101
|
The ability of hyaluronan fragments to reverse the resistance of C6 rat glioma cell line to temozolomide and carmustine. Contemp Oncol (Pozn) 2014; 18:323-8. [PMID: 25477754 PMCID: PMC4248052 DOI: 10.5114/wo.2014.43493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/11/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
Aim of the study Hyaluronan (HA) is an extracellular matrix (ECM) polymer that may contribute to the emergence of anti-cancer drug resistance. Attempts to reverse drug resistance using small hyaluronan oligomers (oHA) are being made. The initial reports suggest that the oHA fraction may effectively reverse anti-cancer drug resistance in glioma models. However, the reversal effects of oHA of defined molecular length on glioma cells have not been investigated yet. In this study, we examined HA fragments containing 2 disaccharide units (oHA-2), 5 disaccharide units (oHA-5), and 68 kDa hyaluronan polymer (HA-68k) as agents possibly reversing the resistance of a C6 rat glioma cell line to temozolomide (TMZ) and carmustine (BCNU). Material and methods A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) viability assay was used to assess the cytotoxicity of TMZ and BCNU in the presence or absence of the hyaluronan fragments. By comparing viability of the cells, the reversal effects of HA fragments on TMZ and BCNU resistance in C6 glioma cells were assessed. Results We found statistically significant decreases in the viability of cells in the presence of TMZ+oHA-5 as compared to TMZ alone (51.2 ±4.5 vs. 74.2 ±5.8, p = 0.0031), BCNU+o-HA5 as compared to BCNU alone (49.3 ±4.4 vs. 65.6 ±5.7, p = 0.0119), and BCNU+HA-68k as compared to BCNU alone (55.2 ±2.3 vs. 65.6 ±5.7, p = 0.0496). Conclusions Conclusions: Hyaluronan oligomers of 5 disaccharide units (oHA-5) significantly reversed the resistance of C6 cells to TMZ and BCNU. The results are only preliminary and a more thorough follow-up investigation is required to assess their actual role.
Collapse
|
102
|
Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep 2014; 65:1056-74. [PMID: 24399703 DOI: 10.1016/s1734-1140(13)71465-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/16/2013] [Indexed: 12/17/2022]
Abstract
The understanding of the role of hyaluronan in physiology and various pathological conditions has changed since the complex nature of its synthesis, degradation and interactions with diverse binding proteins was revealed. Initially perceived only as an inert component of connective tissue, it is now known to be involved in multiple signaling pathways, including those involved in cancer pathogenesis and progression. Hyaluronan presents a mixture of various length polymer molecules from finely fragmented oligosaccharides, polymers intermediate in size, to huge aggregates of high molecular weight hyaluronan. While large molecules promote tissue integrity and quiescence, the generation of breakdown products enhances signaling transduction, contributing to the pro-oncogenic behavior of cancer cells. Low molecular weight hyaluronan has well-established angiogenic properties, while the smallest hyaluronan oligomers may counteract tumor development. These equivocal properties make the role of hyaluronan in cancer biology very complex. This review surveys recent data on hyaluronan biosynthesis, metabolism, and interactions with its binding proteins called hyaladherins (CD44, RHAMM), providing themolecular background underlying its differentiated biological activity. In particular, the article critically presents current ideas on actual role of hyaluronan in cancer. The paper additionally maps a path towards promising novel anti-cancer therapeutics which target hyaluronan metabolic enzymes and hyaladherins, and constitute hyaluronan-based drug delivery systems.
Collapse
Affiliation(s)
- Michał S Karbownik
- Department of Pharmacology, Medical University of Lodz, Żeligowskiego 7/9, PL 90-752 Łódź, Poland. ;
| | | |
Collapse
|
103
|
Misra S, Ghatak S, Vyas A, O’Brien P, Markwald RR, Khetmalas M, Hascall VC, McCarthy JB, Karamanos NK, Tammi MI, Tammi RH, Prestwitch GD, Padhye S. Isothiocyanate analogs targeting CD44 receptor as an effective strategy against colon cancer. Med Chem Res 2014; 23:3836-3851. [PMID: 25013352 PMCID: PMC4084864 DOI: 10.1007/s00044-014-0958-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory pathway plays an important role in tumor cell progression of colorectal cancers. Although colon cancer is considered as one of the leading causes of death worldwide, very few drugs are available for its effective treatment. Many studies have examined the effects of specific COX-2 and 5-LOX inhibitors on human colorectal cancer, but the role of isothiocyanates (ITSCs) as COX-LOX dual inhibitors engaged in hyaluronan-CD44 interaction has not been studied. In the present work, we report series of ITSC analogs incorporating bioisosteric thiosemicarbazone moiety. These inhibitors are effective against panel of human colon cancer cell lines including COX-2 positive HCA-7, HT-29 cells lines, and hyaluronan synthase-2 (Has2) enzyme over-expressing transformed intestinal epithelial Apc10.1Has2 cells. Specifically, our findings indicate that HA-CD44v6-mediated COX-2/5-LOX signaling mediate survivin production, which in turn, supports anti-apoptosis and chemo-resistance leading to colon cancer cell survival. The over-expression of CD44v6shRNA as well as ITSC treatment significantly decreases the survival of colon cancer cells. The present results thus offer an opportunity to evolve potent inhibitors of HA synthesis and CD44v6 pathway and thus underscoring the importance of the ITSC analogs as chemopreventive agents for targeting HA/CD44v6 pathway.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shibnath Ghatak
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Alok Vyas
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
- Department of Bioinformatics and Computer Science, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Paul O’Brien
- Hematology/Oncology Division, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Roger R. Markwald
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Madhukar Khetmalas
- Department of Bioinformatics and Computer Science, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Tathawade, Pune 411033, India
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - James B. McCarthy
- Department of Laboratory Medicine and Pathology, University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| | - Nikos K. Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Markku I. Tammi
- University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Raija H. Tammi
- University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Glenn D. Prestwitch
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Subhash Padhye
- ISTRA, Department of Chemistry, Abeda Inamdar College, University of Pune, Pune 411001, India
| |
Collapse
|
104
|
Abstract
The extracellular matrix (ECM) is composed of highly variable and dynamic components that regulate cell behavior. The protein composition and physical properties of the ECM govern cell fate through biochemical and biomechanical mechanisms. This requires a carefully orchestrated and thorough regulation considering that a disturbed ECM can have serious consequences and lead to pathological conditions like cancer. In breast cancer, many ECM proteins are significantly deregulated and specific matrix components promote tumor progression and metastatic spread. Intriguingly, several ECM proteins that are associated with breast cancer development, overlap substantially with a group of ECM proteins induced during the state of tissue remodeling such as mammary gland involution. Fibrillar collagens, fibronectin, hyaluronan and matricellular proteins are matrix components that are common to both involution and cancer. Moreover, some of these proteins have in recent years been identified as important constituents of metastatic niches in breast cancer. In addition, specific ECM molecules, their receptors or enzymatic modifiers are significantly involved in resistance to therapeutic intervention. Further analysis of these ECM proteins and the downstream ECM mediated signaling pathways may provide a range of possibilities to identify druggable targets against advanced breast cancer.
Collapse
Affiliation(s)
- Thordur Oskarsson
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; Divison of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
105
|
Charlebois DA, Balázsi G, Kærn M. Coherent feedforward transcriptional regulatory motifs enhance drug resistance. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:052708. [PMID: 25353830 PMCID: PMC5749921 DOI: 10.1103/physreve.89.052708] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Indexed: 05/25/2023]
Abstract
Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.
Collapse
Affiliation(s)
- Daniel A Charlebois
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Gábor Balázsi
- Department of Systems Biology-Unit 950, University of Texas MD Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77054, USA
| | - Mads Kærn
- Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario, Canada K1N 6N5 and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5 and Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| |
Collapse
|
106
|
Kang I, Yoon DW, Braun KR, Wight TN. Expression of versican V3 by arterial smooth muscle cells alters tumor growth factor β (TGFβ)-, epidermal growth factor (EGF)-, and nuclear factor κB (NFκB)-dependent signaling pathways, creating a microenvironment that resists monocyte adhesion. J Biol Chem 2014; 289:15393-404. [PMID: 24719328 DOI: 10.1074/jbc.m113.544338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage accumulation plays a critical role during progression of cardiovascular diseases, such as atherosclerosis. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by arterial smooth muscle cells (ASMCs) decreases monocyte adhesion in vitro and macrophage accumulation in a model of lipid-induced neointimal formation in vivo. We now demonstrate that V3-expressing ASMCs resist monocyte adhesion by altering the composition of the microenvironment surrounding the cells by affecting multiple signaling pathways. Reduction of monocyte adhesion to V3-expressing ASMCs is due to the generation of an extracellular matrix enriched in elastic fibers and depleted in hyaluronan, and reduction of the proinflammatory cell surface vascular cell adhesion molecule 1 (VCAM1). Blocking these changes reverses the protective effect of V3 on monocyte adhesion. The enhanced elastogenesis induced by V3 expression is mediated by TGFβ signaling, whereas the reduction in hyaluronan cable formation induced by V3 expression is mediated by the blockade of epidermal growth factor receptor and NFκB activation pathways. In addition, expression of V3 by ASMCs induced a marked decrease in NFκB-responsive proinflammatory cell surface molecules that mediate monocyte adhesion, such as VCAM1. Overall, these results indicate that V3 expression by ASMCs creates a microenvironment resistant to monocyte adhesion via differentially regulating multiple signaling pathways.
