101
|
Abstract
Regulation of signal transduction and gene expression is a multifaceted process involving ligands, receptors, and second messengers that trigger cascades of protein kinases and phosphatases and propagate the signal to the nucleus to alter gene expression. Reduction-oxidation (redox)-based regulatory pathways provide additional means of gating signal transduction, and redox-based regulation of gene expression emerges as a fundamental regulatory mechanism in living cells. The cellular redox state is reflected by the degree of oxidation (or reduction) of various redox-active molecules at a specific cellular location at any given time point. The ratio of oxidized/reduced redox species determines the redox potential, which may vary dramatically in time and in different compartments of a cell and consequently alter in a temporally and spatially dynamic process the activity of signaling enzymes that carry redox-active functional groups. Generation and action of free radicals such as nitric oxide, superoxide, and H(2)O(2) that paradigmatically highlight the impact of redox regulation on cellular signal transduction and gene expression are discussed with a special focus on the renal glomerular response to injury.
Collapse
Affiliation(s)
- Josef Pfeilschifter
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
102
|
Lahti A, Jalonen U, Kankaanranta H, Moilanen E. c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Mol Pharmacol 2003; 64:308-15. [PMID: 12869635 DOI: 10.1124/mol.64.2.308] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we investigated the role of c-Jun NH2-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family, in lipopolysaccharide (LPS)-stimulated inducible nitric-oxide synthase (iNOS) expression and nitric oxide (NO) production in J774 murine macrophages. Anthra(1,9-cd)pyrazol-6(2H)-one (SP600125), a pharmacological inhibitor of JNK, inhibited phosphorylation of c-Jun with an IC50 of 5 to 10 microM. At the same concentrations, SP600125 inhibited LPS-induced iNOS protein expression and NO production. SP600125 had no effect on the activation of nuclear factor kappaB, which is an important transcription factor for iNOS expression. SP600125 had no significant effect on iNOS mRNA levels if measured 4 h after LPS. In contrast, SP600125 reduced iNOS mRNA levels >90% when measured 8 h after LPS. These data suggest that SP600125 reduced iNOS mRNA stability, and this was confirmed in the mRNA degradation assay using actinomycin D, in which SP600125 reduced the iNOS mRNA half-life from 5 to 2 h. These results show that the JNK pathway is involved in the up-regulation of LPS-induced iNOS expression and NO production by a mechanism related to the stabilization of iNOS mRNA.
Collapse
Affiliation(s)
- Aleksi Lahti
- The Immunopharmacological Research Group, University of Tampere Medical School, Tampere, Finland
| | | | | | | |
Collapse
|
103
|
Witteck A, Yao Y, Fechir M, Förstermann U, Kleinert H. Rho protein-mediated changes in the structure of the actin cytoskeleton regulate human inducible NO synthase gene expression. Exp Cell Res 2003; 287:106-15. [PMID: 12799187 DOI: 10.1016/s0014-4827(03)00129-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rho proteins (Rho, Rac, Cdc 42) are known to control the organization of the actin cytoskeleton as well as gene expression. Inhibition of Rho proteins by Clostridium difficile toxin B disrupted the F-actin cytoskeleton and enhanced cytokine-induced inducible nitric oxide synthase (iNOS) expression in human epithelial cells. Also specific inhibition by Y-27632 of p160ROCK, which mediates Rho effects on actin fibers, caused a disruption of the actin cytoskeleton and a superinduction of cytokine-induced iNOS expression. Accordingly, direct disruption of the actin cytoskeleton by cytochalasin D, latrunculin B, or jasplakinolide enhanced cytokine-induced iNOS expression. The transcription factor serum response factor (SRF) has been described as mediating actin cytoskeleton-dependent regulation of gene expression. Direct targets of SRF are activating protein 1 (AP1)-dependent genes. All compounds used inhibited SRF- and AP1-dependent reporter gene expression in DLD-1 cells. However, the enhancing effect of the actin cytoskeleton-disrupting compounds on human iNOS promoter activity was much less pronounced than the effect on iNOS mRNA expression. Therefore, besides transcriptional mechanisms, posttranscriptional effects seem to be involved in the regulation of iNOS expression by the above compounds. In conclusion, our data suggest that Rho protein-mediated changes of the actin cytoskeleton negatively modulate the expression of human iNOS.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Bacterial Proteins
- Bacterial Toxins/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cytochalasin D/pharmacology
- Cytokines/metabolism
- Cytokines/pharmacology
- Cytoskeleton/drug effects
- Cytoskeleton/metabolism
- Depsipeptides
- Enzyme Inhibitors/pharmacology
- Eukaryotic Cells/enzymology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Humans
- Intracellular Signaling Peptides and Proteins
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/drug effects
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Peptides, Cyclic/pharmacology
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Serum Response Factor/drug effects
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Thiazoles/pharmacology
- Thiazolidines
- Transcription Factor AP-1/drug effects
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Tumor Cells, Cultured
- rho GTP-Binding Proteins/drug effects
- rho GTP-Binding Proteins/metabolism
- rho-Associated Kinases
Collapse
Affiliation(s)
- Andrea Witteck
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101, Mainz, Germany
| | | | | | | | | |
Collapse
|
104
|
Akool ES, Kleinert H, Hamada FMA, Abdelwahab MH, Förstermann U, Pfeilschifter J, Eberhardt W. Nitric oxide increases the decay of matrix metalloproteinase 9 mRNA by inhibiting the expression of mRNA-stabilizing factor HuR. Mol Cell Biol 2003; 23:4901-16. [PMID: 12832476 PMCID: PMC162218 DOI: 10.1128/mcb.23.14.4901-4916.2003] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dysregulation of extracellular matrix turnover is an important feature of many inflammatory processes. Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin-1 beta. We demonstrate that NO does strongly destabilize MMP-9 mRNA, since different luciferase reporter gene constructs containing the MMP-9 3' untranslated region (UTR) displayed significant reduced luciferase activity in response to the presence of NO. Moreover, by use of an in vitro degradation assay we found that the cytoplasmic fractions of NO-treated cells contained a higher capacity to degrade MMP-9 transcripts than those obtained from control cells. An RNA electrophoretic mobility shift assay demonstrated that three of four putative AU-rich elements present in the 3' UTR of MMP-9 were constitutively occupied by the mRNA-stabilizing factor HuR and that the RNA binding was strongly attenuated by the presence of NO. The addition of recombinant glutathione transferase-HuR prevented the rapid decay of MMP-9 mRNA, whereas the addition of a neutralizing anti-HuR antibody caused an acceleration of MMP-9 mRNA degradation. Furthermore, the expression of HuR mRNA and protein was significantly reduced by exogenously and endogenously produced NO. These inhibitory effects were mimicked by the cGMP analog 8-bromo-cGMP and reversed by LY-83583, an inhibitor of soluble guanylyl cyclase. These results demonstrate that NO acts in a cGMP-dependent mechanism to inhibit the expression level of HuR, thereby reducing the stability of MMP-9 mRNA.
Collapse
Affiliation(s)
- El-Sayed Akool
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
105
|
Rodríguez-Pascual F, Redondo-Horcajo M, Lamas S. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-beta-mediated induction of endothelin-1 expression. Circ Res 2003; 92:1288-95. [PMID: 12764024 DOI: 10.1161/01.res.0000078491.79697.7f] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Endothelin-1 (ET-1) is a 21-amino-acid potent vasoconstrictor peptide that is mainly produced by vascular endothelial cells. Expression of the ET-1 gene is subject to complex regulation by numerous factors, among which transforming growth factor-beta (TGF-beta) is one of the most important. It has been widely documented that TGF-beta increases ET-1 mRNA and peptide levels. We have explored the mechanism by which TGF-beta upregulates ET-1 expression in endothelial cells. Transcriptional activation of the ET-1 promoter accounted for the TGF-beta-induced increase in ET-1 mRNA levels. We have identified within the ET-1 promoter two DNA elements indispensable for TGF-beta-mediated induction of ET-1: an activator protein-1 (AP-1) site at -108/-102, known to be important for constitutive and induced expression, and a novel regulatory sequence located at -193/-171, which constitutes a specific binding site for Smad transcription factors. Mutation of both elements abolished TGF-beta responsiveness. Binding of Smad3/Smad4 and c-Jun to their corresponding DNA elements was evidenced by electrophoretic mobility shift assays. Furthermore, the coactivator CREB-binding protein (CBP)/p300 was found to play an essential role in the induction of the gene. The simultaneous requirement for two distinct and independent DNA elements suggests that Smads and activator protein-1 functionally cooperate through CBP/p300 to mediate TGF-beta-induced transcriptional activation of the ET-1 gene.
