101
|
Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T. The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 2015; 21:129-47. [PMID: 25604497 DOI: 10.1007/s13365-014-0312-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/22/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023]
Abstract
Herpes simplex encephalitis (HSE), targeting the limbic system, is the most common cause of viral encephalitis in the Western world. Two pathways for viral entry to the central nervous system (CNS) in HSE have been suggested: either via the trigeminal nerve or via the olfactory tract. This question remains unsettled, and studies of viral spread between the two brain hemispheres are scarce. Here, we investigated the olfactory infection as a model of infection and tropism of herpes simplex virus 1 (HSV-1), the causative agent of HSE, in the CNS of rats. Rats were instilled with HSV-1 in the right nostril and sacrificed 1-6 days post-infection, and tissues were analysed for viral spread using immunohistochemistry and quantitative PCR (qPCR). After nasal instillation, HSV-1 infected mitral cells of the olfactory bulb (OB) on the right side only, followed by limbic encephalitis. As a novel finding, the anterior commissure (AC) conveyed a rapid transmission of virus between the right and the left OB, acting as a shortcut also between the olfactory cortices. The neuronal cell population that conveyed the viral infection via the AC was positive for the water channel protein aquaporin 9 (AQP9) by immunohistochemistry. Quantification of AQP9 in cerebrospinal fluid samples of HSE patients showed increment as compared to controls. We conclude that the olfactory route and the AC are important for the spread of HSV-1 within the olfactory/limbic system of rats and furthermore, we suggest that AQP9 is involved in viral tropism and pathogenesis of HSE.
Collapse
Affiliation(s)
- Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
102
|
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res 2014; 194:145-58. [PMID: 25281913 PMCID: PMC7114389 DOI: 10.1016/j.virusres.2014.09.011] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/15/2022]
Abstract
Human coronavirus (HCoV) are naturally neuroinvasive in both mice and humans. Both transneuronal and hematogenous route may allow virus invasion of the CNS. Infection of neurons leads to excitotoxicity, neurodegeneration and cell-death. HCoV are potentially associated with human neurological disorders.
Among the various respiratory viruses infecting human beings, coronaviruses are important pathogens, which usually infect the upper respiratory tract, where they are mainly associated with common colds. However, in more vulnerable populations, such as newborns, infants, the elderly and immune-compromised individuals, these opportunistic pathogens can also affect the lower respiratory tract, leading to pneumonia, exacerbations of asthma, and various types of respiratory distress syndrome. The respiratory involvement of human coronaviruses has been clearly established since the 1960s. Nevertheless, for almost three decades now, data reported in the scientific literature has also demonstrated that, like it was described for other human viruses, coronaviruses have neuroinvasive capacities since they can spread from the respiratory tract to the central nervous system (CNS). Once there, infection of CNS cells (neurotropism) could lead to human health problems, such as encephalitis and long-term neurological diseases. Neuroinvasive coronaviruses could damage the CNS as a result of misdirected host immune responses that could be associated with autoimmunity in susceptible individuals (virus-induced neuroimmunopathology) and/or viral replication, which directly induces damage to CNS cells (virus-induced neuropathology). Given all these properties, it has been suggested that these opportunistic human respiratory pathogens could be associated with the triggering or the exacerbation of neurologic diseases for which the etiology remains poorly understood. Herein, we present host and viral factors that participate in the regulation of the possible pathogenic processes associated with CNS infection by human coronaviruses and we try to decipher the intricate interplay between virus and host target cells in order to characterize their role in the virus life cycle as well as in the capacity of the cell to respond to viral invasion.
Collapse
Affiliation(s)
- Marc Desforges
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| | - Alain Le Coupanec
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Jenny K Stodola
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Mathieu Meessen-Pinard
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, INRS-Institut Armand-Frappier, Institut national de la recherche scientifique, Université du Québec, 531 boulevard des Prairies, Laval, Québec, Canada H7V 1B7.
| |
Collapse
|
103
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
104
|
Abstract
UNLABELLED Viruses commonly infect the respiratory tract. Analyses of host defense have focused on the lungs and the respiratory epithelium. Spontaneously inhaled murid herpesvirus 4 (MuHV-4) and herpes simplex virus 1 (HSV-1) instead infect the olfactory epithelium, where neuronal cilia are exposed to environmental antigens and provide a route across the epithelial mucus. We used MuHV-4 to define how B cells respond to virus replication in this less well-characterized site. Olfactory infection elicited generally weaker acute responses than lung infection, particularly in the spleen, reflecting slower viral replication and spread. Few virus-specific antibody-forming cells (AFCs) were found in the nasal-associated lymphoid tissue (NALT), a prominent response site for respiratory epithelial infection. Instead, they appeared first in the superficial cervical lymph nodes. The focus of the AFC response then moved to the spleen, matching the geography of virus dissemination. Little virus-specific IgA response was detected until later in the bone marrow. Neuroepithelial HSV-1 infection also elicited no significant AFC response in the NALT and a weak IgA response. Thus, olfactory herpesvirus infection differed immunologically from an infection of the adjacent respiratory epithelium. Poor IgA induction may help herpesviruses to transmit via long-term mucosal shedding. IMPORTANCE Herpesviruses are widespread, persistent pathogens against which vaccines have had limited success. We need to understand better how they interact with host immunity. MuHV-4 and HSV-1 inhaled by alert mice infect the olfactory neuroepithelium, suggesting that this is a natural entry route. Its immunology is almost completely unknown. The antibody response to neuroepithelial herpesvirus infection started in the cervical lymph nodes, and unlike respiratory influenza virus infection, did not significantly involve the nasal-associated lymphoid tissue. MuHV-4 and HSV-1 infections also elicited little virus-specific IgA. Therefore, vaccine-induced IgA might provide a defense that herpesviruses are ill-equipped to meet.
Collapse
|
105
|
Rajasekharan S, Rana J, Gulati S, Gupta V, Gupta S. Neuroinvasion by Chandipura virus. Acta Trop 2014; 135:122-6. [PMID: 24713200 DOI: 10.1016/j.actatropica.2014.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/14/2014] [Accepted: 03/26/2014] [Indexed: 01/13/2023]
Abstract
Chandipura virus (CHPV) is an arthropod borne rhabdovirus associated with acute encephalitis in children below the age of 15 years in the tropical states of India. Although the entry of the virus into the nervous system is among the crucial events in the pathogenesis of CHPV, the exact mechanism allowing CHPV to invade the central nervous system (CNS) is currently poorly understood. In the present review, based on the knowledge of host interactors previously predicted for CHPV, along with the support from experimental data available for other encephalitic viruses, the authors have speculated the various plausible modes by which CHPV could surpass the blood-brain barrier and invade the CNS to cause encephalitis whilst evading the host immune surveillance. Collectively, this review provides a conservative set of potential interactions that can be employed for future experimental validation with a view to better understand the neuropathogenesis of CHPV.
