101
|
Arvan P, Kim PS, Kuliawat R, Prabakaran D, Muresan Z, Yoo SE, Abu Hossain S. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid 1997; 7:89-105. [PMID: 9086577 DOI: 10.1089/thy.1997.7.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a snapshot of developments in epithelial biology that may prove helpful in understanding cellular aspects of the machinery designed for the synthesis of thyroid hormones on the thyroglobulin precursor. The functional unit of the thyroid gland is the follicle, delimited by a monolayer of thyrocytes. Like the cells of most simple epithelia, thyrocytes exhibit specialization of the cell surface that confronts two different extracellular environments-apical and basolateral, which are separated by tight junctions. Specifically, the basolateral domain faces the interstitium/bloodstream, while the apical domain is in contact with the lumen that is the primary target for newly synthesized thyroglobulin secretion and also serves as a storage depot for previously secreted protein. Thyrocytes use their polarity in several important ways, such as for maintaining basolaterally located iodide uptake and T4 deiodination, as well apically located iodide efflux and iodination machinery. The mechanisms by which this organization is established, fall in large part under the more general cell biological problem of intracellular sorting and trafficking of different proteins en route to the cell surface. Nearly all exportable proteins begin their biological life after synthesis in an intracellular compartment known as the endoplasmic reticulum (ER), upon which different degrees of difficulty may be encountered during nascent polypeptide folding and initial export to the Golgi complex. In these initial stages, ER molecular chaperones can assist in monitoring protein folding and export while themselves remaining as resident proteins of the thyroid ER. After export from the ER, most subsequent sorting for protein delivery to apical or basolateral surfaces of thyrocytes occurs within another specialized intracellular compartment known as the trans-Golgi network. Targeting information encoded in secretory proteins and plasma membrane proteins can be exposed or buried at different stages along the export pathway, which is likely to account for sorting and specific delivery of different newly-synthesized proteins. Defects in either burying or exposing these structural signals, and consequent abnormalities in protein transport, may contribute to different thyroid pathologies.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Lee ER, Marshall J, Siegel CS, Jiang C, Yew NS, Nichols MR, Nietupski JB, Ziegler RJ, Lane MB, Wang KX, Wan NC, Scheule RK, Harris DJ, Smith AE, Cheng SH. Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung. Hum Gene Ther 1996; 7:1701-17. [PMID: 8886841 DOI: 10.1089/hum.1996.7.14-1701] [Citation(s) in RCA: 335] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cationic lipid-mediated gene transfer of cystic fibrosis transmembrane conductance regulator (CFTR) cDNA represents a promising approach for treatment of cystic fibrosis (CF). Here, we report on the structures of several novel cationic lipids that are effective for gene delivery to the lungs of mice. An amphiphile (#67) consisting of a cholesterol anchor linked to a spermine headgroup in a "T-shape" configuration was shown to be particularly efficacious. An optimized formulation of #67 and plasmid vector encoding chloramphenicol acetyl-transferase (CAT) was capable of generating up to 1 microgram of CAT enzyme/lung following intranasal instillation into BALB/c mice. This represents a 1,000-fold increase in expression above that obtained in animals instilled with naked pDNA alone and is greater than 100-fold more active than cationic lipids used previously for CFTR gene expression. When directly compared with adenovirus-based vectors containing similar transcription units, the number of molecules of gene product expressed using lipid-mediated transfer was equivalent to vector administration at multiplicities of infection ranging from 1 to 20. The level of transgene expression in the lungs of BALB/c mice peaked between days 1 and 4 post-instillation, followed by a rapid decline to approximately 20% of the maximal value by day 7. Undiminished levels of transgene expression in the lung could be obtained following repeated intranasal administration of #67:DOPE:pCF1-CAT in nude mice. Transfection of cells with formulations of #67:DOPE:pCF1-CFTR generated cAMP-stimulated CFTR chloride channel and fluid transport activities, two well-characterized defects associated with CF cells. Taken together, the data demonstrate that cationic lipid-mediated gene delivery and expression of CFTR in CF lungs is a viable and promising approach for treatment of the disease.
Collapse
Affiliation(s)
- E R Lee
- Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Maisner A, Liszewski MK, Atkinson JP, Schwartz-Albiez R, Herrler G. Two different cytoplasmic tails direct isoforms of the membrane cofactor protein (CD46) to the basolateral surface of Madin-Darby canine kidney cells. J Biol Chem 1996; 271:18853-8. [PMID: 8702545 DOI: 10.1074/jbc.271.31.18853] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Membrane cofactor protein (MCP; CD46), a widely distributed regulatory protein of the complement system, was analyzed for expression in polarized epithelial cells. Both a human and a simian (Vero C1008) cell line were found to contain endogenous MCP mainly on the basolateral surface. Transfected Madin-Darby canine kidney cells stably expressing human MCP delivered this protein also predominantly to the basolateral surface. A deletion mutant lacking the cytoplasmic tail was transported in a nonpolarized fashion, indicating that the targeting signal for the basolateral transport is located in the cytoplasmic domain. A characteristic feature of MCP is the presence of various isoforms that contain either of two different cytoplasmic tails as a consequence of alternative splicing. Two isoforms differing only in the cytoplasmic tail (tail 1 or 2) were analyzed for polarized expression in Madin-Darby canine kidney cells. Surface biotinylation, as well as confocal immunofluorescence microscopy, indicated that both proteins were transported to the basolateral surface. Because no sequence similarity has been observed, the two tails contain different basolateral targeting signals. A deletion mutant lacking the only tyrosine residue in tail 1 retained the polarized expression indicating that, in contrast to most basolateral sorting signals, the transport signal of the tail 1 isoform is not dependent on tyrosine. The maintenance of a targeting motif in two distinct cytoplasmic tails suggests that the basolateral expression of MCP in polarized epithelial cells is of physiological importance.
