101
|
Wang DD, Jin MF, Zhao DJ, Ni H. Reduction of Mitophagy-Related Oxidative Stress and Preservation of Mitochondria Function Using Melatonin Therapy in an HT22 Hippocampal Neuronal Cell Model of Glutamate-Induced Excitotoxicity. Front Endocrinol (Lausanne) 2019; 10:550. [PMID: 31440210 PMCID: PMC6694460 DOI: 10.3389/fendo.2019.00550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022] Open
Abstract
Recent evidence indicates that autophagy-mediated mitochondrial homeostasis is crucial for oxidative stress-related brain damage and repair. The highest concentration of melatonin is in the mitochondria of cells, and melatonin exhibits well-known antioxidant properties. We investigated the impact and mechanism involved in mitochondrial function and the mitochondrial oxidative stress/autophagy regulator parameters of glutamate cytotoxicity in mouse HT22 hippocampal neurons. We tested the hypothesis that melatonin confers neuroprotective effects via protecting against mitochondrial impairment and mitophagy. Cells were divided into four groups: the control group, melatonin alone group, glutamate injury group, and melatonin pretreatment group. We found that glutamate induced significant changes in mitochondrial function/oxidative stress-related parameters. Leptin administration preserved mitochondrial function, and this effect was associated with increased superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential and decreased GSSG (oxidized glutathione) and mitochondrial reactive oxygen species. Melatonin significantly reduced the fluorescence intensity of mitophagy via the Beclin-1/Bcl-2 pathway, which involves Beclin-1 and Bcl-2 proteins. The mitophagy inhibitor CsA corrected these glutamate-induce changes, as measured by the fluorescence intensity of Mitophagy-Tracker Red CMXROS, mitochondrial ROS, and mitochondrial membrane potential changes. These findings indicate that melatonin exerts neuroprotective effects against glutamate-induced excitotoxicity by reducing mitophagy-related oxidative stress and maintaining mitochondrial function.
Collapse
|
102
|
Song JH, Kim SY, Hwang GS, Kim YS, Kim HY, Kang KS. Sanguiin H-11 from Sanguisorbae radix protects HT22 murine hippocampal cells against glutamate-induced death. Bioorg Med Chem Lett 2019; 29:252-256. [DOI: 10.1016/j.bmcl.2018.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 12/15/2022]
|
103
|
Klopčič I, Dolenc MS. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem Res Toxicol 2018; 32:1-34. [DOI: 10.1021/acs.chemrestox.8b00213] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ivana Klopčič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
104
|
Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. TOXICS 2018; 6:E65. [PMID: 30400192 PMCID: PMC6316100 DOI: 10.3390/toxics6040065] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023]
Abstract
The drive for development and modernization has come at great cost. Various human activities in developed and developing countries, particularly in sub-Saharan Africa (SSA) have given rise to environmental safety concerns. Increased artisanal mining activities, illegal refining, use of leaded petrol, airborne dust, arbitrary discarding and burning of toxic waste, absorption of production industries in inhabited areas, inadequate environmental legislation, and weak implementation of policies, have given rise to the incomparable contamination and pollution associated with heavy metals in recent decades. This review evaluates the public health effects of heavy metals and their mixtures in SSA. This shows the extent and size of the problem posed by exposure to heavy metal mixtures in regard to public health.
Collapse
Affiliation(s)
- Brilliance Onyinyechi Anyanwu
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Anthonet Ndidiamaka Ezejiofor
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| | - Zelinjo Nkeiruka Igweze
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, Madonna University Elele, PMB, 5001 Elele, Rivers State, Nigeria.
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323 Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
105
|
APD-Containing Cyclolipodepsipeptides Target Mitochondrial Function in Hypoxic Cancer Cells. Cell Chem Biol 2018; 25:1337-1349.e12. [DOI: 10.1016/j.chembiol.2018.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/12/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022]
|
106
|
Dutta D, Chakraborty A, Mukherjee B, Gupta S. Aptamer-Conjugated Apigenin Nanoparticles To Target Colorectal Carcinoma: A Promising Safe Alternative of Colorectal Cancer Chemotherapy. ACS APPLIED BIO MATERIALS 2018; 1:1538-1556. [PMID: 34996205 DOI: 10.1021/acsabm.8b00441] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Debasmita Dutta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Apala Chakraborty
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700032, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, 168, Maniktala Main Road, Kolkata, West Bengal 700054, India
| |
Collapse
|
107
|
Li J, Ma L, Liao X, Liu D, Lu X, Chen S, Ye X, Ding T. Ultrasound-Induced Escherichia coli O157:H7 Cell Death Exhibits Physical Disruption and Biochemical Apoptosis. Front Microbiol 2018; 9:2486. [PMID: 30459727 PMCID: PMC6232819 DOI: 10.3389/fmicb.2018.02486] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022] Open
Abstract
Ultrasound has attracted great interest of both industry and scientific communities for its potential use as a physical processing and preservation tool. In this study, Escherichia coli O157:H7 was selected as the model microbe to investigate the ultrasound-induced cell death. Slight variations in membrane potential and ion exchanges across membrane induced by low-intensity ultrasound increased the membrane permeability of E. coli O157:H7, and this reversible sublethal effect can preserve the viability of E. coli O157:H7 and meanwhile be beneficial for bioprocessing application. In comparison, high-intensity ultrasound resulted in irreversible lethal effect on E. coli O157:H7, which can be applied in the field of microbial inactivation. In addition, both low- and high-intensity ultrasound induced either physical destruction or trigger genetically encoded apoptosis of E. coli O157:H7. Accumulation of reactive oxygen species and decrease of adenosine tri-phosphate might be related to the physiological and biochemical hallmarks of apoptosis, including exposed phosphatidylserine and activated caspases in E. coli O157:H7. The result provides novel insight into the mechanisms of non-thermal physical treatment on the inactivation of bacteria and lays foundation for the further research on the cell signaling and metabolic pathway in apoptotic bacteria.
Collapse
Affiliation(s)
- Jiao Li
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Luyao Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Xinyu Liao
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Donghong Liu
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xiaonan Lu
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Shiguo Chen
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Xingqian Ye
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| | - Tian Ding
- Department of Food Science and Nutrition, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, China.,Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou, China
| |
Collapse
|
108
|
Pereira AG, Jaramillo ML, Remor AP, Latini A, Davico CE, da Silva ML, Müller YMR, Ammar D, Nazari EM. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain. CHEMOSPHERE 2018; 209:353-362. [PMID: 29935464 DOI: 10.1016/j.chemosphere.2018.06.075] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout®, which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L-1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH.
Collapse
Affiliation(s)
- Aline G Pereira
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil
| | - Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil
| | - Aline P Remor
- Universidade do Oeste de Santa Catarina, 89600-000, Brazil
| | - Alexandra Latini
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil
| | - Carla E Davico
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil
| | | | - Yara M R Müller
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil; Centro Universitário Católica de Santa Catarina, 89203-005, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
109
|
Yagami T, Yamamoto Y, Koma H. Pathophysiological Roles of Intracellular Proteases in Neuronal Development and Neurological Diseases. Mol Neurobiol 2018; 56:3090-3112. [PMID: 30097848 DOI: 10.1007/s12035-018-1277-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022]
Abstract
Proteases are classified into six distinct classes (cysteine, serine, threonine, aspartic, glutamic, and metalloproteases) on the basis of catalytic mechanism. The cellular control of protein quality senses misfolded or damaged proteins principally by selective ubiquitin-proteasome pathway and non-selective autophagy-lysosome pathway. The two pathways do not only maintain cell homeostasis physiologically, but also mediate necrosis and apoptosis pathologically. Proteasomes are threonine proteases, whereas cathepsins are lysosomal aspartic proteases. Calpains are non-lysosomal cysteine proteases and calcium-dependent papain-like enzyme. Calpains and cathepsins are involved in the neuronal necrosis, which are accidental cell death. Necrosis is featured by the disruption of plasma membranes and lysosomes, the loss of ATP and ribosomes, the lysis of cell and nucleus, and the caspase-independent DNA fragmentation. On the other hand, caspases are cysteine endoproteases and mediate neuronal cell death such as apoptosis and pyroptosis, which are programmed cell death. In the central nervous system, necroptosis, ferroptosis and autophagic cell death are also classified into programmed cell death. Neuronal apoptosis is characterized by cell shrinkage, plasma membrane blebbing, karyorrhexis, chromatin condensation, and DNA fragmentation. Necroptosis and pyroptosis are necrotic and lytic forms of programmed cell death, respectively. Although autophagy is involved in cell survival, it fails to maintain cellular homeostasis, resulting in autophagic cell death. Ferroptosis is induced by reactive oxygen species in excitotoxicity of glutamate and ischemia-reperfusion. Apoptosis and pyroptosis are dependent on caspase-3 and caspase-1, respectively. Autophagic cell death and necroptosis are dependent on calpain and cathepsin, respectively, but independent of caspase. Although apoptosis has been defined by the absence of morphological features of necrosis, the two deaths are both parts of a continuum. The intracellular proteases do not only maintain cell homeostasis but also regulate neuronal maturation during the development of embryonic brain. Furthermore, neurodegenerative diseases are caused by the impairment of quality control mechanisms for a proper folding and function of protein.