Collapse
Affiliation(s)
- Sreejith Rajasekharan
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201 307, India
| | - Jyoti Rana
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201 307, India
| | - Sahil Gulati
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201 307, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi South Campus (UDSC), Benito Juarez Marg, New Delhi 110021, India
| | - Sanjay Gupta
- Centre for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, Uttar Pradesh 201 307, India.
| |
Collapse
|
106
|
Abstract
Virus infections usually begin in peripheral tissues and can invade the mammalian nervous system (NS), spreading into the peripheral (PNS) and more rarely the central (CNS) nervous systems. The CNS is protected from most virus infections by effective immune responses and multilayer barriers. However, some viruses enter the NS with high efficiency via the bloodstream or by directly infecting nerves that innervate peripheral tissues, resulting in debilitating direct and immune-mediated pathology. Most viruses in the NS are opportunistic or accidental pathogens, but a few, most notably the alpha herpesviruses and rabies virus, have evolved to enter the NS efficiently and exploit neuronal cell biology. Remarkably, the alpha herpesviruses can establish quiescent infections in the PNS, with rare but often fatal CNS pathology. Here we review how viruses gain access to and spread in the well-protected CNS, with particular emphasis on alpha herpesviruses, which establish and maintain persistent NS infections.
Collapse
Affiliation(s)
- Orkide O Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
107
|
Abstract
UNLABELLED Serious permanent neurological or psychiatric dysfunction may result from virus infections in the central nervous system (CNS). Olfactory sensory neurons are in direct contact with the external environment, making them susceptible to infection by viruses that can enter the brain via the olfactory nerve. The rarity of full brain viral infections raises the important question of whether unique immune defense mechanisms protect the brain. Here we show that both RNA (vesicular stomatitis virus [VSV]) and DNA (cytomegalovirus [CMV]) virus inoculations of the nasal mucosa leading to olfactory bulb (OB) infection activate long-distance signaling that upregulates antiviral interferon (IFN)-stimulated gene (ISG) expression in uninfected remote regions of the brain. This signaling mechanism is dependent on IFN-α/β receptors deep within the brain, leading to the activation of a distant antiviral state that prevents infection of the caudal brain. In normal mice, VSV replication is limited to the OB, and these animals typically survive the infection. In contrast, mice lacking the IFN-α/β receptor succumbed to the infection, with VSV spreading throughout the brain. Chemical destruction of the olfactory sensory neurons blocked both virus trafficking into the OB and the IFN response in the caudal brain, indicating a direct signaling within the brain after intranasal infection. Most signaling within the brain occurs across the 20-nm synaptic cleft. The unique long-distance IFN signaling described here occurs across many millimeters within the brain and is critical for survival and normal brain function. IMPORTANCE The olfactory mucosa can serve as a conduit for a number of viruses to enter the brain. Yet infections in the CNS rarely occur. The mechanism responsible for protecting the brain from viruses that successfully invade the OB, the first site of infection subsequent to infection of the nasal mucosa, remains elusive. Here we demonstrate that the protection is mediated by a long-distance interferon signaling, particularly IFN-β released by infected neurons in the OB. Strikingly, in the absence of neurotropic virus infection, ISGs are induced in the posterior regions of the brain, activating an antiviral state and preventing further virus invasion.
Collapse
|
108
|
Thomas RJ. Particle size and pathogenicity in the respiratory tract. Virulence 2013; 4:847-58. [PMID: 24225380 PMCID: PMC3925716 DOI: 10.4161/viru.27172] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/13/2022] Open
Abstract
Particle size dictates where aerosolized pathogens deposit in the respiratory tract, thereafter the pathogens potential to cause disease is influenced by tissue tropism, clearance kinetics and the host immunological response. This interplay brings pathogens into contact with a range of tissues spanning the respiratory tract and associated anatomical structures. In animal models, differential deposition within the respiratory tract influences infection kinetics for numerous select agents. Greater numbers of pathogens are required to infect the upper (URT) compared with the lower respiratory tract (LRT), and in comparison the URT infections are protracted with reduced mortality. Pathogenesis in the URT is characterized by infection of the URT lymphoid tissues, cervical lymphadenopathy and septicemia, closely resembling reported human infections of the URT. The olfactory, gastrointestinal, and ophthalmic systems are also infected in a pathogen-dependent manner. The relevant literature is reviewed with respect to particle size and infection of the URT in animal models and humans.
Collapse
|
109
|
Abstract
Herpes simplex virus 1 (HSV-1) is a ubiquitous and important human pathogen. It is known to persist in trigeminal ganglia (TG), but how it reaches this site has been difficult to determine, as viral transmission is sporadic, pathogenesis is complicated, and early infection is largely asymptomatic. We used mice to compare the most likely natural HSV-1 host entry routes: oral and nasal. Intranasal infection was 100-fold more efficient than oral and targeted predominantly the olfactory neuroepithelium. Live imaging of HSV-1-expressed luciferase showed infection progressing from the nose to the TG and then reemerging in the facial skin. The brain remained largely luciferase negative throughout. Infected cell tagging by viral Cre recombinase expression in floxed reporter gene mice showed nasal virus routinely reaching the TG and only rarely reaching the olfactory bulbs. Thus, HSV-1 spread from the olfactory neuroepithelium to the TG and reemerged peripherally without causing significant neurological disease. This recapitulation of typical clinical infection suggests that HSV-1 might sometimes also enter humans via the respiratory tract.
Collapse
|
110
|
Abstract
Respiratory syncytial virus (RSV) is the major cause of respiratory illness in infants worldwide. Neurologic alterations, such as seizures and ataxia, have been associated with RSV infection. We demonstrate the presence of RSV proteins and RNA in zones of the brain--such as the hippocampus, ventromedial hypothalamic nucleus, and brainstem--of infected mice. One month after disease resolution, rodents showed behavioral and cognitive impairment in marble burying (MB) and Morris water maze (MWM) tests. Our data indicate that the learning impairment caused by RSV is a result of a deficient induction of long-term potentiation in the hippocampus of infected animals. In addition, immunization with recombinant bacillus Calmette-Guérin (BCG) expressing RSV nucleoprotein prevented behavioral disorders, corroborating the specific effect of RSV infection over the central nervous system. Our findings provide evidence that RSV can spread from the airways to the central nervous system and cause functional alterations to the brain, both of which can be prevented by proper immunization against RSV.