Collapse
Affiliation(s)
- A Maisner
- Institut für Virologie, Philipps-Universität Marburg, Robert-Koch-Strasse 17, D-35037 Marburg, Germany
| | | | | | | | | |
Collapse
|
104
|
Graichen R, Lösch A, Appel D, Koch-Brandt C. Glycolipid-independent sorting of a secretory glycoprotein to the apical surface of polarized epithelial cells. J Biol Chem 1996; 271:15854-7. [PMID: 8663455 DOI: 10.1074/jbc.271.27.15854] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proteins attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor cluster together with glycolipids in detergent-insoluble complexes at the site of sorting in the trans-Golgi network. This process has been shown to be critical for the targeting of these proteins to the apical cell surface in polarized epithelial cells. We show in this study that gp80 (clusterin), an apically secreted glycoprotein, is not included in detergent-insoluble complexes in Madin-Darby canine kidney cells. Furthermore in Fisher rat thyroid cells, which target GPI-anchored proteins preferentially to the basolateral cell surface, gp80 is secreted apically. Together these results suggest that this secretory glycoprotein and GPI-linked proteins use different mechanisms to reach the apical membrane.
Collapse
Affiliation(s)
- R Graichen
- Institut für Biochemie, J. Gutenberg-Universität, 55099 Mainz, Federal Republic of Germany
| | | | | | | |
Collapse
|
105
|
Ali S, Hall J, Hazlewood GP, Hirst BH, Gilbert HJ. A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J 1996; 315 ( Pt 3):857-62. [PMID: 8645168 PMCID: PMC1217285 DOI: 10.1042/bj3150857] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eukaryotic membrane-associated polypeptides often contain a glycosylphosphatidylinositol (GPI) anchor that signals the attachment of GPI lipids to these proteins. The GPI anchor can function as a basolateral or apical targeting signal in mammalian cells cultured in vitro, although the function of the GPI anchor in vivo remains to be elucidated. In this study we have evaluated the effect of fusing a GPI anchor sequence to a prokaryotic reporter protein on the cellular location of the polypeptide in polarized epithelial cells of transgenic mice. The bacterial enzyme, when fused to a eukaryotic signal peptide, was secreted through the basolateral membrane of small-intestinal enterocytes; however, when the enzyme was lined to the GPI anchor sequence the polypeptide was redirected to the apical surface of the epithelial cells. These data provide the first direct evidence that the GPI anchor functions as an apical membrane protein sorting signal in polarized epithelial cells in vivo.
Collapse
Affiliation(s)
- S Ali
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, U.K
| | | | | | | | | |
Collapse
|
106
|
Hansen SH, Olsson A, Casanova JE. Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits transcytosis in polarized epithelial cells. J Biol Chem 1995; 270:28425-32. [PMID: 7499348 DOI: 10.1074/jbc.270.47.28425] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wortmannin, an inhibitor of phosphoinositide 3-kinase, inhibits both basolateral to apical and apical to basolateral transcytosis of ricin in Fisher rat thyroid (FRT) cells by 50% at 100 nM in a continuous transcytosis assay. In MDCK cells, a similar effect of wortmannin on basolateral to apical transcytosis of ricin was found, whereas apical to basolateral transcytosis was inhibited to a lesser degree. Transcytosis of dimeric IgA in MDCK cells expressing the polymeric immunoglobulin receptor was also reduced to 50% of controls, suggesting that wortmannin inhibits membrane translocation rather than sorting of specific proteins in the transcytotic pathway. This effect of wortmannin is selective, however, in that endocytosis at the basolateral domain and recycling at both the basolateral and apical membrane domains are unaffected, and apical endocytosis and apical secretion are only moderately reduced. We have shown previously that cAMP stimulates a late stage in basolateral to apical transcytosis in MDCK cells through activation of protein kinase A (Hansen, S. H., and Casanova, J.E. (1994) J. Cell Biol. 126, 677-687). Elevation of cellular cAMP still induced a 100% increase in transcytosis in wortmannin-treated cells, but transcytosis was no longer increased when compared to cells which received no drugs. In contrast, in experiments using a 17 degrees C block to accumulate ricin internalized from the basolateral surface in the apical compartment of MDCK cells, wortmannin had little effect on the stimulation of transcytosis by activators of protein kinase A observed under these conditions. The data thus suggest the existence of a wortmannin-sensitive step in the transcytotic pathway, positioned after endocytosis but prior to translocation into the protein kinase A-sensitive apical compartment, implying a role for phosphoinositide 3-kinase in an intermediate step in transcytosis in polarized epithelial cells.