Collapse
Affiliation(s)
| | | | - Hiromi Koma
- Himeji Dokkyo University, Himeji, Hyogo, Japan
| |
Collapse
|
110
|
A Review on the Relationship between Tocotrienol and Alzheimer Disease. Nutrients 2018; 10:nu10070881. [PMID: 29987193 PMCID: PMC6073491 DOI: 10.3390/nu10070881] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease (AD) is plaguing the aging population worldwide due to its tremendous health care and socioeconomic burden. Current treatment of AD only offers symptomatic relief to patients. Development of agents targeting specific pathologies of AD is very slow. Tocotrienol, a member of the vitamin E family, can tackle many aspects of AD, such as oxidative stress, mitochondrial dysfunction and abnormal cholesterol synthesis. This review summarizes the current evidence on the role of tocotrienol as a neuroprotective agent. Preclinical studies showed that tocotrienol could reduce oxidative stress by acting as a free-radical scavenger and promoter of mitochondrial function and cellular repair. It also prevented glutamate-induced neurotoxicity in the cells. Human epidemiological studies showed a significant inverse relationship between tocotrienol levels and the occurrence of AD. However, there is no clinical trial to support the claim that tocotrienol can delay or prevent the onset of AD. As a conclusion, tocotrienol has the potential to be developed as an AD-preventing agent but further studies are required to validate its efficacy in humans.
Collapse
|
111
|
Preston G, Kirdar F, Kozicz T. The role of suboptimal mitochondrial function in vulnerability to post-traumatic stress disorder. J Inherit Metab Dis 2018; 41:585-596. [PMID: 29594645 DOI: 10.1007/s10545-018-0168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
Post-traumatic stress disorder remains the most significant psychiatric condition associated with exposure to a traumatic event, though rates of traumatic event exposure far outstrip incidence of PTSD. Mitochondrial dysfunction and suboptimal mitochondrial function have been increasingly implicated in several psychopathologies, and recent genetic studies have similarly suggested a pathogenic role of mitochondria in PTSD. Mitochondria play a central role in several physiologic processes underlying PTSD symptomatology, including abnormal fear learning, brain network activation, synaptic plasticity, steroidogenesis, and inflammation. Here we outline several potential mechanisms by which inherited (genetic) or acquired (environmental) mitochondrial dysfunction or suboptimal mitochondrial function, may contribute to PTSD symptomatology and increase susceptibility to PTSD. The proposed pathogenic role of mitochondria in the pathophysiology of PTSD has important implications for prevention and therapy, as antidepressants commonly prescribed for patients with PTSD have been shown to inhibit mitochondrial function, while alternative therapies shown to improve mitochondrial function may prove more efficacious.
Collapse
Affiliation(s)
- Graeme Preston
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA.
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Department of Anatomy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
112
|
Hong MJ, Kim DY, Ahn JW, Kang SY, Seo YW, Kim JB. Comparison of radiosensitivity response to acute and chronic gamma irradiation in colored wheat. Genet Mol Biol 2018; 41:611-623. [PMID: 30004105 PMCID: PMC6136369 DOI: 10.1590/1678-4685-gmb-2017-0189] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
We aimed to investigate the biological responses induced by acute and chronic gamma irradiation in colored wheat seeds rich in natural antioxidants. After acute and chronic irradiation, the phenotypic effects on plant growth, germination rate, seedling height, and root length were examined, and the biochemical changes were investigated by analyzing the expression of antioxidant enzyme-related genes, antioxidant enzyme activities, and total antioxidant capacity. High dosages of chronic radiation reduced plant growth compared with the controls. Electron spin resonance measurement and 2,2-diphenyl-1-picrylhydrazyl activity analysis showed lower amount of free radicals in colored wheat seeds on chronic irradiation with low dosage of gamma rays compared to seeds subjected to acute irradiation. Expression levels of anthocyanin biosynthesis genes, antioxidant-related genes, and antioxidant enzyme activity in seeds and young leaves of seedling showed diverse effects in response to different dosages and types of gamma irradiation. This suggests that phenotype is affected by the dosage and type of gamma radiation, and the phytochemicals in colored wheat seeds involved in antioxidant activity to scavenge free radicals respond differently to irradiation types. This provides evidence that acute and chronic exposure to radiation have different effects on seeds and young leaves after germination.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Dae Yeon Kim
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Si-Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Yong Weon Seo
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
113
|
Synapse Pruning: Mitochondrial ROS with Their Hands on the Shears. Bioessays 2018; 40:e1800031. [DOI: 10.1002/bies.201800031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/27/2018] [Indexed: 12/27/2022]
|
114
|
Ethyl Acetate Fraction from Persimmon ( Diospyros kaki) Ameliorates Cerebral Neuronal Loss and Cognitive Deficit via the JNK/Akt Pathway in TMT-Induced Mice. Int J Mol Sci 2018; 19:ijms19051499. [PMID: 29772805 PMCID: PMC5983595 DOI: 10.3390/ijms19051499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/11/2018] [Accepted: 05/11/2018] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.
Collapse
|
115
|
Lewerenz J, Ates G, Methner A, Conrad M, Maher P. Oxytosis/Ferroptosis-(Re-) Emerging Roles for Oxidative Stress-Dependent Non-apoptotic Cell Death in Diseases of the Central Nervous System. Front Neurosci 2018; 12:214. [PMID: 29731704 PMCID: PMC5920049 DOI: 10.3389/fnins.2018.00214] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about whether these are two distinct pathways or cell type- and insult-dependent variations on the same pathway. In this review, we compare and contrast in detail the commonalities and distinctions between the two pathways concluding that the molecular pathways involved in the regulation of ferroptosis and oxytosis are highly similar if not identical. Thus, we suggest that oxytosis and ferroptosis should be regarded as two names for the same cell death pathway. In addition, we describe the potential physiological relevance of oxytosis/ferroptosis in multiple neurological diseases.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gamze Ates
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Axel Methner
- Department of Neurology, University Medical Center and Focus Program Translational Neuroscience of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
116
|
Kocyigit A, Guler EM, Karatas E, Caglar H, Bulut H. Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:50-60. [PMID: 29704993 DOI: 10.1016/j.mrgentox.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/27/2022]
Abstract
New in vitro studies have demonstrated that N-acetyl-5-methoxytryptamine (Melatonin) has cytotoxic and apoptotic effects on various cell types although most of the previous investigations document that it is a potent antioxidant. However, the precise molecular mechanism(s) of its effects are not fully elucidated. In this study, we examined dose-dependent cytotoxic, genotoxic, apoptotic and reactive oxygen species (ROS) generating effects of melatonin in human epidermoid carcinoma cells (A-431) and human normal skin fibroblastic cells (CCD-1079Sk). The cells were incubated with different doses of melatonin (0.031-5 mM) for 24 h. Cell viability was assessed based on luminometric ATP cell viability assay. Intracellular ROS was detected using 2,7-dichlorodihydrofluorescein-diacetate (H2DCF-DA) fluorescent probes. Genotoxicity was evaluated by alkaline single cell gel electrophoresis assay (Comet Assay). Apoptosis was evaluated by western blotting, DAPI staining, acridine orange/ethidium bromide and Annexin V-FITC/propidium iodide double staining methods Mitochondrial membrane potentials were measured by flow cytometry. Although lower doses of melatonin (0.031-0.06 mM) increased cell proliferation and decreased ROS generation, higher doses (0.125-5 mM) markedly inhibited the cell viability, induced DNA damage, apoptosis and ROS generation. Cytotoxic, genotoxic, apoptotic and ROS generating effects were significantly higher in cancer cells than those observed in normal cells. Melatonin-induced cell death, and ROS generating activity were effectively inhibited by N-acetyl-l-cysteine (NAC) In conclusion, at low doses, melatonin has proliferative effects on both cancer and normal cells, whereas high concentrations have cytotoxic effects. Cytotoxic, genotoxic and apoptotic effects at higher doses of melatonin may be due to its ROS production capacity.
