (LC3-I) to the membrane-bound form (LC3-II). In HEK293 cells stably expressing FLAG-tagged LC3, activation of protein kinase C inhibited the autophagic processing of LC3-I to LC3-II induced by amino acid starvation or rapamycin. PKC inhibitors dramatically induced LC3 processing and autophagosome formation. Unlike autophagy induced by starvation or rapamycin, PKC inhibitor-induced autophagy was not blocked by the PI-3 kinase inhibitor wortmannin. Using orthophosphate metabolic labeling, we found that LC3 was phosphorylated in response to the PKC activator PMA or the protein phosphatase inhibitor calyculin A. Furthermore, bacterially expressed LC3 was directly phosphorylated by purified PKC in vitro. The sites of phosphorylation were mapped to T6 and T29 by nanoLC-coupled tandem mass spectrometry. Mutations of these residues significantly reduced LC3 phosphorylation by purified PKC in vitro. However, in HEK293 cells stably expressing LC3 with these sites mutated either singly or doubly to Ala, Asp or Glu, autophagy was not significantly affected, suggesting that PKC regulates autophagy through a mechanism independent of LC3 phosphorylation.
Collapse
|
120
|
Manjithaya R, Jain S, Farré JC, Subramani S. A yeast MAPK cascade regulates pexophagy but not other autophagy pathways. ACTA ACUST UNITED AC 2010; 189:303-10. [PMID: 20385774 PMCID: PMC2856896 DOI: 10.1083/jcb.200909154] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Autophagy is important for many cellular processes such as innate immunity, neurodegeneration, aging, and cancer. Although the signaling events triggering autophagy have been studied, little is known regarding the signaling mechanisms by which autophagy is redirected to achieve selective removal of cellular components. We have used the degradation of a peroxisomal marker to investigate the role of protein kinases in selective autophagy of peroxisomes (pexophagy) in Saccharomyces cerevisiae. We show that the Slt2p mitogen-activated protein kinase (MAPK) and several upstream components of its signal transduction pathway are necessary for pexophagy but not for pexophagosome formation or other nonselective and selective forms of autophagy. Other extracellular signals that activate this pathway do not trigger pexophagy on their own, suggesting that this MAPK cascade is necessary but not sufficient to trigger pexophagy. We propose that pexophagy requires the simultaneous activation of this MAPK pathway and a hexose-sensing mechanism acting through protein kinase A and cyclic adenosine monophosphate.
Collapse
Affiliation(s)
- Ravi Manjithaya
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
121
|
Dorsey FC, Rose KL, Coenen S, Prater SM, Cavett V, Cleveland JL, Caldwell-Busby J. Mapping the phosphorylation sites of Ulk1. J Proteome Res 2010; 8:5253-63. [PMID: 19807128 DOI: 10.1021/pr900583m] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ulk1 is a serine/threonine kinase that controls macroautophagy, an essential homeostatic recycling pathway that degrades bulk cytoplasmic material and directs the turnover of organelles such as peroxisomes and mitochondria. Further, macroautophagy is potently induced by signals that trigger metabolic stress, such as hypoxia and amino acid starvation, where its recycling functions provide macromolecules necessary to maintain catabolic metabolism and cell survival. Substrates for Ulk1 have not been identified, and little is known regarding post-translational control of Ulk1 kinase activity and function. To gain insights into the regulatory mechanisms of Ulk1, we developed a robust purification protocol for Ulk1 and demonstrated that Ulk1 is highly phosphorylated and requires autophosphorylation for stability. Importantly, high-resolution, tandem mass spectrometry identified multiple sites of phosphorylation on Ulk1, including several within domains known to regulate macroautophagy. Differential phosphorylation analyses also identified sites of phosphorylation in the C-terminal domain that depend upon or require Ulk1 autophosphorylation.