Collapse
Affiliation(s)
- S H Hansen
- Department of Pediatrics, Massachusetts General Hospital East, Charlestown 02129, USA
| | | | | |
Collapse
|
107
|
Arreaza G, Brown DA. Sorting and intracellular trafficking of a glycosylphosphatidylinositol-anchored protein and two hybrid transmembrane proteins with the same ectodomain in Madin-Darby canine kidney epithelial cells. J Biol Chem 1995; 270:23641-7. [PMID: 7559531 DOI: 10.1074/jbc.270.40.23641] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We compared the trafficking of the glycosylphosphatidylinositol (GPI)-anchored placental alkaline phosphatase (PLAP) and two chimeric transmembrane proteins containing the PLAP ectodomain in stably transfected Madin-Darby canine kidney epithelial cells to determine whether different mechanisms might be used in apical sorting of GPI-anchored and transmembrane proteins. PLAP-G, which contained the transmembrane and cytoplasmic domains of the vesicular stomatitis virus glycoprotein, was delivered directly to the basolateral surface. PLAP-HA contained the transmembrane and cytoplasmic domains of influenza hemagglutinin. Both PLAP and PLAP-HA were delivered directly to the apical membrane. PLAP becomes insoluble in Triton X-100 during biosynthetic transport, as it associates with detergent-resistant membranes. Neither hybrid protein was detergent insoluble, though the small amount of PLAP that was missorted to the basolateral surface was insoluble. We examined the effects of three drugs known to interfere with membrane trafficking on sorting and delivery of PLAP and the hybrid proteins. Monensin had no effect on sorting or surface expression of any of the proteins. Nocodazole affected the sorting of both PLAP and PLAP-HA but not of PLAP-G. Brefeldin A appeared to disrupt the sorting of PLAP and PLAP-HA but not of PLAP-G. This conclusion was tempered by the observation that this drug affected the distribution of proteins at the cell surface. Thus, sorting and transport of GPI-anchored and apical transmembrane proteins are similar in a number of respects.
Collapse
Affiliation(s)
- G Arreaza
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook 11794-5215, USA
| | | |
Collapse
|
108
|
Ellis JA, Luzio JP. Identification and characterization of a novel protein (p137) which transcytoses bidirectionally in Caco-2 cells. J Biol Chem 1995; 270:20717-23. [PMID: 7657653 DOI: 10.1074/jbc.270.35.20717] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antisera raised against detergent-extracted membrane fractions from the human intestinal epithelial cell line Caco-2 were used to screen a human colon cDNA library in a bacteriophage expression vector. This led to the identification, molecular cloning, and sequencing of a novel plasma membrane protein (p137) which was present in approximately equal amounts on the basolateral and apical surfaces of the cell. The pattern of extraction of p137 from membranes by Triton X-114 and its release from membranes after incubation with phosphatidylinositol-specific phospholipase C were consistent with it being a glycosylphosphatidylinositol-anchored membrane protein. Using antibodies raised against bacterial fusion proteins, it was shown that p137 was present on the cell surface as a reducible homodimer of 137 kDa subunits. There was constitutive release of p137 into the culture medium as a non-reducible 280-kDa entity. Pulse-chase experiments showed that newly synthesized p137 appeared at the basolateral side of a Caco-2 cell layer before appearing at the apical domain. Domain-specific surface biotinylation of Caco-2 cells at 4 degrees C, followed by chasing at 37 degrees C, demonstrated that p137 is capable of transcytosing in both directions across Caco-2 cells. The unusual plasma membrane domain distribution of this glycosylphosphatidylinositol-linked protein and its transcytosis characteristics demonstrate the existence of a previously uncharacterized apical to basolateral transcytotic pathway in Caco-2 cells.
