101
|
Jáuregui-Zúñiga D, Pedraza-Escalona M, Espino-Solís GP, Quintero-Hernández V, Olvera-Rodríguez A, Díaz-Salinas MA, López S, Possani LD. Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Res Vet Sci 2016; 111:55-62. [PMID: 27987414 DOI: 10.1016/j.rvsc.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/18/2016] [Accepted: 12/02/2016] [Indexed: 11/28/2022]
Abstract
It is widely known that targeting a variety of antigens to the DEC-205 receptor on dendritic cells (DCs) significantly potentiate immunity. This communication reports the development of a new murine monoclonal antibody (mAb) against the chicken DEC-205, using as immunogen the carbohydrate recognition domain-2 (CRD-2) heterologously expressed. This mAb recognizes a protein band of 250kDa by immunoprecipitation analysis and shows strong cross-reactivity with human and pig DEC-205. Furthermore, the hemagglutinin (HA) of avian influenza H5N2 virus was cloned and expressed using insect cell-baculovirus expression system. We chemically conjugated the anti-chicken DEC-205 antibody with the highly purified HA to direct the antigen to the dendritic cells and evaluate the immune response elicited in vivo by this conjugate. A single dose of chemical conjugate was sufficient to elicit a strong immune response in chickens as early as fourteen days after priming. In addition, the conjugate induced an earlier and higher response compared to unconjugated HA. These results suggest that the strategy described here has potential to be used in the future design and development of successful vaccines against different chicken infectious diseases with direct impact in biotechnology and veterinary fields.
Collapse
Affiliation(s)
- David Jáuregui-Zúñiga
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Martha Pedraza-Escalona
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Gerardo Pavel Espino-Solís
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Verónica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Marco Aurelio Díaz-Salinas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62210, México.
| |
Collapse
|
102
|
Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205. Proc Natl Acad Sci U S A 2016; 113:13438-13443. [PMID: 27821726 DOI: 10.1073/pnas.1609331113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation. It has been shown that human DEC205 recognizes apoptotic and necrotic cells in a pH-dependent fashion. However, the natural ligand(s) of DEC205 remains unknown. Here we find that keratins are the cellular ligands of human DEC205. DEC205 binds to keratins specifically at acidic, but not basic, pH through its N-terminal domains. Keratins form intermediate filaments and are important for maintaining the strength of cells and tissues. Our results suggest that keratins also function as cell markers of apoptotic and necrotic cells and mediate a pH-dependent pathway for the immune recognition of dead cells.
Collapse
|
103
|
IL-10 downregulates CXCR3 expression on Th1 cells and interferes with their migration to intestinal inflammatory sites. Mucosal Immunol 2016; 9:1263-77. [PMID: 26732675 DOI: 10.1038/mi.2015.132] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 11/20/2015] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by chronic, uncontrolled inflammation in the intestinal mucosa. Although the etiology is poorly understood, it is widely accepted that loss of tolerance is involved in the development of IBD. Therefore, re-establishing tolerance or gut homeostasis is one of the key features in the development of new therapeutic strategies. Here we show that antigen targeting to DEC-205 on dendritic cells leads to an interleukin (IL)-10-dependent downregulation of C-X-C chemokine receptor 3 (CXCR3) expression on differentiated antigen-specific T helper type 1 (Th1) cells in vivo. This downregulation interferes with the migration of Th1 cells into the gut and protects mice against severe acute and relapsing intestinal inflammation. Moreover, CD4(+)CXCR3(+) T cells are highly enriched in the inflamed mucosa of IBD patients. Interference with this pathway may therefore be a promising approach for the treatment of IBD. In conclusion, we propose a hitherto undescribed mechanism by which IL-10 can act on effector T cells and orchestrate intestinal immune responses.
Collapse
|
104
|
Mahmutefendić H, Blagojević Zagorac G, Grabušić K, Karleuša L, Maćešić S, Momburg F, Lučin P. Late Endosomal Recycling of Open MHC-I Conformers. J Cell Physiol 2016; 232:872-887. [DOI: 10.1002/jcp.25495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Hana Mahmutefendić
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | | | | | - Ljerka Karleuša
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| | - Senka Maćešić
- Faculty of Engineering, Department of Mathematics, Physics, Foreign Languages and Kinesiology; University of Rijeka; Rijeka Croatia
| | - Frank Momburg
- Antigen Presentation & T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity; German Cancer Research Center; Heidelberg Germany
| | - Pero Lučin
- Faculty of Medicine, Department of Physiology and Immunology; University of Rijeka; Rijeka Croatia
| |
Collapse
|
105
|
Uptake of HLA Alloantigens via CD89 and CD206 Does Not Enhance Antigen Presentation by Indirect Allorecognition. J Immunol Res 2016; 2016:4215684. [PMID: 27413760 PMCID: PMC4931073 DOI: 10.1155/2016/4215684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/01/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022] Open
Abstract
In organ transplantation, alloantigens are taken up by antigen presenting cells and presented via the indirect pathway to T-cells which in turn can induce allograft rejection. Monitoring of these T-cells is of major importance; however no reliable assay is available to routinely monitor indirect allorecognition. Recently we showed that HLA monomers can be successfully used to monitor indirect allorecognition. Targeting antigens to endocytic receptors on antigen presenting cells may further enhance the presentation of antigens via HLA class II and improve the efficiency of this assay. In the current study we explored targeting of HLA monomers to either CD89 expressing monocytes or mannose receptor expressing dendritic cells. Monomer-antibody complexes were generated using biotin-labeled monomers and avidin labeling of the antibodies. We demonstrate that targeting the complexes to these receptors resulted in a dose-dependent HLA class II mediated presentation to a T-cell clone. The immune-complexes were efficiently taken up and presented to T-cells. However, the level of T-cell reactivity was similar to that when only exogenous antigen was added. We conclude that HLA-A2 monomers targeted for presentation through CD89 on monocytes or mannose receptor on dendritic cells lead to proper antigen presentation but do not enhance indirect allorecognition via HLA-DR.