Collapse
Affiliation(s)
- Inkyung Kang
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| | - Dong Won Yoon
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| | - Kathleen R Braun
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| | - Thomas N Wight
- From the Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101
| |
Collapse
|
107
|
Gao J, Hu Z, Liu J, Liu D, Wang Y, Cai M, Zhang D, Tan M, Lin B. Expression of CD147 and Lewis y antigen in ovarian cancer and their relationship to drug resistance. Med Oncol 2014; 31:920. [DOI: 10.1007/s12032-014-0920-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/09/2014] [Indexed: 12/19/2022]
|
108
|
Chen L, Bourguignon LYW. Hyaluronan-CD44 interaction promotes c-Jun signaling and miRNA21 expression leading to Bcl-2 expression and chemoresistance in breast cancer cells. Mol Cancer 2014; 13:52. [PMID: 24606718 PMCID: PMC3975292 DOI: 10.1186/1476-4598-13-52] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 02/25/2014] [Indexed: 11/10/2022] Open
Abstract
MicroRNA-21 (miR-21) is associated with the development of solid tumors progression including breast cancer. In this study we investigated matrix hyaluronan (HA)-CD44 (a primary HA receptor) interaction with c-Jun N-Terminal Kinase (JNK)/c-Jun signaling in MDA-MB-468 breast cancer cells [a triple-negative (estrogen receptor-negative/progesterone receptor-negative/HER2-negative) breast cancer cell line]. Our results indicated that HA binding to CD44 promotes c-Jun nuclear translocation and transcriptional activation. Further analyses revealed that miR-21 is regulated by an upstream promoter containing AP1 binding site(s), and chromatin immunoprecipitation (CHIP) assays demonstrated that stimulation of miR-21 expression by HA/CD44 interaction is c-Jun-dependent in these breast cancer cells. This process results in an increase of the anti-apoptosis protein Bcl-2 and upregulation of inhibitors of the apoptosis family of proteins (IAPs) as well as chemoresistance in MDA-MB-468 cells. Treatment with c-Jun specific small interfering RNAs effectively blocks HA-mediated c-Jun signaling and abrogates miR-21 production as well as causes downregulation of survival proteins (Bcl-2 and IAPs) and enhancement of chemosensitivity. In addition, our results demonstrated that anti-miR-21 inhibitor not only downregulates Bcl-2/IAP expression but also increases chemosensitivity in HA-treated breast cancer cells. Together, these findings suggest that the HA/CD44-induced c-Jun signaling plays a pivotal role in miR-21 production leading to survival protein (Bcl-2/IAP) upregulation and chemoresistance in triple negative breast cancer cells such as MDA-MB-468 cell line. This novel HA/CD44-mediated c-Jun signaling pathway and miR-21 production provide a new drug target for the future intervention strategies to treat breast cancer.
Collapse
Affiliation(s)
| | - Lilly Y W Bourguignon
- San Francisco Veterans Affairs Medical Center and Department of Medicine, University of California at San Francisco & Endocrine Unit (111N2), 4150 Clement Street, San Francisco, CA 94121, USA.
| |
Collapse
|
109
|
Ghatak S, Misra S, Norris RA, Moreno-Rodriguez RA, Hoffman S, Levine RA, Hascall VC, Markwald RR. Periostin induces intracellular cross-talk between kinases and hyaluronan in atrioventricular valvulogenesis. J Biol Chem 2014; 289:8545-61. [PMID: 24469446 DOI: 10.1074/jbc.m113.539882] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Periostin (PN), a novel fasciclin-related matricellular protein, has been implicated in cardiac development and postnatal remodeling, but the mechanism remains unknown. We examined the role of PN in mediating intracellular kinase activation for atrioventricular valve morphogenesis using well defined explant cultures, gene transfection systems, and Western blotting. The results show that valve progenitor (cushion) cells secrete PN into the extracellular matrix, where it can bind to INTEGRINs and activate INTEGRIN/focal adhesion kinase signaling pathways and downstream kinases, PI3K/AKT and ERK. Functional assays with prevalvular progenitor cells showed that activating these signaling pathways promoted adhesion, migration, and anti-apoptosis. Through activation of PI3K/ERK, PN directly enhanced collagen expression. Comparing PN-null to WT mice also revealed that expression of hyaluronan (HA) and activation of hyaluronan synthase-2 (Has2) are also enhanced upon PN/INTEGRIN/focal adhesion kinase-mediated activation of PI3K and/or ERK, an effect confirmed by the reduction of HA synthase-2 in PN-null mice. We also identified in valve progenitor cells a potential autocrine signaling feedback loop between PN and HA through PI3K and/or ERK. Finally, in a three-dimensional assay to simulate normal valve maturation in vitro, PN promoted collagen compaction in a kinase-dependent fashion. In summary, this study provides the first direct evidence that PN can act to stimulate a valvulogenic signaling pathway.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Ghatak S, Bogatkevich GS, Atnelishvili I, Akter T, Feghali-Bostwick C, Hoffman S, Fresco VM, Fuchs JC, Visconti RP, Markwald RR, Padhye SB, Silver RM, Hascall VC, Misra S. Overexpression of c-Met and CD44v6 receptors contributes to autocrine TGF-β1 signaling in interstitial lung disease. J Biol Chem 2013; 289:7856-72. [PMID: 24324260 DOI: 10.1074/jbc.m113.505065] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hepatocyte growth factor (HGF) and the HGF receptor Met pathway are important in the pathogenesis of interstitial lung disease (ILD). Alternatively spliced isoforms of CD44 containing variable exon 6 (CD44v6) and its ligand hyaluronan (HA) alter cellular function in response to interaction between CD44v6 and HGF. TGF-β1 is the crucial cytokine that induces fibrotic action in ILD fibroblasts (ILDFbs). We have identified an autocrine TGF-β1 signaling that up-regulates both Met and CD44v6 mRNA and protein expression. Western blot analysis, flow cytometry, and immunostaining revealed that CD44v6 and Met colocalize in fibroblasts and in tissue sections from ILD patients and in lungs of bleomycin-treated mice. Interestingly, cell proliferation induced by TGF-β1 is mediated through Met and CD44v6. Further, cell proliferation mediated by TGF-β1/CD44v6 is ERK-dependent. In contrast, action of Met on ILDFb proliferation does not require ERK but does require p38(MAPK). ILDFbs were sorted into CD44v6(+)/Met(+) and CD44v6(-)/Met(+) subpopulations. HGF inhibited TGF-β1-stimulated collagen-1 and α-smooth muscle cell actin expression in both of these subpopulations by interfering with TGF-β1 signaling. HGF alone markedly stimulated CD44v6 expression, which in turn regulated collagen-1 synthesis. Our data with primary lung fibroblast cultures with respect to collagen-1, CD44v6, and Met expressions were supported by immunostaining of lung sections from bleomycin-treated mice and from ILD patients. These results define the relationships between CD44v6, Met, and autocrine TGF-β1 signaling and the potential modulating influence of HGF on TGF-β1-induced CD44v6-dependent fibroblast function in ILD fibrosis.