Collapse
|
111
|
Thiebaud N, Veloso Da Silva S, Jakob I, Sicard G, Chevalier J, Ménétrier F, Berdeaux O, Artur Y, Heydel JM, Le Bon AM. Odorant metabolism catalyzed by olfactory mucosal enzymes influences peripheral olfactory responses in rats. PLoS One 2013; 8:e59547. [PMID: 23555703 PMCID: PMC3608737 DOI: 10.1371/journal.pone.0059547] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 02/19/2013] [Indexed: 01/13/2023] Open
Abstract
A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant’s stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.
Collapse
Affiliation(s)
- Nicolas Thiebaud
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Stéphanie Veloso Da Silva
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Ingrid Jakob
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Gilles Sicard
- Université Aix-Marseille 2, UMR7259, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, Marseille, France
| | - Joëlle Chevalier
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Franck Ménétrier
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Olivier Berdeaux
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Yves Artur
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Jean-Marie Heydel
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
| | - Anne-Marie Le Bon
- CNRS, UMR6265, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- INRA, UMR1324, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- Université de Bourgogne, Centre des Sciences du Goût et de l’Alimentation, Dijon, France
- * E-mail:
| |
Collapse
|
112
|
Novel marmoset (Callithrix jacchus) model of human Herpesvirus 6A and 6B infections: immunologic, virologic and radiologic characterization. PLoS Pathog 2013; 9:e1003138. [PMID: 23382677 PMCID: PMC3561285 DOI: 10.1371/journal.ppat.1003138] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/03/2012] [Indexed: 11/19/2022] Open
Abstract
Human Herpesvirus 6 (HHV-6) is a ubiquitous virus with an estimated seroprevalence of 95% in the adult population. HHV-6 is associated with several neurologic disorders, including multiple sclerosis, an inflammatory demyelinating disease affecting the CNS. Animal models of HHV-6 infection would help clarify its role in human disease but have been slow to develop because rodents lack CD46, the receptor for cellular entry. Therefore, we investigated the effects of HHV-6 infections in a non-human primate, the common marmoset Callithrix jacchus. We inoculated a total of 12 marmosets with HHV-6A and HHV-6B intravenously and HHV-6A intranasally. Animals were monitored for 25 weeks post-inoculation clinically, immunologically and by MRI. Marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms and generated virus-specific antibody responses, while those inoculated intravenously with HHV-6B were asymptomatic and generated comparatively lower antibody responses. Viral DNA was detected at a low frequency in paraffin-embedded CNS tissue of a subset of marmosets inoculated with HHV-6A and HHV-6B intravenously. When different routes of HHV-6A inoculation were compared, intravenous inoculation resulted in virus-specific antibody responses and infrequent detection of viral DNA in the periphery, while intranasal inoculation resulted in negligible virus-specific antibody responses and frequent detection of viral DNA in the periphery. Moreover, marmosets inoculated with HHV-6A intravenously exhibited neurologic symptoms, while marmosets inoculated with HHV-6A intranasally were asymptomatic. We demonstrate that a marmoset model of HHV-6 infection can serve to further define the contribution of this ubiquitous virus to human neurologic disorders.
Collapse
|
113
|
Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep 2012; 2:736. [PMID: 23071900 PMCID: PMC3471094 DOI: 10.1038/srep00736] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/05/2012] [Indexed: 12/25/2022] Open
Abstract
Encephalitis is a hallmark of Nipah virus (NiV) infection in humans. The exact route of entry of NiV into the central nervous system (CNS) is unknown. Here, we performed a spatio-temporal analysis of NiV entry into the CNS of hamsters. NiV initially predominantly targeted the olfactory epithelium in the nasal turbinates. From there, NiV infected neurons were visible extending through the cribriform plate into the olfactory bulb, providing direct evidence of rapid CNS entry. Subsequently, NiV disseminated to the olfactory tubercle and throughout the ventral cortex. Transmission electron microscopy on brain tissue showed extravasation of plasma cells, neuronal degeneration and nucleocapsid inclusions in affected tissue and axons, providing further evidence for axonal transport of NiV. NiV entry into the CNS coincided with the occurrence of respiratory disease, suggesting that the initial entry of NiV into the CNS occurs simultaneously with, rather than as a result of, systemic virus replication.
Collapse
|
114
|
Plourde JR, Pyles JA, Layton RC, Vaughan SE, Tipper JL, Harrod KS. Neurovirulence of H5N1 infection in ferrets is mediated by multifocal replication in distinct permissive neuronal cell regions. PLoS One 2012; 7:e46605. [PMID: 23056366 PMCID: PMC3466300 DOI: 10.1371/journal.pone.0046605] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/03/2012] [Indexed: 12/31/2022] Open
Abstract
Highly pathogenic avian influenza A (HPAI), subtype H5N1, remains an emergent threat to the human population. While respiratory disease is a hallmark of influenza infection, H5N1 has a high incidence of neurological sequelae in many animal species and sporadically in humans. We elucidate the temporal/spatial infection of H5N1 in the brain of ferrets following a low dose, intranasal infection of two HPAI strains of varying neurovirulence and lethality. A/Vietnam/1203/2004 (VN1203) induced mortality in 100% of infected ferrets while A/Hong Kong/483/1997 (HK483) induced lethality in only 20% of ferrets, with death occurring significantly later following infection. Neurological signs were prominent in VN1203 infection, but not HK483, with seizures observed three days post challenge and torticollis or paresis at later time points. VN1203 and HK483 replication kinetics were similar in primary differentiated ferret nasal turbinate cells, and similar viral titers were measured in the nasal turbinates of infected ferrets. Pulmonary viral titers were not different between strains and pathological findings in the lungs were similar in severity. VN1203 replicated to high titers in the olfactory bulb, cerebral cortex, and brain stem; whereas HK483 was not recovered in these tissues. VN1203 was identified adjacent to and within the olfactory nerve tract, and multifocal infection was observed throughout the frontal cortex and cerebrum. VN1203 was also detected throughout the cerebellum, specifically in Purkinje cells and regions that coordinate voluntary movements. These findings suggest the increased lethality of VN1203 in ferrets is due to increased replication in brain regions important in higher order function and explains the neurological signs observed during H5N1 neurovirulence.