Collapse
|
106
|
Tullett KM, Leal Rojas IM, Minoda Y, Tan PS, Zhang JG, Smith C, Khanna R, Shortman K, Caminschi I, Lahoud MH, Radford KJ. Targeting CLEC9A delivers antigen to human CD141 + DC for CD4 + and CD8 +T cell recognition. JCI Insight 2016; 1:e87102. [PMID: 27699265 DOI: 10.1172/jci.insight.87102] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DC-based vaccines that initiate T cell responses are well tolerated and have demonstrated efficacy for tumor immunotherapy, with the potential to be combined with other therapies. Targeting vaccine antigens (Ag) directly to the DCs in vivo is more effective than cell-based therapies in mouse models and is therefore a promising strategy to translate to humans. The human CD141+ DCs are considered the most clinically relevant for initiating CD8+ T cell responses critical for killing tumors or infected cells, and they specifically express the C-type lectin-like receptor CLEC9A that facilitates presentation of Ag by these DCs. We have therefore developed a human chimeric Ab that specifically targets CLEC9A on CD141+ DCs in vitro and in vivo. These human chimeric Abs are highly effective at delivering Ag to DCs for recognition by both CD4+ and CD8+ T cells. Given the importance of these cellular responses for antitumor or antiviral immunity, and the superior specificity of anti-CLEC9A Abs for this DC subset, this approach warrants further development for vaccines.
Collapse
Affiliation(s)
- Kirsteen M Tullett
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,University of Queensland, School of Medicine, Brisbane, Queensland, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Ingrid M Leal Rojas
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Yoshihito Minoda
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia
| | - Peck S Tan
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Ken Shortman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Irina Caminschi
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia
| | - Mireille H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.,Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria, Australia
| | - Kristen J Radford
- Mater Research Institute - University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,University of Queensland, School of Biomedical Sciences, Brisbane, Queensland, Australia
| |
Collapse
|
107
|
O’Brien M, Manches O, Wilen C, Gopal R, Huq R, Wu V, Sunseri N, Bhardwaj N. CD4 Receptor is a Key Determinant of Divergent HIV-1 Sensing by Plasmacytoid Dendritic Cells. PLoS Pathog 2016; 12:e1005553. [PMID: 27082754 PMCID: PMC4833349 DOI: 10.1371/journal.ppat.1005553] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are innate immune cells that sense viral nucleic acids through endosomal Toll-like receptor (TLR) 7/9 to produce type I interferon (IFN) and to differentiate into potent antigen presenting cells (APC). Engagement of TLR7/9 in early endosomes appears to trigger the IRF7 pathway for IFN production whereas engagement in lysosomes seems to trigger the NF-κB pathway for maturation into APC. We showed previously that HIV-1 (HIV) localizes predominantly to early endosomes, not lysosomes, and mainly stimulate IRF7 rather than NF-κB signaling pathways in pDC. This divergent signaling may contribute to disease progression through production of pro-apoptotic and pro-inflammatory IFN and inadequate maturation of pDCs. We now demonstrate that HIV virions may be re-directed to lysosomes for NF-κB signaling by either pseudotyping HIV with influenza hemagglutinin envelope or modification of CD4 mediated-intracellular trafficking. These data suggest that HIV envelope-CD4 receptor interactions drive pDC activation toward an immature IFN producing phenotype rather than differentiation into a mature dendritic cell phenotype. Plasmacytoid dendritic cells (pDC) are innate immune cells that are specialized to produce type I interferon (IFN) and to activate adaptive immune responses. Although IFN is an anti-viral cytokine, it may contribute more to pathogenesis than to protection during chronic viral infections, including chronic HIV infection. pDC sense HIV to produce abundant IFN but minimal NF- κB–dependent production of TNFα and minimal up-regulation of co-stimulatory molecules, suggesting that HIV promotes pDC to become interferon producing cells (IPC) rather than antigen presenting cells (APC). Here, we use florescent HIV virions pseudotyped with influenza hemagglutinin (HA) envelope and a cell system expressing CD4 molecules with modified intracellular trafficking. We found that HIV virions pseudotyped with HA stimulate pDC to mature, similar to influenza-stimulated pDC, and traffic intracellularly similarly to influenza. We also find that CD4-mediated intracellular trafficking guides HIV trafficking and downstream signaling. Our study presents new and important findings which demonstrate that divergent HIV sensing by pDC to produce IFN, rather than to become mature antigen presenting cells, is mediated specifically by CD4-HIV envelope interactions.
Collapse
Affiliation(s)
- Meagan O’Brien
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: Meagan.O’ (MO); (OM)
| | - Olivier Manches
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: Meagan.O’ (MO); (OM)
| | - Craig Wilen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ramya Gopal
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Rumana Huq
- Microscopy Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Vernon Wu
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Nicole Sunseri
- Department of Pediatrics, the University of Chicago, Chicago, Illinois, United States of America
| | - Nina Bhardwaj
- Division of Hematology and Oncology, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
108
|
Mahnke K, Ring S, Enk AH. Antibody Targeting of "Steady-State" Dendritic Cells Induces Tolerance Mediated by Regulatory T Cells. Front Immunol 2016; 7:63. [PMID: 26941742 PMCID: PMC4763042 DOI: 10.3389/fimmu.2016.00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells (DCs) are often defined as pivotal inducers of immunity, but these proinflammatory properties only develop after stimulation or ex vivo manipulation of DCs. Under non-inflammatory conditions in vivo, DCs are embedded into a tissue environment and encounter a plethora of self-antigens derived from apoptotic material. This material is transported to secondary lymphoid organs. As DCs maintain their non-activated phenotype in a sterile tissue environment, interaction with T cells will induce rather regulatory T cells than effector T cells. Thus, DCs are not only inducers of immunity but are also critical for maintenance of peripheral tolerance. Therapeutically, intervention for the induction of long-lasting tolerance in several autoimmune conditions may therefore be possible by manipulating DC activation and/or targeting of DCs in their “natural” tissue environment.