Collapse
MESH Headings
- Animals
- Cattle
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electrophoretic Mobility Shift Assay
- Endothelin-1/genetics
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Luciferases/genetics
- Luciferases/metabolism
- Promoter Regions, Genetic/genetics
- Protein Binding
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Response Elements/genetics
- Signal Transduction
- Smad2 Protein
- Smad3 Protein
- Smad4 Protein
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Transforming Growth Factor beta/pharmacology
Collapse
Affiliation(s)
- Fernando Rodríguez-Pascual
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, C.S.I.C., Instituto Reina Sofía de Investigaciones Nefrológicas, Velázquez 144, E-28006 Madrid, Spain.
| | | | | |
Collapse
|
106
|
Levadoux-Martin M, Gouble A, Jégou B, Vallet-Erdtmann V, Auriol J, Mercier P, Morello D. Impaired gametogenesis in mice that overexpress the RNA-binding protein HuR. EMBO Rep 2003; 4:394-9. [PMID: 12671683 PMCID: PMC1319159 DOI: 10.1038/sj.embor.embor803] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Revised: 01/31/2003] [Accepted: 02/04/2003] [Indexed: 12/31/2022] Open
Abstract
A series of experiments, using cell culture models or in vitro assays, has shown that the RNA-binding protein HuR increases the half-life of some messenger RNAs that contain adenylate/uridylate-rich decay elements. However, its function in an integrated system has not yet been investigated. Here, using a mouse model, we report that misregulation of HuR, due to expression of an HuR transgene, prevents the production of fully functional gametes. This work provides the first evidence for a physiological function of HuR, and highlights its involvement in spermatogenesis.
Collapse
Affiliation(s)
- Marilyne Levadoux-Martin
- Centre de Biologie du Développement, CNRS-UMR5547, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Agnès Gouble
- Centre de Biologie du Développement, CNRS-UMR5547, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
- Cellectis, Institut Pasteur, 25 Rue du Docteur Roux, 75724 Paris, France
| | - Bernard Jégou
- GERM-INSERM U435, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes, France
| | | | - Jacques Auriol
- Centre de Biologie du Développement, CNRS-UMR5547, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
| | - Pascale Mercier
- Institut de Pharmacologie et de Biologie Structurale, CNRS-UMR5089, 205 Route de Narbonne, 31077 Toulouse, France
| | - Dominique Morello
- Centre de Biologie du Développement, CNRS-UMR5547, IFR 109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France
- Tel: +33 5 61 55 64 73; Fax: +33 5 61 55 65 07;
| |
Collapse
|
107
|
Deschenes-Furry J, Belanger G, Perrone-Bizzozero N, Jasmin BJ. Post-transcriptional regulation of acetylcholinesterase mRNAs in nerve growth factor-treated PC12 cells by the RNA-binding protein HuD. J Biol Chem 2003; 278:5710-7. [PMID: 12468554 DOI: 10.1074/jbc.m209383200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Expression of acetylcholinesterase (AChE) is greatly enhanced during neuronal differentiation, but the nature of the molecular mechanisms remains to be fully defined. In this study, we observed that nerve growth factor treatment of PC12 cells leads to a progressive increase in the expression of AChE transcripts, reaching approximately 3.5-fold by 72 h. Given that the AChE 3'-untranslated region (UTR) contains an AU-rich element, we focused on the potential role of the RNA-binding protein HuD in mediating the increase in AChE mRNA seen in differentiating neurons. Using PC12 cells engineered to stably express HuD or an antisense to HuD, our studies indicate that HuD can regulate the abundance of AChE transcripts in neuronal cells. Furthermore, transfection of a reporter construct containing the AChE 3'-UTR showed that this 3'-UTR can increase expression of the reporter gene product in cells expressing HuD but not in cells expressing the antisense. RNA gel shifts and Northwestern blots revealed an increase in the binding of several protein complexes in differentiated neurons. Immunoprecipitation experiments demonstrated that HuD can bind directly AChE transcripts. These results show the importance of post-transcriptional mechanisms in regulating AChE expression in differentiating neurons and implicate HuD as a key trans-acting factor in these events.
Collapse
Affiliation(s)
- Julie Deschenes-Furry
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | |
Collapse
|
108
|
Yao Y, Hausding M, Erkel G, Anke T, Förstermann U, Kleinert H. Sporogen, S14-95, and S-curvularin, three inhibitors of human inducible nitric-oxide synthase expression isolated from fungi. Mol Pharmacol 2003; 63:383-91. [PMID: 12527810 DOI: 10.1124/mol.63.2.383] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The induction of human inducible nitric-oxide synthase (iNOS) expression depends (among other factors) on activation of the signal transducer and activator of transcription 1 (STAT1) pathway. Therefore, the STAT1 pathway may be an appropriate target for the development of inhibitors of iNOS expression. HeLa S3 cells transiently transfected with a gamma-activated site (GAS)/interferon-stimulated response element-driven reporter gene construct were used as the primary screening system. Using this system, three novel inhibitors of interferon-gamma-dependent gene expression, namely, sporogen, S14-95, and S-curvularin, were isolated from different Penicillium species. These three compounds also inhibited cytokine-induced, GAS-dependent reporter gene expression in stably transfected human A549/8-pGASLuc cells, confirming the data obtained with the above-mentioned screening system. Furthermore, in A549/8 cells, sporogen, S14-95, and S-curvularin inhibited cytokine-induced activity of the human iNOS promoter [a 16-kilobase (kb) fragment in stably transfected A549/8-pNOS2(16)Luc cells], cytokine-induced iNOS mRNA expression, and cytokine-induced nitric oxide (NO) production in a concentration-dependent manner. The proliferation of A549/8 cells, and the activity of the human eNOS promoter (a 3.5-kb fragment in stably transfected ECV-pNOS III-Hu-3500-Luc cells), were only influenced marginally by the three compounds. Sporogen, S14-95, and S-curvularin also inhibited cytokine-induced activation of STAT1alpha in A549/8 cells. In conclusion, sporogen, S14-95, and S-curvularin represent new transcriptionally based inhibitors of iNOS-dependent NO production, acting on the Janus tyrosine kinase-STAT pathway. These compounds may represent lead structures for the development of drugs inhibiting iNOS-dependent overproduction of NO in pathophysiological situations.
Collapse
Affiliation(s)
- Ying Yao
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
109
|
Kloss S, Furneaux H, Mülsch A. Post-transcriptional regulation of soluble guanylyl cyclase expression in rat aorta. J Biol Chem 2003; 278:2377-83. [PMID: 12441354 DOI: 10.1074/jbc.m206453200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the 3'-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antigens, Surface
- Aorta/enzymology
- Aorta/metabolism
- Aorta/pathology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Dactinomycin/pharmacology
- Down-Regulation
- ELAV Proteins
- ELAV-Like Protein 1
- Enzyme Activators/pharmacology
- Guanylate Cyclase
- Indazoles/pharmacology
- Male
- Molecular Sequence Data
- Muscle, Smooth/cytology
- Nucleic Acid Synthesis Inhibitors/pharmacology
- Oxadiazoles/pharmacology
- Oxazines/pharmacology
- Poly A/metabolism
- Protein Binding
- Protein Structure, Tertiary
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- RNA, Small Interfering
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction
- Soluble Guanylyl Cyclase
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Stephan Kloss
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Theodor Stern-Kai 7, Frankfurt/Main D60590, Germany
| | | | | |
Collapse
|
110
|
Yu Q, Cok SJ, Zeng C, Morrison AR. Translational repression of human matrix metalloproteinases-13 by an alternatively spliced form of T-cell-restricted intracellular antigen-related protein (TIAR). J Biol Chem 2003; 278:1579-84. [PMID: 12426321 DOI: 10.1074/jbc.m203526200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human matrix metalloproteinases-13 (HMMP13) shows a wide substrate specificity, and its expression is limited to pathological situations such as chronic inflammation and cancer. The coding sequence for HMMP13 is 86% identical to rat matrix metalloproteinases-13 (RMMP13); however, the regulation of HMMP13 and RMMP13 protein synthesis in renal mesangial cells is strikingly different. In human cells there is a discordance between HMMP13 mRNA levels and protein expression. Following IL-1 beta or TGF-beta(1) stimulation, HMMP13 mRNA levels increase significantly, whereas the protein expression is absent. This discordance is because of a species-dependent translational repression. In addition to the 3'-untranslated region of the matrix metalloproteinases-13 (MMP13) gene, the differential expression of an alternatively spliced transcript of the RNA-binding protein TIAR in human cell cultures is also critical for this post-transcriptional regulation. Transient expression of the 17-amino acid insert of the alternatively spliced form of TIAR reverses the HMMP13 mRNA silencing observed in human and primate species. In addition, co-transfection of the alternatively spliced form of TIAR and HMMP13 into Rat2 cells suppresses HMMP13 protein expression. Thus, we report for the first time that a species-dependent TIAR isoform plays a major role in the post-transcriptional silencing for HMMP13.