Collapse
Affiliation(s)
- J A Ellis
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, United Kingdom
| | | |
Collapse
|
109
|
Brakenhoff RH, Gerretsen M, Knippels EM, van Dijk M, van Essen H, Weghuis DO, Sinke RJ, Snow GB, van Dongen GA. The human E48 antigen, highly homologous to the murine Ly-6 antigen ThB, is a GPI-anchored molecule apparently involved in keratinocyte cell-cell adhesion. J Biophys Biochem Cytol 1995; 129:1677-89. [PMID: 7790363 PMCID: PMC2291189 DOI: 10.1083/jcb.129.6.1677] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The E48 antigen, a putative human homologue of the 20-kD protein present in desmosomal preparations of bovine muzzle, and formerly called desmoglein III (dg4), is a promising target antigen for antibody-based therapy of squamous cell carcinoma in man. To anticipate the effect of high antibody dose treatment, and to evaluate the possible biological involvement of the antigen in carcinogenesis, we set out to molecularly characterize the antigen. A cDNA clone encoding the E48 antigen was isolated by expression cloning in COS cells. Sequence analysis revealed that the clone contained an open reading frame of 128 amino acids, encoding a core protein of 13,286 kD. Database searching showed that the E48 antigen has a high level of sequence similarity with the mouse ThB antigen, a member of the Ly-6 antigen family. Phosphatidylinositol-specific (PI-specific) phospholipase-C treatment indicated that the E48 antigen is glycosylphosphatidylinositol-anchored (GPI-anchored) to the plasma membrane. The gene encoding the E48 antigen is a single copy gene, located on human chromosome 8 in the 8q24-qter region. The expression of the gene is confined to keratinocytes and squamous tumor cells. The putative mouse homologue, the ThB antigen, originally identified as an antigen on cells of the lymphocyte lineage, was shown to be highly expressed in squamous mouse epithelia. Moreover, the ThB expression level is in keratinocytes, in contrast to that in lymphocytes, not mouse strain related. Transfection of mouse SV40-polyoma transformed mouse NIH/3T3 cells with the E48 cDNA confirmed that the antigen is likely to be involved in cell-cell adhesion.
Collapse
Affiliation(s)
- R H Brakenhoff
- Department of Otorhinolaryngology, Free University Hospital, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Polarity is intrinsic to neuronal function. The somatodendritic domain receives and decodes incoming information and the axonal domain delivers information to target cells. Progressive loss of neuronal polarity is a major histopathological event in neural aging and neurodegenerative diseases, like Alzheimer's disease, preceding death and disappearance of nerve cells. Our laboratory is interested in the study of the pathways and mechanisms by which neuronal membrane polarity is established and maintained. Due to the lack of appropriate polarized neuronal cell lines for biochemical analysis, the molecular mechanisms underlying this phenomenon remain obscure. We use a neuronal culture system, hippocampal neurons from rat embryos, in which polarity is established in vitro, and the scientific rationale and experimental strategies proven useful in understanding the mechanisms of epithelial polarity. Here we review our own work on neuronal membrane polarity. The reader interested should consult any of the excellent reviews published recently (7,27,31,43).
Collapse
Affiliation(s)
- A Cid-Arregui
- Cell Biology Program, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
111
|
Dietzen DJ, Hastings WR, Lublin DM. Caveolin is palmitoylated on multiple cysteine residues. Palmitoylation is not necessary for localization of caveolin to caveolae. J Biol Chem 1995; 270:6838-42. [PMID: 7896831 DOI: 10.1074/jbc.270.12.6838] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Caveolae are subdomains of the plasma membrane which concentrate cholesterol, glycosphingolipids, and glycosylphosphatidylinositol-linked proteins. It has recently been demonstrated that specific members of the Src family of protein tyrosine kinases require palmitoylation of NH2-terminal cysteine residues to localize in caveolae. Here we report that caveolin, an integral membrane protein which forms part of the coat of caveolae, also incorporates palmitate through linkage to cysteine residues. Caveolin contains only three cysteine residues which are all located on the COOH-terminal side of the hydrophobic transmembrane region. Immunofluorescent staining of cells transfected with caveolin indicated that, like the NH2 terminus, this COOH-terminal region is located on the cytoplasmic side of the plasma membrane. Studies of cysteine substitution mutants showed that all three cysteines are capable of incorporating palmitate and that the juxtamembrane Cys133 residue is the predominant site of palmitoylation. Simultaneous mutation of all three cysteine residues in caveolin resulted in the loss of ability to incorporate palmitate; however, this did not affect localization of the protein. Thus, palmitoylation of cysteine residues in nonmembrane spanning Src family protein tyrosine kinases has different consequences than in the transmembrane protein caveolin.
Collapse
Affiliation(s)
- D J Dietzen
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
112
|
Kuliawat R, Lisanti MP, Arvan P. Polarized distribution and delivery of plasma membrane proteins in thyroid follicular epithelial cells. J Biol Chem 1995; 270:2478-82. [PMID: 7852309 DOI: 10.1074/jbc.270.6.2478] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Thyroid follicular cells coordinate several oppositely located surface enzyme activities. Recent studies have raised questions about the basic mechanisms used to achieve thyroid surface polarity. We investigated these mechanisms in primary thyroid epithelial monolayers cultured on porous filters. In the steady state, most Na+/K(+)-ATpase and aminopeptidase N were available for surface biotinylation, and these proteins exhibited physiological distributions (basolateral and apical, respectively). Glycosylphosphatidylinositol-anchored proteins were also apically distributed. By pulse-chase, newly synthesized transmembrane proteins exhibited polarized surface delivery that was oriented similarly to that observed at steady state. Little time elapsed between acquisition of Golgi-specific processing and cell surface arrival. Interestingly, when either newly synthesized or steady state-labeled thyroid peroxidase was similarly analyzed, only approximately 30% of the enzyme was ever detected at the cell surface. Of this, the majority was localized apically. The data suggest that most thyroid peroxidase remains intracellular in these monolayers, consistent with the possibility of intracellular iodination activity in addition to apical extracellular iodination. Nevertheless, in filter-polarized thyrocytes, most newly synthesized plasma membrane proteins appear to be sorted in the Golgi complex for direct delivery to apical and basolateral domains.