Collapse
Affiliation(s)
- Karsten Mahnke
- University Hospital Heidelberg, University of Heidelberg , Heidelberg , Germany
| | - Sabine Ring
- University Hospital Heidelberg, University of Heidelberg , Heidelberg , Germany
| | - Alexander H Enk
- University Hospital Heidelberg, University of Heidelberg , Heidelberg , Germany
| |
Collapse
|
109
|
Katakowski JA, Mukherjee G, Wilner SE, Maier KE, Harrison MT, DiLorenzo TP, Levy M, Palliser D. Delivery of siRNAs to Dendritic Cells Using DEC205-Targeted Lipid Nanoparticles to Inhibit Immune Responses. Mol Ther 2016; 24:146-55. [PMID: 26412590 PMCID: PMC4754549 DOI: 10.1038/mt.2015.175] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022] Open
Abstract
Due to their ability to knock down the expression of any gene, siRNAs have been heralded as ideal candidates for treating a wide variety of diseases, including those involving "undruggable" targets. However, the therapeutic potential of siRNAs remains severely limited by a lack of effective delivery vehicles. Recently, lipid nanoparticles (LNPs) containing ionizable cationic lipids have been developed for hepatic siRNA delivery. However, their suitability for delivery to other cell types has not been determined. We have modified LNPs for preferential targeting to dendritic cells (DCs), central regulators of immune responses. To achieve directed delivery, we coated LNPs with a single-chain antibody (scFv; DEC-LNPs), specific to murine DEC205, which is highly expressed on distinct DC subsets. Here we show that injection of siRNAs encapsulated in DEC-LNPs are preferentially delivered to DEC205(+) DCs. Gene knockdown following uptake of DEC-LNPs containing siRNAs specific for the costimulatory molecules CD40, CD80, and CD86 dramatically decreases gene expression levels. We demonstrate the functionality of this knockdown with a mixed lymphocyte response (MLR). Overall, we report that injection of LNPs modified to restrict their uptake to a distinct cell population can confer profound gene knockdown, sufficient to inhibit powerful immune responses like the MLR.
Collapse
Affiliation(s)
- Joseph A Katakowski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Gayatri Mukherjee
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Samantha E Wilner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Keith E Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deborah Palliser
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
110
|
Wadwa M, Klopfleisch R, Buer J, Westendorf AM. Targeting Antigens to Dec-205 on Dendritic Cells Induces Immune Protection in Experimental Colitis in Mice. Eur J Microbiol Immunol (Bp) 2016; 6:1-8. [PMID: 27141310 PMCID: PMC4838981 DOI: 10.1556/1886.2015.00048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
The endocytotic c-type lectin receptor DEC-205 is highly expressed on immature dendritic cells. In previous studies, it was shown that antigen-targeting to DEC-205 is a useful tool for the induction of antigen-specific Foxp3+ regulatory T cells and thereby can prevent inflammatory processes. However, whether this approach is sufficient to mediate tolerance in mucosal tissues like the gut is unknown. In this study, we established a new mouse model in which the adoptive transfer of naive hemagglutinin (HA)-specific CD4+Foxp3– T cells into VILLIN-HA transgenic mice leads to severe colitis. To analyze if antigen-targeting to DEC-205 could protect against inflammation of the gut, VILLIN-HA transgenic mice were injected with an antibody–antigen complex consisting of the immunogenic HA110–120 peptide coupled to an α-DEC-205 antibody (DEC-HA) before adoptive T cell transfer. DEC-HA-treated mice showed significantly less signs of intestinal inflammation as was demonstrated by reduced loss of body weight and histopathology in the gut. Strikingly, abrogated intestinal inflammation was mediated via the conversion of naive HA-specific CD4+Foxp3– T cells into HA-specific CD4+Foxp3+ regulatory T cells. In this study, we provide evidence that antigen-targeting to DEC-205 can be utilized for the induction of tolerance in mucosal organs that are confronted with large numbers of exogenous antigens.
Collapse
Affiliation(s)
- Munisch Wadwa
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg Essen , Essen, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin , Berlin, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg Essen , Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg Essen , Essen, Germany
| |
Collapse
|
111
|
Dillmann C, Ringel C, Ringleb J, Mora J, Olesch C, Fink AF, Roberts E, Brüne B, Weigert A. S1PR4 Signaling Attenuates ILT 7 Internalization To Limit IFN-α Production by Human Plasmacytoid Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1579-90. [PMID: 26783340 DOI: 10.4049/jimmunol.1403168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) produce large amounts of type I IFN in response to TLR7/9 ligands. This conveys antiviral effects, activates other immune cells (NK cells, conventional DCs, B, and T cells), and causes the induction and expansion of a strong inflammatory response. pDCs are key players in various type I IFN-driven autoimmune diseases such as systemic lupus erythematosus or psoriasis, but pDCs are also involved in (anti-)tumor immunity. The sphingolipid sphingosine-1-phosphate (S1P) signals through five G-protein-coupled receptors (S1PR1-5) to regulate, among other activities, immune cell migration and activation. The present study shows that S1P stimulation of human, primary pDCs substantially decreases IFN-α production after TLR7/9 activation with different types of CpG oligodeoxynucleotides or tick-borne encephalitis vaccine, which occurred in an S1PR4-dependent manner. Mechanistically, S1PR4 activation preserves the surface expression of the human pDC-specific inhibitory receptor Ig-like transcript 7. We provide novel information that Ig-like transcript 7 is rapidly internalized upon receptor-mediated endocytosis of TLR7/9 ligands to allow high IFN-α production. This is antagonized by S1PR4 signaling, thus decreasing TLR-induced IFN-α secretion. At a functional level, attenuated IFN-α production failed to alter Ag-driven T cell proliferation in pDC-dependent T cell activation assays, but shifted cytokine production of T cells from a Th1 (IFN-γ) to a regulatory (IL-10) profile. In conclusion, S1PR4 agonists block human pDC activation and may therefore be a promising tool to restrict pathogenic IFN-α production.
Collapse
Affiliation(s)
- Christina Dillmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Christian Ringel
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Julia Ringleb
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Javier Mora
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Catherine Olesch
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Annika F Fink
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| | - Andreas Weigert
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany; and
| |
Collapse
|
112
|
Narasimhan B, Goodman JT, Vela Ramirez JE. Rational Design of Targeted Next-Generation Carriers for Drug and Vaccine Delivery. Annu Rev Biomed Eng 2016; 18:25-49. [PMID: 26789697 DOI: 10.1146/annurev-bioeng-082615-030519] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pattern recognition receptors on innate immune cells play an important role in guiding how cells interact with the rest of the organism and in determining the direction of the downstream immune response. Recent advances have elucidated the structure and function of these receptors, providing new opportunities for developing targeted drugs and vaccines to treat infections, cancers, and neurological disorders. C-type lectin receptors, Toll-like receptors, and folate receptors have attracted interest for their ability to endocytose their ligands or initiate signaling pathways that influence the immune response. Several novel technologies are being developed to engage these receptors, including recombinant antibodies, adoptive immunotherapy, and chemically modified antigens and drug delivery vehicles. These active targeting technologies will help address current challenges facing drug and vaccine delivery and lead to new tools to treat human diseases.