Collapse
Affiliation(s)
- Abdurrahim Kocyigit
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Eray Metin Guler
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Ersin Karatas
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Hifa Caglar
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| | - Huri Bulut
- Bezmialem Vakif University, Medical Faculty, Department of Medical Biochemistry, 93034 Istanbul, Turkey.
| |
Collapse
|
117
|
Makarov VI, Khmelinskii I, Javadov S. Computational Modeling of In Vitro Swelling of Mitochondria: A Biophysical Approach. Molecules 2018; 23:molecules23040783. [PMID: 29597314 PMCID: PMC5901922 DOI: 10.3390/molecules23040783] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Swelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931-3343, USA.
| | - Igor Khmelinskii
- Faculty of Sciences and Technology, Department of Chemistry and Pharmacy, and Interdisciplinary Centre of Chemistry of Algarve, University of Algarve, 8005-139 Faro, Portugal.
| | - Sabzali Javadov
- Department of Physiology and Biophysics, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936-5067, USA.
| |
Collapse
|
118
|
Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: Implications for age-related neurodegenerative diseases. Free Radic Biol Med 2018; 115:92-104. [PMID: 29170091 DOI: 10.1016/j.freeradbiomed.2017.11.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 01/13/2023]
Abstract
There is growing evidence for alterations in iron and copper homeostasis during aging that are exacerbated in neurodegenerative diseases such as Alzheimer's disease (AD). However, how iron and copper accumulation leads to nerve cell damage in AD is not clear. In order to better understand how iron and copper can contribute to nerve cell death, a simple, well-defined in vitro model of cell death, the oyxtosis assay, was used. This assay uses glutamate to induce glutathione (GSH) depletion which initiates a form of oxidative stress-induced programmed cell death. A reduction in GSH is seen in the aging brain, is associated with cognitive dysfunction and is accelerated in many CNS diseases including AD. It is shown that both iron and copper potentiate both GSH loss and cell death in this model. Iron and copper also potentiate cell death induced by other GSH depleters but not by compounds that induce oxidative stress via other pathways. At least part of the effects of copper on GSH are related to its ability to reduce the activity of glutamate cysteine ligase, the rate limiting enzyme in GSH synthesis. Both metals also alter several signaling pathways involved in modulating nerve cell death. Together, these results suggest that in vivo iron and copper may specifically enhance nerve cell death under conditions where GSH levels are reduced.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, United States.
| |
Collapse
|
119
|
Niu J, Liu Y, Wang W, Lin W. Development of triphenylamine-based fluorescent probe with a large Stokes’ shift suitable for locating mitochondria. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.10.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
120
|
Song JH, Shin MS, Hwang GS, Oh ST, Hwang JJ, Kang KS. Chebulinic acid attenuates glutamate-induced HT22 cell death by inhibiting oxidative stress, calcium influx and MAPKs phosphorylation. Bioorg Med Chem Lett 2017; 28:249-253. [PMID: 29317168 DOI: 10.1016/j.bmcl.2017.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/27/2017] [Accepted: 12/28/2017] [Indexed: 01/21/2023]
Abstract
Glutamate-induced excitotoxicity and oxidative stress is a major causative factor in neuronal cell death in acute brain injuries and chronic neurodegenerative diseases. The prevention of oxidative stress is a potential therapeutic strategy. Therefore, in the present study, we aimed to examine a potential therapeutic agent and its protective mechanism against glutamate-mediated cell death. We first found that chebulinic acid isolated from extracts of the fruit of Terminalia chebula prevented glutamate-induced HT22 cell death. Chebulinic acid significantly reduced intracellular reactive oxygen species (ROS) production and Ca2+ influx induced by glutamate. We further demonstrated that chebulinic acid significantly decreased the phosphorylation of mitogen-activated protein kinases (MAPKs), including ERK1/2, JNK, and p38, as well as inhibiting pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 protein expression. Moreover, we demonstrated that chebulinic acid significantly reduced the apoptosis induced by glutamate in HT22 cells. In conclusion, our results in this study suggest that chebulinic acid is a potent protectant against glutamate-induced neuronal cell death via inhibiting ROS production, Ca2+ influx, and phosphorylation of MAPKs, as well as reducing the ratio of Bax to Bcl-2, which contribute to oxidative stress-mediated neuronal cell death.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Taek Oh
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jung Jin Hwang
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
121
|
Banerjee M, Parai D, Dhar P, Roy M, Barik R, Chattopadhyay S, Mukherjee SK. Andrographolide induces oxidative stress-dependent cell death in unicellular protozoan parasite Trypanosoma brucei. Acta Trop 2017; 176:58-67. [PMID: 28739368 DOI: 10.1016/j.actatropica.2017.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
African sleeping sickness is a parasitic disease in humans and livestock caused by Trypanosoma brucei throughout sub-Saharan Africa. Absence of appropriate vaccines and prevalence of drug resistance proclaim that a new way of therapeutic interventions is essential against African trypanosomiasis. In the present study, we have looked into the effect of andrographolide (andro), a diterpenoid lactone from Andrographis paiculata on Trypanosoma brucei PRA 380. Although andro has been recognized as a promosing anti-cancer drug, its usefulness against Trypanosoma spp remained unexplored. Andro showed promising anti-trypanosomal activity with an IC50 value of 8.3μM assessed through SYBR Green cell viability assay and also showed no cytotoxicity towards normal murine macrophages. Cell cycle analysis revealed that andro could induce sub-G0/G1 phase arrest. Flow cytometric analysis also revealed that incubation with andro caused exposure of phosphatidyl serine to the outer leaflet of plasma membrane in T. brucei PCF. This event was preceded by andro-induced depolarization of mitochondrial membrane potential (Δym) and elevation of cytosolic calcium. Andro also caused elevation of intracellular reactive oxygen species (ROS) as well as lipid peroxidation level, and depletion in reduced thiol levels. Taken together, these data indicate that andro has promising antitrypanosomal activity mediated by promoting oxidative stress and depolarizing the mitochondrial membrane potential and thereby triggering an apoptosis-like programmed cell death. Therefore, this study merits further investigation to the therapeutic possibility of using andro for the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Malabika Banerjee
- Department of Microbiology, University of Kalyani, Kalyani 741235, WB, India; TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Debaprasad Parai
- Department of Microbiology, University of Kalyani, Kalyani 741235, WB, India
| | - Pranab Dhar
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Manab Roy
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Rajib Barik
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | - Subrata Chattopadhyay
- TCG Life Science Ltd., Bengal Intelligent Park, Tower-B, Block-EP & GP, Sector-5, Salt Lake, Kolkata, 700091, India
| | | |
Collapse
|
122
|
Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett 2017; 592:743-758. [PMID: 29106705 DOI: 10.1002/1873-3468.12902] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 12/26/2022]
Abstract
The brain is the most complex human organ, consuming more energy than any other tissue in proportion to its size. It relies heavily on mitochondria to produce energy and is made up of mitotic and postmitotic cells that need to closely coordinate their metabolism to maintain essential bodily functions. During aging, damaged mitochondria that produce less ATP and more reactive oxygen species (ROS) accumulate. The current consensus is that ROS cause oxidative stress, damaging mitochondria and resulting in an energetic crisis that triggers neurodegenerative diseases and accelerates aging. However, in model organisms, increasing mitochondrial ROS (mtROS) in the brain extends lifespan, suggesting that ROS may participate in signaling that protects the brain. Here, we summarize the mechanisms by which mtROS are produced at the molecular level, how different brain cells and regions produce different amounts of mtROS, and how mtROS levels change during aging. Finally, we critically discuss the possible roles of ROS in aging as signaling molecules and damaging agents, addressing whether age-associated increases in mtROS are a cause or a consequence of aging.
Collapse
Affiliation(s)
- Rhoda Stefanatos
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
123
|
Ma YM, Guo YZ, Ibeanu G, Wang LY, Dong JD, Wang J, Jing L, Zhang JZ, Li PA. Overexpression of selenoprotein H prevents mitochondrial dynamic imbalance induced by glutamate exposure. Int J Biol Sci 2017. [PMID: 29535592 PMCID: PMC5845479 DOI: 10.7150/ijbs.21300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Selenium and selenoproteins play important roles in neuroprotection against glutamate‑induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. Recent studies have revealed that mitochondrial fission could activates mitochondrial initiated cell death pathway. The objectives of the study are to determine whether glutamate induced cell death is mediated through mitochondrial initiated cell death pathway and activation of autophagy, and whether overexpression of selenoprotein H can protect cells from glutamate toxicity by preserving mitochondrial morphology and suppressing autophagy. Vector- or human selenoprotein H (SelH)-transfected HT22 cells (V-HT22 and SelH-HT22, respectively) were exposed to glutamate. The results showed that glutamate-induced cytotoxicity was associated with increased ROS production and imbalance in mitochondrial dynamics and autophagy. These alterations were reversed and cellular integrity restored by overexpression of SelH in HT22 cells.