Collapse
Affiliation(s)
- Frank C Dorsey
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| | | | | | | | | | | | | |
Collapse
|
122
|
Lynch-Day MA, Klionsky DJ. The Cvt pathway as a model for selective autophagy. FEBS Lett 2010; 584:1359-66. [PMID: 20146925 DOI: 10.1016/j.febslet.2010.02.013] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 01/29/2023]
Abstract
Autophagy is a highly conserved, ubiquitous process that is responsible for the degradation of cytosolic components in response to starvation. Autophagy is generally considered to be non-selective; however, there are selective types of autophagy that use receptor and adaptor proteins to specifically isolate a cargo. One type of selective autophagy in yeast is the cytoplasm to vacuole targeting (Cvt) pathway. The Cvt pathway is responsible for the delivery of the hydrolase aminopeptidase I to the vacuole; as such, it is the only known biosynthetic pathway that utilizes the core machinery of autophagy. Nonetheless, it serves as a model for the study of selective autophagy in other organisms.
Collapse
Affiliation(s)
- Melinda A Lynch-Day
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
123
|
Abstract
Autophagy is a highly conserved cellular degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. This process relieves the cell from various stress conditions. Autophagy plays a critical role during cellular development and differentiation, functions in tumor suppression, and may be linked to life span extension. Autophagy also has diverse roles in innate and adaptive immunity, such as resistance to pathogen invasion. Substantial progress has been made in the identification of many autophagy-related (ATG) genes that are essential to drive this cellular process, including both selective and nonselective types of autophagy. Identification of the ATG genes in yeast, and the finding of orthologs in other organisms, reveals the conservation of the autophagic machinery in all eukaryotes. Here, we summarize our current knowledge about the machinery and molecular mechanism of autophagy.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
124
|
Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22:132-9. [PMID: 20056399 DOI: 10.1016/j.ceb.2009.12.004] [Citation(s) in RCA: 820] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/07/2009] [Accepted: 12/10/2009] [Indexed: 12/11/2022]
Abstract
The Atg1/ULK complex plays an essential role in the initiation of autophagy: receiving signals of cellular nutrient status, recruiting downstream Atg proteins to the autophagosome formation site, and governing autophagosome formation. Recent studies of mammalian Atg1 homologs (ULK1 and ULK2) have identified several novel interacting proteins, FIP200, mAtg13, and Atg101. FIP200 and Atg101 are not conserved in Saccharomyces cerevisiae, despite the high conservation rates of other downstream Atg proteins between the yeast and mammals. Furthermore, through studies of the Atg1/ULK1 complex, the molecular mechanism by which (m)TORC1 regulates autophagy is now being clarified in detail.
Collapse
Affiliation(s)
- Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| |
Collapse
|
125
|
Vellai T, Takács-Vellai K. Regulation of protein turnover by longevity pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:69-80. [PMID: 20886758 DOI: 10.1007/978-1-4419-7002-2_7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cellular homeostasis, which is needed for the cells to survive, requires a well-controlled balance in protein turnover. Both protein synthesis and degradation are influenced by distinct genetic pathways that control aging in divergent eukaryotic species. These conserved mechanisms involve the insulin/IGF-1 (Insulin-like Growth Factor-i), TGF-I (Transforming Growth Factor-beta), JNK (c-Jun terminal kinase), RTK/Ras/MAPK (Receptor Tyrosine Kinase/ Ras/Mitogen-Activated Protein Kinase) and TOR (kinase Target Of Rapamycin) signaling cascades and the mitochondrial respiratory system-each of them promotes protein synthesis; as well as the intracellular protein degradation machineries, including the ubiquitin-proteasome system and lysosome-mediated autophagy. In addition to providing building blocks for generation of new proteins and fuelling the cell with energy under starvation, the protein degradation processes eliminate damaged, nonfunctional proteins, the accumulation of which serves as the primary contributory factor to aging. Interestingly, a complex, intimate regulatory relationship exists between mechanisms promoting protein synthesis and those mediating protein degradation: under certain circumstances the former downregulate the latter. Thus, conditions that favor protein synthesis can enhance the rate at which damaged proteins accumulate. This may explain why genetic interventions and environmental factors (e.g., dietary restriction) that reduce protein synthesis, at least to tolerable levels, extend lifespan and increase resistance to cellular stress in various experimental model organisms of aging. In this chapter, the molecular mechanisms by which protein synthesis-promoting longevity pathways and protein degradation pathways interact with each other are discussed.