Collapse
Affiliation(s)
- Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Jonathan T Goodman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| | - Julia E Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
113
|
|
114
|
Hong E, Usiskin IM, Bergamaschi C, Hanlon DJ, Edelson RL, Justesen S, Pavlakis GN, Flavell RA, Fahmy TM. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity. J Biol Chem 2015; 291:8931-50. [PMID: 26719339 DOI: 10.1074/jbc.m115.695304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/08/2023] Open
Abstract
Here we report a "configuration-dependent" mechanism of action for IL-15:IL-15Rα (heterodimeric IL-15 or hetIL-15) where the manner by which IL-15:IL-15Rα molecules are presented to target cells significantly affects its function as a vaccine adjuvant. Although the cellular mechanism of IL-15 trans-presentation via IL-15Rα and its importance for IL-15 function have been described, the full effect of the IL-15:IL-15Rα configuration on responding cells is not yet known. We found that trans-presenting IL-15:IL-15Rα in a multivalent fashion on the surface of antigen-encapsulating nanoparticles enhanced the ability of nanoparticle-treated dendritic cells (DCs) to stimulate antigen-specific CD8(+) T cell responses. Localization of multivalent IL-15:IL-15Rα and encapsulated antigen to the same DC led to maximal T cell responses. Strikingly, DCs incubated with IL-15:IL-15Rα-coated nanoparticles displayed higher levels of functional IL-15 on the cell surface, implicating a mechanism for nanoparticle-mediated transfer of IL-15 to the DC surface. Using artificial antigen-presenting cells to highlight the effect of IL-15 configuration on DCs, we showed that artificial antigen-presenting cells presenting IL-15:IL-15Rα increased the sensitivity and magnitude of the T cell response, whereas IL-2 enhanced the T cell response only when delivered in a paracrine fashion. Therefore, the mode of cytokine presentation (configuration) is important for optimal immune responses. We tested the effect of configuration dependence in an aggressive model of murine melanoma and demonstrated significantly delayed tumor progression induced by IL-15:IL-15Rα-coated nanoparticles in comparison with monovalent IL-15:IL-15Rα. The novel mechanism of IL-15 transfer to the surface of antigen-processing DCs may explain the enhanced potency of IL-15:IL-15Rα-coated nanoparticles for antigen delivery.
Collapse
Affiliation(s)
- Enping Hong
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Ilana M Usiskin
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Cristina Bergamaschi
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | - Douglas J Hanlon
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Richard L Edelson
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sune Justesen
- the Department of Science, University of Copenhagen, Copenhagen 1017, Denmark
| | - George N Pavlakis
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | | | - Tarek M Fahmy
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, the Departments of Immunobiology and
| |
Collapse
|
115
|
Pugholm LH, Varming K, Agger R. In vitroAssay for Screening of Optimal Targets for Antigen-Delivery to Murine Dendritic Cells. Scand J Immunol 2015; 82:498-505. [DOI: 10.1111/sji.12365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Affiliation(s)
- L. H. Pugholm
- Department of Clinical Immunology; Aalborg University Hospital; Aalborg Denmark
- Laboratory of Immunology; Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| | - K. Varming
- Department of Clinical Immunology; Aalborg University Hospital; Aalborg Denmark
| | - R. Agger
- Laboratory of Immunology; Department of Health Science and Technology; Aalborg University; Aalborg Denmark
| |
Collapse
|
116
|
Clausen BE, Stoitzner P. Functional Specialization of Skin Dendritic Cell Subsets in Regulating T Cell Responses. Front Immunol 2015; 6:534. [PMID: 26557117 PMCID: PMC4617171 DOI: 10.3389/fimmu.2015.00534] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DC) are a heterogeneous family of professional antigen-presenting cells classically recognized as most potent inducers of adaptive immune responses. In this respect, Langerhans cells have long been considered to be prototypic immunogenic DC in the skin. More recently this view has considerably changed. The generation of in vivo cell ablation and lineage tracing models revealed the complexity of the skin DC network and, in particular, established the existence of a number of phenotypically distinct Langerin+ and negative DC populations in the dermis. Moreover, by now we appreciate that DC also exert important regulatory functions and are required for the maintenance of tolerance toward harmless foreign and self-antigens. This review summarizes our current understanding of the skin-resident DC system in the mouse and discusses emerging concepts on the functional specialization of the different skin DC subsets in regulating T cell responses. Special consideration is given to antigen cross-presentation as well as immune reactions toward contact sensitizers, cutaneous pathogens, and tumors. These studies form the basis for the manipulation of the human counterparts of the murine DC subsets to promote immunity or tolerance for the treatment of human disease.
Collapse
Affiliation(s)
- Björn E Clausen
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Division of Experimental Dermatology, Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
117
|
Zhao H, Li C, Beck BH, Zhang R, Thongda W, Davis DA, Peatman E. Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. FISH & SHELLFISH IMMUNOLOGY 2015; 46:624-637. [PMID: 26164837 DOI: 10.1016/j.fsi.2015.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 06/04/2023]
Abstract
One of the highest priority areas for improvement in aquaculture is the development of dietary additives and formulations which provide for complete mucosal health and protection of fish raised in intensive systems. Far greater attention has been paid to dietary impact on gut health than to protective effects at other mucosal surfaces such as skin and gill. These exterior surfaces, however, are important primary targets for pathogen attachment and invasion. Flavobacterium columnare, the causative agent of columnaris disease, is among the most prevalent of all freshwater disease-causing bacteria, impacting global aquaculture of catfish, salmonids, baitfish and aquaria-trade species among others. This study evaluated whether the feeding of a standard catfish diet supplemented with Alltech dietary additives Actigen(®), a concentrated source of yeast cell wall-derived material and/or Allzyme(®) SSF, a fermented strain of Aspergillus niger, could offer protection against F. columnare mortality. A nine-week feeding trial of channel catfish fingerlings with basal diet (B), B + Allzyme(®) SSF, B + Actigen(®) and B + Actigen(®)+Allzyme(®) SSF revealed good growth in all conditions (FCR < 1.0), but no statistical differences in growth between the treatments were found. At nine weeks, based on pre-challenge trial results, basal, B + Actigen(®), and B + Allzyme(®) SSF groups of fish were selected for further challenges with F. columnare. Replicated challenge with a virulent F. columnare strain, revealed significantly longer median days to death in B + Allzyme(®) SSF and B + Actigen(®) when compared with the basal diet (P < 0.05) and significantly higher survival following the eight day challenge period in B + Actigen(®) when compared with the other two diets (P < 0.05). Given the superior protection provided by the B + Actigen(®) diet, we carried out transcriptomic comparison of gene expression of fish fed that diet and the basal diet before and after columnaris challenge using high-throughput RNA-seq. Pathway and enrichment analyses revealed changes in mannose receptor DEC205 and IL4 signaling at 0 h (prior to challenge) which likely explain a dramatic divergence in expression profiles between the two diets soon after pathogen challenge (8 h). Dietary mannose priming resulted in reduced expression of inflammatory cytokines, shifting response patterns instead to favor resolution and repair. Our results indicate that prebiotic dietary additives may provide protection extending beyond the gut to surface mucosa.