Collapse
Affiliation(s)
- Yan-Mei Ma
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Yong-Zhen Guo
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Gordon Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| | - Li-Yao Wang
- Department of Pathology, Shanxi Traditional Chinese Medicine Hospital, Xi'an, Shanxi, P. R. China
| | - Jian-Da Dong
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Juan Wang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Li Jing
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - Jian-Zhong Zhang
- School of Basic Medical Sciences, Department of Pathology, Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan, Ningxia, P. R. China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
124
|
Song JH, Kang KS, Choi YK. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg Med Chem Lett 2017; 27:5109-5113. [PMID: 29122481 DOI: 10.1016/j.bmcl.2017.10.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/27/2017] [Accepted: 10/31/2017] [Indexed: 10/18/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system and is involved in oxidative stress during neurodegeneration. In the present study, casuarinin prevented glutamate-induced HT22 murine hippocampal neuronal cell death by inhibiting intracellular reactive oxygen species (ROS) production. Moreover, casuarinin reduced chromatin condensation and annexin-V-positive cell production induced by glutamate. We also confirmed the underlying protective mechanism of casuarinin against glutamate-induced neurotoxicity. Glutamate markedly increased the phosphorylation of extracellular signal regulated kinase (ERK)-1/2 and p38, which are crucial in oxidative stress-mediated neuronal cell death. Conversely, treatment with casuarinin diminished the phosphorylation of ERK1/2 and P38. In conclusion, the results of this study suggest that casuarinin, obtained from natural products, acts as potent neuroprotective agent by suppressing glutamate-mediated apoptosis through the inhibition of ROS production and activation of the mitogen activated protein kinase (MAPK) pathway. Thus, casuarinin can be a potential therapeutic agent in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji Hoon Song
- Department of Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| | - You-Kyung Choi
- Department of Korean International Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
125
|
Shanmugapriya, Chen Y, Kanwar JR, Sasidharan S. Anticancer Activity and Molecular Mechanism of Polyphenol Rich Calophyllum inophyllum Fruit Extract in MCF-7 Breast Cancer Cells. Nutr Cancer 2017; 69:1308-1324. [PMID: 29068745 DOI: 10.1080/01635581.2017.1367944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study was conducted to investigate the anticancer effects and mechanism of Calophyllum inophyllum fruit extract against MCF-7 cells. C. inophyllum fruit extract was found to have markedly cytotoxic effect against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 23.59 µg/mL. Flow cytometry analysis revealed that C. inophyllum fruit extract mediated cell cycle at G0/G1 and G2/M phases, and MCF-7 cells entered the early phase of apoptosis. The expression of anti-apoptotic proteins Bcl-2 was decreased whereas the expression of the pro-apoptotic protein Bax, cytochrome C and p53 were increased after treatment. C. inophyllum fruit extract led to apoptosis in MCF-7 cells via the mitochondrial pathway in a dose dependent manner. This is evidenced by the elevation of intracellular ROS, the loss of mitochondria membrane potential (Δψm), and activation of caspase-3. Meanwhile, dose-dependent genomic DNA fragmentation was observed after C. inophyllum fruits extract treatment by comet assay. This study shows that C. inophyllum fruits extract-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3. C. inophyllum fruit extract could be an excellent source of chemopreventive agent in the treatment of breast cancer and has potential to be explored as green anticancer agent.
Collapse
Affiliation(s)
- Shanmugapriya
- a Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , Pulau Pinang , Malaysia
| | - Yeng Chen
- b Department of Oral & Craniofacial Sciences, and Oral Cancer Research and Coordinating Center (OCRCC) , Faculty of Dentistry, University of Malaya , Kuala Lumpur , Malaysia
| | - Jagat R Kanwar
- c Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (LIMBR), School of Medicine (SoM), Faculty of Health, Deakin University , Waurn Ponds , VIC , Australia
| | - Sreenivasan Sasidharan
- a Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia , Pulau Pinang , Malaysia
| |
Collapse
|
126
|
Fang Y, Chu L, Li L, Wang J, Yang Y, Gu J, Zhang J. Tetramethylpyrazine Protects Bone Marrow-Derived Mesenchymal Stem Cells against Hydrogen Peroxide-Induced Apoptosis through PI3K/Akt and ERK1/2 Pathways. Biol Pharm Bull 2017; 40:2146-2152. [PMID: 28978811 DOI: 10.1248/bpb.b17-00524] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) transplantation is one of the new therapeutic strategies for treating ischemic stroke. However, the poor survival rate of transplanted BMSCs in ischemic tissue limits the therapeutic efficacy of this approach. Oxidative stress is a major mechanism underlying the pathogenesis of brain ischemia and has a negative impact on the survival of transplanted BMSCs. Tetramethylpyrazine (TMP) has been reported to possess potent antioxidant activity. In the present study, we aimed to investigate the protective effects of TMP pretreatment on BMSCs survival of hydrogen peroxide (H2O2)-induced apoptosis in vitro and to elucidate the potential antiapoptotic mechanisms of TMP pretreatment on BMSCs. BMSCs were pretreated with TMP (10, 25, 50, 100, and 200 µmol/L) for 24 h and then exposed to 500 µmol/L of H2O2 for 24 h. We found that TMP pretreatment significantly increased cell viability and decreased cell apoptosis and intracellular reactive oxygen species (ROS) generation. Furthermore, the protective effects of TMP were related to increased Bcl-2 expression, attenuated Bax expression, and enhanced levels of phosphorylated Akt (p-Akt) and extracellular regulated protein kinases1/2 (p-ERK1/2). Further studies found that these beneficial effects of TMP were significantly blocked by wortmannin (an inhibitor of phosphoinositide-3 kinase (PI3K)) or PD98059 (an inhibitor of ERK1/2). In conclusion, our results confirm that TMP protects BMSCs against H2O2-induced apoptosis by regulating the PI3K/Akt and ERK1/2 signaling pathways, suggesting that TMP may be used in combination with BMSCs to improve cell survival for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yan Fang
- Department of Physiology, Zhejiang Chinese Medical University
| | - Lisheng Chu
- Department of Physiology, Zhejiang Chinese Medical University
| | - Lin Li
- Department of Physiology, Zhejiang Chinese Medical University
| | - Jun Wang
- Department of Physiology, Zhejiang Chinese Medical University
| | - Yan Yang
- Department of Physiology, Zhejiang Chinese Medical University
| | - Jingjing Gu
- Department of Pathology, Zhejiang Chinese Medical University
| | - Jianping Zhang
- Department of Anatomy and Embryology, Zhejiang Chinese Medical University
| |
Collapse
|
127
|
Na EJ, Nam HY, Park J, Chung MA, Woo HA, Kim HJ. PI3K-mTOR-S6K Signaling Mediates Neuronal Viability via Collapsin Response Mediator Protein-2 Expression. Front Mol Neurosci 2017; 10:288. [PMID: 28966575 PMCID: PMC5605571 DOI: 10.3389/fnmol.2017.00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/25/2017] [Indexed: 01/22/2023] Open
Abstract
Collapsin response mediator protein (CRMP)-2 and the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway are associated with common physiological functions such as neuronal polarity, axonal outgrowth and synaptic strength, as well as various brain disorders including epilepsy. But, their regulatory and functional links are unclear. Alterations in CRMP-2 expression that lead to its functional changes are implicated in brain disorders such as epilepsy. Here, we investigate whether changes in CRMP-2 expression, possibly regulated by mTOR-related signaling, correlates with neuronal growth and viability. Inhibition of mTOR and/or phosphoinositol-3-kinase (PI3K) led to deceased p-S6K, and p-S6 signals also reduced CRMP-2 expression. These changes corresponded to inhibition of neuronal viability and proliferation in cultured hippocampal HT-22 cells under both basal serum-free and serum- or insulin-induced mTOR pathway-activated conditions. CRMP-2 expression tended to be increased by mTOR activation, indicated by an increase in p-S6/S6 level, in pentylentetrazole (PTZ)-induced epileptic rat hippocampal tissues was also significantly reduced by mTOR inhibition. Knockdown of CRMP-2 by si-RNA reduced the neuronal viability without changes in mTOR signaling, and overexpression of CRMP-2 recovered the glutamate-induced neurotoxicity and decrease of mTOR signaling in HT-22 cells. In conclusion, CRMP-2 protein expression controlled by the PI3K-mTOR-S6K signaling axis exerts its important functional roles in neuronal growth and survival.