Collapse
Affiliation(s)
- Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C. Budapest, Hungary, H-1117.
| | | |
Collapse
|
126
|
TOR-dependent control of autophagy: biting the hand that feeds. Curr Opin Cell Biol 2009; 22:157-68. [PMID: 20006481 DOI: 10.1016/j.ceb.2009.11.005] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 11/21/2022]
Abstract
Induction of autophagy in response to starvation is a highly conserved ability of eukaryotic cells, indicating a crucial and ancient role of this process in adapting to nutrient conditions. The target of rapamycin (TOR) pathway is major conduit for such signals, and in most cell types TOR activity is necessary and sufficient to suppress autophagy under favorable growth conditions. Recent studies have begun to reveal how TOR activity is regulated in response to nutritional cues, and are shedding new light on the mechanisms by which TOR controls the autophagic machinery. In addition, a variety of signals, stressors and pharmacological agents that induce autophagy independent of nutrient conditions have been identified. In some cases these signals appear to have been spliced into the core TOR pathway, whereas others are able to bypass the control mechanisms regulated by TOR. Increasing evidence is pointing to an important role for both positive and negative feedback loops in controlling this pathway, leading to an emerging view that TOR signaling not only regulates autophagy but is also highly sensitive to cellular rates of autophagy and other TOR-dependent processes.
Collapse
|
127
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
128
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
129
|
Thevissen K, Yen WL, Carmona-Gutierrez D, Idkowiak-Baldys J, Aerts AM, François IEJA, Madeo F, Klionsky DJ, Hannun YA, Cammue BPA. Skn1 and Ipt1 negatively regulate autophagy in Saccharomyces cerevisiae. FEMS Microbiol Lett 2009; 303:163-8. [PMID: 20030721 DOI: 10.1111/j.1574-6968.2009.01869.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We demonstrated that a yeast deletion mutant in IPT1 and SKN1, encoding proteins involved in the biosynthesis of mannosyldiinositolphosphoryl ceramides, is characterized by increased autophagy and DNA fragmentation upon nitrogen (N) starvation as compared with the single deletion mutants or wild type (WT). Apoptotic features were not significantly different between single and double deletion mutants upon N starvation, pointing to increased autophagy in the double Deltaipt1 Deltaskn1 deletion mutant independent of apoptosis. We observed increased basal levels of phytosphingosine in membranes of the double Deltaipt1 Deltaskn1 deletion mutant as compared with the single deletion mutants or WT. These data point to a negative regulation of autophagy by both Ipt1 and Skn1 in yeast, with a putative involvement of phytosphingosine in this process.
Collapse
Affiliation(s)
- Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), Katholieke Universiteit Leuven, Heverlee, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009. [PMID: 19802558 DOI: 10.1007/978-3-642-00302-8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved cellular degradation process in which portions of cytosol and organelles are sequestered into a double-membrane vesicle, an autophagosome, and delivered into a degradative organelle, the vacuole/lysosome, for breakdown and eventual recycling of the resulting macromolecules. This process relieves the cell from various stress conditions. Autophagy plays a critical role during cellular development and differentiation, functions in tumor suppression, and may be linked to life span extension. Autophagy also has diverse roles in innate and adaptive immunity, such as resistance to pathogen invasion. Substantial progress has been made in the identification of many autophagy-related (ATG) genes that are essential to drive this cellular process, including both selective and nonselective types of autophagy. Identification of the ATG genes in yeast, and the finding of orthologs in other organisms, reveals the conservation of the autophagic machinery in all eukaryotes. Here, we summarize our current knowledge about the machinery and molecular mechanism of autophagy.