Collapse
Affiliation(s)
- Shibnath Ghatak
- From the Department of Regenerative Medicine and Cell Biology and
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Kim TH, Shin YJ, Won AJ, Lee BM, Choi WS, Jung JH, Chung HY, Kim HS. Resveratrol enhances chemosensitivity of doxorubicin in multidrug-resistant human breast cancer cells via increased cellular influx of doxorubicin. Biochim Biophys Acta Gen Subj 2013; 1840:615-25. [PMID: 24161697 DOI: 10.1016/j.bbagen.2013.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 10/13/2013] [Accepted: 10/15/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Multidrug resistance is a major problem in the treatment of breast cancer, and a number of studies have attempted to find an efficient strategy with which to overcome it. In this study, we investigate the synergistic anticancer effects of resveratrol (RSV) and doxorubicin (Dox) against human breast cancer cell lines. METHODS The synergistic effects of RSV on chemosensitivity were examined in Dox-resistant breast cancer (MCF-7/adr) and MDA-MB-231 cells. In vivo experiments were performed using a nude mouse xenograft model to investigate the combined sensitization effect of RSV and Dox. RESULTS AND CONCLUSION RSV markedly enhanced Dox-induced cytotoxicity in MCF-7/adr and MDA-MB-231 cells. Treatment with a combination of RSV and Dox significantly increased the cellular accumulation of Dox by down-regulating the expression levels of ATP-binding cassette (ABC) transporter genes, MDR1, and MRP1. Further in vivo experiments in the xenograft model revealed that treatment with a combination of RSV and Dox significantly inhibited tumor volume by 60%, relative to the control group. GENERAL SIGNIFICANCE These results suggest that treatment with a combination of RSV and Dox would be a helpful strategy for increasing the efficacy of Dox by promoting an intracellular accumulation of Dox and decreasing multi-drug resistance in human breast cancer cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Resveratrol
- Reverse Transcriptase Polymerase Chain Reaction
- Stilbenes/administration & dosage
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tae Hyung Kim
- Laboratory of Molecular Toxicology, College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan 609-735, Republic of Korea; Division of Toxicology, College of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Ricciardelli C, Ween MP, Lokman NA, Tan IA, Pyragius CE, Oehler MK. Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer 2013; 13:476. [PMID: 24124770 PMCID: PMC3852938 DOI: 10.1186/1471-2407-13-476] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/01/2013] [Indexed: 12/15/2022] Open
Abstract
Background Hyaluronan (HA) an important component of the extracellular matrix, has been linked to tumor progression and drug resistance in several malignancies. However, limited data is available for ovarian cancer. This study investigated the role of hyaluronan (HA) and a potential link between the HA-CD44 pathway and membrane ATP binding cassette (ABC) transporter proteins in ovarian cancer chemoresistance. Methods We investigated the ability of HA to block the cytotoxic effects of the chemotherapy drug carboplatin, and to regulate the expression of ABC transporters in ovarian cancer cells. We also examined HA serum levels in ovarian cancer patients prior to and following chemotherapy and assessed its prognostic relevance. Results HA increased the survival of carboplatin treated ovarian cancer cells expressing the HA receptor, CD44 (OVCAR-5 and OV-90). Carboplatin significantly increased expression of HAS2, HAS3 and ABCC2 and HA secretion in ovarian cancer cell conditioned media. Serum HA levels were significantly increased in patients following platinum based chemotherapy and at both 1st and 2nd recurrence when compared with HA levels prior to treatment. High serum HA levels (>50 μg/ml) prior to chemotherapy treatment were associated with significantly reduced progression-free (P = 0.014) and overall survival (P = 0.036). HA production in ovarian cancer cells was increased in cancer tissues collected following chemotherapy treatment and at recurrence. Furthermore HA treatment significantly increased the expression of ABC drug transporters (ABCB3, ABCC1, ABCC2, and ABCC3), but only in ovarian cancer cells expressing CD44. The effects of HA and carboplatin on ABC transporter expression in ovarian cancer cells could be abrogated by HA oligomer treatment. Importantly, HA oligomers increased the sensitivity of chemoresistant SKOV3 cells to carboplatin. Conclusions Our findings indicate that carboplatin chemotherapy induces HA production which can contribute to chemoresistance by regulating ABC transporter expression. The HA-CD44 signaling pathway is therefore a promising target in platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, School of Paediatrics and Reproductive Health, Research Centre for Reproductive Health, Robinson Institute, University of Adelaide, Adelaide 5005, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
113
|
Zhao BX, Sun YB, Wang SQ, Duan L, Huo QL, Ren F, Li GF. Grape seed procyanidin reversal of p-glycoprotein associated multi-drug resistance via down-regulation of NF-κB and MAPK/ERK mediated YB-1 activity in A2780/T cells. PLoS One 2013; 8:e71071. [PMID: 23967153 PMCID: PMC3744527 DOI: 10.1371/journal.pone.0071071] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/01/2013] [Indexed: 11/20/2022] Open
Abstract
The expression and function of P-glycoprotein (P-gp) is associated with the phenotype of multi-drug resistance (MDR), leading chemotherapy failure of patients suffered with cancer. Grape seed procyanidin(GSP) is a natural polyphenol supplement with anti-inflammatory effect. Present study assessed a new use of GSP on the MDR reversal activity and its possible molecular mechanisms in MDR1-overpressing paclitaxel resistant ovarian cancer cells. Our results showed GSP significantly enhanced the cytotoxicity of paclitaxel and adriamycin in paclitaxel resistant A2780/T cells but its parental A2780 cells. Furthermore, GSP strongly inhibited P-gp expression by blocking MDR1 gene transcription, as well as, increased the intracellular accumulation of the P-gp substrate rhodamine-123 in A2780/T cells. Nuclear factor-κB(NF-κB) activity, IκB degradation level and NF-κB/p65 nuclear translocation induced by lipopolysaccharide (LPS) and receptor activator for nuclear factor-κB ligand (RANKL) were markedly inhibited by pre-treatment with GSP. Meanwhile, GSP inhibited MAPK/ERK pathway by decreasing the phosphorylation of ERK1/2, resulting in reduced the Y-box binding protein 1 (YB-1) activation with blocking its nuclear translocation. Moreover, the up-regulation of P-gp expression, the activation of AKT/NF-κB and MAPK/ERK pathway induced by LPS was attenuated by GSP administration. Compared with PDTC and U1026, inhibitor of NF-κB and MAPK/ERK respectively, GSP showed the same tendency of down-regulating NF-κB and MAPK/ERK mediated YB-1 activities. Thus, GSP reverses P-gp associated MDR by inhibiting the function and expression of P-gp through down-regulation of NF-κB activity and MAPK/ERK pathway mediated YB-1 nuclear translocation, offering insight into the mechanism of reversing MDR by natural polyphenol supplement compounds. GSP could be a new potential MDR reversal agent used for combination therapy with chemotherapeutics in clinic.
Collapse
Affiliation(s)
- Bo-xin Zhao
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ya-bin Sun
- GCP Office, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng-qi Wang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lian Duan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qi-lu Huo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Ren
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guo-feng Li
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail:
| |
Collapse
|
114
|
Guenova ML, Balatzenko GN, Nikolova VR, Spassov BV, Konstantinov SM. An anti-apoptotic pattern correlates with multidrug resistance in acute myeloid leukemia patients: a comparative study of active caspase-3, cleaved PARPs, Bcl-2, Survivin and MDR1 gene. Hematology 2013; 15:135-43. [DOI: 10.1179/102453309x12583347113690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Margarita L. Guenova
- Blood Diseases Diagnostic UnitLaboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia 1756, Bulgaria
| | - Gueorgui N. Balatzenko
- Blood Diseases Diagnostic UnitLaboratory of Cytogenetics and Molecular Biology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia 1756, Bulgaria
| | - Vessela R. Nikolova
- Blood Diseases Diagnostic UnitLaboratory of Haematopathology and Immunology, National Specialised Hospital for Active Treatment of Haematological Diseases, Sofia 1756, Bulgaria
| | - Branimir V. Spassov
- Department of Clinical HaematologyNational Specialised Hospital for Active Treatment of Haematological Diseases, Sofia 1756, Bulgaria
| | - Spiro M. Konstantinov
- Laboratory for Experimental ChemotherapyMedical University of Sofia, Sofia 1000, Bulgaria
| |
Collapse
|
115
|
MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis 2013; 2:e51. [PMID: 23774063 PMCID: PMC3740301 DOI: 10.1038/oncsis.2013.16] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MUC1 (CD227), a membrane tethered mucin glycoprotein, is overexpressed in >60% of human pancreatic cancers (PCs), and is associated with poor prognosis, enhanced metastasis and chemoresistance. The objective of this study was to delineate the mechanism by which MUC1 induces drug resistance in human (BxPC3 and Capan-1) and mouse (KCKO, KCM) PC cells. We report that PC cells that express high levels of MUC1 exhibit increased resistance to chemotherapeutic drugs (gemcitabine and etoposide) in comparison with cells that express low levels of MUC1. This chemo resistance was attributed to the enhanced expression of multidrug resistance (MDR) genes including ABCC1, ABCC3, ABCC5 and ABCB1. In particular, levels of MRP1 protein encoded by the ABCC1 gene were significantly higher in the MUC1-high PC cells. In BxPC3 and Capan-1 cells MUC1 upregulates MRP1 via an Akt-dependent pathway, whereas in KCM cells MUC1-mediated MRP1 upregulation is via an Akt-independent mechanism. In KCM, BxPC3 and Capan-1 cells, the cytoplasmic tail motif of MUC1 associates directly with the promoter region of the Abcc1/ABCC1 gene, indicating a possible role of MUC1 acting as a transcriptional regulator of this gene. This is the first report to show that MUC1 can directly regulate the expression of MDR genes in PC cells, and thus confer drug resistance.
Collapse
|
116
|
Network nonlinearities in drug treatment. Interdiscip Sci 2013; 5:85-94. [PMID: 23740389 DOI: 10.1007/s12539-013-0165-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/25/2012] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Despite major achievements in the understanding of human disease, there is a general perception that the drug development industry has failed to meet the expectations that recent advances in biotechnology should drive. One of the potential sources of failure of many next generation drugs is that their targets are embedded in highly nonlinear signaling pathways and gene networks with multiple negative and positive feedback loops of regulation. There is increasing evidence that this complex network shapes the response to external perturbations in the form of drug treatment, originating bistability, hypersensitivity, robustness, complex dose-response curves or schedule dependent activity. This review focuses on the effect of nonlinearities on signaling and gene networks involved in human disease, using tools from Nonlinear Dynamics to discuss the implications and to overcome the effects of the nonlinearities on regulatory networks.
Collapse
|
117
|
El-Dakdouki MH, Puré E, Huang X. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models. NANOSCALE 2013; 5:3904-11. [PMID: 23549322 PMCID: PMC3643122 DOI: 10.1039/c3nr90022c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.
Collapse
Affiliation(s)
- Mohammad H. El-Dakdouki
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824, USA
| | - Ellen Puré
- The Wistar Institute, Room 372, 3601 Spruce Street, Philadelphia, PA 19104, USA
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 S. Shaw Lane, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
118
|
Zhou S, Liao L, Chen C, Zeng W, Liu S, Su J, Zhao S, Chen M, Kuang Y, Chen X, Li J. CD147 mediates chemoresistance in breast cancer via ABCG2 by affecting its cellular localization and dimerization. Cancer Lett 2013; 337:285-92. [PMID: 23623923 DOI: 10.1016/j.canlet.2013.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/11/2013] [Accepted: 04/21/2013] [Indexed: 12/11/2022]
Abstract
CD147 and ABCG2 both have been reported to mediate Multidrug resistance (MDR) in breast cancer. Recent study demonstrates that CD147 could form a complex with ABCG2 on the cell membrane in primary effusion lymphoma. However, whether these two molecules regulate each other in breast cancer and result in MDR is not clear. We established four MCF-7 cell lines transfected with CD147 and/or ABCG2 and found that CD147 could increase the expression and dimerization of ABCG2, affect its cellular localization and regulate its drug transporter function. The findings derived from cells were confirmed subsequently in clinic samples of chemotherapy-sensitive/resistant breast cancer.