Collapse
Affiliation(s)
- R Kuliawat
- Division of Endocrinology, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
113
|
Saporito-Irwin SM, Birse CE, Sypherd PS, Fonzi WA. PHR1, a pH-regulated gene of Candida albicans, is required for morphogenesis. Mol Cell Biol 1995; 15:601-13. [PMID: 7823929 PMCID: PMC231914 DOI: 10.1128/mcb.15.2.601] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Candida albicans, like many fungi, exhibits morphological plasticity, a property which may be related to its biological capacity as an opportunistic pathogen of humans. Morphogenesis and alterations in cell shape require integration of many cellular functions and occur in response to environmental signals, most notably pH and temperature in the case of C. albicans. In the course of our studies of differential gene expression associated with dimorphism of C. albicans, we have isolated a gene, designated PHR1, which is regulated in response to the pH of the culture medium. PHR1 expression was repressed at pH values below 5.5 and induced at more alkaline pH. The predicted amino acid sequence of the PHR1 protein was 56% identical to that of the Saccharomyces cerevisiae Ggp1/Gas1 protein, a highly glycosylated cell surface protein attached to the membrane via glycosylphosphatidylinositol. A homozygous null mutant of PHR1 was constructed and found to exhibit a pH-conditional morphological defect. At alkaline pH, the mutant, unlike the parental type, was unable to conduct apical growth of either yeast or hyphal growth forms. This morphological aberration was not associated with defective cytoskeletal polarization or secretion. The results suggest that PHR1 defines a novel function required for apical cell growth and morphogenesis.
Collapse
Affiliation(s)
- S M Saporito-Irwin
- Department of Microbiology and Molecular Genetics, California College of Medicine, University of California, Irvine 92717
| | | | | | | |
Collapse
|
114
|
Soole KL, Jepson MA, Hazlewood GP, Gilbert HJ, Hirst BH. Epithelial sorting of a glycosylphosphatidylinositol-anchored bacterial protein expressed in polarized renal MDCK and intestinal Caco-2 cells. J Cell Sci 1995; 108 ( Pt 1):369-77. [PMID: 7738111 DOI: 10.1242/jcs.108.1.369] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To evaluate whether a glycosylphosphatidylinositol (GPI) anchor can function as a protein sorting signal in polarized intestinal epithelial cells, the GPI-attachment sequence from Thy-1 was fused to bacterial endoglucanase E' (EGE') from Clostridium thermocellum and polarity of secretion of the chimeric EGE'-GPI protein was evaluated. The chimeric EGE'-GPI protein was shown to be associated with a GPI anchor by TX-114 phase-partitioning and susceptibility to phosphoinositol-specific phospholipase C. In polarized MDCK cells, EGE' was localized almost exclusively to the apical cell surface, while in polarized intestinal Caco-2 cells, although 80% of the extracellular form of the enzyme was routed through the apical membrane over a 24 hour period, EGE' was also detected at the basolateral membrane. Rates of delivery of EGE'-GPI to the two membrane domains in Caco-2 cells, as determined with a biotinylation protocol, revealed apical delivery was approximately 2.5 times that of basolateral. EGE' delivered to the basolateral cell surface was transcytosed to the apical surface. These data indicate that a GPI anchor does represent a dominant apical sorting signal in intestinal epithelial cells. However, the mis-sorting of a proportion of EGE'GPI to the basolateral surface of Caco-2 cells provides an explanation for additional sorting signals in the ectodomain of some endogenous GPI-anchored proteins.
Collapse
Affiliation(s)
- K L Soole
- Department of Physiological Sciences, University of Newcastle upon Tyne, Medical School, UK
| | | | | | | | | |
Collapse
|
115
|
Pirozzi G, Terry RW, Labow MA. Murine vascular cell adhesion molecule-1 (VCAM-1) proteins encoded by alternatively spliced mRNAs are differentially targeted in polarized cells. CELL ADHESION AND COMMUNICATION 1994; 2:549-56. [PMID: 7538020 DOI: 10.3109/15419069409014218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
VCAM-1 is an immunoglobulin (Ig) superfamily member expressed in endothelial cells that mediates adhesion to a variety of leukocytes in a VLA-4 dependent manner. In the mouse, two distinct forms of VCAM are produced. One form, VCAMTM, contains seven Ig domains followed by a single transmembrane region and a short cytoplasmic domain. A second form, VCAMGPI, which is preferentially induced by cytokines and LPS, contains only the first three Ig domains and is attached to the cell surface via a glycosylphosphafidylinositol (GPI) anchor. Both vascular and nonvascular expression of VCAM have been reported in a variety of normal and pathological settings. One possible role for the two VCAM isoforms is to allow for the targeted localization of VCAM to specific cell surface domains of polarized cells. This may be particularly relevant since VCAM is known to be expressed by two different polarized cell types, namely endothelial cells and kidney epithelial cells. In this study, MDCK cells permanently expressing either VCAMTM or VCAMGPI were established and used to examine the targeting of VCAM proteins to different polarized surface domains. VCAMTM was primarily located on the basolateral surface while VCAMGPI was located on the apical surface of polarized MDCK cells. Data is also presented that demonstrates that polarized expression is reversed in endothelial cells where VCAMTM was observed primarily on the apical surface. The differential localization of VCAM isoforms on the cell surface has direct implications for the ability of VCAM to mediate cell adhesion and transmigration.