Collapse
Affiliation(s)
- Eun J Na
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hye Yeon Nam
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Jiyoung Park
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Myung Ah Chung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hyun Ae Woo
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| | - Hwa-Jung Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Ewha Womans UniversitySeoul, South Korea
| |
Collapse
|
128
|
Yeo EH, Goh WL, Chow SC. The aminopeptidase inhibitor, z-L-CMK, is toxic and induces cell death in Jurkat T cells through oxidative stress. Toxicol Mech Methods 2017; 28:157-166. [PMID: 28849708 DOI: 10.1080/15376516.2017.1373882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The leucine aminopeptidase inhibitor, benzyloxycarbonyl-leucine-chloromethylketone (z-L-CMK), was found to be toxic and readily induce cell death in Jurkat T cells. Dose-response studies show that lower concentration of z-L-CMK induced apoptosis in Jurkat T cells whereas higher concentration causes necrosis. In z-L-CMK-induced apoptosis, both the initiator caspases (-8 and -9) and effector caspases (-3 and -6) were processed to their respective subunits. However, the caspases remained intact in z-L-CMK-induced necrosis. The caspase inhibitor, z-VAD-FMK inhibited z-L-CMK-mediated apoptosis and caspase processing but has no effect on z-L-CMK-induced necrosis in Jurkat T cells. The high mobility group protein B1 (HMGB1) protein was found to be released into the culture medium by the necrotic cells and not the apoptotic cells. These results indicate that the necrotic cell death mediated by z-L-CMK at high concentrations is via classical necrosis rather than secondary necrosis. We also demonstrated that cell death mediated by z-L-CMK was associated with oxidative stress via the depletion of intracellular glutathione (GSH) and increase in reactive oxygen species (ROS), which was blocked by N-acetyl cysteine. Taken together, the results demonstrated that z-L-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis. The toxic side effects in Jurkat T cells mediated by z-L-CMK are associated with oxidative stress via the depletion of GSH and accumulation of ROS.
Collapse
Affiliation(s)
- E H Yeo
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| | - W L Goh
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| | - S C Chow
- a School of Science , Monash University Malaysia , Bandar Sunway , Malaysia
| |
Collapse
|
129
|
Prevention of oxytosis-induced c-Raf down-regulation by (arylthio)cyclopentenone prostaglandins is neuroprotective. Toxicology 2017; 390:83-87. [PMID: 28888848 DOI: 10.1016/j.tox.2017.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/30/2017] [Accepted: 09/05/2017] [Indexed: 11/24/2022]
Abstract
Prolonged exposure to high concentrations of glutamate leads to cell type specific glutathione depletion and resulting oxidative stress, known as oxytosis. As a result of glutathione depletion, accumulation of reactive oxygen species and Ca2+ influx are increased; however, the specific target of oxytosis has yet to be identified. In the present study, we focused on the effect of glutamate-induced oxidative stress on the extracellular-regulated protein kinase (ERK) pathway using the murine hippocampal HT22 cell line. Although the contribution of the ERK pathway to glutamate-induced oxytosis in HT22 cells is controversial, Western blot analysis revealed that glutamate caused down-regulation of mitogen-activated protein kinase kinase kinase (c-Raf) and a resulting decrease in the phosphorylation of c-Raf, as well as of mitogen-activated protein kinase kinase1/2 (MEK1/2) and ERK1/2, downstream components of the c-Raf/MEK/ERK pathway. Furthermore, neuroprotective (arylthio)cyclopentenone prostaglandins prevented glutamate-induced c-Raf down-regulation and consequently maintained the basal activity of c-Raf and its downstream signaling components. A pull-down assay using biotin-labeled cyclopentenone prostaglandins revealed that they preferentially bound to c-Raf relative to other signaling molecules of the ERK pathway, including Ras, MEK1/2, and ERK. These results suggest that neuroprotective (arylthio)cyclopentenone prostaglandins directly bind to c-Raf protein and protect cells from down-regulation of the c-Raf protein itself, resulting in neuroprotection against oxidative stress.
Collapse
|
130
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
131
|
Krabbendam IE, Honrath B, Culmsee C, Dolga AM. Mitochondrial Ca 2+-activated K + channels and their role in cell life and death pathways. Cell Calcium 2017; 69:101-111. [PMID: 28818302 DOI: 10.1016/j.ceca.2017.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/18/2022]
Abstract
Ca2+-activated K+ channels (KCa) are expressed at the plasma membrane and in cellular organelles. Expression of all KCa channel subtypes (BK, IK and SK) has been detected at the inner mitochondrial membrane of several cell types. Primary functions of these mitochondrial KCa channels include the regulation of mitochondrial ROS production, maintenance of the mitochondrial membrane potential and preservation of mitochondrial calcium homeostasis. These channels are therefore thought to contribute to cellular protection against oxidative stress through mitochondrial mechanisms of preconditioning. In this review, we summarize the current knowledge on mitochondrial KCa channels, and their role in mitochondrial function in relation to cell death and survival pathways. More specifically, we systematically discuss studies on the role of these mitochondrial KCa channels in pharmacological preconditioning, and according protective effects on ischemic insults to the brain and the heart.
Collapse
Affiliation(s)
- Inge E Krabbendam
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| | - Birgit Honrath
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, 35043 Marburg, Germany.
| | - Amalia M Dolga
- Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
132
|
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca 2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2017; 70:47-55. [PMID: 28545724 DOI: 10.1016/j.ceca.2017.05.007] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 12/21/2022]
Abstract
Ca2+ ions play a fundamental role in cell death mediated by oxidative glutamate toxicity or oxytosis, a form of programmed cell death similar and possibly identical to other forms of cell death like ferroptosis. Ca2+ influx from the extracellular space occurs late in a cascade characterized by depletion of the intracellular antioxidant glutathione, increases in cytosolic reactive oxygen species and mitochondrial dysfunction. Here, we aim to compare oxidative glutamate toxicity with ferroptosis, address the signaling pathways that culminate in Ca2+ influx and cell death and discuss the proteins that mediate this. Recent evidence hints toward a role of the machinery responsible for store-operated Ca2+ entry (SOCE), which refills the endoplasmic reticulum (ER) after receptor-mediated ER Ca2+ release or other forms of store depletion. Pharmacological inhibition of SOCE or transcriptional downregulation of proteins involved in SOCE like the ER Ca2+ sensor STIM1, the plasma membrane Ca2+ channels Orai1 and TRPC1 and the linking protein Homer protects against oxidative glutamate toxicity and direct oxidative stress caused by hydrogen peroxide or 1-methyl-4-phenylpyridinium (MPP+) injury, a cellular model of Parkinson's disease. This suggests that SOCE inhibition might have some potential therapeutic effects in human disease associated with oxidative stress like neurodegenerative disorders.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Partha Narayan Dey
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany
| | - Birgit Honrath
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Axel Methner
- University Medical Center and Focus Program Translational Neuroscience (FTN) of the Johannes Gutenberg University Mainz, Department of Neurology, Mainz, Germany.
| |
Collapse
|
133
|
Ma Y, McClatchy DB, Barkallah S, Wood WW, Yates JR. HILAQ: A Novel Strategy for Newly Synthesized Protein Quantification. J Proteome Res 2017; 16:2213-2220. [PMID: 28437088 DOI: 10.1021/acs.jproteome.7b00005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here we describe a new strategy, HILAQ (Heavy Isotope Labeled Azidohomoalanine Quantification), to rapidly quantify the molecular vulnerability profile to oxytosis, which is an oxidative stress-induced programed cell death pathway that has been reported to be involved in aging and neurodegenerative diseases. HILAQ was able to quantify 1962 newly synthesized proteins (NSPs) after 1 h of pulse labeling in HEK293T cell line, while 353 proteins were quantified using the previously published QuaNCAT protocol. HILAQ was successfully applied to the HT22 oxytosis model. 226 proteins were found to have a two-fold change in abundance, and 108 proteins were enriched in the cell death pathway, demonstrating the utility of HT22 cells as a tool to study the molecular details of cell death involved in neurodegenerative diseases. The HILAQ strategy simplifies the analysis of newly synthesized proteomes through the use of isobaric labels and achieves higher sensitivity than previously published methods.