Collapse
Affiliation(s)
- Shuangyuan Zhou
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Bourguignon LYW. Hyaluronan-CD44 interaction promotes microRNA signaling and RhoGTPase activation leading to tumor progression. Small GTPases 2013; 3:53-9. [PMID: 22714418 PMCID: PMC3398919 DOI: 10.4161/sgtp.19110] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A hallmark of all solid tumor malignancies is the ability to invade the surrounding tissue and/or metastasize to distant sites. Tumors cells have altered signaling pathways which that to cytoskeleton activation and migration. Myriad studies have attempted to identify specific adhesion molecule(s) expressed in solid tumor cells that correlate with tumor cell migrative and invasive behaviors. Among such candidate molecules is hyaluronan (HA), the major glycosaminoglycan component of extracellular matrix (ECM). HA serves not only as a primary constituent of connective tissue extracellular matrices but also functions as a bio-regulatory molecule. Pertinently, HA is enriched in many types of tumors. HA is capable of binding to CD44 which is a ubiquitous, abundant and functionally important receptor expressed on the surface of many normal cells and tumor cells. Several lines of evidence indicate that CD44 selects its unique downstream effectors and coordinates downstream, intracellular signaling pathways that influence multiple cellular functions. Certain microRNAs [(miRNAs), small RNA molecules with ~20–25 nucleotides] have been shown to play roles in regulating tumor cell migration, invasion, survival and chemotherapy resistance. In this article, a special focus is placed on the role of HA-mediated CD44 interaction with unique signaling molecules in activating intracellular miRNA-signaling and RhoGTPase functions leading to the concomitant onset of tumor cell activities (e.g., tumor cell migration, invasion, survival and chemoresistance) and tumor progression. This new knowledge could serve as groundwork for the future development of new drug targets to inhibit HA/CD44-mediated oncogenic signaling and cancer progression.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Department of Medicine, University of California at San Francisco, and Endocrine Unit (111N2), VA Medical Center, San Francisco, CA USA.
| |
Collapse
|
120
|
Gvozdenovic A, Arlt MJE, Campanile C, Brennecke P, Husmann K, Li Y, Born W, Muff R, Fuchs B. CD44 enhances tumor formation and lung metastasis in experimental osteosarcoma and is an additional predictor for poor patient outcome. J Bone Miner Res 2013; 28:838-47. [PMID: 23169460 DOI: 10.1002/jbmr.1817] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 08/09/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Formation of metastases in the lungs is the major cause of death in patients suffering from osteosarcoma (OS). Metastases at presentation and poor response to preoperative chemotherapy are strong predictors for poor patient outcome. The elucidation of molecular markers that promote metastasis formation and/or chemoresistance is therefore of importance. CD44 is a plasma membrane glycoprotein that binds to the extracellular matrix component hyaluronan (HA) and has been shown to be involved in metastasis formation in a variety of other tumors. Here we investigated the role of CD44 expression on OS tumor formation and metastasis. High CD44 expression, evaluated with a tissue microarray including samples from 53 OS patients and stained with a pan-CD44 antibody (Hermes3), showed a tendency (p < 0.08) to shortened overall survival. However, nonresponders and patients with lung metastases and high CD44 expression had significantly poorer prognosis than patients with low CD44 expression. Overexpression of the standard CD44 isoform (CD44s) and its HA-binding defective mutant R41A in osteoblastic SaOS-2 cells resulted in HA-independent higher migration rates and increased chemoresistance, partially dependent on HA. In an orthotopic mouse model of OS, overexpression of CD44s in SaOS-2 cells resulted in an HA-dependent increased primary tumor formation and increased numbers of micrometastases and macrometastases in the lungs. In conclusion, although CD44 failed to be an independent predictor for patient outcome in this limited cohort of OS patients, increased CD44 expression was associated with even worse survival in patients with chemoresistance and with lung metastases. CD44-associated chemoresistance was also observed in vitro, and increased formation of lung metastases was found in vivo in SCID mice.
Collapse
Affiliation(s)
- Ana Gvozdenovic
- Laboratory for Orthopedic Research, Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Tumour-microenvironment interactions: role of tumour stroma and proteins produced by cancer-associated fibroblasts in chemotherapy response. Cell Oncol (Dordr) 2013; 36:95-112. [PMID: 23494412 DOI: 10.1007/s13402-013-0127-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cytotoxic chemotherapy improves survival for some, but not all, cancer patients. Non-responders may experience unnecessary toxicity and cancer progression, thus creating an urgent need for biomarkers that can predict the response to chemotherapy. So far, the search for such biomarkers has primarily been focused on the cancer cells and less on their surrounding stroma. This stroma is known to act as a key regulator of tumour progression and, in addition, has been associated with drug delivery and drug efficacy. Fibroblasts represent the major cell type in cancer-associated stroma and they secrete extracellular matrix proteins as well as growth factors. This Medline-based literature review summarises the results from studies on epithelial cancers and aimed at investigating relationships between the quantity and quality of the intra-tumoral stroma, the cancer-associated fibroblasts, the proteins they produce and the concomitant response to chemotherapy. Biomarkers were selected for review that are known to affect cancer-related characteristics and patient prognosis. RESULTS The current literature supports the hypothesis that biomarkers derived from the tumour stroma may be useful to predict response to chemotherapy. This notion appears to be related to the overall quantity and cellularity of the intra-tumoural stroma and the predominant constituents of the extracellular matrix. CONCLUSION Increasing evidence is emerging showing that tumour-stroma interactions may not only affect tumour progression and patient prognosis, but also the response to chemotherapy. The tumour stroma-derived biomarkers that appear to be most appropriate to determine the patient's response to chemotherapy vary by tumour origin and the availability of pre-treatment tissue. For patients scheduled for adjuvant chemotherapy, the most promising biomarker appears to be the PLAU: SERPINE complex, whereas for patients scheduled for neo-adjuvant chemotherapy the tumour stroma quantity appears to be most relevant.
Collapse
|
122
|
Misra S, Ghatak S, Patil N, Dandawate P, Ambike V, Adsule S, Unni D, Venkateswara Swamy K, Padhye S. Novel dual cyclooxygenase and lipoxygenase inhibitors targeting hyaluronan-CD44v6 pathway and inducing cytotoxicity in colon cancer cells. Bioorg Med Chem 2013; 21:2551-9. [PMID: 23517721 DOI: 10.1016/j.bmc.2013.02.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/12/2013] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) enzyme have been found to play a role in promoting growth in colon cancer cell lines. The di-tert-butyl phenol class of compounds has been found to inhibit both COX-2 and 5-LOX enzymes with proven effectiveness in arresting tumor growth. In the present study, the structural analogs of 2,6 di-tert-butyl-p-benzoquinone (BQ) appended with hydrazide side chain were found to inhibit COX-2 and 5-LOX enzymes at micromolar concentrations. Molecular docking of the compounds into COX-2 and 5-LOX protein cavities indicated strong binding interactions supporting the observed cytototoxicities. The signaling interaction between endogenous hyaluronan and CD44 has been shown to regulate COX-2 activities through ErbB2 receptor tyrosine kinase (RTK) activation. In the present studies it has been observed for the first time, that three of our COX/5-LOX dual inhibitors inhibit proliferation upon hydrazide substitution and prevent the activity of pro-angiogenic factors in HCA-7, HT-29, Apc10.1 cells as well as the hyaluronan synthase-2 (Has2) enzyme over-expressed in colon cancer cells, through inhibition of the hyaluronan/CD44v6 cell survival pathway. Since there is a substantial enhancement in the antiproliferative activities of these compounds upon hydrazide substitution, the present work opens up new opportunities for evolving novel active compounds of BQ series for inhibiting colon cancer.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Radisavljevic Z. AKT as locus of cancer positive feedback loops and extreme robustness. J Cell Physiol 2013; 228:522-4. [PMID: 22833426 DOI: 10.1002/jcp.24167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/16/2012] [Indexed: 12/21/2022]
Abstract
A positive feedback loops induce extreme robustness in metastatic cancer, relapsed leukemia, myeloma or lymphoma. The loops are generated by the signaling interactome networks of autocrine and paracrine elements from cancer hypoxic microenvironment. The elements of the networks are signaling proteins synthesized in hypoxic microenvironment such as the vascular endothelial growth factor, HIF-1α, hepatocyte growth factor, and molecules nitric oxide and H(2)O(2). The signals from upstream or rebound downstream pathways are amplified by the short or wide positive feedback loops, hyperstimulating AKT-inducing cancer extreme robustness. Targeting the phosphorylated AKT locus by an oxidant/antioxidant modulation induces collapse of positive feedback loops and establishment of negative feedback loops leading to stability of the system and disappearance of cancer extreme robustness. This is a new principle for the conversion of cancer positive loops into negative feedback loops by the locus chemotherapy.