Collapse
Affiliation(s)
- Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Stuttgart National Aquaculture Research Center, Stuttgart, AR 72160, USA
| | - Ran Zhang
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wilawan Thongda
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - D Allen Davis
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
118
|
Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205. J Immunol Res 2015; 2015:585078. [PMID: 26380324 PMCID: PMC4563097 DOI: 10.1155/2015/585078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response.
Collapse
|
119
|
Vacas-Córdoba E, Climent N, De La Mata FJ, Plana M, Gómez R, Pion M, García F, Muñoz-Fernández MÁ. Dendrimers as nonviral vectors in dendritic cell-based immunotherapies against human immunodeficiency virus: steps toward their clinical evaluation. Nanomedicine (Lond) 2015; 9:2683-702. [PMID: 25529571 DOI: 10.2217/nnm.14.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although the antiretroviral therapy has led to a long-term control of HIV-1, it does not cure the disease. Therefore, several strategies are being explored to develop an effective HIV vaccine, such as the use of dendritic cells (DCs). DC-based immunotherapies bear different limitations, but one of the most critical point is the antigen loading into DCs. Nanotechnology offers new tools to overcome these constraints. Dendrimers have been proposed as carriers for targeted delivery of HIV antigens in DCs. These nanosystems can release the antigens in a controlled manner leading to a more potent specific immune response. This review focuses on the first steps for clinical development of dendrimers to assess their safety and potential use in DC-based immunotherapies against HIV.
Collapse
Affiliation(s)
- Enrique Vacas-Córdoba
- Laboratorio InmunoBiología Molecular, Sección Inmunologia, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria del Gregorio Marañón, C/Dr. Esquerdo 46, 28007, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Small Wonders-The Use of Nanoparticles for Delivering Antigen. Vaccines (Basel) 2015; 3:638-61. [PMID: 26350599 PMCID: PMC4586471 DOI: 10.3390/vaccines3030638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/15/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the discovery of many potential antigens for subunit vaccines, universal protection is often lacking due to the limitations of conventional delivery methods. Subunit vaccines primarily induce antibody-mediated humoral responses, whereas potent antigen-specific cellular responses are required for prevention against some pathogenic infections. Nanoparticles have been utilised in nanomedicine and are promising candidates for vaccine or drug delivery. Nanoparticle vehicles have been demonstrated to be efficiently taken up by dendritic cells and induce humoral and cellular responses. This review provides an overview of nanoparticle vaccine development; in particular, the preparation of nanoparticles using a templating technique is highlighted, which would alleviate some of the disadvantages of existing nanoparticles. We will also explore the cellular fate of nanoparticle vaccines. Nanoparticle-based antigen delivery systems have the potential to develop new generation vaccines against currently unpreventable infectious diseases.
Collapse
|
121
|
Stoitzner P, Schaffenrath S, Tripp CH, Reider D, Komenda K, Del Frari B, Djedovic G, Ebner S, Romani N. Human skin dendritic cells can be targeted in situ by intradermal injection of antibodies against lectin receptors. Exp Dermatol 2015; 23:909-15. [PMID: 25346475 PMCID: PMC4282089 DOI: 10.1111/exd.12573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
Skin dendritic cells (DC) express C-type lectin receptors for the recognition of pathogens. Langerhans cells (LC) express the receptor Langerin/CD207, whereas DEC-205/CD205 is mainly expressed by dermal DC, but can also be detected at low levels on LC. In this study, we tested an ex vivo approach for targeting DC in situ with monoclonal antibodies (mAb) against Langerin and DEC-205. The targeting mAb was injected intradermally into human skin biopsies or added to the medium during skin explant culture. Corresponding to the expression patterns of these lectin receptors on skin DC, Langerin mAb was detected merely in LC in the epidermis and DEC-205 mainly in dermal DC in human skin explants, regardless of the application route. Migratory skin DC bound and carried targeting mAb from skin explants according to their lectin receptor expression profiles. In contrast to the very selective transport of Langerin mAb by LC, DEC-205 mAb was more widely distributed on all CD1a+ skin DC subsets but almost absent in CD14+ dermal DC. As effective vaccination requires the addition of adjuvant, we co-administered the toll-like receptor (TLR)-3 ligand poly I:C with the mAb. This adjuvant enhanced binding of DEC-205 mAb to all skin DC subsets, whereas Langerin targeting efficacy remained unchanged. Our findings demonstrate that LC can be preferentially targeted by Langerin mAb. In contrast, DEC-205 mAb can be bound by all CD1a+ skin DC subsets. The efficacy of DEC-205 mAb targeting strategy can be boosted by addition of poly I:C underlining the potential of this combination for immunotherapeutical interventions.