Collapse
Affiliation(s)
- Yuanhui Ma
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Daniel B McClatchy
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| | - Salim Barkallah
- Cambridge Isotope Laboratories, Inc. , 50 Frontage Road, Andover, Massachusetts 01810, United States
| | - William W Wood
- Cambridge Isotope Laboratories, Inc. , 50 Frontage Road, Andover, Massachusetts 01810, United States
| | - John R Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute , La Jolla, California 92037, United States
| |
Collapse
|
134
|
Huang X, Liao W, Huang Y, Jiang M, Chen J, Wang M, Lin H, Guan S, Liu J. Neuroprotective effect of dual specificity phosphatase 6 against glutamate-induced cytotoxicity in mouse hippocampal neurons. Biomed Pharmacother 2017; 91:385-392. [PMID: 28475917 DOI: 10.1016/j.biopha.2017.04.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/01/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022] Open
Abstract
Dual specificity phosphatase 6 (DUSP6), a member of the dual specificity protein phosphatase subfamily, can inactivate ERK1/2. However, its possible role in glutamate-induced oxidative cytotoxicity effects is not clear.Here, we aimed to investigate whether DUSP6 was neuroprotective against glutamate-induced cytotoxicity in HT22 mouse hippocampal cells and primary cultured hippocampal neurons (pc-HNeu). HT22 and pc-HNeu cells were treated with varying concentrations of glutamate (from 0.05mM to 5.0mM) and DUSP6 protein expression were detected by western blotting. DUSP6-overexpressing HT22 and pc-HNeu cells were generated by transfection with DUSP6-overexpressing plasmid. The effects of DUSP6 overexpression on glutamate-induced cytotoxicity, cell death, cell apoptosis, and cell autophagy were determined by cell proliferation assays, flow cytometry, transmission electron microscopy, and western blotting. Glutamate treatment from 0.5mM to 5.0mM downregulated DUSP6 protein expression in both HT22 and pc-HNeu cells. DUSP6 overexpression ameliorated glutamate-induced cell death, apoptosis, and autophagy in both HT22 and pc-HNeu cells. Furthermore, ERK1/2 phosphorylation was decreased by DUSP6 overexpression. In conclusion, DUSP6 has neuroprotective effects against glutamate-induced cytotoxicity in HT22 and pc-HNeu cells. Targeting DUSP6 may be a useful strategy to prevent neuronal death in neurodegenerative diseases including AD.
Collapse
Affiliation(s)
- Xiaoyun Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Wang Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China
| | - Yihong Huang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mujun Jiang
- Department of Neurology, The First Affiliated Hospital, Bengbu Medical College, 287 Changhuai Road, Bengbu, Anhui 233004, PR China
| | - Jianjun Chen
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Mingxia Wang
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Han Lin
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Shaobing Guan
- Department of Neurology, The Affiliated Houjie Hospital, Guangdong Medical University, 21 Hetian Road, Dongguan, 523945, PR China
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, PR China; Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, PR China.
| |
Collapse
|
135
|
Lv H, Liu Q, Zhou J, Tan G, Deng X, Ci X. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death. Free Radic Biol Med 2017; 106:38-52. [PMID: 28188924 DOI: 10.1016/j.freeradbiomed.2017.02.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 12/28/2022]
Abstract
Daphnetin (Daph), a natural coumarin derivative isolated from plants of the Genus Daphne, possesses abundant biological activities, such as anti-inflammatory, antioxidant and anticancer properties. In the present study, we focused on investigating the protective effect of Daph against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage, mitochondrial dysfunction and the involvement of underlying molecular mechanisms. Our findings indicated that Daph effectively inhibited t-BHP-stimulated cytotoxicity, cell apoptosis, and mitochondrial dysfunction, which are associated with suppressed reactive oxygen species (ROS) generation, decreased malondialdehyde (MDA) formation, increased superoxide dismutase (SOD) levels and glutathione (GSH)/GSSG (oxidized GSH) ratio. Further investigation indicated that Daph significantly suppressed cytochrome c release and NLRP3 inflammasome activation and modulated apoptosis-related protein Bcl-2, Bax, and caspase-3 expression. Moreover, Daph dramatically induced the expression of the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit, heme oxygenase-1 (HO-1), and NAD (P) H: quinone oxidoreductase (NQO1), which is largely dependent on upregulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element (ARE) promoter activity. Additionally, Daph remarkably activated a c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation, but ERK and JNK inhibitor pretreatment exhibited an evident decrease of the level of Daph-enhanced Nrf2 nuclear translocation. Furthermore, Daph exposure suppressed t-BHP-induced cytotoxicity and ROS overproduction, which are mostly blocked in Nrf2 knockout RAW 264.7 cells and peritoneal macrophages. Accordingly, Daph exhibited protective roles against t-BHP-triggered oxidative damage and mitochondrial dysfunction by the upregulation of Nrf2 antioxidant signaling pathways, which may be involved in the activation of JNK and ERK.
Collapse
Affiliation(s)
- Hongming Lv
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine. Jilin University, Changchun 130061, China
| | - Qinmei Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Junfeng Zhou
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Guangyun Tan
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China
| | - Xuming Deng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China; Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine. Jilin University, Changchun 130061, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun 130001, China.
| |
Collapse
|
136
|
Neitemeier S, Jelinek A, Laino V, Hoffmann L, Eisenbach I, Eying R, Ganjam GK, Dolga AM, Oppermann S, Culmsee C. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol 2017; 12:558-570. [PMID: 28384611 PMCID: PMC5382034 DOI: 10.1016/j.redox.2017.03.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc- system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc- inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. CRISPR Bid knockout reveals a pivotal role for BID in oxidative death. BID links ferroptosis to mitochondrial demise in neurons. Mitochondrial damage determines cell death in oxytosis and ferroptosis.
Collapse
Affiliation(s)
- Sandra Neitemeier
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Anja Jelinek
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Vincenzo Laino
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Lena Hoffmann
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Ina Eisenbach
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Roman Eying
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Goutham K Ganjam
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Amalia M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Sina Oppermann
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany
| | - Carsten Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032 Marburg, Germany.
| |
Collapse
|
137
|
Kuznetsov AV, Javadov S, Saks V, Margreiter R, Grimm M. Synchronism in mitochondrial ROS flashes, membrane depolarization and calcium sparks in human carcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:418-431. [PMID: 28279675 DOI: 10.1016/j.bbabio.2017.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 02/02/2023]
Abstract
Mitochondria are major producers of reactive oxygen species (ROS) in many cells including cancer cells. However, complex interrelationships between mitochondrial ROS (mitoROS), mitochondrial membrane potential (ΔΨm) and Ca2+ are not completely understood. Using human carcinoma cells, we further highlight biphasic ROS dynamics: - gradual mitoROS increase followed by mitoROS flash. Also, we demonstrate heterogeneity in rates of mitoROS generation and flash initiation time. Comparing mitochondrial and near-extra-mitochondrial signals, we show that mechanisms of mitoROS flashes in single mitochondria, linked to mitochondrial permeability transition pore opening (ΔΨm collapse) and calcium sparks, may involve flash triggering by certain levels of external ROS released from the same mitochondria. In addition, mitochondria-mitochondria interactions can produce wave propagations of mitoROS flashes and ΔΨm collapses in cancer cells similar to phenomena of ROS-induced ROS release (RIRR). Our data suggest that in cancer cells RIRR, activation of mitoROS flashes and mitochondrial depolarization may involve participation of extramitochondrial-ROS produced either by individual mitochondria and/or by neighboring mitochondria. This could represent general mechanisms in ROS-ROS signaling with suggested role in both mitochondrial and cellular physiology and signaling.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria.
| | - Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR 00936-5067, USA
| | - Valdur Saks
- Laboratory of Fundamental and Applied Bioenergetics, INSERM U884, University Joseph Fourier, Grenoble, France
| | - Raimund Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Grimm
- Cardiac Surgery Laboratory, Department of Heart Surgery, Medical University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
138
|
Zhang Y, Jiao Z, Xu W, Fu Y, Zhu D, Xu J, He Q, Cao H, Cheng J. Design, synthesis and properties of a reactive chromophoric/fluorometric probe for hydrogen peroxide detection. NEW J CHEM 2017. [DOI: 10.1039/c7nj00851a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A succinct chromophoric/fluorometric probe, AVPM, for sensitive and selective H2O2detection.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Zinuo Jiao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Wei Xu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Yanyan Fu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Defeng Zhu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Xu
- Department of Chemistry
- College of Sciences
- Shanghai University
- Shanghai 200444
- China
| | - Qingguo He
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Huimin Cao
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
139
|
Ischemic brain injury decreases dynamin-like protein 1 expression in a middle cerebral artery occlusion animal model and glutamate-exposed HT22 cells. Lab Anim Res 2016; 32:194-199. [PMID: 28053612 PMCID: PMC5206225 DOI: 10.5625/lar.2016.32.4.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 01/05/2023] Open
Abstract
Dynamin-like protein I (DLP-1) is an important mitochondrial fission and fusion protein that is associated with apoptotic cell death in neurodegenerative diseases. In this study, we investigated DLP-1 expression in a focal cerebral ischemia animal model and glutamate-exposed hippocampal-derived cell line. Middle cerebral artery occlusion (MCAO) was surgically induced in adult male rats to induce focal cerebral ischemic injury. Brain tissues were collected 24 hours after the onset of MCAO. MCAO induces an increase in infarct volume and histopathological changes in the cerebral cortex. We identified a decrease in DLP-1 in the cerebral cortices of MCAO-injured animals using a proteomic approach and Western blot analysis. Moreover, glutamate treatment significantly decreased DLP-1 expression in a hippocampal-derived cell line. The decrease in DLP-1 indicates mitochondrial dysfunction. Thus, these results suggest that neuronal cell injury induces a decrease in DLP-1 levels and consequently leads to neuronal cell death.