Collapse
Affiliation(s)
- G Pirozzi
- Deprtment of Biotechnology, Roche Research Center, Hoffmann La Roche Inc., Nutley, NJ 07110, USA
| | | | | |
Collapse
|
116
|
Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 1994. [PMID: 8035816 DOI: 10.1128/mcb.14.8.5384] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins and certain protein tyrosine kinases associate with a Triton X-100-insoluble, glycolipid-enriched membrane fraction in MDCK cells. Also, certain protein tyrosine kinases have been shown to associate with GPI-anchored proteins in other cell types. To characterize the interaction between GPI-anchored proteins and protein tyrosine kinases, GPI-anchored proteins were coexpressed with p56lck in HeLa cells. Both proteins were shown to target independently to the glycolipid-enriched membranes. Coimmunoprecipitation of GPI-anchored proteins and p56lck occurred only when both proteins were located in the glycolipid-enriched membranes, and gentle disruption of these membranes abolished the interaction. The GPI anchor was found to be the targeting signal for this membrane fraction in GPI-anchored proteins. Analysis of mutants indicated that p56lck was nearly quantitatively palmitoylated at Cys-5 but not palmitoylated at Cys-3. The nonpalmitoylated cysteine at position 3 was very important for association of p56lck with the membrane fraction, while palmitoylation at Cys-5 promoted only a low level of interaction. Because other src family protein tyrosine kinases that are associated with GPI-anchored proteins always contain a Cys-3, we propose that this residue, in addition to the N-terminal myristate, is part of a common signal targeting these proteins to a membrane domain that has been linked to transmembrane signaling.
Collapse
|
117
|
Rodgers W, Crise B, Rose JK. Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 1994; 14:5384-91. [PMID: 8035816 PMCID: PMC359057 DOI: 10.1128/mcb.14.8.5384-5391.1994] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins and certain protein tyrosine kinases associate with a Triton X-100-insoluble, glycolipid-enriched membrane fraction in MDCK cells. Also, certain protein tyrosine kinases have been shown to associate with GPI-anchored proteins in other cell types. To characterize the interaction between GPI-anchored proteins and protein tyrosine kinases, GPI-anchored proteins were coexpressed with p56lck in HeLa cells. Both proteins were shown to target independently to the glycolipid-enriched membranes. Coimmunoprecipitation of GPI-anchored proteins and p56lck occurred only when both proteins were located in the glycolipid-enriched membranes, and gentle disruption of these membranes abolished the interaction. The GPI anchor was found to be the targeting signal for this membrane fraction in GPI-anchored proteins. Analysis of mutants indicated that p56lck was nearly quantitatively palmitoylated at Cys-5 but not palmitoylated at Cys-3. The nonpalmitoylated cysteine at position 3 was very important for association of p56lck with the membrane fraction, while palmitoylation at Cys-5 promoted only a low level of interaction. Because other src family protein tyrosine kinases that are associated with GPI-anchored proteins always contain a Cys-3, we propose that this residue, in addition to the N-terminal myristate, is part of a common signal targeting these proteins to a membrane domain that has been linked to transmembrane signaling.
Collapse
Affiliation(s)
- W Rodgers
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | | | | |
Collapse
|
118
|
Colomer V, Rindler MJ, Lowe AW. Apical plasma membrane proteins are not obligatorily stored in secretory granules in exocrine cells. J Cell Sci 1994; 107 ( Pt 8):2271-7. [PMID: 7983185 DOI: 10.1242/jcs.107.8.2271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Exocrine cells are epithelial cells in which secretory granules undergo fusion with the apical plasma membrane upon secretagogue stimulation. Several apical plasma membrane proteins have been found in secretory granules in cells from pancreas and salivary glands raising the possibility that incorporation into secretory granules followed by exocytosis of the granules accounts for their insertion into the apical plasma membrane. To test this hypothesis, we have expressed the influenza hemagglutinin (HA) in pancreatic AR42J cells, which make zymogen-like granules upon incubation with dexamethasone. The influenza virus HA is known to be specifically targeted to the apical plasma membrane of epithelial cells that lack a regulated pathway and is also known to be excluded from secretory granules in virally-infected pituitary AtT20 cells. Localization of the protein by immunofluorescence microscopy revealed that it accumulated at the plasma membrane of the transfected AR42J cells. HA was not observed in the amylase-rich secretory granules. By immunolabeling of ultrathin cryosections of the transfected cells, HA was also found exclusively on the cell surface, with label over secretory granules not exceeding that seen in control, untransfected cells. In addition, in cell fractionation experiments performed on radiolabeled AR42J cell transformants, HA was not detectable in the secretory granule fractions. These results indicate that HA is not efficiently stored in mature secretory granules and is likely to reach the cell surface via constitutive transport pathways.