Collapse
Affiliation(s)
- Jennifer R. Plourde
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - John A. Pyles
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - R. Colby Layton
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Sarah E. Vaughan
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Jennifer L. Tipper
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Kevin S. Harrod
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
115
|
Acute retinal necrosis caused by herpes simplex virus type 2 in children: reactivation of an undiagnosed latent neonatal herpes infection. Semin Pediatr Neurol 2012; 19:115-8. [PMID: 22889540 PMCID: PMC3419358 DOI: 10.1016/j.spen.2012.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 2 (HSV-2) is known to cause acute retinal necrosis (ARN). The availability of HSV-2-specific polymerase chain reaction tests for diagnostic analysis has greatly increased our ability to discriminate ARN caused by HSV-2 from ARN caused by either herpes simplex virus type 1 or varicella zoster virus (VZV). Of great interest, HSV-2 appears to be the most common cause of viral ARN in children and adolescents. Although a few children with ARN are known to have had neonatally acquired herpes infection, most children lack a history of known herpes disease. Thus, the origin of the HSV-2 infection is a mystery. The hypothesis of this review is that HSV-2 ARN in children and adolescents may be the first sign of a previously undiagnosed and asymptomatic neonatal HSV-2 infection, which has reactivated several years later from latency in a cranial nerve and entered the retina. The review brings together 7 previously published ARN cases, plus one new case is added. Thus, this review also expands the spectrum of complications from neonatal HSV-2 infection.
Collapse
|
116
|
De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C, Palamara AT. Infectious agents and neurodegeneration. Mol Neurobiol 2012; 46:614-38. [PMID: 22899188 PMCID: PMC3496540 DOI: 10.1007/s12035-012-8320-7] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/31/2012] [Indexed: 12/19/2022]
Abstract
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Collapse
Affiliation(s)
- Giovanna De Chiara
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Mori I. The vomeronasal chemosensory pathway: a potential route for neuroinvasion by neurotropic microbes. Microbiol Immunol 2012; 56:280. [DOI: 10.1111/j.1348-0421.2012.00431.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
118
|
Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens. Vet Res 2011; 42:106. [PMID: 21982125 PMCID: PMC3199250 DOI: 10.1186/1297-9716-42-106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/07/2011] [Indexed: 01/06/2023] Open
Abstract
In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.
Collapse
|
119
|
Human herpesvirus-6 entry into the central nervous system through the olfactory pathway. Proc Natl Acad Sci U S A 2011; 108:13734-9. [PMID: 21825120 DOI: 10.1073/pnas.1105143108] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses have been implicated in the development of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and multiple sclerosis. Human herpesvirus-6 (HHV-6) is a neurotropic virus that has been associated with a wide variety of neurologic disorders, including encephalitis, mesial temporal lobe epilepsy, and multiple sclerosis. Currently, the route of HHV-6 entry into the CNS is unknown. Using autopsy specimens, we found that the frequency of HHV-6 DNA in the olfactory bulb/tract region was among the highest in the brain regions examined. Given this finding, we investigated whether HHV-6 may infect the CNS via the olfactory pathway. HHV-6 DNA was detected in a total of 52 of 126 (41.3%) nasal mucous samples, showing the nasal cavity is a reservoir for HHV-6. Furthermore, specialized olfactory-ensheathing glial cells located in the nasal cavity were demonstrated to support HHV-6 replication in vitro. Collectively, these results support HHV-6 utilization of the olfactory pathway as a route of entry into the CNS.
Collapse
|
120
|
Abstract
Viral infections are a major cause of human disease. Although most viruses replicate in peripheral tissues, some have developed unique strategies to move into the nervous system, where they establish acute or persistent infections. Viral infections in the central nervous system (CNS) can alter homeostasis, induce neurological dysfunction and result in serious, potentially life-threatening inflammatory diseases. This Review focuses on the strategies used by neurotropic viruses to cross the barrier systems of the CNS and on how the immune system detects and responds to viral infections in the CNS. A special emphasis is placed on immune surveillance of persistent and latent viral infections and on recent insights gained from imaging both protective and pathogenic antiviral immune responses.
Collapse
|
121
|
Severance EG, Dickerson FB, Viscidi RP, Bossis I, Stallings CR, Origoni AE, Sullens A, Yolken RH. Coronavirus immunoreactivity in individuals with a recent onset of psychotic symptoms. Schizophr Bull 2011; 37:101-7. [PMID: 19491313 PMCID: PMC3004184 DOI: 10.1093/schbul/sbp052] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prenatal influenza exposure increases the risk for schizophrenia and brings to question how other respiratory viruses may contribute to neuropsychiatric disease etiopathology. Human coronaviruses cause respiratory infections that range in seriousness from common colds to severe acute respiratory syndrome. Like influenza, coronaviruses can be neurotropic. To test for associations between coronaviruses and serious mental disorders, we utilized a recently developed assay and measured immunoglobulin G (IgG) response against 4 human coronavirus strains (229E, HKU1, NL63, and OC43) in 106 patients with a recent onset of psychotic symptoms and 196 nonpsychiatric controls. We expressed results quantitatively as antibody levels and qualitatively as seroprevalence relative to a defined seropositivity cutoff value. Patient IgG levels were higher than controls for HKU1, NL63, and OC43, with HKU1 and NL63 both showing highly significant patient-to-control differences (HKU1, P ≤ .002; NL63, P ≤ .00001). All 4 coronaviruses were more seroprevalent in patients vs controls, with greatest intergroup differences observed for HKU1 (93% vs 77%, P ≤ .0001). HKU1 and NL63 associations with the patient group were further supported by multivariate analyses that controlled for age, gender, race, socioeconomic status, and smoking status (HKU1, odds ratio [OR] = 1.32, 95% confidence interval [CI] = 1.03-1.67, P ≤ .027; NL63, OR = 2.42, 95% CI = 1.25-4.66, P ≤ .008). Among patients, NL63 was associated with schizophrenia-spectrum (OR = 3.10, 95% CI = 1.27-7.58, P ≤ .013) but not mood disorders. HKU1 and NL63 coronavirus exposures may represent comorbid risk factors in neuropsychiatric disease. Future studies should explore links between the timing of coronavirus infections and subsequent development of schizophrenia and other disorders with psychotic symptoms.