Collapse
Affiliation(s)
- Qing Yu
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
111
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 289] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|
112
|
Frevel MAE, Bakheet T, Silva AM, Hissong JG, Khabar KSA, Williams BRG. p38 Mitogen-activated protein kinase-dependent and -independent signaling of mRNA stability of AU-rich element-containing transcripts. Mol Cell Biol 2003; 23:425-36. [PMID: 12509443 PMCID: PMC151534 DOI: 10.1128/mcb.23.2.425-436.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate/uridylate-rich element (ARE)-mediated mRNA turnover is an important regulatory component of gene expression for innate and specific immunity, in the hematopoietic system, in cellular growth regulation, and for many other cellular processes. This diversity is reflected in the distribution of AREs in the human genome, which we have established as a database of more than 900 ARE-containing genes that may utilize AREs as a means of controlling cellular mRNA levels. The p38 mitogen-activated protein kinase (MAP kinase) pathway has been implicated in regulating the stability of nine ARE-containing transcripts. Here we explored the entire spectrum of ARE-containing genes for p38-dependent regulation of ARE-mediated mRNA turnover with a custom cDNA array containing probes for 950 ARE mRNAs. The human monocytic cell line THP-1 treated with lipopolysaccharide (LPS) was used as a reproducible cellular model system that allowed us to precisely control the conditions of mRNA induction and decay in the absence and presence of the p38 inhibitor SB203580. This approach allowed us to establish an LPS-induced ARE mRNA expression profile in human monocytes and determine the half-lives of 470 AU-rich mRNAs. Most importantly, we identified 42 AU-rich genes, previously unrecognized, that show p38-dependent mRNA stabilization. In addition to a number of cytokines, several interesting novel AU-rich transcripts likely to play a role in macrophage activation by LPS exhibited p38-dependent transcript stabilization, including macrophage-specific colony-stimulating factor 1, carbonic anhydrase 2, Bcl2, Bcl2-like 2, and nuclear factor erythroid 2-like 2. Finally, the identification of the p38-dependent upstream activator MAP kinase kinase 6 as a member of this group identifies a positive feedback loop regulating macrophage signaling via p38 MAP kinase-dependent transcript stabilization.
Collapse
Affiliation(s)
- Mathias A E Frevel
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
113
|
Li H, Park S, Kilburn B, Jelinek MA, Henschen-Edman A, Aswad DW, Stallcup MR, Laird-Offringa IA. Lipopolysaccharide-induced methylation of HuR, an mRNA-stabilizing protein, by CARM1. Coactivator-associated arginine methyltransferase. J Biol Chem 2002; 277:44623-30. [PMID: 12237300 DOI: 10.1074/jbc.m206187200] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The RNA-binding protein HuR stabilizes labile mRNAs carrying AU-rich instability elements. This mRNA stabilization can be induced by hypoxia, lipopolysaccharide, and UV light. The mechanism by which these stimuli activate HuR is unclear and might be related to post-translational modification of this protein. Here we show that HuR can be methylated on arginine. However, HuR is not a substrate for PRMT1, the most prominent protein-arginine methyltransferase in mammalian cells, which methylates a number of heterogeneous nuclear ribonucleoproteins. Instead, HuR is specifically methylated by coactivator-associated arginine methyltransferase 1 (CARM1), a protein-arginine methyltransferase previously shown to serve as a transcriptional coactivator. By analyzing methylation of specific HuR arginine-to-lysine mutants and by sequencing radioactively methylated HuR peptides, Arg(217) was identified as the major HuR methylation site. Arg(217) is located in the hinge region between the second and third of the three HuR RNA recognition motif domains. Antibodies against a methylated HuR peptide were used to demonstrate in vivo methylation of HuR. HuR methylation increased in cells that overexpressed CARM1. Importantly, lipopolysaccharide stimulation of macrophages, which leads to HuR-mediated stabilization of tumor necrosis factor alpha mRNA in these cells, caused increased methylation of endogenous HuR. Thus, CARM1, which plays a role in transcriptional activation through histone H3 methylation, may also play a role in post-transcriptional gene regulation by methylating HuR.
Collapse
Affiliation(s)
- Hongwei Li
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Yaman I, Fernandez J, Sarkar B, Schneider RJ, Snider MD, Nagy LE, Hatzoglou M. Nutritional control of mRNA stability is mediated by a conserved AU-rich element that binds the cytoplasmic shuttling protein HuR. J Biol Chem 2002; 277:41539-46. [PMID: 12196519 PMCID: PMC1959406 DOI: 10.1074/jbc.m204850200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cationic amino acid transporter, Cat-1, is a high affinity transporter of the essential amino acids, arginine and lysine. Expression of the cat-1 gene increases during nutritional stress as part of the adaptive response to starvation. Amino acid limitation induces coordinate increases in stability and translation of the cat-1 mRNA, at a time when global protein synthesis decreases. It is shown here that increased cat-1 mRNA stability requires an 11 nucleotide AU-rich element within the distal 217 bases of the 3'-untranslated region. When this 217-nucleotide nutrient sensor AU-rich element (NS-ARE) is present in a chimeric mRNA it confers mRNA stabilization during amino acid starvation. HuR is a member of the ELAV family of RNA-binding proteins that has been implicated in regulating the stability of ARE-containing mRNAs. We show here that the cytoplasmic concentration of HuR increases during amino acid starvation, at a time when total cellular HuR levels decrease. In addition, RNA gel shift experiments in vitro demonstrated that HuR binds to the NS-ARE and binding was dependent on the 11 residue AU-rich element. Moreover, HuR binding to the NS-ARE in extracts from amino acid-starved cells increased in parallel with the accumulation of cytoplasmic HuR. It is proposed that an adaptive response of cells to nutritional stress results in increased mRNA stability mediated by HuR binding to the NS-ARE.
Collapse
Affiliation(s)
- Ibrahim Yaman
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - James Fernandez
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Bedabrata Sarkar
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Robert J. Schneider
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Martin D. Snider
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Laura E. Nagy
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| | - Maria Hatzoglou
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106-4906
| |
Collapse
|
115
|
Feng X, Guo Z, Nourbakhsh M, Hauser H, Ganster R, Shao L, Geller DA. Identification of a negative response element in the human inducible nitric-oxide synthase (hiNOS) promoter: The role of NF-kappa B-repressing factor (NRF) in basal repression of the hiNOS gene. Proc Natl Acad Sci U S A 2002; 99:14212-7. [PMID: 12381793 PMCID: PMC137863 DOI: 10.1073/pnas.212306199] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although nuclear factor (NF)-kappaB plays a central role in mediating cytokine-stimulated human inducible nitric-oxide synthase (hiNOS) gene transcription, very little is known about the factors involved in silencing of the hiNOS promoter. NF-kappaB-repressing factor (NRF) interacts with a specific negative regulatory element (NRE) to mediate transcriptional repression of certain NF-kappaB responsive genes. By sequence comparison with the IFN-beta and IL-8 promoters, we identified an NRE in the hiNOS promoter located at -6.7 kb upstream. In A549 and HeLa human cells, constitutive NRF mRNA expression is detected by RT-PCR. Gel shift assay showed constitutive NRF binding to the hiNOS NRE. Mutation of the -6.7-kb NRE site in the hiNOS promoter resulted in loss of NRF binding and increased basal but not cytokine-stimulated hiNOS transcription in promoter transfection experiments. Interestingly, overexpression of NRF suppressed both basal and cytokine-induced hiNOS promoter activity that depended on an intact cis-acting NRE motif. By using stably transformed HeLa cells with the tetracycline on/off expression system, reduction of cellular NRF by expressing antisense NRF increased basal iNOS promoter activity and resulted in constitutive iNOS mRNA expression. These data demonstrate that the transacting NRF protein is involved in constitutive silencing of the hiNOS gene by binding to a cis-acting NRE upstream in the hiNOS promoter.