Collapse
|
140
|
Ohlow MJ, Sohre S, Granold M, Schreckenberger M, Moosmann B. Why Have Clinical Trials of Antioxidants to Prevent Neurodegeneration Failed? - A Cellular Investigation of Novel Phenothiazine-Type Antioxidants Reveals Competing Objectives for Pharmaceutical Neuroprotection. Pharm Res 2016; 34:378-393. [DOI: 10.1007/s11095-016-2068-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/11/2016] [Indexed: 12/16/2022]
|
141
|
Letra-Vilela R, Sánchez-Sánchez AM, Rocha AM, Martin V, Branco-Santos J, Puente-Moncada N, Santa-Marta M, Outeiro TF, Antolín I, Rodriguez C, Herrera F. Distinct roles of N-acetyl and 5-methoxy groups in the antiproliferative and neuroprotective effects of melatonin. Mol Cell Endocrinol 2016; 434:238-49. [PMID: 27402602 DOI: 10.1016/j.mce.2016.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a highly pleiotropic hormone with antioxidant, antiproliferative, oncolytic and neuroprotective properties. Here, we present evidence that the N-acetyl side chain plays a key role in melatonin's antiproliferative effect in HT22 and sw-1353 cells, but it does so at the expense of antioxidant and neuroprotective properties. Removal of the N-acetyl group enhances the antioxidant and neuroprotective properties of the indole, but it can lead to toxic methamphetamine-like effects in several cell lines. Inhibition of NFkB mimicked melatonin's antiproliferative and antioxidant effects, but not neuroprotection. Our results strongly suggest that neuroprotective and antiproliferative effects of melatonin rely on different parts of the molecule and are likely mediated by different mechanisms. We also predict that melatonin metabolism by target cells could determine whether melatonin inhibits cell proliferation, prevents toxicity or induces cell death (e.g. apoptosis or autophagy). These observations could have important implications for the rational use of melatonin in personalized medicine.
Collapse
Affiliation(s)
- Ricardo Letra-Vilela
- Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana María Sánchez-Sánchez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Ana Maia Rocha
- Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Vanesa Martin
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Joana Branco-Santos
- Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Noelia Puente-Moncada
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Mariana Santa-Marta
- Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal
| | - Tiago Fleming Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Gottingen, Waldweg 33, 37073 Gottingen, Germany; Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
| | - Isaac Antolín
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Carmen Rodriguez
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain; Instituto Universitario de Oncología del Principado de Asturias, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain.
| | - Federico Herrera
- Cell Structure and Dynamics Laboratory, Instituto de Tecnologia Quimica e Biologica (ITQB-NOVA), Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
142
|
Lin YJ, Peng SF, Lin ML, Kuo CL, Lu KW, Liao CL, Ma YS, Chueh FS, Liu KC, Yu FS, Chung JG. Tetrandrine Induces Apoptosis of Human Nasopharyngeal Carcinoma NPC-TW 076 Cells through Reactive Oxygen Species Accompanied by an Endoplasmic Reticulum Stress Signaling Pathway. Molecules 2016; 21:molecules21101353. [PMID: 27754332 PMCID: PMC6273859 DOI: 10.3390/molecules21101353] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy of the head and neck and the incidence is higher in Southeast Asia. Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid, a natural product, and exhibits biological activities including action against many human cancer cell lines. However, the molecular mechanism of TET-induced cell apoptosis in human NPC cells is still unclear. In the present study, we investigated TET-induced apoptotic cell death and associated possible signal pathways on human nasopharyngeal carcinoma NPC-TW 076 cells in vitro. Phase contrast microscopy was used to examine cell morphology and DAPI staining was used to examine chromatin condensation. Flow cytometry assay was used to measure total viable cells, cell cycle and sub-G1 phase distribution, reactive oxygen species (ROS), Ca2+, and mitochondria membrane potential (ΔΨm) in NPC-TW 076 cells. Results indicate that TET induced cell death through the cell morphological changes, caused G0/G1 phase arrest, increased ROS and Ca2+ production, and finally caused apoptotic cell death in NPC-TW 076 cells. There was no influence on the level of ΔΨm after TET treatment. Western blotting indicated that TET increased endoplasmic reticulum (ER) stress associated protein expression such as GADD153, GRP78, ATF-6α and ATF-6 βwhich indicated that TET induced cell death through ER stress. ER stress is a potential target in cancer treatment, so the ability of TET to induce ER stress response and to activate programming cell death in NPC-TW 076 cells make this molecule become a promising anticancer agent.
Collapse
Affiliation(s)
- Ya-Jing Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan.
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Shih Ma
- Department of Chinese Medicine, E-Da Hospital, Kaohsiung 82445, Taiwan.
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan.
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan.
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 40402, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 41354, Taiwan.
| |
Collapse
|
143
|
Rao W, Peng C, Zhang L, Su N, Wang K, Hui H, Dai SH, Yang YF, Luo P, Fei Z. Homer1a attenuates glutamate-induced oxidative injury in HT-22 cells through regulation of store-operated calcium entry. Sci Rep 2016; 6:33975. [PMID: 27681296 PMCID: PMC5041114 DOI: 10.1038/srep33975] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022] Open
Abstract
Calcium disequilibrium is extensively involved in oxidative stress-induced neuronal injury. Although Homer1a is known to regulate several neuronal calcium pathways, its effects on, or its exact relationship with, oxidative stress-induced neuronal injury has not yet been fully elucidated. We found that Homer1a protected HT-22 cells from glutamate-induced oxidative stress injury by inhibiting final-phase intracellular calcium overload and mitochondrial oxidative stress. In these cells, stromal interactive molecule 1 (STIM1) puncta, but not the protein level, was significantly increased after glutamate treatment. Store-operated calcium entry (SOCE) inhibitors and cells in which a key component of SOCE (STIM1) was knocked out were used as glutamate-induced oxidative stress injury models. Both models demonstrated significant improvement of HT-22 cell survival after glutamate treatment. Additionally, increased Homer1a protein levels significantly inhibited SOCE and decreased the association of STIM1-Orai1 triggered by glutamate. These results suggest that up-regulation of Homer1a can protect HT-22 cells from glutamate-induced oxidative injury by disrupting the STIM1-Oria1 association, and then by inhibiting the SOCE-mediated final-phrase calcium overload. Thus, regulation of Homer1a, either alone or in conjunction with SOCE inhibition, may serve as key therapeutic interventional targets for neurological diseases in which oxidative stress is involved in the etiology or progression of the disease.
Collapse
Affiliation(s)
- Wei Rao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Cheng Peng
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Ning Su
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China.,Department of Radiotherapy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Kai Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Hao Hui
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Shu-Hui Dai
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Yue-Fan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, P. R. China
| |
Collapse
|
144
|
Pan FY, Feng L, Jiang WD, Jiang J, Wu P, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Methionine hydroxy analogue enhanced fish immunity via modulation of NF-κB, TOR, MLCK, MAPKs and Nrf2 signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 56:208-228. [PMID: 27422756 DOI: 10.1016/j.fsi.2016.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Our study investigated the effect of dietary methionine hydroxy analogue (MHA) on growth and immunity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (259.70 ± 0.47 g) were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1 in the immune organs (P < 0.05), suggesting that MHA could enhance antimicrobial ability of fish. Meanwhile, optimal MHA enhanced the immune function of immune organs via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < 0.05). In addition, optimal MHA improved cellular structure integrity of immune organs via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < 0.05). Simultaneously, optimal MHA improved cellular structure integrity of immune organs via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < 0.05). Besides, optimal MHA improved intercellular structure integrity of immune organs via up-regulating the mRNA levels of intercellular tight junctions-related genes, which might be owing to the down-regulation of myosin light chain kinase mRNA levels (P < 0.05). In conclusion, MHA exerted a positive effect on the immune function and structural integrity of immune organs in fish. Furthermore, according to the positive effect, MHA was superior to DLM in grass carp. However, based on the growth performance, the efficacy of MHA relative to DLM was 97%. Finally, on the premise of the basal diet containing 4.01 g/kg methionine, the optimal MHA supplementation levels based on feed intake, PWG, defense against skin hemorrhage and lesion, LZ and ACP activities, IgM content, against malondialdehyde, protein carbonyl and ROS in the head kidney of young grass carp were 5.07, 5.21, 5.76, 5.90, 5.88, 5.80, 6.22, 5.68 and 6.85 g/kg diet, respectively.