Collapse
Affiliation(s)
- Ziv Radisavljevic
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
124
|
Goodarzi N, Varshochian R, Kamalinia G, Atyabi F, Dinarvand R. A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym 2013; 92:1280-93. [DOI: 10.1016/j.carbpol.2012.10.036] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/27/2012] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
|
125
|
Chen J, Li N, Li G. Link protein hyaluronan-binding motif abrogates CD44-hyaluronan-mediated leukemia-liver cell adhesion. Mol Clin Oncol 2013; 1:483-486. [PMID: 24649196 DOI: 10.3892/mco.2013.73] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/02/2013] [Indexed: 11/06/2022] Open
Abstract
The liver is a frequent site for the metastasis of cancer cells originating from other sites. Leukemic liver metastasis is associated with poor prognosis. The ligation of CD44 with hyaluronan (HA) has been shown to contribute to the drug resistance of leukemic cells. In this study, a link protein HA-binding motif was genetically fused with enhanced green fluorescence protein (EGFP) to generate an EGFP-L fusion protein. Furthermore, a coculture system was established to investigate the interaction of leukemic cells with liver cells. CD44-positive Kasumi-1, but not CD44-negative HL-60 cells, were observed to adhere to the liver cell line L02. This cell-cell adhesion was significantly blocked by HA, indicating that Kasumi-L02 cell adhesion was mediated by the CD44-HA interaction. Compared to EGFP, EGFP-L fusion protein bound to L02 and BEL7404 liver cells. EGFP-L partially abrogated the Kasumi-L02 adhesion, suggesting that the link protein-binding motif is able to inhibit CD44-HA-mediated leukemia-liver adhesion. These results may help provide insight into novel therapeutic methods for leukemic patients diagnosed with liver metastasis.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Sciences, Zhejiang Sci-Tech University, Zhejiang 310018, P.R. China
| | - Na Li
- College of Life Sciences, Zhejiang Sci-Tech University, Zhejiang 310018, P.R. China
| | - Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Zhejiang 310018, P.R. China
| |
Collapse
|
126
|
Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A 2013; 110:E575-82. [PMID: 23341611 DOI: 10.1073/pnas.1213839110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanism of antimony-resistant Leishmania donovani (Sb(R)LD)-driven up-regulation of IL-10 and multidrug-resistant protein 1 (MDR1) in infected macrophages (Ms) has been investigated. This study showed that both promastigote and amastigote forms of Sb(R)LD, but not the antimony-sensitive form of LD, express a unique glycan with N-acetylgalactosamine as a terminal sugar. Removal of it either by enzyme treatment or by knocking down the relevant enzyme, galactosyltransferase in Sb(R)LD (KD Sb(R)LD), compromises the ability to induce the above effects. Infection of Ms with KD Sb(R)LD enhanced the sensitivity toward antimonials compared with infection with Sb(R)LD, and infection of BALB/c mice with KD Sb(R)LD caused significantly less organ parasite burden compared with infection induced by Sb(R)LD. The innate immune receptor, Toll-like receptor 2/6 heterodimer, is exploited by Sb(R)LD to activate ERK and nuclear translocation of NF-κB involving p50/c-Rel leading to IL-10 induction, whereas MDR1 up-regulation is mediated by PI3K/Akt and the JNK pathway. Interestingly both recombinant IL-10 and Sb(R)LD up-regulate MDR1 in M with different time kinetics, where phosphorylation of PI3K was noted at 12 h and 48 h, respectively, but Ms derived from IL-10(-/-) mice are unable to show MDR1 up-regulation on infection with Sb(R)LD. Thus, it is very likely that an IL-10 surge is a prerequisite for MDR1 up-regulation. The transcription factor important for IL-10-driven MDR1 up-regulation is c-Fos/c-Jun and not NF-κB, as evident from studies with pharmacological inhibitors and promoter mapping with deletion constructs.
Collapse
|
127
|
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, Shi L, Zangari M, Miles R, Bearss D, Tricot G, Zhan F. NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell 2013; 23:48-62. [PMID: 23328480 PMCID: PMC3954609 DOI: 10.1016/j.ccr.2012.12.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 03/22/2011] [Accepted: 12/04/2012] [Indexed: 01/07/2023]
Abstract
Using sequential gene expression profiling (GEP) samples, we defined a major functional group related to drug resistance that contains chromosomal instability (CIN) genes. One CIN gene in particular, NEK2, was highly correlated with drug resistance, rapid relapse, and poor outcome in multiple cancers. Overexpressing NEK2 in cancer cells resulted in enhanced CIN, cell proliferation and drug resistance, while targeting NEK2 by NEK2 shRNA overcame cancer cell drug resistance and induced apoptosis in vitro and in a xenograft myeloma mouse model. High expression of NEK2 induced drug resistance mainly through activation of the efflux pumps. Thus, NEK2 represents a strong predictor for drug resistance and poor prognosis in cancer and could be an important target for cancer therapy.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Ye Yang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Jiliang Xia
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - He Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Mohamed E Salama
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Wei Xiong
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Hongwei Xu
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Shashirekha Shetty
- Cleveland Clinic, 9500 Euclid Avenue, Mail Code LL2-2, Cleveland, OH 44195, USA
| | - Tiehua Chen
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Zhaoyang Zeng
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Lei Shi
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Maurizio Zangari
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
| | - Rodney Miles
- Department of Pathology, University of Utah and ARUP Lab, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David Bearss
- Physiology & Developmental Biology 471 WIDB, Brigham Young University, Provo, UT 84602, USA
| | - Guido Tricot
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: (F. Z.), (G. T.)
| | - Fenghuang Zhan
- Department of Internal Medicine, Division of Hematology, Oncology, and Blood & Marrow Transplantation, University of Iowa, Iowa City, IA 52242, USA
- Division of Hematology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA
- Correspondence: (F. Z.), (G. T.)
| |
Collapse
|
128
|
Yang X, Dogan I, Pannala VR, Kootala S, Hilborn J, Ossipov D. A hyaluronic acid–camptothecin nanoprodrug with cytosolic mode of activation for targeting cancer. Polym Chem 2013. [DOI: 10.1039/c3py00402c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
129
|
Application of Collagen-Model Triple-Helical Peptide-Amphiphiles for CD44-Targeted Drug Delivery Systems. JOURNAL OF DRUG DELIVERY 2012; 2012:592602. [PMID: 23213537 PMCID: PMC3505660 DOI: 10.1155/2012/592602] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Abstract
Cancer treatment by chemotherapy is typically accompanied by deleterious side effects, attributed to the toxic action of chemotherapeutics on proliferating cells from nontumor tissues. The cell surface proteoglycan CD44 has been recognized as a cancer stem cell marker. The present study has examined CD44 targeting as a way to selectively deliver therapeutic agents encapsulated inside colloidal delivery systems. CD44/chondroitin sulfate proteoglycan binds to a triple-helical sequence derived from type IV collagen, α1(IV)1263–1277. We have assembled a peptide-amphiphile (PA) in which α1(IV)1263–1277 was sandwiched between 4 repeats of Gly-Pro-4-hydroxyproline and conjugated to palmitic acid. The PA was incorporated into liposomes composed of DSPG, DSPC, cholesterol, and DSPE-PEG-2000 (1 : 4 : 5 : 0.5). Doxorubicin-(DOX-)loaded liposomes with and without 10% α1(IV)1263–1277 PA were found to exhibit similar stability profiles. Incubation of DOX-loaded targeted liposomes with metastatic melanoma M14#5 and M15#11 cells and BJ fibroblasts resulted in IC50 values of 9.8, 9.3, and >100 μM, respectively. Nontargeted liposomes were considerably less efficacious for M14#5 cells. In the CD44+ B16F10 mouse melanoma model, CD44-targeted liposomes reduced the tumor size to 60% of that of the untreated control, whereas nontargeted liposomes were ineffective. These results suggest that PA targeted liposomes may represent a new class of nanotechnology-based drug delivery systems.
Collapse
|
130
|
Hao J, Madigan MC, Khatri A, Power CA, Hung TT, Beretov J, Chang L, Xiao W, Cozzi PJ, Graham PH, Kearsley JH, Li Y. In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One 2012; 7:e40716. [PMID: 22870202 PMCID: PMC3411712 DOI: 10.1371/journal.pone.0040716] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022] Open
Abstract
CD44 and CD147 are associated with cancer metastasis and progression. Our purpose in the study was to investigate the effects of down-regulation of CD44 or CD147 on the metastatic ability of prostate cancer (CaP) cells, their docetaxel (DTX) responsiveness and potential mechanisms involved in vitro and in vivo. CD44 and CD147 were knocked down (KD) in PC-3M-luc CaP cells using short hairpin RNA (shRNA). Expression of CD44, CD147, MRP2 (multi-drug resistance protein-2) and MCT4 (monocarboxylate tranporter-4) was evaluated using immunofluorescence and Western blotting. The DTX dose-response and proliferation was measured by MTT and colony assays, respectively. The invasive potential was assessed using a matrigel chamber assay. Signal transduction proteins in PI3K/Akt and MAPK/Erk pathways were assessed by Western blotting. An in vivo subcutaneous (s.c.) xenograft model was established to assess CaP tumorigenecity, lymph node metastases and DTX response. Our results indicated that KD of CD44 or CD147 decreased MCT4 and MRP2 expression, reduced CaP proliferation and invasive potential and enhanced DTX sensitivity; and KD of CD44 or CD147 down-regulated p-Akt and p-Erk, the main signal modulators associated with cell growth and survival. In vivo, CD44 or CD147-KD PC-3M-luc xenografts displayed suppressed tumor growth with increased DTX responsiveness compared to control xenografts. Both CD44 and CD147 enhance metastatic capacity and chemoresistance of CaP cells, potentially mediated by activation of the PI3K and MAPK pathways. Selective targeting of CD44/CD147 alone or combined with DTX may limit CaP metastasis and increase chemosensitivity, with promise for future CaP treatment.