Collapse
Affiliation(s)
- Xuesheng Feng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Hollams EM, Giles KM, Thomson AM, Leedman PJ. MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002; 27:957-80. [PMID: 12462398 DOI: 10.1023/a:1020992418511] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of gene expression is essential for the homeostasis of an organism, playing a pivotal role in cellular proliferation, differentiation, and response to specific stimuli. Multiple studies over the last two decades have demonstrated that the modulation of mRNA stability plays an important role in regulating gene expression. The stability of a given mRNA transcript is determined by the presence of sequences within an mRNA known as cis-elements, which can be bound by trans-acting RNA-binding proteins to inhibit or enhance mRNA decay. These cis-trans interactions are subject to a control by a wide variety of factors including hypoxia, hormones, and cytokines. In this review, we describe mRNA biosynthesis and degradation, and detail the cis-elements and RNA-binding proteins known to affect mRNA turnover. We present recent examples in which dysregulation of mRNA stability has been associated with human diseases including cancer, inflammatory disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Elysia M Hollams
- Laboratory for Cancer Medicine and University Department of Medicine, Western Australian Institute for Medical Research and University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
117
|
Eberhardt W, Akool ES, Rebhan J, Frank S, Beck KF, Franzen R, Hamada FMA, Pfeilschifter J. Inhibition of cytokine-induced matrix metalloproteinase 9 expression by peroxisome proliferator-activated receptor alpha agonists is indirect and due to a NO-mediated reduction of mRNA stability. J Biol Chem 2002; 277:33518-28. [PMID: 12093797 DOI: 10.1074/jbc.m202008200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat renal mesangial cells express high levels of matrix metalloproteinase 9 (MMP-9) in response to inflammatory cytokines such as interleukin 1beta (IL-1beta). We tested whether ligands of the peroxisome proliferator-activated receptor (PPARalpha) could influence the cytokine-induced expression of MMP-9. Different PPARalpha agonists dose-dependently inhibited the IL-1beta-triggered increase in gelatinolytic activity mainly by decreasing the MMP-9 steady-state mRNA levels. PPARalpha agonists on their own had no effects on MMP-9 mRNA levels and gelatinolytic activity. Surprisingly, the reduction of MMP-9 mRNA levels by PPARalpha activators contrasted with an amplification of cytokine-mediated MMP-9 gene promoter activity and mRNA expression. The potentiation of MMP-9 promoter activity functionally depends on an upstream peroxisome proliferator-responsive element-like binding site, which displayed an increased DNA binding of a PPARalpha immunopositive complex. In contrast, the IL-1beta-induced DNA-binding of nuclear factor kappaB was significantly impaired by PPARalpha agonists. Most interestingly, in the presence of an inducible nitric-oxide synthase (iNOS) inhibitor, the PPARalpha-mediated suppression switched to a strong amplification of IL-1beta-triggered MMP-9 mRNA expression. Concomitantly, activators of PPARalpha potentiated the cytokine-induced iNOS expression. Using actinomycin D, we found that NO, but not PPARalpha activators, strongly reduced the stability of MMP-9 mRNA. In contrast, the stability of MMP-9 protein was not affected by PPARalpha activators. In summary, our data suggest that the inhibitory effects of PPARalpha agonists on cytokine-induced MMP-9 expression are indirect and primarily due to a superinduction of iNOS with high levels of NO reducing the half-life of MMP-9 mRNA.
Collapse
Affiliation(s)
- Wolfgang Eberhardt
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main D-60590, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Cernuda-Morollón E, Rodríguez-Pascual F, Klatt P, Lamas S, Pérez-Sala D. PPAR agonists amplify iNOS expression while inhibiting NF-kappaB: implications for mesangial cell activation by cytokines. J Am Soc Nephrol 2002; 13:2223-31. [PMID: 12191966 DOI: 10.1097/01.asn.0000025786.87646.b1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In acute inflammation, the transcription factor NF-kappaB is activated and increases the expression of multiple pro-inflammatory genes. Agonists of peroxisome proliferator activated receptors (PPAR) have been reported to exert antiinflammatory effects in various systems. In keeping with such an antiinflammatory role, it was found that several PPAR agonists, including Wy14,643, clofibrate, carbaprostacyclin, and ciglitazone inhibited NF-kappaB activity and increased IkappaBalpha levels in cytokine-stimulated mesangial cells (MC). Activation of NF-kappaB has been found to be crucial to the cytokine-elicited expression of inducible nitric oxide synthase (iNOS). Despite the inhibitory effect of PPAR agonists on NF-kappaB activity, this study provides experimental data demonstrating that these agonists amplify cytokine-elicited NO generation in MC, potentiating iNOS protein expression approximately threefold. The upregulation of iNOS expression occurred at the mRNA level and apparently did not result from iNOS mRNA stabilization. Clofibrate and ciglitazone amplified the cytokine-elicited stimulation of a 16-Kb human iNOS promoter construct in stably transfected MC, suggesting that PPAR agonists potentiate iNOS induction through transcriptional mechanisms. MC express all three PPAR proteins. However, iNOS potentiation did not correlate with increased PPAR activity. In addition, Wy14,643-induced amplification of cytokine-elicited iNOS levels also occurred in RAW264.7 macrophages and in human epithelial Caco-2 and HT-29 cells. The observation that these epithelial cell lines express an inactive, truncated PPARalpha variant suggests that a classical PPARalpha agonist, such as Wy14,643, may act through PPARalpha-independent mechanisms. In conclusion, these results show that, despite reducing NF-kappaB activity, PPAR agonists may amplify the expression of certain NF-kappaB-dependent genes that are relevant to the inflammatory process, like iNOS.
Collapse
Affiliation(s)
- Eva Cernuda-Morollón
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, C.S.I.C. and Instituto Reina Sofía de Investigaciones Nefrológicas, Madrid, Spain
| | | | | | | | | |
Collapse
|
119
|
Korhonen R, Lahti A, Hämäläinen M, Kankaanranta H, Moilanen E. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 2002; 62:698-704. [PMID: 12181447 DOI: 10.1124/mol.62.3.698] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway is increased in inflammatory diseases and leads to cellular injury. Anti-inflammatory steroids inhibit the expression of various inflammatory genes, including iNOS. In the present study, we investigated the mechanism how dexamethasone decreased NO production in murine J774 macrophages. Dexamethasone (0.1-10 microM) inhibited the production of NO and iNOS protein in a dose-dependent manner in cells stimulated with lipopolysaccharides (LPS). In contrast, in cells treated with a combination of LPS and interferon-gamma (IFN-gamma), dexamethasone did not reduce iNOS expression and NO formation. Dissociated glucocorticoid RU24858 inhibited iNOS expression and NO production to levels comparable with that of dexamethasone, suggesting that the reduced iNOS expression by dexamethasone is not a GRE-mediated event. In further studies, the effect of dexamethasone on iNOS mRNA levels was tested by actinomycin assay. The half-life of iNOS mRNA after LPS treatment was 5 h 40 min, and dexamethasone reduced it to 3 h. The increased degradation of iNOS mRNA was reversed by a protein synthesis inhibitor cycloheximide. iNOS mRNA was more stabile in cells treated with a combination of LPS plus IFN-gamma (half-life = 8 h 20 min), and dexamethasone had a minor effect in these conditions. In conclusion, dexamethasone decreases iNOS-dependent NO production by destabilizing iNOS mRNA in LPS-treated cells by a mechanism that requires de novo protein synthesis. Also, decreased iNOS mRNA and protein expression and NO formation by dexamethasone was not found in cells treated with a combination of LPS plus IFN-gamma, suggesting that the effect of dexamethasone is stimulus-dependent.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacological Research Group, Medical School, University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
120
|
Söderberg M, Raffalli-Mathieu F, Lang MA. Inflammation modulates the interaction of heterogeneous nuclear ribonucleoprotein (hnRNP) I/polypyrimidine tract binding protein and hnRNP L with the 3'untranslated region of the murine inducible nitric-oxide synthase mRNA. Mol Pharmacol 2002; 62:423-31. [PMID: 12130696 DOI: 10.1124/mol.62.2.423] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interaction of two members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family with the 3'untranslated region (UTR) of the murine inducible nitric-oxide synthase (iNOS) mRNA is demonstrated in this study. An iNOS RNA-protein complex is formed using protein extracts from untreated and septic shock treated mouse liver. UV cross-linking reveals that the complex consists of at least two proteins, with apparent molecular masses of 60 and 70 kDa, respectively. The 60-kDa protein binding site lies within a 112-nt pyrimidine-rich sequence, approximately 160 nt from the coding sequence, and the RNA-protein complex can be precipitated by a monoclonal antibody directed against hnRNP I [also named polypyrimidine tract binding protein (PTB)]. The 70-kDa protein binds a 43-nt sequence near the 3'end of the 3'UTR and is immunoprecipitated by a monoclonal antibody against hnRNP L. A computer-simulated conformation of the 3'UTR suggests that both binding sites reside in regions easily accessible for a protein. Supershifts of the native RNA-protein complex could only be achieved with anti-hnRNP L, suggesting that within this multiprotein RNA complex, only hnRNP L is exposed to the antibodies, whereas the hnRNP I/PTB is mainly responsible for its interaction with the mRNA. Up-regulation of iNOS by septic shock reduces the RNA-protein complex formation, thus showing that hnRNP I/PTB and hnRNP L binding to the iNOS mRNA is modulated by inflammation. This suggests a novel function for the two previously described proteins as regulators of the iNOS gene.