Collapse
Affiliation(s)
- Zhifen Yang
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
131
|
The Tor and PKA signaling pathways independently target the Atg1/Atg13 protein kinase complex to control autophagy. Proc Natl Acad Sci U S A 2009; 106:17049-54. [PMID: 19805182 DOI: 10.1073/pnas.0903316106] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macroautophagy (or autophagy) is a conserved degradative pathway that has been implicated in a number of biological processes, including organismal aging, innate immunity, and the progression of human cancers. This pathway was initially identified as a cellular response to nutrient deprivation and is essential for cell survival during these periods of starvation. Autophagy is highly regulated and is under the control of a number of signaling pathways, including the Tor pathway, that coordinate cell growth with nutrient availability. These pathways appear to target a complex of proteins that contains the Atg1 protein kinase. The data here show that autophagy in Saccharomyces cerevisiae is also controlled by the cAMP-dependent protein kinase (PKA) pathway. Elevated levels of PKA activity inhibited autophagy and inactivation of the PKA pathway was sufficient to induce a robust autophagy response. We show that in addition to Atg1, PKA directly phosphorylates Atg13, a conserved regulator of Atg1 kinase activity. This phosphorylation regulates Atg13 localization to the preautophagosomal structure, the nucleation site from which autophagy pathway transport intermediates are formed. Atg13 is also phosphorylated in a Tor-dependent manner, but these modifications appear to occur at positions distinct from the PKA phosphorylation sites identified here. In all, our data indicate that the PKA and Tor pathways function independently to control autophagy in S. cerevisiae, and that the Atg1/Atg13 kinase complex is a key site of signal integration within this degradative pathway.
Collapse
|
132
|
Cebollero E, Reggiori F. Regulation of autophagy in yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1413-21. [DOI: 10.1016/j.bbamcr.2009.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/04/2009] [Accepted: 01/07/2009] [Indexed: 10/21/2022]
|
133
|
Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci 2009; 66:2913-32. [PMID: 19593531 PMCID: PMC11115675 DOI: 10.1007/s00018-009-0080-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 12/26/2022]
Abstract
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy.
Collapse
Affiliation(s)
- Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka, 812-8582 Japan
| |
Collapse
|
134
|
Vellai T, Takács-Vellai K, Sass M, Klionsky DJ. The regulation of aging: does autophagy underlie longevity? Trends Cell Biol 2009; 19:487-94. [PMID: 19726187 DOI: 10.1016/j.tcb.2009.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 12/13/2022]
Abstract
The accumulation of cellular damage is a feature common to all aging cells and leads to decreased ability of the organism to survive. The overall rate at which damage accumulates is influenced by conserved metabolic factors (longevity pathways and regulatory proteins) that control lifespan through adjusting mechanisms for maintenance and repair. Autophagy, the major catabolic process of eukaryotic cells that degrades and recycles damaged macromolecules and organelles, is implicated in aging and in the incidence of diverse age-related pathologies. Recent evidence has revealed that autophagic activity is required for lifespan extension in various long-lived mutant organisms, and that numerous autophagy-related genes or proteins are directly regulated by longevity pathways. These findings support the emerging view that autophagy is a central regulatory mechanism for aging in diverse eukaryotic species.
Collapse
Affiliation(s)
- Tibor Vellai
- Department of Genetics, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117, Hungary.
| | | | | | | |
Collapse
|
135
|
Abstract
Autophagy is a process of self-degradation of cellular components in which double-membrane autophagosomes sequester organelles or portions of cytosol and fuse with lysosomes or vacuoles for breakdown by resident hydrolases. Autophagy is upregulated in response to extra- or intracellular stress and signals such as starvation, growth factor deprivation, ER stress, and pathogen infection. Defective autophagy plays a significant role in human pathologies, including cancer, neurodegeneration, and infectious diseases. We present our current knowledge on the key genes composing the autophagy machinery in eukaryotes from yeast to mammalian cells and the signaling pathways that sense the status of different types of stress and induce autophagy for cell survival and homeostasis. We also review the recent advances on the molecular mechanisms that regulate the autophagy machinery at various levels, from transcriptional activation to post-translational protein modification.