Collapse
Affiliation(s)
- Jingli Hao
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - Michele C. Madigan
- School of Optometry and Vision Science, University of New South Wales (UNSW), Kensington, New South Wales, Australia, and Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Aparajita Khatri
- Prince of Wales Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
| | - Carl A. Power
- Biological Resources Imaging Laboratory, University of New South Wales (UNSW), Kensington, New South Wales, Australia
| | - Tzong-Tyng Hung
- Prince of Wales Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Biological Resources Imaging Laboratory, University of New South Wales (UNSW), Kensington, New South Wales, Australia
| | - Julia Beretov
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
- Department of Anatomical Pathology, St George Hospital, Kogarah, New South Wales, Australia
| | - Lei Chang
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - Weiwei Xiao
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - Paul J. Cozzi
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Department of Surgery, St George Hospital, Kogarah, New South Wales, Australia
| | - Peter H. Graham
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - John H. Kearsley
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
| | - Yong Li
- St George Clinical School, University of New South Wales (UNSW), Kensington, New South Wales, Australia
- Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia
- * E-mail:
| |
Collapse
|
131
|
Auvinen P, Tammi R, Kosma VM, Sironen R, Soini Y, Mannermaa A, Tumelius R, Uljas E, Tammi M. Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer. Int J Cancer 2012; 132:531-9. [PMID: 22753277 DOI: 10.1002/ijc.27707] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/19/2012] [Indexed: 12/20/2022]
Abstract
Previous in vitro studies have suggested interactions between hyaluronan (HA), CD44 and HER2. We have studied the expression of HA and CD44 in a material of 278 breast cancer cases, half of which were HER2-positive. Intense stromal HA staining was associated with HER2 positivity, large tumor size, lymph node positivity, hormone receptor negativity, poor differentiation, a high body mass index, increased relapse rate and shortened overall survival. Among the 139 HER2-positive cases, the relapse rate was associated with the intensity of stromal HA staining as most of the relapses occurred in the cases with intense stromal HA staining. The presence of HA in the carcinoma cells was related to the frequency of relapses as none of the patients without HA in carcinoma cells experienced a relapse, whereas 33.3% of those with a high percentage of HA-positive carcinoma cells suffered a relapse. CD44 positivity in carcinoma cells was related to poor differentiation, postmenopausal status and triple negative breast carcinoma. CD44 positivity in stromal cells was associated with HER2 positivity, large tumor size, hormone receptor negativity, poor differentiation, increased relapse rate and shortened overall survival. The association between HER2 positivity and intense stromal HA staining indicates that HA could be one of the factors involved in the unfavorable outcome of HER2-positive patients. This study also suggests that HA in breast carcinoma cells and CD44 in stromal cells may have clinical significance.
Collapse
Affiliation(s)
- Päivi Auvinen
- Department of Oncology, Cancer Center, Kuopio University Hospital, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Váradi T, Mersich T, Auvinen P, Tammi R, Tammi M, Salamon F, Besznyák I, Jakab F, Baranyai Z, Szöllősi J, Nagy P. Binding of trastuzumab to ErbB2 is inhibited by a high pericellular density of hyaluronan. J Histochem Cytochem 2012; 60:567-75. [PMID: 22562558 DOI: 10.1369/0022155412448070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Although trastuzumab is an efficient drug, primary and acquired resistance is a challenging problem. The authors have previously shown in mouse xenograft experiments that masking ErbB2 by hyaluronan leads to diminished binding of the antibody and consequent resistance. In the current work, they correlated trastuzumab binding with the pericellular density of hyaluronan in ErbB2-overexpressing human breast cancer samples. A method for quantifying the relative binding of trastuzumab was developed involving constant and low-frequency background subtraction, segmenting the image to membrane and background pixels followed by evaluation of trastuzumab fluorescence, normalized with the expression level of ErbB2, only in the membrane. The normalized binding of trastuzumab showed a negative correlation with the pericellular density of hyaluronan (r = -0.52) with the effect being the most pronounced in the extreme cases (i.e., low and high hyaluronan densities predicted strong and weak binding of trastuzumab, respectively). Removal of hyaluronan by hyaluronidase digestion unmasked the trastuzumab binding epitope of ErbB2 demonstrated by a significantly increased normalized binding of the antibody. The results show that the accumulation of pericellular hyaluronan plays a crucial role in masking ErbB2.
Collapse
Affiliation(s)
- Tímea Váradi
- Department of Biophysics and Cell Biology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Osmak M. Statins and cancer: current and future prospects. Cancer Lett 2012; 324:1-12. [PMID: 22542807 DOI: 10.1016/j.canlet.2012.04.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 12/13/2022]
Abstract
Statins are inhibitors of 3-hydroxy-methylglutaryl (HMG) CoA reductase. They exhibit effects beyond cholesterol reduction, including anticancer activity. This review presents the effects of statins in vitro and their possible molecular anticancer mechanisms and critically discusses the data regarding the role of statins in cancer prevention. Finally, this review focuses on the use of statins combined with other chemotherapeutics to increase the effectiveness of cancer treatments. Despite rare and inconclusive clinical data, the preclinical results strongly suggest that such combined treatment could be a promising new strategy for the treatment of certain tumor types.
Collapse
Affiliation(s)
- Maja Osmak
- Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| |
Collapse
|
134
|
Integrin signaling in cancer cell survival and chemoresistance. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:283181. [PMID: 22567280 PMCID: PMC3332161 DOI: 10.1155/2012/283181] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/10/2012] [Indexed: 01/09/2023]
Abstract
Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy. In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis. We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new therapeutic strategies and agents for cancer treatment.
Collapse
|
135
|
Cervical expression of hyaluronan synthases varies with the stage of the estrous cycle in the ewe. Theriogenology 2012; 77:1100-10. [DOI: 10.1016/j.theriogenology.2011.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/29/2011] [Accepted: 10/08/2011] [Indexed: 11/18/2022]
|
136
|
Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012; 2012:346972. [PMID: 22400115 PMCID: PMC3287012 DOI: 10.1155/2012/346972] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/24/2011] [Accepted: 11/18/2011] [Indexed: 12/20/2022] Open
Abstract
Hyaluronan is a linear glycosaminoglycan that has received special attention in the last few decades due to its extraordinary physiological functions. This highly viscous polysaccharide is not only a lubricator, but also a significant regulator of cellular behaviors during embryogenesis, morphogenesis, migration, proliferation, and drug resistance in many cell types, including stem cells. Most hyaluronan functions require binding to its cellular receptors CD44, LYVE-1, HARE, layilin, and RHAMM. After binding, proteins are recruited and messages are sent to alter cellular activities. When low concentrations of hyaluronan are applied to stem cells, the proliferative activity is enhanced. However, at high concentrations, stem cells acquire a dormant state and induce a multidrug resistance phenotype. Due to the influence of hyaluronan on cells and tissue morphogenesis, with regards to cardiogenesis, chondrogenesis, osteogenesis, and neurogenesis, it is now been utilized as a biomaterial for tissue regeneration. This paper summarizes the most important and recent findings regarding the regulation of hyaluronan in cells.
Collapse
|
137
|
Darzynkiewicz Z, Balazs EA. Genome integrity, stem cells and hyaluronan. Aging (Albany NY) 2012; 4:78-88. [PMID: 22383371 PMCID: PMC3314170 DOI: 10.18632/aging.100438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/24/2012] [Indexed: 12/12/2022]
Abstract
Faithful preservation of genome integrity is the critical mission of stem cells as well as of germ cells. Reviewed are the following mechanisms involved in protecting DNA in these cells: (a) The efflux machinery that can pump out variety of genotoxins in ATP-dependent manner; (b) the mechanisms maintaining minimal metabolic activity which reduces generation of reactive oxidants, by-products of aerobic respiration; (c) the role of hypoxic niche of stem cells providing a gradient of variable oxygen tension; (d)(e) the presence of hyaluronan (HA) and HA receptors on stem cells and in the niche; (f) the role of role of HA in protecting DNA from oxidative damage; (g) the specific role of HA that may play a role protecting DNA in stem cells; (h) the interactions of HA with sperm cells and oocytes that also may shield their DNA from oxidative damage, and (e) mechanisms by which HA exerts the anti-oxidant activity. While HA has multitude of functions its anti-oxidant capabilities are often overlooked but may be of significance in preservation of integrity of stem and germ cells genome.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute & Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
138
|
Zhang W, Ding W, Chen Y, Feng M, Ouyang Y, Yu Y, He Z. Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim Biophys Sin (Shanghai) 2011; 43:647-53. [PMID: 21712253 DOI: 10.1093/abbs/gmr050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2/neu, also known as ErbB2) overexpression is correlated with the poor prognosis and chemoresistance in cancer. Breast cancer resistance protein (BCRP and ABCG2) is a drug efflux pump responsible for multidrug resistance (MDR) in a variety of cancer cells. HER2 and BCRP are associated with poor treatment response in breast cancer patients, although the relationship between HER2 and BCRP expression is not clear. Here, we showed that transfection of HER2 into MCF7 breast cancer cells (MCF7/HER2) resulted in an up-regulation of BCRP via the phosphatidylinositol 3-kinase (PI3K)/Akt and nuclear factor-kappa B (NF-κB) signaling. Treatment of MCF/HER2 cells with the PI3K inhibitor LY294002, the IκB phosphorylation inhibitor Bay11-7082, and the dominant negative mutant of IκBα inhibited HER2-induced BCRP promoter activity. Furthermore, we found that HER2 overexpression led to an increased resistance of MCF7 cells to multiple antitumor drugs such as paclitaxel (Taxol), cisplatin (DDP), etoposide (VP-16), adriamycin (ADM), mitoxantrone (MX), and 5-fluorouracil (5-FU). Moreover, silencing the expression of BCRP or selectively inhibiting the activity of Akt or NF-κB sensitized the MCF7/HER2 cells to these chemotherapy agents at least in part. Taken together, up-regulation of BCRP through PI3K/AKT/NF-κB signaling pathway played an important role in HER2-mediated chemoresistance of MCF7 cells, and AKT, NF-κB, and BCRP pathways might serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Weijia Zhang
- Cancer Research Institute and Cancer Hospital, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | | | |
Collapse
|
139
|
Qin Z, Dai L, Bratoeva M, Slomiany MG, Toole BP, Parsons C. Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia 2011; 25:1598-609. [PMID: 21660043 DOI: 10.1038/leu.2011.144] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus is the causative agent of primary effusion lymphoma (PEL), for which cytotoxic chemotherapy represents the standard of care. The high mortality associated with PEL may be explained in part by resistance of these tumors to chemotherapy. The membrane-bound glycoprotein emmprin (CD147) enhances chemoresistance in tumors through effects on transporter expression, trafficking and interactions. Interactions between hyaluronan and hyaluronan receptors on the cell surface also facilitate emmprin-mediated chemoresistance. Whether emmprin or hyaluronan-receptor interactions regulate chemotherapeutic resistance for virus-associated malignancies is unknown. Using human PEL tumor cells, we found that PEL sensitivity to chemotherapy is directly proportional to expression of emmprin, the lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) and a drug transporter known as the breast cancer resistance protein/ABCG2 (BCRP), and that emmprin, LYVE-1 and BCRP interact with each other and colocalize on the PEL cell surface. In addition, we found that emmprin induces chemoresistance in PEL cells through upregulation of BCRP expression, and RNA interference targeting of emmprin, LYVE-1 or BCRP enhances PEL cell apoptosis induced by chemotherapy. Finally, disruption of hyaluronan-receptor interactions using small hyaluronan oligosaccharides reduces expression of emmprin and BCRP while sensitizing PEL cells to chemotherapy. Collectively, these data support interdependent roles for emmprin, LYVE-1 and BCRP in chemotherapeutic resistance for PEL.