Collapse
Affiliation(s)
- Malin Söderberg
- Division of Biochemistry, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
121
|
Lapucci A, Donnini M, Papucci L, Witort E, Tempestini A, Bevilacqua A, Nicolin A, Brewer G, Schiavone N, Capaccioli S. AUF1 Is a bcl-2 A + U-rich element-binding protein involved in bcl-2 mRNA destabilization during apoptosis. J Biol Chem 2002; 277:16139-46. [PMID: 11856759 DOI: 10.1074/jbc.m201377200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified a conserved A + U-rich element (ARE) in the 3'-untranslated region of bcl-2 mRNA. We have also recently demonstrated that the bcl-2 ARE interacts with a number of ARE-binding proteins (AUBPs) whose pattern changes during apoptosis in association with bcl-2 mRNA half-life reduction. Here we show that the AUBP AUF1 binds in vitro to bcl-2 mRNA. The results obtained in a yeast RNA three-hybrid system have demonstrated that the 1-257-amino acid portion of p37 AUF1 (conserved in all isoforms), containing the two RNA recognition motifs, also binds to the bcl-2 ARE in vivo. UVC irradiation-induced apoptosis results in an increase of AUF1. Inhibition of apoptosis by a general caspase inhibitor reduces this increase by 2-3-fold. These results indicate involvement of AUF1 in the ARE/AUBP-mediated modulation of bcl-2 mRNA decay during apoptosis.
Collapse
Affiliation(s)
- Andrea Lapucci
- Department of Experimental Pathology and Oncology, School of Medicine, University of Florence, 50134 Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Barceló-Batllori S, André M, Servis C, Lévy N, Takikawa O, Michetti P, Reymond M, Felley-Bosco E. Proteomic analysis of cytokine induced proteins in human intestinal epithelial cells: implications for inflammatory bowel diseases. Proteomics 2002; 2:551-60. [PMID: 11987129 DOI: 10.1002/1615-9861(200205)2:5<551::aid-prot551>3.0.co;2-o] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A role for cytokine regulated proteins in epithelial cells has been suggested in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to identify such cytokine regulated targets using a proteomic functional approach. Protein patterns from (35)S-radiolabeled homogenates of cultured colon epithelial cells were compared before and after exposure to interferon-gamma, interleukin-1beta and interleukin-6. Proteins were separated by two-dimensional polyacrylamide gel electrophoresis. Both autoradiographies and silver stained gels were analyzed. Proteins showing differential expression were identified by tryptic in-gel digestion and mass spectrometry. Metabolism related proteins were also investigated by Western blot analysis. Tryptophanyl-tRNA synthetase, indoleamine-2,3-dioxygenase, heterogeneous nuclear ribonucleoprotein JKTBP, interferon-induced 35kDa protein, proteasome subunit LMP2 and arginosuccinate synthetase were identified as cytokine modulated proteins in vitro. Using purified epithelial cells from patients, overexpression of indoleamine-2,3-dioxygenase, an enzyme involved in tryptophan metabolism, was confirmed in Crohn's disease as well as in ulcerative colitis, as compared to normal mucosa. No such difference was found in diverticulitis. Potentially, this observation opens new avenues in the treatment of IBD.
Collapse
|
123
|
Goldberg-Cohen I, Furneauxb H, Levy AP. A 40-bp RNA element that mediates stabilization of vascular endothelial growth factor mRNA by HuR. J Biol Chem 2002; 277:13635-40. [PMID: 11834731 DOI: 10.1074/jbc.m108703200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VEGF is a critical mediator of hypoxia-induced angiogenesis in numerous physiological and pathophysiological conditions. The hypoxic induction of VEGF is due in large part to an increase in the stability of its mRNA. We recently demonstrated that the stabilization of VEGF mRNA by hypoxia is dependent upon the RNA-binding protein HuR. This report describes the identification of a 40-bp functional HuR binding site in the VEGF mRNA 3'-untranslated region. This element can confer HuR-mediated stabilization of a heterologous gene in vitro and in vivo. Furthermore, the element is sufficient to confer an increase in the hypoxic induction of a heterologous gene. Deletion of the HuR binding site within this 40-bp element as mapped by RNase T1 and lead footprinting uncouples a stabilizing sequence from a destabilizing sequence, thus providing a novel RNA-protein regulatory model that might be exploited to manipulate VEGF expression and hypoxia-induced angiogenesis.
Collapse
Affiliation(s)
- Ilana Goldberg-Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Post Office Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
124
|
Pance A, Chantome A, Reveneau S, Bentrari F, Jeannin JF. A repressor in the proximal human inducible nitric oxide synthase promoter modulates transcriptional activation. FASEB J 2002; 16:631-3. [PMID: 11919177 DOI: 10.1096/fj.01-0450fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human inducible nitric oxide synthase (iNOS or NOSII) gene is regulated through an extended and complex promoter. In this study, the transcriptional regulation of human NOSII is investigated in the human colon cell line HCT-8R. Stimulation with a cytokine mix (interferon-gamma, interleukin 1-beta, and tumor necrosis factor alpha) induces NOSII mRNA accumulation, as well as promoter activity in these cells. Several random deletions were performed within the proximal 7 kb of the promoter, which led to the identification of a region, whose deletion provokes a marked increase in transcriptional activity upon cytokine stimulation. Furthermore, this region is shown to repress a viral-driven luciferase construct, mainly at basal levels. An AP-1-like sequence present in this region that is specifically recognized by nuclear proteins is shown to be involved in the repressive effect. This element is capable of repressing a viral promoter, and its deletion augments cytokine-stimulated transcription. These findings are confirmed in various cell lines and suggest a general mechanism for the control of basal levels of NOSII expression, to avoid unnecessary toxicity under normal conditions.