Collapse
Affiliation(s)
- Congcong He
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
136
|
Hands SL, Proud CG, Wyttenbach A. mTOR's role in ageing: protein synthesis or autophagy? Aging (Albany NY) 2009; 1:586-97. [PMID: 20157541 PMCID: PMC2806042 DOI: 10.18632/aging.100070] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 07/18/2009] [Indexed: 12/19/2022]
Abstract
The molecular and cellular mechanisms that regulate ageing are currently under scrutiny because ageing is linked to many human diseases. The nutrient sensing TOR pathway is emerging as a key regulator of ageing. TOR signaling is complex affecting several crucial cellular functions and two such functions, which show clear effects on ageing, are protein synthesis and autophagy. In this article we discuss the relative importance of both these processes in ageing, identify how TOR regulates translation and autophagy and speculate on links between the TOR signaling network and ageing pathways.
Collapse
Affiliation(s)
- Sarah L. Hands
- School
of Biological Sciences, University of Southampton, Southampton, Boldrewood Campus, Basset Crescent East,
SO16 7PX,
UK
| | - Christopher G. Proud
- School of Biological Sciences, Human Genetics
Division, University of Southampton, Duthie Building, Southampton General
Hospital, Southampton SO16 6YD, UK
| | - Andreas Wyttenbach
- School
of Biological Sciences, University of Southampton, Southampton, Boldrewood Campus, Basset Crescent East,
SO16 7PX,
UK
| |
Collapse
|
137
|
Abstract
Autophagy is a fundamental function of eukaryotic cells and is well conserved from yeast to humans. The most remarkable feature of autophagy is the synthesis of double membrane-bound compartments that sequester materials to be degraded in lytic compartments, a process that seems to be mechanistically distinct from conventional membrane traffic. The discovery of autophagy in yeast and the genetic tractability of this organism have allowed us to identify genes that are responsible for this process, which has led to the explosive growth of this research field seen today. Analyses of autophagy-related (Atg) proteins have unveiled dynamic and diverse aspects of mechanisms that underlie membrane formation during autophagy.
Collapse
|
138
|
Autophagy: A lysosomal degradation pathway with a central role in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:664-73. [DOI: 10.1016/j.bbamcr.2008.07.014] [Citation(s) in RCA: 535] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/09/2008] [Accepted: 07/10/2008] [Indexed: 01/09/2023]
|
139
|
Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009; 284:12297-305. [PMID: 19258318 DOI: 10.1074/jbc.m900573200] [Citation(s) in RCA: 1137] [Impact Index Per Article: 71.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a degradative process that recycles long-lived and faulty cellular components. It is linked to many diseases and is required for normal development. ULK1, a mammalian serine/threonine protein kinase, plays a key role in the initial stages of autophagy, though the exact molecular mechanism is unknown. Here we report identification of a novel protein complex containing ULK1 and two additional protein factors, FIP200 and ATG13, all of which are essential for starvation-induced autophagy. Both FIP200 and ATG13 are critical for correct localization of ULK1 to the pre-autophagosome and stability of ULK1 protein. Additionally, we demonstrate by using both cellular experiments and a de novo in vitro reconstituted reaction that FIP200 and ATG13 can enhance ULK1 kinase activity individually but both are required for maximal stimulation. Further, we show that ATG13 and ULK1 are phosphorylated by the mTOR pathway in a nutrient starvation-regulated manner, indicating that the ULK1.ATG13.FIP200 complex acts as a node for integrating incoming autophagy signals into autophagosome biogenesis.