Collapse
Affiliation(s)
- Fei-Yu Pan
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
145
|
Rabi T, Catapano CV. Aphanin, a triterpenoid from Amoora rohituka inhibits K-Ras mutant activity and STAT3 in pancreatic carcinoma cells. Tumour Biol 2016; 37:12455-12464. [PMID: 27333990 DOI: 10.1007/s13277-016-5102-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/09/2016] [Indexed: 01/05/2023] Open
Abstract
Mutations of the K-Ras gene occur in over 90 % of pancreatic carcinomas, and to date, no targeted therapies exist for this genetically defined subset of cancers. STAT3 plays a critical role in KRAS-driven pancreatic tumorigenesis, suggesting its potential as a therapeutic target in this cancer. Therefore, finding novel and potential drugs to inhibit oncogenic K-Ras is a major challenge in cancer therapy. In an attempt to develop novel anti-KRAS mutant chemotherapeutics, we isolated three novel triterpenoids from Amoora rohituka stem and their chemical structures were characterized by extensive 1H-NMR, 13C-NMR, Mass, IR spectroscopic studies and chemical transformations. Aphanin (3 alpha-angeloyloxyolean-12-en-28-oic acid) is one of the isolated novel triterpenoid compounds. We found aphanin exhibited antiproliferative effects, caused G0-G1 cell cycle arrest, inhibits K-Ras G12D mutant activity by decreased STAT3, p-STAT3, Akt, p-Akt, cyclin D1 and c-Myc expressions, and induced apoptosis in pancreatic cancer HPAF-II (ΔKRAS G12D ) cells. The apoptosis proceeded through depletion of GSH with a concomitant increase in the reactive oxygen species production. The results of our study have important implications for the development of aphanin as potential novel agent for the treatment of K-Ras mutant pancreatic cancer, and STAT3-cMyc-cyclinD1 axis may serve as an important predictive biomarker for the therapeutic efficacy.
Collapse
Affiliation(s)
- Thangaiyan Rabi
- Siddha Clinic and Research Center SVA, Kanyakumari, Tamil Nadu, India.
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland.
| | - Carlo V Catapano
- Tumor Biology and Experimental Therapeutics Program, Institute of Oncology Research (IOR), Bellinzona, Switzerland
- Department of Oncology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
146
|
Zhang Y, Fu YY, Zhu DF, Xu JQ, He QG, Cheng JG. Recent advances in fluorescence sensor for the detection of peroxide explosives. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
147
|
Huang JY, Yuan YH, Yan JQ, Wang YN, Chu SF, Zhu CG, Guo QL, Shi JG, Chen NH. 20C, a bibenzyl compound isolated from Gastrodia elata, protects PC12 cells against rotenone-induced apoptosis via activation of the Nrf2/ARE/HO-1 signaling pathway. Acta Pharmacol Sin 2016; 37:731-40. [PMID: 27180985 DOI: 10.1038/aps.2015.154] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
AIM Our preliminary study shows that a bibenzyl compound isolated from Gastrodia elata, 2-[4-hydroxy-3-(4-hydroxybenzyl)benzyl]-4-(4-hydroxybenzyl)phenol (designated 20C), protects PC12 cells against H2O2-induced injury. In this study we investigated whether 20C exerted neuroprotective action in a cell model of Parkinson's disease. METHODS A cell model of Parkinson's disease was established in PC12 cells by exposure to rotenone (4 μmol/L) for 48 h. Cell viability and apoptosis were assessed, and intracellular ROS level and the mitochondrial membrane potential (MMP) were detected. The expression of apoptosis-related proteins Bax, Bcl-2, cytochrome c, cleaved caspase-3, and oxidative stress-related proteins Nrf2, HO-1 and NQO1 were examined using Western blotting. The mRNA levels of HO-1 and NQO1 were determined with RT-PCR. The nuclear translocation of Nrf2 was observed with immunofluorescence staining. RESULTS Treatment with rotenone significantly increased the number of apoptotic cells, accompanied by marked increases in the Bax/Bcl-2 ratio, cytochrome c release and caspase-3 activation. Rotenone also increased ROS accumulation, reduced MMP, and increased the nuclear translocation of Nrf2 as well as the mRNA and protein levels of the Nrf2 downstream target genes HO-1 and NQO1 in PC12 cells. Co-treatment with 20C (0.01-1 μmol/L) dose-dependently attenuated rotenone-induced apoptosis and oxidative stress in PC12 cells. Nrf2 knockdown by siRNA partially reversed the protective effects of 20C in rotenone-treated PC12 cells. CONCLUSION The bibenzyl compound 20C protects PC12 cells from rotenone-induced apoptosis, at least in part, via activation of the Nrf2/ARE/HO-1 signaling pathway.
Collapse
|
148
|
Affiliation(s)
- Rachid Skouta
- Department of Chemistry, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
149
|
Neitemeier S, Dolga AM, Honrath B, Karuppagounder SS, Alim I, Ratan RR, Culmsee C. Inhibition of HIF-prolyl-4-hydroxylases prevents mitochondrial impairment and cell death in a model of neuronal oxytosis. Cell Death Dis 2016; 7:e2214. [PMID: 27148687 PMCID: PMC4917646 DOI: 10.1038/cddis.2016.107] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 12/24/2022]
Abstract
Mitochondrial impairment induced by oxidative stress is a main characteristic of intrinsic cell death pathways in neurons underlying the pathology of neurodegenerative diseases. Therefore, protection of mitochondrial integrity and function is emerging as a promising strategy to prevent neuronal damage. Here, we show that pharmacological inhibition of hypoxia-inducible factor prolyl-4-hydroxylases (HIF-PHDs) by adaptaquin inhibits lipid peroxidation and fully maintains mitochondrial function as indicated by restored mitochondrial membrane potential and ATP production, reduced formation of mitochondrial reactive oxygen species (ROS) and preserved mitochondrial respiration, thereby protecting neuronal HT-22 cells in a model of glutamate-induced oxytosis. Selective reduction of PHD1 protein using CRISPR/Cas9 technology also reduced both lipid peroxidation and mitochondrial impairment, and attenuated glutamate toxicity in the HT-22 cells. Regulation of activating transcription factor 4 (ATF4) expression levels and related target genes may mediate these beneficial effects. Overall, these results expose HIF-PHDs as promising targets to protect mitochondria and, thereby, neurons from oxidative cell death.
Collapse
Affiliation(s)
- S Neitemeier
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - A M Dolga
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - B Honrath
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| | - S S Karuppagounder
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - I Alim
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - R R Ratan
- Burke-Cornell Medical Research Institute, White Plains, NY, USA.,Feil Family Brain and Mind Research Institute, Department of Neurology and Neuroscience, Weill Medical College, Cornell University, New York, NY, USA
| | - C Culmsee
- Institut für Pharmakologie und Klinische Pharmazie, Biochemisch-Pharmakologisches Centrum Marburg, Fachbereich Pharmazie, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, Marburg 35032, Germany
| |
Collapse
|
150
|
The neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells. Protein J 2016; 34:349-58. [PMID: 26385697 DOI: 10.1007/s10930-015-9629-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Endoplasmic reticulum (ER) proteins including protein disulfide isomerase (PDI) are playing crucial roles in maintaining appropriate protein folding. Under nitrosative stress, an excess of nitric oxide (NO) radical species induced the S-nitrosylation of PDI cysteines which eliminate its isomerase and oxidoreductase capabilities. In addition, the S-nitrosylation-PDI complex is the cause of aggregation especially of the α-synuclein (α-syn) protein (accumulation of Lewy-body aggregates). We recently identified a potent antioxidant small molecule, Ferrostatin-1 (Fer-1), that was able to inhibit a non-apoptotic cell death named ferroptosis. Ferroptosis cell death involved the generation of oxidative stress particularly lipid peroxide. In this work, we reported the neuroprotective role of ferrostatin-1 under rotenone-induced oxidative stress in dopaminergic neuroblastoma cells (SH-SY5Y). We first synthesized the Fer-1 and confirmed that it is not toxic toward the SH-SY5Y cells at concentrations up to 12.5 μM. Second, we showed that Fer-1 compound quenched the commercially available stable radical, the 2,2-diphenyl-1-picrylhydrazyl (DPPH), in non-cellular assay at 82 %. Third, Fer-1 inhibited the ROS/RNS generated under rotenone insult in SH-SY5Y cells. Fourth, we revealed the effective role of Fer-1 in ER stress mediated activation of apoptotic pathway. Finally, we reported that Fer-1 mitigated rotenone-induced α-syn aggregation.
Collapse
|