Collapse
Affiliation(s)
- Emily G. Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933,To whom correspondence should be addressed; tel: 410-614-3918, fax: 410-955-3723, e-mail:
| | | | - Raphael P. Viscidi
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933
| | - Ioannis Bossis
- Department of Veterinary Medicine, University of Maryland, College Park, MD
| | | | - Andrea E. Origoni
- Stanley Research Center, Sheppard Pratt Health System, Baltimore, MD
| | - Anne Sullens
- Stanley Research Center, Sheppard Pratt Health System, Baltimore, MD
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Blalock 1105, Baltimore, MD 21287-4933
| |
Collapse
|
122
|
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges. PLoS One 2010; 5:e14034. [PMID: 21124975 PMCID: PMC2987801 DOI: 10.1371/journal.pone.0014034] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Collapse
|
123
|
Mori I. Herpes simplex virus type 1 persists in the aged brain through hypothetical expression of accessory genes. J Neurovirol 2010; 16:203-7. [PMID: 20450378 DOI: 10.3109/13550281003739040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herpes simplex virus type 1 persists in the brain of most aged individuals and may contribute to the pathogenesis of Alzheimer's disease. The virus likely utilizes accessory genes for neural spread within the nervous system and herpes simplex virus type 1 may regulate various host responses through an array of accessory genes. This mini-review focuses on these viral accessory genes that may shed light on the potential mechanisms of this enigmatic phenomenon in the elderly brain.
Collapse
Affiliation(s)
- Isamu Mori
- Faculty of Health and Nutrition, Shubun University, Aichi, Japan.
| |
Collapse
|
124
|
Majde JA. Neuroinflammation resulting from covert brain invasion by common viruses - a potential role in local and global neurodegeneration. Med Hypotheses 2010; 75:204-13. [PMID: 20236772 PMCID: PMC2897933 DOI: 10.1016/j.mehy.2010.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
Neurodegenerative diseases are a horrendous burden for their victims, their families, and society as a whole. For half a century scientists have pursued the hypothesis that these diseases involve a chronic viral infection in the brain. However, efforts to consistently detect a specific virus in brains of patients with such diseases as Alzheimer's or multiple sclerosis have generally failed. Neuropathologists have become increasingly aware that most patients with neurodegenerative diseases demonstrate marked deterioration of the brain olfactory bulb in addition to brain targets that define the specific disease. In fact, the loss of the sense of smell may precede overt neurological symptoms by many years. This realization that the olfactory bulb is a common target in neurodegenerative diseases suggests the possibility that microbes and/or toxins in inhaled air may play a role in their pathogenesis. With regard to inhaled viruses, neuropathologists have focused on those viruses that infect and kill neurons. However, a recent study shows that a respiratory virus with no neurotropic properties can rapidly invade the mouse olfactory bulb from the nasal cavity. Available data suggest that this strain of influenza is passively transported to the bulb via the olfactory nerves (mechanism unknown), and is taken up by glial cells in the outer layers of the bulb. The infected glial cells appear to be activated by the virus, secrete proinflammatory cytokines, and block further spread of virus within the brain. At the time that influenza symptoms become apparent (15 h post-infection), but not prior to symptom onset (10 h post-infection), proinflammatory cytokine-expressing neurons are increased in olfactory cortical pathways and hypothalamus as well as in the olfactory bulb. The mice go on to die of pneumonitis with severe acute phase and respiratory disease symptoms but no classical neurological symptoms. While much remains to be learned about this intranasal influenza-brain invasion model, it suggests the hypothesis that common viruses encountered in our daily life may initiate neuroinflammation via olfactory neural networks. The numerous viruses that we inhale during a lifetime might cause the death of only a few neurons per infection, but this minor damage would accumulate over time and contribute to age-related brain shrinkage and/or neurodegenerative diseases. Elderly individuals with a strong innate inflammatory system, or ongoing systemic inflammation (or both), might be most susceptible to these outcomes. The evidence for the hypothesis that common respiratory viruses may contribute to neurodegenerative processes is developed in the accompanying article.
Collapse
Affiliation(s)
- Jeannine A Majde
- Department of VCAPP, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6520, USA.
| |
Collapse
|
125
|
Birek C, Ficarra G. The diagnosis and management of oral herpes simplex infection. Curr Infect Dis Rep 2010; 8:181-8. [PMID: 16643769 DOI: 10.1007/s11908-006-0057-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acute herpetic gingivostomatitis and recurrent herpes labialis are the most common manifestations of infection with herpes simplex virus type 1 (HSV-1). In primary and recrudescent HSV-associated disease, the symptoms may range from subclinical to debilitating and life-threatening, depending on the host's immune responses or competence level. In this paper, the typical and atypical manifestations, and the current diagnostic and treatment options for localized, non-complicated oro-labial HSV infection are reviewed, with attention to cumulative evidence for the efficacy and safety of systemic antiviral agents. Some recent data on HSV-1 seroprevalence, viremia, and viral shedding are discussed in relation to disease transmission and global importance of herpesvirus disease.
Collapse
Affiliation(s)
- Catalena Birek
- University of Manitoba, Department of Oral Biology, 780 Bannatyne Avenue, Winnipeg, MB, R3E 0W2 Canada.
| | | |
Collapse
|
126
|
Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MCJ. Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 2009; 20:738-50. [PMID: 20002440 DOI: 10.1111/j.1750-3639.2009.00354.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long-term neurological sequela is common among herpes simplex encephalitis (HSE) survivors. Animal models for HSE are used to investigate mechanisms of acute disease, but little has been done to model chronic manifestations of HSE. The current study presents a detailed, systematic analysis of chronic neuropathology, including characterization of topography and sequential progression of degenerative lesions and inflammation. Subsequent to intranasal HSV-1 infection, inflammatory responses that were temporally and spatially distinct persisted in infected cortical and brain stem regions. Neutrophils were present exclusively within the olfactory bulb and brain stem regions during the acute phase of infection, while the chronic inflammation was marked by plasma cells, lymphocytes and activated microglia. The chronic lymphocytic infiltrate, cytokine production, and activated microglia were associated with the loss of cortical neuropile in the entorhinal cortex and hippocampus. Animals surviving the acute infection showed a spectrum of chronic lesions from decreased brain volume, neuronal loss, activated astrocytes, and glial scar formation to severe atrophy and cavitations of the cortex. These lesions were also associated with severe spatial memory deficits in surviving animals. Taken together, this model can be utilized to further investigate the mechanisms of neurological defects that follow in the wake of HSE.