Collapse
Affiliation(s)
- Patrizia Stoitzner
- Department of Dermatology & Venereology, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Michon C, Christophe M, Kuczkowska K, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Surface display of an anti-DEC-205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo. Microb Cell Fact 2015; 14:95. [PMID: 26141059 PMCID: PMC4491208 DOI: 10.1186/s12934-015-0290-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/24/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Lactic acid bacteria (LAB) are promising vehicles for delivery of a variety of medicinal compounds, including antigens and cytokines. It has also been established that LAB are able to deliver cDNA to host cells. To increase the efficiency of LAB-driven DNA delivery we have constructed Lactobacillus plantarum strains targeting DEC-205, which is a receptor located at the surface of dendritic cells (DCs). The purpose was to increase uptake of bacterial cells, which could lead to improved cDNA delivery to immune cells. RESULTS Anti-DEC-205 antibody (aDec) was displayed at the surface of L. plantarum using three different anchoring strategies: (1) covalent anchoring of aDec to the cell membrane (Lipobox domain, Lip); (2) covalent anchoring to the cell wall (LPXTG domain, CWA); (3) non-covalent anchoring to the cell wall (LysM domain, LysM). aDec was successfully expressed in all three strains, but surface location of the antibody could only be demonstrated for the two strains with cell wall anchors (CWA and LysM). Co-incubation of the engineered strains and DCs showed increased uptake when anchoring aDec using the CWA or LysM anchors. In a competition assay, free anti-DEC abolished the increased uptake, showing that the internalization is due to specific interactions between the DEC-205 receptor and aDec. To test plasmid transfer, a plasmid for expression of GFP under control of an eukaryotic promoter was transformed into the aDec expressing strains and GFP expression in DCs was indeed increased when using the strains producing cell-wall anchored aDec. Plasmid transfer to DCs in the gastro intestinal tract was also detected using a mouse model. Surprisingly, in mice the highest expression of GFP was observed for the strain in which aDec was coupled to the cell membrane. CONCLUSION The results show that surface expression of aDec leads to increased internalization of L. plantarum and plasmid transfer in DCs and that efficiency depends on the type of anchor used. Interestingly, in vitro data indicates that cell wall anchoring is more effective, whereas in vivo data seem to indicate that anchoring to the cell membrane is preferable. It is likely that the more embedded localization of aDec in the latter case is favorable when cells are exposed to the harsh conditions of the gastro-intestinal tract.
Collapse
Affiliation(s)
| | - Michon Christophe
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| | - Katarzyna Kuczkowska
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Philippe Langella
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway.
| | - Jean-Marc Chatel
- INRA, UMR1319 MICALIS, Bat 440, R-2, 78352, Jouy-en-Josas, France. .,AgroParisTech, UMR MICALIS, 78352, Jouy-en-Josas, France.
| |
Collapse
|
123
|
Flacher V, Tripp CH, Mairhofer DG, Steinman RM, Stoitzner P, Idoyaga J, Romani N. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol Med 2015; 6:1191-204. [PMID: 25085878 PMCID: PMC4197865 DOI: 10.15252/emmm.201303283] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8+ T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin+ dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin+ dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8+ T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8+ T cells. Langerin/OVA combined with imiquimod could not prime CD8+ T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin+ dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8+ T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - David G Mairhofer
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Ralph M Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY, USA
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Juliana Idoyaga
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY, USA
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| |
Collapse
|
124
|
Niezold T, Storcksdieck Genannt Bonsmann M, Maaske A, Temchura V, Heinecke V, Hannaman D, Buer J, Ehrhardt C, Hansen W, Überla K, Tenbusch M. DNA vaccines encoding DEC205-targeted antigens: immunity or tolerance? Immunology 2015; 145:519-33. [PMID: 25819746 DOI: 10.1111/imm.12467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 01/02/2023] Open
Abstract
Targeting of antigens to the endocytic uptake receptor DEC205 resulted in enhanced antigen presentation by dendritic cells (DCs). In combination with adjuvants for DC maturation, proteins coupled to an antibody against DEC205 induced strong pathogen-specific immune responses, whereas without additional adjuvant tolerance could be induced. As less is known about DNA vaccines encoding DEC205-targeted antigens, we explored the immunogenicity and efficacy of a dendritic cell-targeted DNA vaccine against influenza A virus (IAV) delivered by electroporation. Although coupling of haemagglutinin to a single-chain antibody against DEC205 enhanced antigen presentation on MHC class II and activation of T-cell receptor-transgenic CD4 T cells, the T-cell responses induced by the targeted DNA vaccine in wild-type BALB/c mice were significantly reduced compared with DNA encoding non-targeted antigens. Consistently, these mice were less protected against an IAV infection. Adoptive transfer experiments were performed to assess the fate of the antigen-specific T cells in animals vaccinated with DNA encoding DEC205-targeted antigens. By this, we could exclude the general deletion of antigen-specific T cells as cause for the reduced efficacy, but observed a local expansion of antigen-specific regulatory T cells, which could suppress the activation of effector cells. In conclusion, DNA vaccines encoding DEC205-targeted antigens induce peripheral tolerance rather than immunity in our study. Finally, we evaluated our DNA vaccines as prophylactic or therapeutic treatment in an allergen-induced asthma mouse model.