Collapse
Affiliation(s)
- Z Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | |
Collapse
|
140
|
Chavez JD, Hoopmann MR, Weisbrod CR, Takara K, Bruce JE. Quantitative proteomic and interaction network analysis of cisplatin resistance in HeLa cells. PLoS One 2011; 6:e19892. [PMID: 21637840 PMCID: PMC3102677 DOI: 10.1371/journal.pone.0019892] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/14/2011] [Indexed: 11/18/2022] Open
Abstract
Cisplatin along with other platinum based drugs are some of the most widely used chemotherapeutic agents. However drug resistance is a major problem for the successful chemotherapeutic treatment of cancer. Current evidence suggests that drug resistance is a multifactorial problem due to changes in the expression levels and activity of a wide number of proteins. A majority of the studies to date have quantified mRNA levels between drug resistant and drug sensitive cell lines. Unfortunately mRNA levels do not always correlate with protein expression levels due to post-transcriptional changes in protein abundance. Therefore global quantitative proteomics screens are needed to identify the protein targets that are differentially expressed in drug resistant cell lines. Here we employ a quantitative proteomics technique using stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to quantify changes in protein levels between cisplatin resistant (HeLa/CDDP) and sensitive HeLa cells in an unbiased fashion. A total of 856 proteins were identified and quantified, with 374 displaying significantly altered expression levels between the cell lines. Expression level data was then integrated with a network of protein-protein interactions, and biological pathways to obtain a systems level view of proteome changes which occur with cisplatin resistance. Several of these proteins have been previously implicated in resistance towards platinum-based and other drugs, while many represent new potential markers or therapeutic targets.
Collapse
Affiliation(s)
- Juan D. Chavez
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael R. Hoopmann
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Chad R. Weisbrod
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Kohji Takara
- Department of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Japan
| | - James E. Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
141
|
Kim HG, Hien TT, Han EH, Hwang YP, Choi JH, Kang KW, Kwon KI, Kim BH, Kim SK, Song GY, Jeong TC, Jeong HG. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br J Pharmacol 2011; 162:1096-108. [PMID: 21054339 DOI: 10.1111/j.1476-5381.2010.01101.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE The expression of P-glycoprotein (P-gp), encoded by the multidrug resistance 1 (MDR1) gene, is associated with the emergence of the MDR phenotype in cancer cells. We investigated whether metformin (1,1-dimethylbiguanide hydrochloride) down-regulates MDR1 expression in MCF-7/adriamycin (MCF-7/adr) cells. EXPERIMENTAL APPROACH MCF-7 and MCF-7/adr cells were incubated with metformin and changes in P-gp expression were determined at the mRNA, protein and functional level. Transient transfection assays were performed to assess its gene promoter activities, and immunoblot analysis to study its molecular mechanisms of action. KEY RESULTS Metformin significantly inhibited MDR1 expression by blocking MDR1 gene transcription. Metformin also significantly increased the intracellular accumulation of the fluorescent P-gp substrate rhodamine-123. Nuclear factor-κB (NF-κB) activity and the level of IκB degradation were reduced by metformin treatment. Moreover, transduction of MCF-7/adr cells with the p65 subunit of NF-κB induced MDR1 promoter activity and expression, and this effect was attenuated by metformin. The suppression of MDR1 promoter activity and protein expression was mediated through metformin-induced activation of AMP-activated protein kinase (AMPK). Small interfering RNA methods confirmed that reduction of AMPK levels attenuates the inhibition of MDR1 activation associated with metformin exposure. Furthermore, the inhibitory effects of metformin on MDR1 expression and cAMP-responsive element binding protein (CREB) phosphorylation were reversed by overexpression of a dominant-negative mutant of AMPK. CONCLUSIONS AND IMPLICATIONS These results suggest that metformin activates AMPK and suppresses MDR1 expression in MCF-7/adr cells by inhibiting the activation of NF-κB and CREB. This study reveals a novel function of metformin as an anticancer agent.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011; 278:1429-43. [PMID: 21362138 PMCID: PMC3166356 DOI: 10.1111/j.1742-4658.2011.08071.x] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that signals generated in tumor microenvironments are crucial to tumor cell behavior, such as survival, progression and metastasis. The establishment of these malignant behaviors requires that tumor cells acquire novel adhesion and migration properties to detach from their original sites and to localize to distant organs. CD44, an adhesion/homing molecule, is a major receptor for the glycosaminoglycan hyaluronan, which is one of the major components of the tumor extracellular matrix. CD44, a multistructural and multifunctional molecule, detects changes in extracellular matrix components, and thus is well positioned to provide appropriate responses to changes in the microenvironment, i.e. engagement in cell-cell and cell-extracellular matrix interactions, cell trafficking, lymph node homing and the presentation of growth factors/cytokines/chemokines to co-ordinate signaling events that enable the cell responses that change in the tissue environment. The potential involvement of CD44 variants (CD44v), especially CD44v4-v7 and CD44v6-v9, in tumor progression has been confirmed for many tumor types in numerous clinical studies. The downregulation of the standard CD44 isoform (CD44s) in colon cancer is postulated to result in increased tumorigenicity. CD44v-specific functions could be caused by their higher binding affinity than CD44s for hyaluronan. Alternatively, CD44v-specific functions could be caused by differences in associating molecules, which may bind selectively to the CD44v exon. This minireview summarizes how the interaction between hyaluronan and CD44v can serve as a potential target for cancer therapy, in particular how silencing CD44v can target multiple metastatic tumors.
Collapse
Affiliation(s)
- Suniti Misra
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Paraskevi Heldin
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Vincent C. Hascall
- Department of Biomedical Engineering/ND20, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Nikos K. Karamanos
- Department of Chemistry, Laboratory of Biochemistry, University of Patras, Patras, Greece
| | - Spyros S. Skandalis
- Ludwig Institute for Cancer Research, Uppsala University Biomedical Centre, Box 595, SE-75124 Uppsala, Sweden
| | - Roger R. Markwald
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Shibnath Ghatak
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
143
|
Abstract
Can an abundantly expressed molecule be a reliable marker for the cancer-initiating cells (CICs; also known as cancer stem cells), which constitute the minority of cells within the mass of a tumour? CD44 has been implicated as a CIC marker in several malignancies of haematopoietic and epithelial origin. Is this a fortuitous coincidence owing to the widespread expression of the molecule or is CD44 expression advantageous as it fulfils some of the special properties that are displayed by CICs, such as self-renewal, niche preparation, epithelial-mesenchymal transition and resistance to apoptosis?