Collapse
Affiliation(s)
- Alena Pance
- Cancer Immunotherapy Laboratory of the Ecole Pratique des Hautes Etudes and INSERM U-517, University of Bourgogne, Faculty of Medicine, 21000 Dijon, France.
| | | | | | | | | |
Collapse
|
125
|
Suda S, Nibuya M, Suda H, Takamatsu K, Miyazaki T, Nomura S, Kawai N. Potassium channel mRNAs with AU-rich elements and brain-specific expression. Biochem Biophys Res Commun 2002; 291:1265-71. [PMID: 11883954 DOI: 10.1006/bbrc.2002.6592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GIRK2 (G protein-gated inwardly rectifying K(+) channel 2) located on the Down syndrome region 21q22.2 in humans has been reported to have several alternative transcripts and transcripts longer than 4 kb that do not have the poly-A tail. We sequenced GIRK2 transcripts with a long 3'-untranslated region (3'-UTR) containing multiple adenylate uridylate-rich elements (AREs) with the poly-A tail. In a 16-kb transcript, 28 AUUUA pentanucleotides, 9 AUUUUA hexanucleotides, 5 AUUUUUA heptanucleotides, and 3 UUAUUUA[U/A][U/A] nonanucleotides were found. Northern blot and in situ hybridization revealed abundant expression of the 16-kb transcripts in the rat brain despite no detectable signals in other tissues examined. The AREs have been reported to mediate the turnover of mRNAs encoding proteins regulating cellular proliferation/differentiation and body response to inflammatory and environmental stimuli. This is the first study indicating that ion channel transcripts have multiple AREs.
Collapse
Affiliation(s)
- Shiro Suda
- Department of Psychiatry, Jichi Medical School, Yakushiji 3311-1, Minamikawachi, Tochigi 239-0498, Japan
| | | | | | | | | | | | | |
Collapse
|
126
|
Failli P, Nistri S, Quattrone S, Mazzetti L, Bigazzi M, Sacchi TB, Bani D. Relaxin up-regulates inducible nitric oxide synthase expression and nitric oxide generation in rat coronary endothelial cells. FASEB J 2002; 16:252-4. [PMID: 11744624 DOI: 10.1096/fj.01-0569fje] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Relaxin (RLX) is a reproductive hormone with vasodilatatory properties on several organs, including the heart. RLX-induced vasodilatation appears to depend on the stimulation of endogenous NO production. Here, we investigate whether RLX acts on rat coronary endothelial (RCE) cells in vitro by inducing changes of NO generation and, if so, to clarify the possible mechanism of action. RCE cells were treated for 24 h with vehicle (controls) or RLX, alone or in association with inhibitors of NO synthesis or dexamethasone, which inhibits transcription of NO synthase gene. In some experiments, inactivated RLX was given in the place of authentic RLX. Expression of NO synthase isozymes II and III was analyzed by immunocytochemistry, Western blot, and RT-PCR. NO production was evaluated by the Griess reaction for nitrite and the NO-sensitive fluorophore DAF-2/DA. Agonist-induced changes of intracellular Ca2+ transient were studied with the Ca2+-sensitive fluorophore Fura 2-AM. RLX was found to up regulate NOS II mRNA and protein and to stimulate intrinsic NO generation, likely through the activation of a dexamethasone-sensitive transcription factor, and to decrease agonist-induced intracellular Ca2+ transient. Conversely, RLX had negligible effects on NOS III expression. By these biological effects, RLX may afford significant protection against cardiovascular disease.
Collapse
Affiliation(s)
- Paola Failli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
127
|
Affiliation(s)
- Bruce R Pitt
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | |
Collapse
|
128
|
Zulueta JJ, Sawhney R, Kayyali U, Fogel M, Donaldson C, Huang H, Lanzillo JJ, Hassoun PM. Modulation of inducible nitric oxide synthase by hypoxia in pulmonary artery endothelial cells. Am J Respir Cell Mol Biol 2002; 26:22-30. [PMID: 11751200 DOI: 10.1165/ajrcmb.26.1.4510] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The effects of hypoxia on the regulation of inducible nitric oxide synthase (NOS) 2 expression were examined in cultured rat pulmonary microvascular endothelial cells (EC). EC did not express NOS 2 mRNA or protein when exposed to normoxia or hypoxia unless they were pretreated with interleukin (IL)-1beta and/or tumor necrosis factor (TNF)-alpha for 24 h. Induction of NOS 2 by IL-1beta+TNF-alpha was significantly attenuated by concomitant exposure of EC to hypoxia or treatment of EC with antioxidants such as tiron, diphenyliodonium, and catalase, suggesting that NOS 2 expression is dependent on the production of reactive oxygen species. Degradation of IkappaB and activation of NF-kappaB, which were both induced by treatment of EC with cytokines, were not altered when the cells were exposed to hypoxia, suggesting that the modulation of NOS 2 expression by hypoxia is unrelated to NF-kappaB activation. Following stimulation with IL-1beta+TNF-alpha for 24 h, incubation of EC in normoxia resulted in a progressive decline in NOS 2 expression and a calculated half-life of approximately 6 h for NOS 2 mRNA. Hypoxia significantly prolonged the half-life of NOS 2 mRNA (17 h, P < 0.05 versus normoxic EC). The half-life of NOS 2 mRNA was also prolonged by actinomycin D treatment (19.5 and 29.5 h for normoxic and hypoxic EC, respectively), suggesting that transcription of an RNA destabilizing factor or RNAse contributes to NOS 2 mRNA degradation. In EC transiently transfected with the rat NOS 2 promoter, hypoxia and the combination of IL-1beta+TNF-alpha independently increased promoter activity 2.2- and 3-fold, respectively. As opposed to the attenuating effect that hypoxia had on IL-1beta+TNF-alpha- dependent induction of NOS 2 gene expression, the concomitant treatment with IL-1beta+TNF-alpha and hypoxia synergistically increased NOS 2 promoter activity 17.6-fold. Taken together, these results suggest that hypoxia alone does not induce NOS 2 expression in cultured pulmonary microvascular EC, but may modulate cytokine induction of this enzyme at pretranscriptional, transcriptional, and posttranscriptional levels.
Collapse
Affiliation(s)
- Javier J Zulueta
- Pulmonary and Critical Care Division, Department of Medicine/Tupper Research Institute, New England Medical Center, Boston, Massachusetts 02111, USA
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Loflin P, Lever JE. HuR binds a cyclic nucleotide-dependent, stabilizing domain in the 3' untranslated region of Na(+)/glucose cotransporter (SGLT1) mRNA. FEBS Lett 2001; 509:267-71. [PMID: 11741601 DOI: 10.1016/s0014-5793(01)03176-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Differentiation-dependent expression of the Na(+)/glucose cotransporter (SGLT1) is accompanied by a large, cAMP-dependent increase in stability of its mRNA. Stabilization is mediated by protein binding to a critical uridine-rich element (URE) in its 3' untranslated region. In the present study, we demonstrate that HuR, an RNA binding protein of the embryonic lethal abnormal vision family, binds the SGLT1 URE. HuR binding was increased after elevation of intracellular cAMP levels and was dependent on protein phosphorylation. This interaction was prevented by a substitution mutation previously shown to block cAMP-dependent reporter message stabilization. These results implicate HuR as a key mediator of cAMP-dependent SGLT1 mRNA stabilization.
Collapse
Affiliation(s)
- P Loflin
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, P.O. Box 20708, Houston, TX 77225, USA
| | | |
Collapse
|
130
|
Capowski EE, Esnault S, Bhattacharya S, Malter JS. Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5970-6. [PMID: 11698476 DOI: 10.4049/jimmunol.167.10.5970] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short-lived peripheral blood eosinophils are recruited to the lungs of asthmatics after allergen challenge, where they become long-lived effector cells central to disease pathophysiology. GM-CSF is an important cytokine which promotes eosinophil differentiation, function, and survival after transit into the lung. In human eosinophils, GM-CSF production is controlled by regulated mRNA stability mediated by the 3' untranslated region, AU-rich elements (ARE). We identified human Y box-binding factor 1 (YB-1) as a GM-CSF mRNA ARE-specific binding protein that is capable of enhancing GM-CSF-dependent survival of eosinophils. Using a transfection system that mimics GM-CSF metabolism in eosinophils, we have shown that transduced YB-1 stabilized GM-CSF mRNA in an ARE-dependent mechanism, causing increased GM-CSF production and enhanced in vitro survival. RNA EMSAs indicate that YB-1 interacts with the GM-CSF mRNA through its 3' untranslated region ARE. In addition, endogenous GM-CSF mRNA coimmunoprecipitates with endogenous YB-1 protein in activated eosinophils but not resting cells. Thus, we propose a model whereby activation of eosinophils leads to YB-1 binding to and stabilization of GM-CSF mRNA, ultimately resulting in GM-CSF release and prolonged eosinophil survival.