Collapse
Affiliation(s)
- Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | | | - André Maaske
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - Vladimir Temchura
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | - Vanessa Heinecke
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| | | | - Jan Buer
- Institute of Medical Microbiology University Hospital, Essen
| | - Christina Ehrhardt
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation, University of Münster, Münster
| | - Wiebke Hansen
- Institute of Medical Microbiology University Hospital, Essen
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany.,Universitätsklinikum Erlangen, Institute of Clinical and Medical Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany
| |
Collapse
|
125
|
Silva-Sánchez A, Meza-Pérez S, Flores-Langarica A, Donis-Maturano L, Estrada-García I, Calderón-Amador J, Hernández-Pando R, Idoyaga J, Steinman RM, Flores-Romo L. ESAT-6 Targeting to DEC205+ Antigen Presenting Cells Induces Specific-T Cell Responses against ESAT-6 and Reduces Pulmonary Infection with Virulent Mycobacterium tuberculosis. PLoS One 2015; 10:e0124828. [PMID: 25915045 PMCID: PMC4411092 DOI: 10.1371/journal.pone.0124828] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Airways infection with Mycobacterium tuberculosis (Mtb) is contained mostly by T cell responses, however, Mtb has developed evasion mechanisms which affect antigen presenting cell (APC) maturation/recruitment delaying the onset of Ag-specific T cell responses. Hypothetically, bypassing the natural infection routes by delivering antigens directly to APCs may overcome the pathogen's naturally evolved evasion mechanisms, thus facilitating the induction of protective immune responses. We generated a murine monoclonal fusion antibody (α-DEC-ESAT) to deliver Early Secretory Antigen Target (ESAT)-6 directly to DEC205+ APCs and to assess its in vivo effects on protection associated responses (IFN-γ production, in vivo CTL killing, and pulmonary mycobacterial load). Treatment with α-DEC-ESAT alone induced ESAT-6-specific IFN-γ producing CD4+ T cells and prime-boost immunization prior to Mtb infection resulted in early influx (d14 post-infection) and increased IFN-γ+ production by specific T cells in the lungs, compared to scarce IFN-γ production in control mice. In vivo CTL killing was quantified in relevant tissues upon transferring target cells loaded with mycobacterial antigens. During infection, α-DEC-ESAT-treated mice showed increased target cell killing in the lungs, where histology revealed cellular infiltrate and considerably reduced bacterial burden. Targeting the mycobacterial antigen ESAT-6 to DEC205+ APCs before infection expands specific T cell clones responsible for early T cell responses (IFN-γ production and CTL activity) and substantially reduces lung bacterial burden. Delivering mycobacterial antigens directly to APCs provides a unique approach to study in vivo the role of APCs and specific T cell responses to assess their potential anti-mycobacterial functions.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/immunology
- Antigen-Presenting Cells/immunology
- Antigens, Bacterial/chemistry
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Bacterial Load
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Cell Line
- Cytotoxicity, Immunologic
- Disease Models, Animal
- Flow Cytometry
- Immunization
- Interferon-gamma/biosynthesis
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Male
- Mice
- Minor Histocompatibility Antigens
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Peptides/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/metabolism
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/pathology
Collapse
Affiliation(s)
- Aarón Silva-Sánchez
- Department of Cell Biology, Cinvestav-IPN, Ciudad de México, Mexico
- Department of Immunology, ENCB-IPN, Ciudad de México, Mexico
| | - Selene Meza-Pérez
- Department of Cell Biology, Cinvestav-IPN, Ciudad de México, Mexico
- Department of Immunology, ENCB-IPN, Ciudad de México, Mexico
| | - Adriana Flores-Langarica
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | | | | | | | | | - Juliana Idoyaga
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | - Ralph M. Steinman
- Physiology and Cell Biology, Rockefeller University, New York, New York, United States of America
| | | |
Collapse
|
126
|
Sartorius R, D'Apice L, Trovato M, Cuccaro F, Costa V, De Leo MG, Marzullo VM, Biondo C, D'Auria S, De Matteis MA, Ciccodicola A, De Berardinis P. Antigen delivery by filamentous bacteriophage fd displaying an anti-DEC-205 single-chain variable fragment confers adjuvanticity by triggering a TLR9-mediated immune response. EMBO Mol Med 2015; 7:973-88. [PMID: 25888235 PMCID: PMC4520660 DOI: 10.15252/emmm.201404525] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Filamentous bacteriophage fd particles delivering antigenic determinants via DEC-205 (fdsc-αDEC) represent a powerful delivery system that induces CD8+ T-cell responses even when administered in the absence of adjuvants or maturation stimuli for dendritic cells. In order to investigate the mechanisms of this activity, RNA-Sequencing of fd-pulsed dendritic cells was performed. A significant differential expression of genes involved in innate immunity, co-stimulation and cytokine production was observed. In agreement with these findings, we demonstrate that induction of proinflammatory cytokines and type I interferon by fdsc-αDEC was MYD88 mediated and TLR9 dependent. We also found that fdsc-αDEC is delivered into LAMP-1-positive compartments and co-localizes with TLR9. Thus, phage particles containing a single-strand DNA genome rich in CpG motifs delivered via DEC-205 are able to intercept and trigger the active TLR9 innate immune receptor into late endosome/lysosomes and to enhance the immunogenicity of the displayed antigenic determinants. These findings make fd bacteriophage a valuable tool for immunization without administering exogenous adjuvants.
Collapse
Affiliation(s)
- Rossella Sartorius
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Luciana D'Apice
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Maria Trovato
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Fausta Cuccaro
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics A. Buzzati-Traverso, National Council of Research, Naples, Italy
| | | | - Vincenzo Manuel Marzullo
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy Telethon Institute of Genetics and Medicine, Pozzuoli (NA), Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Sabato D'Auria
- Institute of Protein Biochemistry, National Council of Research, Naples, Italy Institute of Food Science, National Council of Research, Avellino, Italy
| | | | - Alfredo Ciccodicola
- Institute of Genetics and Biophysics A. Buzzati-Traverso, National Council of Research, Naples, Italy Department of Science and Technology, University Parthenope of Naples, Naples, Italy
| | | |
Collapse
|
127
|
Badillo-Godinez O, Gutierrez-Xicotencatl L, Plett-Torres T, Pedroza-Saavedra A, Gonzalez-Jaimes A, Chihu-Amparan L, Maldonado-Gama M, Espino-Solis G, Bonifaz LC, Esquivel-Guadarrama F. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine 2015; 33:4228-37. [PMID: 25850020 DOI: 10.1016/j.vaccine.2015.03.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/15/2023]
Abstract
Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.
Collapse
Affiliation(s)
- O Badillo-Godinez
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico; Facultad de Ciencias, UAEM, Cuernavaca, MOR, Mexico
| | | | - T Plett-Torres
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | | | | | - L Chihu-Amparan
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - M Maldonado-Gama
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - G Espino-Solis
- Instituto de Biotecnologia, UNAM, Cuernavaca, MOR, Mexico
| | - L C Bonifaz
- Unidad de Inmunohistoquimica, CMN, Hospital Siglo XXI, IMSS, Mexico, D.F., Mexico
| | - F Esquivel-Guadarrama
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico.