Collapse
Affiliation(s)
- Ian G Ganley
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
140
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
141
|
Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1516-23. [PMID: 19167434 DOI: 10.1016/j.bbamcr.2008.12.013] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 12/19/2008] [Accepted: 12/20/2008] [Indexed: 01/10/2023]
Abstract
Autophagy is an evolutionarily conserved process whereby cytoplasm and cellular organelles are degraded in lysosomes for amino acid and energy recycling. Autophagy is a survival pathway activated in response to nutrient deprivation and other stressful stimuli, such as metabolic stress and exposure to anticancer drugs. However, autophagy may also result in cell death, if it proceeds to completion. Defective autophagy is implicated in tumorigenesis, as the essential autophagy regulator beclin 1 is monoallelically deleted in human breast, ovarian and prostate cancers, and beclin 1(+/-) mice are tumor-prone. How autophagy suppresses tumorigenesis is under intense investigation. Cell-autonomous mechanisms, involving protection of genome integrity and stability, and a non-cell-autonomous mechanism, involving suppression of necrosis and inflammation, have been discovered so far. The role of autophagy in treatment responsiveness is also complex. Autophagy inhibition concurrently with chemotherapy or radiotherapy has emerged as a novel approach in cancer treatment, as autophagy-competent tumor cells depend on autophagy for survival under drug- and radiation-induced stress. Alternatively, autophagy stimulation and preservation of cellular fitness by maintenance of protein and organelle quality control, suppression of DNA damage and genomic instability, and limitation of necrosis-associated inflammation may play a critical role in cancer prevention.
Collapse
Affiliation(s)
- Ning Chen
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
142
|
Yen WL, Klionsky DJ. How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 2008; 23:248-62. [PMID: 18927201 DOI: 10.1152/physiol.00013.2008] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Autophagy is a process of cellular self-degradation in which portions of the cytoplasm are sequestered within cytosolic double-membrane vesicles and delivered to the lysosome/vacuole. This process occurs in all eukaryotic cells and is partly a stress response; autophagy is induced during starvation and hypoxia. However, autophagy also plays a role during development and is associated with a range of diseases. Accumulating data also suggest the involvement of autophagy in aging. For example, the role of various hormones and nutrient sensing pathways in life span extension may involve autophagy. Similarly, autophagy is the primary mechanism for removing damaged organelles, such as mitochondria, which may have a direct impact on aging. Here, we review the role of autophagy, with an emphasis on the signaling pathways that are involved in regulation, and the consequences of autophagy induction with regard to aging.
Collapse
Affiliation(s)
- Wei-Lien Yen
- Life Sciences Institute, and Departments of Molecular, Cellular, and Developmental Biology, and Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
143
|
Geng J, Baba M, Nair U, Klionsky DJ. Quantitative analysis of autophagy-related protein stoichiometry by fluorescence microscopy. ACTA ACUST UNITED AC 2008; 182:129-40. [PMID: 18625846 PMCID: PMC2447896 DOI: 10.1083/jcb.200711112] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In yeast, approximately 31 autophagy-related (Atg) proteins have been identified. Most of them reside at the phagophore assembly site (PAS), although the function of the PAS mostly remains unclear. One reason for the latter is the lack of stoichiometric information regarding the Atg proteins at this site. We report the application of fluorescence microscopy to study the amount of Atg proteins at the PAS. We find that an increase in the amount of Atg11 at the PAS enhances the recruitment of Atg8 and Atg9 to this site and facilitates the formation of more cytoplasm-to-vacuole targeting vesicles. In response to autophagy induction, the amount of most Atg proteins remains unchanged at the PAS, whereas we see an enhanced recruitment of Atg8 and 9 at this site. During autophagy, the amount of Atg8 at the PAS showed a periodic change, indicating the formation of autophagosomes. Application of this method and further analysis will provide more insight into the functions of Atg proteins.
Collapse
Affiliation(s)
- Jiefei Geng
- Life Sciences Institute and Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
144
|
Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4:295-305. [PMID: 18391949 DOI: 10.1038/nchembio.79] [Citation(s) in RCA: 637] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 02/07/2008] [Indexed: 01/23/2023]
Abstract
Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.