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumour Cell Biology, University Hospital of Surgery and German Cancer Research Centre, D69120 Heidelberg, Germany.
| |
Collapse
|
144
|
Cain JW, Hauptschein RS, Stewart JK, Bagci T, Sahagian GG, Jay DG. Identification of CD44 as a surface biomarker for drug resistance by surface proteome signature technology. Mol Cancer Res 2011; 9:637-47. [PMID: 21357442 DOI: 10.1158/1541-7786.mcr-09-0237] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We developed surface proteome signatures (SPS) for identification of new biomarkers playing a role in cancer drug resistance. SPS compares surface antigen expression of different cell lines by immunocytochemistry of a phage display antibody library directed to surface antigens of HT1080 fibrosarcoma cells. We applied SPS to compare the surface proteomes of two epithelial derived cancer cell lines, MCF7 and NCI/ADR-RES, which is drug resistant because of overexpression of the P-glycoprotein (P-gp) drug efflux pump. Surface proteomic profiling identified CD44 as an additional biomarker that distinguishes between these two cell lines. CD44 immunohistochemistry can distinguish between tumors derived from these lines and predict tumor response to doxorubicin in vivo. We further show that CD44 plays a role in drug resistance, independently of P-gp, in NCI/ADR-RES cells and increases expression of the antiapoptotic protein Bcl-xL. Our findings illustrate the utility of SPS to distinguish between cancer cell lines and their derived tumors and identify novel biomarkers involved in drug resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Humans
- Hyaluronan Receptors/genetics
- Hyaluronan Receptors/metabolism
- Mice
- Mice, SCID
- Proteome/analysis
- Proteome/genetics
- Transplantation, Heterologous
- Tumor Cells, Cultured
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Jason W Cain
- Department of Physiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
145
|
Brune JC, Tormin A, Johansson MC, Rissler P, Brosjö O, Löfvenberg R, von Steyern FV, Mertens F, Rydholm A, Scheding S. Mesenchymal stromal cells from primary osteosarcoma are non-malignant and strikingly similar to their bone marrow counterparts. Int J Cancer 2010; 129:319-30. [DOI: 10.1002/ijc.25697] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/07/2010] [Indexed: 11/06/2022]
|
146
|
Raja AM, Xu S, Sun W, Zhou J, Tai DCS, Chen CS, Rajapakse JC, So PTC, Yu H. Pulse-modulated second harmonic imaging microscope quantitatively demonstrates marked increase of collagen in tumor after chemotherapy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:056016. [PMID: 21054110 DOI: 10.1117/1.3497565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pulse-modulated second harmonic imaging microscopes (PM-SHIMs) exhibit improved signal-to-noise ratio (SNR) over conventional SHIMs on sensitive imaging and quantification of weak collagen signals inside tissues. We quantify the spatial distribution of sparse collagen inside a xenograft model of human acute myeloid leukemia (AML) tumor specimens treated with a new drug against receptor tyrosine kinase (ABT-869), and observe a significant increase in collagen area percentage, collagen fiber length, fiber width, and fiber number after chemotherapy. This finding reveals new insights into tumor responses to chemotherapy and suggests caution in developing new drugs and therapeutic regimens against cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Collagen/metabolism
- Female
- Humans
- Image Interpretation, Computer-Assisted
- Indazoles/therapeutic use
- Lasers
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, SCID
- Microscopy/instrumentation
- Microscopy/methods
- Neoplasms/drug therapy
- Neoplasms/metabolism
- Neoplasms/pathology
- Optical Phenomena
- Phenylurea Compounds/therapeutic use
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Anju M Raja
- A*STAR, Institute of Bioengineering and Nanotechnology, Singapore 138669
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Hao J, Chen H, Madigan MC, Cozzi PJ, Beretov J, Xiao W, Delprado WJ, Russell PJ, Li Y. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br J Cancer 2010; 103:1008-18. [PMID: 20736947 PMCID: PMC2965856 DOI: 10.1038/sj.bjc.6605839] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: The aim of this study is to seek an association between markers of metastatic potential, drug resistance-related protein and monocarboxylate transporters in prostate cancer (CaP). Methods: We evaluated the expression of invasive markers (CD147, CD44v3-10), drug-resistance protein (MDR1) and monocarboxylate transporters (MCT1 and MCT4) in CaP metastatic cell lines and CaP tissue microarrays (n=140) by immunostaining. The co-expression of CD147 and CD44v3-10 with that of MDR1, MCT1 and MCT4 in CaP cell lines was evaluated using confocal microscopy. The relationship between the expression of CD147 and CD44v3-10 and the sensitivity (IC50) to docetaxel in CaP cell lines was assessed using MTT assay. The relationship between expression of CD44v3-10, MDR1 and MCT4 and various clinicopathological CaP progression parameters was examined. Results: CD147 and CD44v3-10 were co-expressed with MDR1, MCT1 and MCT4 in primary and metastatic CaP cells. Both CD147 and CD44v3-10 expression levels were inversely related to docetaxel sensitivity (IC50) in metastatic CaP cell lines. Overexpression of CD44v3-10, MDR1 and MCT4 was found in most primary CaP tissues, and was significantly associated with CaP progression. Conclusions: Our results suggest that the overexpression of CD147, CD44v3-10, MDR1 and MCT4 is associated with CaP progression. Expression of both CD147 and CD44v3-10 is correlated with drug resistance during CaP metastasis and could be a useful potential therapeutic target in advanced disease.
Collapse
Affiliation(s)
- J Hao
- Faculty of Medicine, UNSW, Kensington NSW 2052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Co-expression of CD147/EMMPRIN with monocarboxylate transporters and multiple drug resistance proteins is associated with epithelial ovarian cancer progression. Clin Exp Metastasis 2010; 27:557-69. [PMID: 20658178 DOI: 10.1007/s10585-010-9345-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Cancer metastasis and anti-cancer drug resistance are the major reason for the failure of clinical cancer treatment. We evaluated CD147, monocarboxylate transporters (MCT1 and MCT4), and multidrug resistance (MDR) markers (MDR1 and MRP2) in 4 epithelial ovarian cancer (EOC) cell lines and primary tumors (n = 120) along with the matched metastatic lesions (n = 40) with immunofluorescence labeling. We correlated CD147 with MCT1, MCT4, MDR1 and MRP2 markers in primary and metastatic cells in cell lines and tissues using confocal microscopy. We also investigated the relationship of expression of CD147, MCT1 and MCT4 with various progression parameters. Our results indicate that the co-expression of CD147 with MCTs or MDR markers was found in primary and metastatic EOC cells and stromal cells; the over-expression of CD147, MCT1 and MCT4 was found in most primary and the matched metastatic lesions of EOC, and was significantly associated with tumor stage, grade, residual disease status and presence of ascites (P < 0.05) but not with histology type (P > 0.05). These results suggest that over-expression of CD147, MCT1 and MCT4 is correlated with EOC progression, and co-expression of CD147 and MCT1/MCT4 is related to drug resistance during EOC metastasis and could be useful therapeutic targets to prevent the development of incurable, recurrent and drug resistance EOC.
Collapse
|
149
|
Richard V, Pillai MR. The stem cell code in oral epithelial tumorigenesis: 'the cancer stem cell shift hypothesis'. Biochim Biophys Acta Rev Cancer 2010; 1806:146-62. [PMID: 20599480 DOI: 10.1016/j.bbcan.2010.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/21/2010] [Accepted: 06/27/2010] [Indexed: 12/21/2022]
Abstract
Tumors of the oral cavity provide an ideal model to study various stages of epithelial tumor progression. A group of cancer cells termed cancer stem cells (CSCs) eludes therapy, persists and initiates recurrence augmenting malignant spread of the disease. Hitherto, accurate identification and separation of such minimal residual cells have proven futile due to lack of identifiable traits to single out these cells from the heterogeneous tumor bulk. In this review we have compiled comprehensive evidence from comparative phenotypic and genotypic studies on normal oral mucosa as well as tumors of different grades to elucidate that differential expression patterns of putative stem cells markers may identify 'minimal residual disease' in oral squamous cell carcinoma. We propose the "cancer stem cell shift hypothesis" to explain the exact identity and switch-over, tumor-promoting mechanisms adapted by putative CSCs with correlation to tumor staging.
Collapse
Affiliation(s)
- Vinitha Richard
- Integrated Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, India
| | | |
Collapse
|
150
|
Kultti A, Kärnä R, Rilla K, Nurminen P, Koli E, Makkonen KM, Si J, Tammi MI, Tammi RH. Methyl-beta-cyclodextrin suppresses hyaluronan synthesis by down-regulation of hyaluronan synthase 2 through inhibition of Akt. J Biol Chem 2010; 285:22901-10. [PMID: 20501660 DOI: 10.1074/jbc.m109.088435] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan synthases (HAS1-3) are integral plasma membrane proteins that synthesize hyaluronan, a cell surface and extracellular matrix polysaccharide necessary for many biological processes. It has been shown that HAS is partly localized in cholesterol-rich lipid rafts of MCF-7 cells, and cholesterol depletion with methyl-beta-cyclodextrin (MbetaCD) suppresses hyaluronan secretion in smooth muscle cells. However, the mechanism by which cholesterol depletion inhibits hyaluronan production has remained unknown. We found that cholesterol depletion from MCF-7 cells by MbetaCD inhibits synthesis but does not decrease the molecular mass of hyaluronan, suggesting no major influence on HAS stability in the membrane. The inhibition of hyaluronan synthesis was not due to the availability of HAS substrates UDP-GlcUA and UDP-GlcNAc. Instead, MbetaCD specifically down-regulated the expression of HAS2 but not HAS1 or HAS3. Screening of signaling proteins after MbetaCD treatment revealed that phosphorylation of Akt and its downstream target p70S6 kinase, both members of phosphoinositide 3-kinase-Akt pathway, were inhibited. Inhibitors of this pathway suppressed hyaluronan synthesis and HAS2 expression in MCF-7 cells, suggesting that the reduced hyaluronan synthesis by MbetaCD is due to down-regulation of HAS2, mediated by the phosphoinositide 3-kinase-Akt-mTOR-p70S6K pathway.
Collapse
Affiliation(s)
- Anne Kultti
- Institute of Biomedicine, Anatomy, University of Eastern Finland, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|