Collapse
Affiliation(s)
- E E Capowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
131
|
Donnini M, Lapucci A, Papucci L, Witort E, Tempestini A, Brewer G, Bevilacqua A, Nicolin A, Capaccioli S, Schiavone N. Apoptosis is associated with modifications of bcl-2 mRNA AU-binding proteins. Biochem Biophys Res Commun 2001; 287:1063-9. [PMID: 11587529 DOI: 10.1006/bbrc.2001.5700] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The expression of genes requiring finely tuned control is regulated by a posttranscriptional mechanism involving mRNA A + U-rich elements (AREs) cooperating with ARE-binding proteins (AUBPs) in modulation of mRNA stability. We reported previously that an ARE in the bcl-2 mRNA 3'-untranslated region (3'-UTR) had destabilizing activity and was involved in bcl-2 downregulation during apoptosis in vitro. Here we demonstrate that the bcl-2 ARE complexes with a number of specific AUBPs, whose pattern undergoes changes following application of apoptotic stimuli. The caspase inhibitor Z-VAD-fmk strongly attenuates both bcl-2 mRNA decay and bcl-2 AUBP pattern changes elicited by apoptotic stimuli, indicating the involvement of bcl-2 AUBPs in bcl-2 mRNA stability control.
Collapse
Affiliation(s)
- M Donnini
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
During the past two decades, nitric oxide (NO) has been recognized as one of the most versatile players in the immune system. It is involved in the pathogenesis and control of infectious diseases, tumors, autoimmune processes and chronic degenerative diseases. Because of its variety of reaction partners (DNA, proteins, low-molecular weight thiols, prosthetic groups, reactive oxygen intermediates), its widespread production (by three different NO synthases (NOS) and the fact that its activity is strongly influenced by its concentration, NO continues to surprise and perplex immunologists. Today, there is no simple, uniform picture of the function of NO in the immune system. Protective and toxic effects of NO are frequently seen in parallel. Its striking inter- and intracellular signaling capacity makes it extremely difficult to predict the effect of NOS inhibitors and NO donors, which still hampers therapeutic applications.
Collapse
Affiliation(s)
- C Bogdan
- Institute of Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander-University of Erlangen-Nuremberg, Wasserturmstrasse 3-5, D-91054 Erlangen, Germany.
| |
Collapse
|
133
|
Mazumder B, Seshadri V, Imataka H, Sonenberg N, Fox PL. Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol Cell Biol 2001; 21:6440-9. [PMID: 11533233 PMCID: PMC99791 DOI: 10.1128/mcb.21.19.6440-6449.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceruloplasmin (Cp) is a glycoprotein secreted by the liver and monocytic cells and probably plays roles in inflammation and iron metabolism. We showed previously that gamma interferon (IFN-gamma) induced Cp synthesis by human U937 monocytic cells but that the synthesis was subsequently halted by a transcript-specific translational silencing mechanism involving the binding of a cytosolic factor(s) to the Cp mRNA 3' untranslated region (UTR). To investigate how protein interactions at the Cp 3'-UTR inhibit translation initiation at the distant 5' end, we considered the "closed-loop" model of mRNA translation. In this model, the transcript termini are brought together by interactions of poly(A)-binding protein (PABP) with both the poly(A) tail and initiation factor eIF4G. The effect of these elements on Cp translational control was tested using chimeric reporter transcripts in rabbit reticulocyte lysates. The requirement for poly(A) was shown since the cytosolic inhibitor from IFN-gamma-treated cells minimally inhibited the translation of a luciferase reporter upstream of the Cp 3'-UTR but almost completely blocked the translation of a transcript containing a poly(A) tail. Likewise, a requirement for poly(A) was shown for silencing of endogenous Cp mRNA. We considered the possibility that the cytosolic inhibitor blocked the interaction of PABP with the poly(A) tail or with eIF4G. We found that neither of these interactions were inhibited, as shown by immunoprecipitation of PABP followed by quantitation of the poly(A) tail by reverse transcription-PCR and of eIF4G by immunoblot analysis. We considered the alternate possibility that these interactions were required for translational silencing. When PABP was depleted from the reticulocyte lysate with anti-human PABP antibody, the cytosolic factor did not inhibit translation of the chimeric reporter, thus showing the requirement for PABP. Similarly, in lysates treated with anti-human eIF4G antibody, the cytosolic extract did not inhibit the translation of the chimeric reporter, thereby showing a requirement for eIF4G. These data show that translational silencing of Cp requires interactions of three essential elements of mRNA circularization, poly(A), PABP, and eIF4G. We suggest that Cp mRNA circularization brings the cytosolic Cp 3'-UTR-binding factor into the proximity of the translation initiation site, where it silences translation by an undetermined mechanism. These results suggest that in addition to its important function in increasing the efficiency of translation, transcript circularization may serve as an essential structural determinant for transcript-specific translational control.
Collapse
Affiliation(s)
- B Mazumder
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
134
|
Abstract
Nitric oxide (NO) and prostaglandin (PG) E2 produced by NO synthase type 2 (NOS2) and cyclooxygenase type 2 (COX2), respectively, are important mediators in inflammation. There is much information regarding their roles in models of inflammation in mice and in humans with diseases such as rheumatoid arthritis (RA). A variety of stimuli including cytokines, microbial components, immune complexes, and mechanical stress can induce both NOS2 and COX2 mRNA transcription and protein synthesis and enhance inflammation. This has been demonstrated in both mice and humans. NOS2-specific inhibitors reduce inflammation in mice, and COX2-specific inhibitors reduce inflammation in mice and in humans. There is significant cross-talk between PGE2/NO and COX2/NOS2. Treatments that inhibit both NOS2 and COX2 should provide the most potent antiinflammatory effects.
Collapse
Affiliation(s)
- J B Weinberg
- Duke University and Medical Center, Durham, NC, USA.
| |
Collapse
|
135
|
Misquitta CM, Iyer VR, Werstiuk ES, Grover AK. The role of 3'-untranslated region (3'-UTR) mediated mRNA stability in cardiovascular pathophysiology. Mol Cell Biochem 2001; 224:53-67. [PMID: 11693200 DOI: 10.1023/a:1011982932645] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Knowledge of transcription and translation has advanced our understanding of cardiac diseases. Here, we present the hypothesis that the stability of mRNA mediated by the 3'-untranslated region (3'-UTR) plays a role in changing gene expression in cardiovascular pathophysiology. Several proteins that bind to sequences in the 3'-UTR of mRNA of cardiovascular targets have been identified. The affected mRNAs include those encoding beta-adrenergic receptors, angiotensin II receptors, endothelial and inducible nitric oxide synthases, cyclooxygenase, endothelial growth factor, tissue necrosis factor (TNF-alpha), globin, elastin, proteins involved in cell cycle regulation, oncogenes, cytokines and lymphokines. We discuss: (a) the types of 3'-UTR sequences involved in mRNA stability, (b) AUF1, HuR and other proteins that bind to these sequences to either stabilize or destabilize the target mRNAs, and (c) the potential role of the 3'-UTR mediated mRNA stability in heart failure, myocardial infarction and hypertension. We hope that these concepts will aid in better understanding cardiovascular diseases and in developing new therapies.
Collapse
Affiliation(s)
- C M Misquitta
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
136
|
Pérez-Sala D, Cernuda-Morollón E, Díaz-Cazorla M, Rodríguez-Pascual F, Lamas S. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway. Am J Physiol Renal Physiol 2001; 280:F466-73. [PMID: 11181408 DOI: 10.1152/ajprenal.2001.280.3.f466] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) and cGMP may exert positive or negative effects on inducible NO synthase (iNOS) expression. We have explored the influence of the NO/cGMP pathway on iNOS levels in human mesangial cells. Inhibition of NOS activity during an 8-h stimulation with IL-1beta plus tumor necrosis factor (TNF)-alpha reduced iNOS levels, while NO donors amplified iNOS induction threefold. However, time-course studies revealed a subsequent inhibitory effect of NO donors on iNOS protein and mRNA levels. This suggests that NO may contribute both to iNOS induction and downregulation. Soluble guanylyl cyclase (sGC) activation may be involved in these effects. Inhibition of sGC attenuated IL-1beta/TNF-alpha-elicited iNOS induction and reduced NO-driven amplification. Interestingly, cGMP analogs also modulated iNOS protein and mRNA levels in a biphasic manner. Inhibition of transcription unveiled a negative posttranscriptional modulation of the iNOS transcript by NO and cGMP at late times of induction. Supplementation with 8-bromo-cGMP (8-BrcGMP) reduced iNOS mRNA stability by 50%. These observations evidence a complex feedback regulation of iNOS expression, in which posttranscriptional mechanisms may play an important role.