Collapse
|
145
|
Regulation of the subcellular localization of cyclic AMP-dependent protein kinase in response to physiological stresses and sexual differentiation in the fission yeast Schizosaccharomyces pombe. EUKARYOTIC CELL 2008; 7:1450-9. [PMID: 18621924 DOI: 10.1128/ec.00168-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe regulation of the subcellular localization of cyclic AMP (cAMP)-dependent protein kinase (PKA) regulatory (Cgs1p) and catalytic (Pka1p) subunits in the fission yeast Schizosaccharomyces pombe in response to physiological stresses and during sexual differentiation as determined by fluorescence microscopy of the Cgs1-green fluorescent protein (GFP) and Pka1-GFP fusion proteins, respectively. In wild-type S. pombe cells cultured to log phase under normal growth conditions, Cgs1p and Pka1p are concentrated in the nucleus and more diffusely present in the cytoplasm. Nuclear localization of both proteins is dependent on cAMP, since in cells lacking adenylate cyclase they are detectable only in the cytoplasm. In cells lacking Cgs1p or both Cgs1p and adenylate cyclase, Pka1p is concentrated in the nucleus, demonstrating a role for Cgs1p in the nuclear exclusion of Pka1p. Nuclear-cytoplasmic redistribution of Cgs1p and Pka1p is triggered by growth in glucose-limited or hyperosmotic media and in response to stationary-phase growth. In addition, both proteins are excluded from the nucleus in mating cells undergoing karyogamy and subsequently concentrated in postmeiotic spores. Cgs1p is required for subcellular redistribution of Pka1p induced by growth in glucose-limited and hyperosmotic media and during karyogamy but is not required for Pka1p redistribution triggered by stationary-phase growth or for the enrichment of Pka1p in spores. Our results demonstrate that PKA localization is regulated by cAMP and regulatory subunit-dependent and -independent mechanisms in S. pombe.
Collapse
|
146
|
Kundu M, Thompson CB. Autophagy: basic principles and relevance to disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:427-55. [PMID: 18039129 DOI: 10.1146/annurev.pathmechdis.2.010506.091842] [Citation(s) in RCA: 410] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. In yeast, autophagy is activated in response to changes in the extracellular milieu. Depending upon the stimulus, autophagy can degrade cytoplasmic contents nonspecifically or can target the degradation of specific cellular components. Both of these have been adopted in higher eukaryotes and account for the expanding role of autophagy in various cellular processes, as well as contribute to the variation in cellular outcomes after induction of autophagy. In some cases, autophagy appears to be an adaptive response, whereas under other circumstances it is involved in cell death. In mammals, autophagy has been implicated in either the pathogenesis or response to a wide variety of diseases, including neurodegenerative disease, chronic bacterial and viral infections, atherosclerosis, and cancer. As the basic molecular pathways that regulate autophagy are elucidated, the relationship of autophagy to the pathogenesis of various disease states emerges.
Collapse
Affiliation(s)
- Mondira Kundu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19063, USA.
| | | |
Collapse
|
147
|
Cui Q, Tashiro SI, Onodera S, Minami M, Ikejima T. Oridonin induced autophagy in human cervical carcinoma HeLa cells through Ras, JNK, and P38 regulation. J Pharmacol Sci 2008; 105:317-25. [PMID: 18094523 DOI: 10.1254/jphs.fp0070336] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated autophagy induced by oridonin in HeLa cells. HeLa cells were exposed to oridonin, and the fluorescent changes, autophagic levels, and protein expressions were evaluated. Oridonin induced autophagy in HeLa cells in vitro in a dose- and time-dependent manner. Oridonin-treated HeLa cells, which had been prelabeled with the autophagosome-specific dye monodansylcadervarine (MDC), recruited more MDC-positive particles and had a significantly higher fluorescent density; and simultaneously, expressions of autophagy-related proteins, MAP-LC3 and Beclin 1, were increased by oridonin. In oridonin-induced Hela cells, pretreatment with 3-methyladenine (3-MA, the specific inhibitor of autophagy) dose-dependently decreased the autophagic ratio accompanied with downregulation of the protein expressions of MAP-LC3 and Beclin 1. Furthermore, when a Ras inhibitor was applied, the autophagic levels were augmented, whereas P38 and JNK inhibitors decreased the autophagic ratio significantly, indicating that this oridonin-induced autophagic process was negatively regulated by Ras, but positively regulated by P38 and JNK MAPKs. Raf-1 and ERK1/2 had no obvious correlation to these signaling pathways.