Collapse
Affiliation(s)
- Anibal G Armien
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, MN, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Detje CN, Meyer T, Schmidt H, Kreuz D, Rose JK, Bechmann I, Prinz M, Kalinke U. Local type I IFN receptor signaling protects against virus spread within the central nervous system. THE JOURNAL OF IMMUNOLOGY 2009; 182:2297-304. [PMID: 19201884 DOI: 10.4049/jimmunol.0800596] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several neurotropic viruses such as vesicular stomatitis virus (VSV) induce peripheral neutralizing Ab responses and still can infect cells within the CNS. To address whether local type I IFN receptor (IFNAR) triggering plays a role in controlling virus replication within the brain, we generated mice with a cell type-specific IFNAR deletion in neuroectodermal cells of the CNS (NesCre(+/-)IFNAR(flox/flox)). Intranasal VSV infection with 10(3) PFU was well tolerated by wild-type mice, whereas conventional IFNAR(-/-) mice died within 2-3 days. In contrast, brain-specific NesCre(+/-)IFNAR(flox/flox) mice survived until day 5-6 and then became hemiplegic and died. Terminally ill NesCre(+/-)IFNAR(flox/flox) mice showed 10- to 100-fold higher virus loads in the brain than IFNAR(-/-) mice, whereas little or no virus was found in other organs. In wild-type animals, virus could be reisolated only from the olfactory bulb until day 6 where also STAT1 activation as a measure of IFNAR triggering was detected. Virus infection was found exclusively in glomerular structures of the olfactory bulb, whereas surrounding cells that showed STAT1 phosphorylation as a measure of IFNAR trigging were free of virus. Our data indicate that upon intranasal VSV instillation, early and localized IFNAR triggering in the glomerular layer of the olfactory bulb is critically required to prevent viral spread over the entire CNS and thus confers survival.
Collapse
Affiliation(s)
- Claudia N Detje
- Division of Immunology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
The olfactory system (OS) is involved in many infectious and neurodegenerative diseases, both human and animal, and it has recently been investigated in regard to transmissible spongiform encephalopathies. Previous assessments of nasal mucosa infection by prions following intracerebral challenge suggested a potential centrifugal spread along the olfactory nerve fibers of the pathological prion protein (PrP(Sc)). Whether the nasal cavity may be a route for centripetal prion infection to the brain has also been experimentally studied. With the present study, we wanted to determine whether prion deposition in the OS occurs also under field conditions and what type of anatomical localization PrP(Sc) might display there. We report here on detection by different techniques of PrP(Sc) in the nasal mucosa and in the OS-related brain areas of sheep affected by natural scrapie. PrP(Sc) was detected in the perineurium of the olfactory nerve bundles in the medial nasal concha and in nasal-associated lymphoid tissue. Olfactory receptor neurons did not show PrP(Sc) immunostaining. PrP(Sc) deposition was found in the brain areas of olfactory fiber projection, chiefly in the olfactory bulb and the olfactory cortex. The prevalent PrP(Sc) deposition patterns were subependymal, perivascular, and submeningeal. This finding, together with the discovery of an intense PrP(Sc) immunostaining in the meningeal layer of the olfactory nerve perineurium, at the border with the subdural space extension surrounding the nerve rootlets, strongly suggests a probable role of cerebrospinal fluid in conveying prion infectivity to the nasal submucosa.
Collapse
|
129
|
Lee YH, Simmons MM, Hawkins SAC, Spencer YI, Webb P, Stack MJ, Wells GAH. Detection of Pathologic Prion Protein in the Olfactory Bulb of Natural and Experimental Bovine Spongiform Encephalopathy Affected Cattle in Great Britain. Vet Pathol 2009; 46:59-62. [DOI: 10.1354/vp.46-1-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate the relative involvement of the olfactory region in classical bovine spongiform encephalopathy (BSE), immunohistochemical labeling of prion protein scrapie (PrPSc) was scored in the brainstem, frontal cerebral cortex, and olfactory bulb of cattle with natural and experimental clinical cases of BSE in Great Britain. The intensity of immunolabeling was greatest in the brainstem, but PrPSc was also detected in the olfactory bulb and the cerebral cortex. A diffuse, nonparticulate labeling, possibly due to abundance of cellular PrP, was consistently observed in the olfactory glomeruli of the cases and negative controls. Involvement of the olfactory bulb in BSE and other naturally occurring TSEs of animals raises speculation as to an olfactory portal of infection or a route of excretion of the prion agent.
Collapse
Affiliation(s)
- Y. H. Lee
- National Veterinary Research and Quarantine Service, Anyang, Republic of Korea
| | - M. M. Simmons
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - S. A. C. Hawkins
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Y. I. Spencer
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - P. Webb
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - M. J. Stack
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - G. A. H. Wells
- Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| |
Collapse
|
130
|
|
131
|
Weingartl HM, Berhane Y, Czub M. Animal models of henipavirus infection: a review. Vet J 2008; 181:211-20. [PMID: 19084436 DOI: 10.1016/j.tvjl.2008.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission.
Collapse
Affiliation(s)
- Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, 1015 Arlington St., MB, Canada R3E 3M4.
| | | | | |
Collapse
|
132
|
Loseva E, Yuan TF, Karnup S. Neurogliogenesis in the mature olfactory system: a possible protective role against infection and toxic dust. ACTA ACUST UNITED AC 2008; 59:374-87. [PMID: 19027790 PMCID: PMC7112504 DOI: 10.1016/j.brainresrev.2008.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/01/2008] [Accepted: 10/25/2008] [Indexed: 01/12/2023]
Abstract
The outpost position of the olfactory bulb (OB) between the direct inputs from sensory neurons of the nasal epithelium and other parts of the brain suggests its highest vulnerability among all brain structures to penetration of exogenous agents. A number of neurotropic viruses have been found to invade the brain through the OB. There is growing evidence that microscopic particles of toxic dusts can propagate from the nasal epithelium to the OB and further into the brain. These harmful agents impair cellular elements of the brain. Apparently, cells in the OB are the most affected, as they are the first to encounter viral infections and toxic particles. It is well known that neuronal and glial progenitors are continuously generated from neuronal stem cells in the subventricular zone of the adult brain and then migrate predominantly into the OB. Therefore, it is feasible to suggest that substitution of injured or dead cells in the OB by new-born neurons, differentiating from progenitors, plays a role in protecting the OB neuronal microcircuits from destruction. Furthermore, some cytokines and chemokines released in response to infection and/or intoxication can modulate different stages of neurogenesis (proliferation, migration, and differentiation). We hypothesize that continuous neurogenesis in the olfactory system throughout adulthood evolved as a protective mechanism to prevent impairment of the most ancient but vitally important sensory system. In addition, differentiation of a substantial portion of progenitors to glial cells, including macrophages and microglia, may create an additional barrier to exogenous agents on their way deep to the brain.