Collapse
Affiliation(s)
- V Colomer
- Department of Cell Biology, New York University Medical Center, New York
| | | | | |
Collapse
|
119
|
Abstract
The recent discovery of widely distributed targeting determinants, which govern the polarized cell-surface distribution of plasma membrane proteins in epithelial cells, has significantly changed our view of how polarized cells generate functionally distinct membrane domains. Together with the surprising finding that the same determinants are recognized on both the biosynthetic and the endocytic pathways, it now appears likely that a common epigenetic code may exist that controls molecular sorting of membrane proteins in a wide variety of polarized, and perhaps even non-polarized, cell types.
Collapse
Affiliation(s)
- K Matter
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8002
| | | |
Collapse
|
120
|
Abstract
VIP21-Caveolin is a component of the filamentous coat surrounding the invaginations of the plasma membrane called caveolae. Unlike the vesicular coat proteins identified so far, VIP21-Caveolin can be classified as an integral membrane protein. Furthermore, it is found in high molecular mass oligomers. Based on its localisation in specialised membrane subdomains, a role for VIP21-Caveolin in membrane protein sorting has been proposed.
Collapse
Affiliation(s)
- T V Kurzchalia
- Department of Cell Biology, Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | |
Collapse
|
121
|
Thomas JL, Stieber A, Gonatas N. Two proteins associated with secretory granule membranes identified in chicken regulated secretory cells. J Cell Sci 1994; 107 ( Pt 5):1297-308. [PMID: 7929636 DOI: 10.1242/jcs.107.5.1297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lately, we have identified two polypeptides of 92–94 kDa (GRL1) and 45–60 kDa (GRL2), expressed in cytoplasmic granules of chicken granulocytes and thrombocytes. Here, we report that GRL1 and GRL2 are widely distributed in all exocrine and several endocrine cell types, but not in neurons of the central nervous system, during late stages of embryonic development, as well as in newly hatched and two-month-old chickens. Immunogold studies in ultrathin frozen sections of pancreatic acinar cells show that GRL1 and GRL2 are co-localized at the periphery of zymogen granules, in granules fused with apical acinar membranes and on apical membranes of acini, while the pregranular compartments of the secretory pathway are weakly or not labeled. Semiquantitative morphometric studies indicate that GRL1 and GRL2 are equally distributed in secretory granules. A variety of physical and metabolic studies reveal that GRL2, a highly N-glycosylated polypeptide, is an intrinsic membrane protein, while GRL1 is a peripheral membrane polypeptide released by Na2CO3 treatment of granulocyte membranes. In all hematopoietic, exocrine or endocrine cells examinated, GRL1 shows identical electrophoretic patterns, while GRL2 is identified as a diffuse band, at 40–65 kDa, in hematopoietic and pancreatic cells. Taken together, the morphological and biochemical studies indicate that GRL1 and GRL2 are components of the secretory granule membrane in chicken exocrine, endocrine and hemopoietic cell types.
Collapse
Affiliation(s)
- J L Thomas
- Institut d'Embryologie Cellulaire et Moléculaire du CNRS et du Collège de France, Nogent sur Marne
| | | | | |
Collapse
|
122
|
van Adelsberg J, Edwards JC, Takito J, Kiss B, al-Awqati Q. An induced extracellular matrix protein reverses the polarity of band 3 in intercalated epithelial cells. Cell 1994; 76:1053-61. [PMID: 8137422 DOI: 10.1016/0092-8674(94)90382-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The intercalated epithelial cell exists in two interconvertible forms in vivo, one where band 3 protein is apical and the other where it is basolateral. We seeded an immortalized clone of these cells at low density and found that band 3 was apical at confluence. There was little or no apical endocytosis. But when the cells were plated at high density, band 3 was basolateral, and there was vigorous apical endocytosis. Extracellular matrix produced by high density cells was able to retarget band 3 in low density cells and to induce apical endocytosis, as did a 230 kd protein partially purified from this matrix. Therefore, polarized targeting of some proteins is determined by external cues that might determine their polarity by reorganizing the cytoplasm.