Collapse
Affiliation(s)
- Qiao Cui
- China-Japan Research Institute of Medical Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang, PR China
| | | | | | | | | |
Collapse
|
148
|
Bhattacharya A, Biswas A, Das PK. Role of intracellular cAMP in differentiation-coupled induction of resistance against oxidative damage in Leishmania donovani. Free Radic Biol Med 2008; 44:779-94. [PMID: 18078824 DOI: 10.1016/j.freeradbiomed.2007.10.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/10/2007] [Accepted: 10/31/2007] [Indexed: 11/24/2022]
Abstract
Even though the human parasite Leishmania donovani encounters tremendous oxidative burst during macrophage invasion, a set of parasites survives and proliferates intracellularly, leading to transformation from promastigote to amastigote form and disease manifestation. The striking shifts in temperature (from 22 degrees C in the insect gut to 37 degrees C in the mammalian host) and pH (7.2 in the insect gut to 5.5 in the parasitophorous vacuole of macrophages) are the key environmental triggers for differentiation as these cause an arrest in the G1 stage of the cell cycle and initiate transformation. Using an established in vitro culture and differentiation system our study demonstrates that the differentiation-triggering environment induces resistance to oxidative damage and consequently enhances infectivity. Differentiation conditions caused a three- to fourfold elevation in cAMP level as well as cAMP-dependent protein kinase activity. Similar to stress exposure, positive modulation of intracellular cAMP resulted in blockage of cell cycle progression and induction of resistance against oxidative damage. Resistance against pro-oxidants from either stress or cAMP may be associated with upregulation of the expression of three major antioxidant genes, peroxidoxin 1, trypanothione reductase, and superoxide dismutase A. Positive modulation of the intracellular cAMP response enables cells to resist the cytotoxic effects of pro-oxidants. In contrast, downregulation of intracellular cAMP by overexpression of cAMP phosphodiesterase A resulted in a decrease in resistance against oxidative damage and reduced infectivity toward activated macrophages. This study for the first time reveals the importance of cAMP response in the life cycle and infectivity of the Leishmania parasite.
Collapse
Affiliation(s)
- Arijit Bhattacharya
- Molecular Cell Biology Laboratory, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
149
|
Nazarko VY, Thevelein JM, Sibirny AA. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int 2007; 32:502-4. [PMID: 18096414 DOI: 10.1016/j.cellbi.2007.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 11/02/2007] [Indexed: 10/22/2022]
Abstract
In yeast cell, glucose induces various changes of cellular metabolism on genetic and metabolic levels. One of such changes is autophagic degradation of dispensable peroxisomes (pexophagy) which occurs in vacuoles. We have found that in Saccharomyces cerevisiae, defect of G-protein-coupled receptor Gpr1 and G-protein Gpa2, both the components of cAMP-signaling pathway, strongly suppressed glucose-induced degradation of matrix peroxisomal protein thiolase. We conclude that proteins Gpr1 and Gpa2 are involved in glucose sensing and signal transduction during pexophagy process in yeast.
Collapse
Affiliation(s)
- Volodymyr Y Nazarko
- Institute of Cell Biology, NAS of Ukraine, Drahomanov Street, 14/16, Lviv 79005, Ukraine
| | | | | |
Collapse
|
150
|
Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:4180-9. [PMID: 17699586 PMCID: PMC1995722 DOI: 10.1091/mbc.e07-05-0485] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a highly conserved, degradative process in eukaryotic cells. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that the protein kinase A (PKA) and Sch9 signaling pathways regulate autophagy cooperatively in yeast. Autophagy is induced in cells when PKA and Sch9 are simultaneously inactivated. Mutant alleles of these kinases bearing a mutation that confers sensitivity to the ATP-analogue inhibitor C3-1'-naphthyl-methyl PP1 revealed that autophagy was induced independently of effects on Tor kinase. The PKA-Sch9-mediated autophagy depends on the autophagy-related 1 kinase complex, which is also essential for TORC1-regulated autophagy, the transcription factors Msn2/4, and the Rim15 kinase. The present results suggest that autophagy is controlled by the signals from at least three partly separate nutrient-sensing pathways that include PKA, Sch9, and TORC1.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- *Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; and
| | - Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - James R. Broach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Daniel J. Klionsky
- *Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|