Collapse
Affiliation(s)
- Elena Loseva
- Institute of Higher Nervous Activity and Neurophysiology RAS, Moscow, Russia.
| | | | | |
Collapse
|
133
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
134
|
Majde JA, Bohnet SG, Ellis GA, Churchill L, Leyva-Grado V, Wu M, Szentirmai E, Rehman A, Krueger JM. Detection of mouse-adapted human influenza virus in the olfactory bulbs of mice within hours after intranasal infection. J Neurovirol 2008; 13:399-409. [PMID: 17994424 DOI: 10.1080/13550280701427069] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Influenza pneumonitis causes severe systemic symptoms in mice, including hypothermia and excess sleep. The association of extrapulmonary virus, particularly virus in the brain, with the onset of such disease symptoms has not been investigated. Mature C57BL/6 male mice were infected intranasally with mouse-adapted human influenza viruses (PR8 or X-31) under inhalation, systemic, or no anesthesia. Core body temperatures were monitored continuously by radiotelemetry, and tissues (lung, brain, olfactory bulb, spleen, blood) were harvested at the time of onset of hypothermia (13 to 24 h post infection [PI]) or at 4 or 7 h PI. Whole RNA from all tissues was examined by one or more of three reverse transcriptase-polymerase chain reaction (RT-PCR) procedures using H1N1 nucleoprotein (NP) primers for minus polarity RNA (genomic or vRNA) or plus polarity RNA (replication intermediates). Selected cytokines were assayed at 4, 7, and 15 h in the olfactory bulb (OB). Minus and plus RNA strands were readily detected in OBs as early as 4 h PI by nested RT-PCR. Anesthesia was not required for viral invasion of the OB. Cytokine mRNAs were also significantly elevated in the OB at 7 and 15 h PI in infected mice. Controls receiving boiled virus expressed only input vRNA and that only in lung. Immunohistochemistry demonstrated localization of H1N1 and NP antigens in olfactory nerves and the glomerular layer of the OB. Therefore a mouse-adapted human influenza virus strain, not known to be neurotropic, was detected in the mouse OB within 4 h PI where it appeared to induce replication intermediates and cytokines.
Collapse
Affiliation(s)
- Jeannine A Majde
- Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Dietzel J, Kuhrt H, Stahl T, Kacza J, Seeger J, Weber M, Uhlig A, Reichenbach A, Grosche A, Pannicke T. Morphometric analysis of the retina from horses infected with the Borna disease virus. Vet Pathol 2007; 44:57-63. [PMID: 17197624 DOI: 10.1354/vp.44-1-57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Borna disease (BD) is a fatal disorder of horses, often characterized by blindness. Although degeneration of retinal neurons has been demonstrated in a rat model, there are controversial data concerning whether a similar degeneration occurs in the retina of infected horses. To investigate whether BD may cause degeneration of photoreceptors and possibly of other neuronal cells at least at later stages of the disease, we performed a detailed quantitative morphologic study of retinal tissue from Borna-diseased horses. BD was diagnosed by detection of pathognomonic Joest-Degen inclusion bodies in the postmortem brains. Paraffin sections of paraformaldehyde-fixed retinae were used for histologic and immunohistochemical stainings. Numbers of neurons and Müller glial cells were counted, and neuron-to-Müller cell ratios were calculated. Among tissues from 9 horses with BD, we found retinae with strongly altered histologic appearance as well as retinae with only minor changes. The neuron-to-Müller cell ratio for the whole retina was significantly smaller in diseased animals (8.5 +/- 0.4; P < .01) as compared with controls (17.6 +/- 0.8). It can be concluded that BD in horses causes alterations of the retinal histology of a variable degree. The study provides new data about the pathogenesis of BD concerning the retina and demonstrates that a loss of photoreceptors may explain the observed blindness in infected horses.
Collapse
Affiliation(s)
- J Dietzel
- Paul-Flechsig-Institut für Hirnforschung, Universität Leipzig, Jahnallee 59, D-04109 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Rudd PA, Cattaneo R, von Messling V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J Virol 2006; 80:9361-70. [PMID: 16973542 PMCID: PMC1617229 DOI: 10.1128/jvi.01034-06] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.
Collapse
Affiliation(s)
- Penny A Rudd
- INRS-Institut Armand-Frappier, University of Quebec, 531, Boul. des Prairies, Laval, Quebec H7V 1B7, Canada
| | | | | |
Collapse
|
137
|
van den Pol AN. Viral infections in the developing and mature brain. Trends Neurosci 2006; 29:398-406. [PMID: 16806513 DOI: 10.1016/j.tins.2006.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/09/2006] [Accepted: 06/02/2006] [Indexed: 12/21/2022]
Abstract
A number of different RNA and DNA viruses can invade the brain and cause neurological dysfunction. These range from the tiny polio picornavirus, which has only 7kb of RNA genetic code that preferentially infects motor neurons, to the relatively large cytomegalovirus, which has >100 genes in its 235kb DNA genome and causes various neurological problems in the developing brain but is comparatively harmless to adults. This brief overview of some aspects of neurovirology addresses the complex problems that underlie an appreciation of the contribution of viral infections to brain disease. [This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (http://inmednet.com/).]