Collapse
Affiliation(s)
- J van Adelsberg
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | | | | | |
Collapse
|
123
|
Kundu A, Nayak DP. Analysis of the signals for polarized transport of influenza virus (A/WSN/33) neuraminidase and human transferrin receptor, type II transmembrane proteins. J Virol 1994; 68:1812-8. [PMID: 8107243 PMCID: PMC236643 DOI: 10.1128/jvi.68.3.1812-1818.1994] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In polarized MDCK cells influenza virus (A/WSN/33) neuraminidase (NA) and human transferrin receptor (TR), type II glycoproteins, when expressed from cloned cDNAs, were transported and accumulated preferentially on the apical and basolateral surfaces, respectively. We have investigated the signals for polarized sorting by constructing chimeras between NA and TR and by making deletion mutants. NATR delta 90, which contains the cytoplasmic tail and transmembrane domain of NA and the ectodomain of TR, was found to be localized predominantly on the apical membrane, whereas TRNA delta 35, containing the cytoplasmic and transmembrane domains of TR and the ectodomain of NA, was expressed preferentially on the basolateral membrane. TR delta 57, a TR deletion mutant lacking 57 amino acids in the TR cytoplasmic tail, did not exhibit any polarized expression and was present on both apical and basolateral surfaces, whereas a deletion mutant (NA delta 28-35) lacking amino acid residues from 28 to 35 in the transmembrane domain of NA resulted in secretion of the NA ectodomain predominantly from the apical side. These results taken together indicate that the cytoplasmic tail of TR was sufficient for basolateral transport, but influenza virus NA possesses two sorting signals, one in the cytoplasmic or transmembrane domain and the other within the ectodomain, both of which are independently able to transport the protein to the apical plasma membrane.
Collapse
Affiliation(s)
- A Kundu
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles 90024-1747
| | | |
Collapse
|
124
|
Mays RW, Beck KA, Nelson WJ. Organization and function of the cytoskeleton in polarized epithelial cells: a component of the protein sorting machinery. Curr Opin Cell Biol 1994; 6:16-24. [PMID: 8167021 DOI: 10.1016/0955-0674(94)90111-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Development and maintenance of cell-surface polarity in epithelial cells requires specialized localization of proteins to functionally and structurally distinct plasma membrane domains. The organization of these domains is dependent upon targeted delivery of transport vesicles between different membrane compartments, and upon protein sorting in the membranes of the Golgi complex and cell surface. Increasing evidence has been gathered in recent years that cytoskeletal components facilitate these processes.
Collapse
Affiliation(s)
- R W Mays
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426
| | | | | |
Collapse
|
125
|
Sargiacomo M, Sudol M, Tang Z, Lisanti MP. Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Biophys Biochem Cytol 1993; 122:789-807. [PMID: 8349730 PMCID: PMC2119592 DOI: 10.1083/jcb.122.4.789] [Citation(s) in RCA: 818] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
GPI-linked protein molecules become Triton-insoluble during polarized sorting to the apical cell surface of epithelial cells. These insoluble complexes, enriched in cholesterol, glycolipids, and GPI-linked proteins, have been isolated by flotation on sucrose density gradients and are thought to contain the putative GPI-sorting machinery. As the cellular origin and molecular protein components of this complex remain unknown, we have begun to characterize these low-density insoluble complexes isolated from MDCK cells. We find that these complexes, which represent 0.4-0.8% of the plasma membrane, ultrastructurally resemble caveolae and are over 150-fold enriched in a model GPI-anchored protein and caveolin, a caveolar marker protein. However, they exclude many other plasma membrane associated molecules and organelle-specific marker enzymes, suggesting that they represent microdomains of the plasma membrane. In addition to caveolin, these insoluble complexes contain a subset of hydrophobic plasma membrane proteins and cytoplasmically-oriented signaling molecules, including: (a) GTP-binding proteins--both small and heterotrimeric; (b) annex II--an apical calcium-regulated phospholipid binding protein with a demonstrated role in exocytic fusion events; (c) c-Yes--an apically localized member of the Src family of non-receptor type protein-tyrosine kinases; and (d) an unidentified serine-kinase activity. As we demonstrate that caveolin is both a transmembrane molecule and a major phospho-acceptor component of these complexes, we propose that caveolin could function as a transmembrane adaptor molecule that couples luminal GPI-linked proteins with cytoplasmically oriented signaling molecules during GPI-membrane trafficking or GPI-mediated signal transduction events. In addition, our results have implications for understanding v-Src transformation and the actions of cholera and pertussis toxins on hetero-trimeric G proteins.
Collapse
Affiliation(s)
- M Sargiacomo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142-1479
| | | | | | | |
Collapse
|
126
|
Abstract
The lipid composition of cellular membranes may seem unnecessarily complex. However, the lipid composition of each membrane is carefully regulated by local metabolism and specificity in transport, marking the functional significance for the cell. Recent research has revealed unexpected discoveries concerning the topology of lipid synthesis, specificity in lipid transport, and the function of lipid and protein microdomains in sorting.
Collapse
Affiliation(s)
- G van Meer
- Department of Cell Biology, Medical School, University of Utrecht, The Netherlands
| |
Collapse
|