Collapse
Affiliation(s)
- D Pérez-Sala
- Departamento de Estructura y Función de Proteínas, Centro de Investigaciones Biológicas, CSIC, Velázquez, 144, 28006 Madrid, Spain.
| | | | | | | | | |
Collapse
|
137
|
Carpenter L, Cordery D, Biden TJ. Protein kinase Cdelta activation by interleukin-1beta stabilizes inducible nitric-oxide synthase mRNA in pancreatic beta-cells. J Biol Chem 2001; 276:5368-74. [PMID: 11087760 DOI: 10.1074/jbc.m010036200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of pancreatic islets to cytokines such as interleukin (IL)-1beta induces a variety of proinflammatory genes including type II nitric-oxide synthase (iNOS) which produces nitric oxide (NO). NO is thought to be a major cause of islet beta-cell dysfunction and apoptotic beta-cell death, which results in type I diabetes. Since protein kinase C (PKC) mediates some of the actions of cytokines in other cell types, our aim was to assess the role of PKC in IL-1beta-induced iNOS expression in pancreatic beta-cells. PKCdelta, but not PKCalpha, was specifically activated in the rat INS-1 beta-cell line by IL-1beta as assessed by membrane translocation. Moreover, iNOS expression and NO production were significantly attenuated by the PKCdelta specific inhibitor rottlerin and overexpression of a PKCdelta kinase-dead mutant protein. Conversely, overexpression of PKCdelta wild type protein significantly potentiated this response. These results were confirmed at the mRNA level by reverse transcriptase-polymerase chain reaction. However, a role at the level of transcriptional regulation appeared unlikely, since PKCdelta was not required for the activation of NF-kappaB, activating protein 1, and activating transcription factor 2 signaling pathways in response to IL-1beta. There was, however, a significant increase in iNOS mRNA stability mediated by PKCdelta wild type, while PKCdelta kinase-dead acted reciprocally, reducing iNOS mRNA stability. The results indicate that, in addition to transcriptional activation, mRNA stabilization is a key component of the mechanism by which IL-1beta stimulates iNOS expression in beta-cells and that PKCdelta plays an essential role in this process. PKCdelta activation may therefore have significant consequences with regard to cellular function and viability when beta-cells are exposed to IL-1beta and potentially other cytokines.
Collapse
Affiliation(s)
- L Carpenter
- Garvan Institute of Medical Research, St. Vincents Hospital, 384 Victoria St, Darlinghurst, Sydney, 2010, Australia
| | | | | |
Collapse
|
138
|
Di Marco S, Hel Z, Lachance C, Furneaux H, Radzioch D. Polymorphism in the 3'-untranslated region of TNFalpha mRNA impairs binding of the post-transcriptional regulatory protein HuR to TNFalpha mRNA. Nucleic Acids Res 2001; 29:863-71. [PMID: 11160917 PMCID: PMC29616 DOI: 10.1093/nar/29.4.863] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFalpha) acts as a beneficial mediator in the process of host defence. In recent years major interest has focused on the AU-rich elements (AREs) present in the 3'-untranslated region (3'-UTR) of TNFalpha mRNA as this region plays a pivotal role in post-transcriptional control of TNFalpha production. Certain stimuli, such as lipopolysaccharides, a component of the Gram-negative bacterial cell wall, have the ability to relinquish the translational suppression of TNFalpha mRNA imposed by these AREs in macrophages, thereby enabling the efficient production of the TNFalpha. In this study we show that the polymorphism (GAU trinucleotide insertional mutation) present in the regulatory 3'-UTR of TNFalpha mRNA of NZW mice results in the hindered binding of RNA-binding proteins, thereby leading to a significantly reduced production of TNFalpha protein. We also show that the binding of macrophage proteins to the main ARE is also decreased by another trinucleotide (CAU) insertion in the TNFalpha 3'-UTR. One of the proteins affected by the GAU trinucleotide insertional mutation was identified as HuR, a nucleo-cytoplasmic shuttling protein previously shown to play a prominent role in the stability and translatability of mRNA containing AREs. Since binding of this protein most likely modulates the stability, translational efficiency and transport of TNFalpha mRNA, these results suggest that mutations in the ARE of TNFalpha mRNA decrease the production of TNFalpha protein in macrophages by hindering the binding of HuR to the ARE.
Collapse
Affiliation(s)
- S Di Marco
- McGill University Health Center, McGill University, Department of Experimental Medicine, Montreal, Quebec H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
139
|
Bakheet T, Frevel M, Williams BR, Greer W, Khabar KS. ARED: human AU-rich element-containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res 2001; 29:246-54. [PMID: 11125104 PMCID: PMC29778 DOI: 10.1093/nar/29.1.246] [Citation(s) in RCA: 307] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2000] [Revised: 10/02/2000] [Accepted: 10/02/2000] [Indexed: 01/15/2023] Open
Abstract
The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences. Computational derivation of a 13-bp ARE pattern was performed using multiple expectation maximization for motif elicitations (MEME) and consensus analyses. This pattern was statistically validated for the specificity towards the 3'-untranslated region and not coding region. The computationally derived ARE pattern is the basis of a database which contains non-redundant full-length ARE-mRNAs. The ARE-mRNA database (ARED; http://rc.kfshrc.edu.sa/ared) reveals that ARE-mRNAs encode a wide repertoire of functionally diverse proteins that belong to different biological processes and are important in several disease states. Cluster analysis was performed using the ARE sequences to demonstrate potential relationships between the type and number of ARE motifs, and the functional characteristics of the proteins.
Collapse
Affiliation(s)
- T Bakheet
- Department of Biostatistics, Epidemiology and Scientific Computing (Bioinformatics Section), King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | | | | | | | | |
Collapse
|
140
|
Hausding M, Witteck A, Rodriguez-Pascual F, von Eichel-Streiber C, Förstermann U, Kleinert H. Inhibition of small G proteins of the rho family by statins or clostridium difficile toxin B enhances cytokine-mediated induction of NO synthase II. Br J Pharmacol 2000; 131:553-61. [PMID: 11015307 PMCID: PMC1572362 DOI: 10.1038/sj.bjp.0703607] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In order to investigate the involvement of Ras and/or Rho proteins in the induction of the inducible isoform of nitric oxide synthase (NOS II) we used HMG-CoA reductase inhibitors (statins) and Clostridium difficile toxin B (TcdB) as pharmacological tools. Statins indirectly inhibit small G proteins by preventing their essential farnesylation (Ras) and/or geranylgeranylation (Rho). In contrast, TcdB is a glucosyltransferase and inactivates Rho-proteins directly. Human A549/8- and DLD-1 cells as well as murine 3T3 fibroblasts were preincubated for 18 h with statins (1 - 100 microM) or TcdB (0.01-10 ng ml(-1)). Then NOS II expression was induced by cytokines. NOS II mRNA was measured after 4 - 8 h by RNase protection assay, and NO production were measured by the Griess assay after 24 h. Statins and TcdB markedly increased cytokine-induced NOS II mRNA expression and NO production. Statin-mediated enhancement of NOS II mRNA expression was reversed almost completely by cotreatment with mevalonate or geranylgeranylpyrophosphate. It was only slightly reduced by farnesylpyrophosphate. Therefore, small G proteins of the Rho family are likely to be involved in NOS II induction. In A549/8 cells stably transfected with a luciferase reporter gene under the control of a 16 kb fragment of the human NOS II promoter (pNOS2(16)Luc), statins produced only a small increase in cytokine-induced NOS II promoter activity. In contrast, statins had a considerable superinducing effect in DLD-1 cells stably transfected with pNOS2(16)Luc. In conclusion, our studies provide evidence that statins and TcdB potentiate cytokine-induced NOS II expression via inhibition of small G proteins of the Rho family. This in turn results in an enhanced NOS II promoter activity and/or a prolonged NOS II mRNA stability.
Collapse
Affiliation(s)
- Michael Hausding
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Andrea Witteck
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Fernando Rodriguez-Pascual
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | | | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101 Mainz, Germany
- Author for correspondence:
| |
Collapse
|