Collapse
Affiliation(s)
- Anthony N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
138
|
Mori I, Goshima F, Watanabe D, Ito H, Koide N, Yoshida T, Liu B, Kimura Y, Yokochi T, Nishiyama Y. Herpes simplex virus US3 protein kinase regulates virus-induced apoptosis in olfactory and vomeronasal chemosensory neurons in vivo. Microbes Infect 2006; 8:1806-12. [PMID: 16815072 DOI: 10.1016/j.micinf.2006.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/17/2022]
Abstract
A role for the US3 protein kinase of herpes simplex virus (HSV) in regulating virus-induced neuronal apoptosis was investigated in an experimental mouse system, in which wild-type HSV invades the central nervous system (CNS) via the olfactory and vomeronasal systems upon intranasal infection. Wild-type HSV-2 strain 186 infected a fraction of olfactory and vomeronasal chemosensory neurons without inducing apoptosis and was transmitted to the CNS, precipitating lethal encephalitis. In sharp contrast, an US3-disrupted mutant, L1BR1, induced neuronal apoptosis in these peripheral conduits upon infection, blocking viral transmission to the CNS and causing no signs of disease. An US3-repaired mutant, L1B(-)11, behaved similarly to the wild-type virus. Only 5 p.f.u. of L1BR1 was sufficient to compromise mice when the mutant virus was introduced directly into the olfactory bulb, a viral entry site of the CNS. These results suggest that the US3 protein kinase of HSV regulates virus-induced neuronal apoptosis in peripheral conduits and determines the neuroinvasive phenotype of HSV. Furthermore, virus-induced neuronal apoptosis of peripheral nervous system cells may be a protective host response that blocks viral transmission to the CNS.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Mori I, Goshima F, Mizuno T, Imai Y, Kohsaka S, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. Axonal injury in experimental herpes simplex encephalitis. Brain Res 2006; 1057:186-90. [PMID: 16122712 DOI: 10.1016/j.brainres.2005.07.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/11/2005] [Accepted: 07/13/2005] [Indexed: 11/28/2022]
Abstract
Using beta-amyloid precursor protein immunolabeling, we have detected axonal injury in experimental herpes simplex encephalitis. beta-amyloid precursor protein-specific signals were found in the mouse brain as either puncta or axon-like structures. They appeared where infected neurons were undergoing apoptosis and Iba1-immunopositive microglia transformed themselves into macrophages. These results show, for the first time, that axonal injury, i.e., functional disturbance of the fast axonal transport, can take place during the course of acute viral encephalitis.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University, School of Medicine, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Baxi KN, Dorries KM, Eisthen HL. Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci 2005; 29:1-7. [PMID: 16271402 DOI: 10.1016/j.tins.2005.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/21/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
Many academics, clinicians and lay readers of science incorrectly assume that vomeronasal processing is equivalent to pheromone processing. We review the abundant data concerning the roles of both the olfactory and the vomeronasal systems in the processing of both pheromones and other odorants, demonstrating that this "equivalency hypothesis" is untenable. This conclusion has important implications for the design and interpretation of experiments examining vomeronasal and olfactory system function. We describe some of the problems that arise from assuming that this equivalency holds. Two alternative hypotheses have been offered, but the available data do not enable us to accept or reject either one. Perhaps no single functional description can adequately characterize the role of the vomeronasal system.
Collapse
Affiliation(s)
- Kosha N Baxi
- Department of Zoology, 203 Natural Sciences Building, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
141
|
Mori I, Liu B, Goshima F, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. HF10, an attenuated herpes simplex virus (HSV) type 1 clone, lacks neuroinvasiveness and protects mice against lethal challenge with HSV types 1 and 2. Microbes Infect 2005; 7:1492-500. [PMID: 16054416 DOI: 10.1016/j.micinf.2005.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/30/2022]
Abstract
Herpes simplex virus (HSV), a neurotropic virus, establishes life-long and, although rare, life-threatening infection in humans, and it may precipitate substantial medical and psychosocial morbidity. Here we show that HSV-1 strain HF clone 10 (HF10) exhibits impaired neuroinvasiveness in peripheral olfactory, vomeronasal and trigeminal conduits following intranasal as well as corneal inoculation. HF10 attenuation likely arises from multiple defects of HSV genes, so that HF10 will not revert to a virulent phenotype. Intranasal vaccination of mice with HF10 conferred significant protection against lethal challenge with HSV-1 and HSV-2 via the intranasal and intravaginal routes. Thus, we propose that HF10 explicitly meets the prerequisites for a candidate live attenuated HSV vaccine.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, 480-1195, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Mori I, Goshima F, Ito H, Koide N, Yoshida T, Yokochi T, Kimura Y, Nishiyama Y. The vomeronasal chemosensory system as a route of neuroinvasion by herpes simplex virus. Virology 2005; 334:51-8. [PMID: 15749122 DOI: 10.1016/j.virol.2005.01.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/04/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
We have investigated the potential of neurotropic microbes to invade the central nervous system (CNS) via the peripheral nervous system. Herpes simplex virus type 1 (HSV-1) strain KH6 and herpes simplex virus type 2 (HSV-2) strain 186 were found to infect chemosensory neurons in the vomeronasal organ (the pheromone detector) following intranasal inoculation of mice. HSV-1 strain KH6 infection was further transmitted to the accessory olfactory bulb (first relay), the medial amygdala (second relay), and the bed nucleus of the stria terminalis and the ventromedial hypothalamus (third relay). HSV-1 strain KH6 also targeted the olfactory and trigeminal systems. HSV-2 strain 186 predominantly attacked the brainstem including the trigeminal system. While both viruses did not induce apoptosis in infected chemosensory neurons, they did in infected brain tissue. These results suggest that neurotropic viruses can invade the brain by infecting vomeronasal chemosensory neurons and that the restrained induction of apoptosis in the infected neurons may facilitate viral transmission to the CNS.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi 480-1195, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Mori I, Nishiyama Y. Herpes simplex virus and varicella-zoster virus: why do these human alphaherpesviruses behave so differently from one another? Rev Med Virol 2005; 15:393-406. [PMID: 16173110 DOI: 10.1002/rmv.478] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Members of the Herpesviridae family of viruses are classified into the alpha, beta and gamma subfamilies. The alpha subfamily is estimated to have diverged from the beta and gamma subfamilies 200-220 million years ago. The ancestors of the herpes simplex virus (HSV) and the varicella-zoster virus (VZV), two ubiquitous and clinically important human pathogens, appeared 70-80 million years ago. As these viruses coevolved with their specific primate hosts, genetic rearrangements led to the development of the contemporary alphaherpesviruses and their distinct complement of genes. Here the distinct features of HSV and VZV are discussed in terms of their transmissibility, clinical picture, tissue tropism, establishment of latency/reactivation and immune evasion, which can, at least in part, be explained by differences in their genomes.
Collapse
Affiliation(s)
- Isamu Mori
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| | | |
Collapse
|