| |
Collapse
|
128
|
van Luijn MM, Kreft KL, Jongsma ML, Mes SW, Wierenga-Wolf AF, van Meurs M, Melief MJ, der Kant RV, Janssen L, Janssen H, Tan R, Priatel JJ, Neefjes J, Laman JD, Hintzen RQ. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis. Brain 2015; 138:1531-47. [PMID: 25823473 DOI: 10.1093/brain/awv080] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/26/2015] [Indexed: 01/20/2023] Open
Abstract
C-type lectins are key players in immune regulation by driving distinct functions of antigen-presenting cells. The C-type lectin CLEC16A gene is located at 16p13, a susceptibility locus for several autoimmune diseases, including multiple sclerosis. However, the function of this gene and its potential contribution to these diseases in humans are poorly understood. In this study, we found a strong upregulation of CLEC16A expression in the white matter of multiple sclerosis patients (n = 14) compared to non-demented controls (n = 11), mainly in perivascular leukocyte infiltrates. Moreover, CLEC16A levels were significantly enhanced in peripheral blood mononuclear cells of multiple sclerosis patients (n = 69) versus healthy controls (n = 46). In peripheral blood mononuclear cells, CLEC16A was most abundant in monocyte-derived dendritic cells, in which it strongly co-localized with human leukocyte antigen class II. Treatment of these professional antigen-presenting cells with vitamin D, a key protective environmental factor in multiple sclerosis, downmodulated CLEC16A in parallel with human leukocyte antigen class II. Knockdown of CLEC16A in distinct types of model and primary antigen-presenting cells resulted in severely impaired cytoplasmic distribution and formation of human leucocyte antigen class II-positive late endosomes, as determined by immunofluorescence and electron microscopy. Mechanistically, CLEC16A participated in the molecular machinery of human leukocyte antigen class II-positive late endosome formation and trafficking to perinuclear regions, involving the dynein motor complex. By performing co-immunoprecipitations, we found that CLEC16A directly binds to two critical members of this complex, RILP and the HOPS complex. CLEC16A silencing in antigen-presenting cells disturbed RILP-mediated recruitment of human leukocyte antigen class II-positive late endosomes to perinuclear regions. Together, we identify CLEC16A as a pivotal gene in multiple sclerosis that serves as a direct regulator of the human leukocyte antigen class II pathway in antigen-presenting cells. These findings are a first step in coupling multiple sclerosis-associated genes to the regulation of the strongest genetic factor in multiple sclerosis, human leukocyte antigen class II.
Collapse
Affiliation(s)
- Marvin M van Luijn
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Karim L Kreft
- 2 Department of Neurology and MS Center ErasMS, Erasmus MC, University Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Marlieke L Jongsma
- 3 Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Steven W Mes
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marjan van Meurs
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Marie-José Melief
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Rik van der Kant
- 3 Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lennert Janssen
- 3 Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Hans Janssen
- 3 Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Rusung Tan
- 4 Department of Pathology, Sidra Medical and Research Center, Doha, Qatar 5 BC Children's Hospital and Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - John J Priatel
- 5 BC Children's Hospital and Department of Pathology and Laboratory Medicine, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Jacques Neefjes
- 3 Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Jon D Laman
- 1 Department of Immunology and MS Center ErasMS, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Rogier Q Hintzen
- 2 Department of Neurology and MS Center ErasMS, Erasmus MC, University Medical Center, 's-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
129
|
Pritzl CJ, Seo YJ, Xia C, Vijayan M, Stokes ZD, Hahm B. A ceramide analogue stimulates dendritic cells to promote T cell responses upon virus infections. THE JOURNAL OF IMMUNOLOGY 2015; 194:4339-49. [PMID: 25810392 DOI: 10.4049/jimmunol.1402672] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/24/2015] [Indexed: 12/20/2022]
Abstract
The ceramide family of lipids plays important roles in both cell structure and signaling in a diverse array of cell types, including immune cells. However, very little is known regarding how ceramide affects the activation of dendritic cells (DCs) in response to viral infection. In this study, we demonstrate that a synthetic ceramide analog (C8) stimulates DCs to increase the expansion of virus-specific T cells upon virus infection. Exogenously supplied C8 ceramide elevated the expression of DC maturation markers such as MHC class I and costimulatory molecules following infection with the clone 13 strain of lymphocytic choriomeningitis virus (LCMV) or influenza virus. Importantly, ceramide-conditioned, LCMV-infected DCs displayed an increased ability to promote expansion of virus-specific CD8(+) T cells when compared with virus-infected DCs. Furthermore, a locally instilled ceramide analog significantly increased virus-reactive T cell responses in vivo to both LCMV and influenza virus infections. Collectively, these findings provide new insights into ceramide-mediated regulation of DC responses against virus infection and help us establish a foundation for novel immune-stimulatory therapeutics.
Collapse
Affiliation(s)
- Curtis J Pritzl
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Young-Jin Seo
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Chuan Xia
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Zachary D Stokes
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, MO 65212; andDepartment of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212
| |
Collapse
|
130
|
Goldberg AC, Rizzo LV. MHC structure and function - antigen presentation. Part 2. ACTA ACUST UNITED AC 2015; 13:157-62. [PMID: 25807243 PMCID: PMC4977603 DOI: 10.1590/s1679-45082015rb3123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/27/2014] [Indexed: 01/13/2023]
Abstract
The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells.
Collapse
|
131
|
Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clin Immunol 2015; 160:14-23. [PMID: 25805659 DOI: 10.1016/j.clim.2015.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/23/2015] [Accepted: 03/03/2015] [Indexed: 11/21/2022]
Abstract
The induction of donor-specific tolerance to transplanted cells and organs, while preserving immune function as a whole, remains a highly sought after and elusive strategy for overcoming transplant rejection. Tolerance necessitates modulating a diverse array of cell types that recognize and respond to alloantigens, including antigen presenting cells and T lymphocytes. Nanotherapeutic strategies that employ cellular and biomaterial engineering represent an emerging technology geared towards the goal of inducing transplant tolerance. Nanocarriers offer a platform for delivering antigens of interest to specific cell types in order to achieve tolerogenic antigen presentation. Furthermore, the technologies also provide an opportunity for local immunomodulation at the graft site. Nanocarriers delivering a combination of antigens and immunomodulating agents, such as rapamycin, provide a unique technology platform with the potential to enhance outcomes for the induction of transplant tolerance.
Collapse
|
132
|
García-Vallejo JJ, Bloem K, Knippels LMJ, Garssen J, van Vliet SJ, van Kooyk Y. The Consequences of Multiple Simultaneous C-Type Lectin-Ligand Interactions: DCIR Alters the Endo-Lysosomal Routing of DC-SIGN. Front Immunol 2015; 6:87. [PMID: 25806031 PMCID: PMC4354414 DOI: 10.3389/fimmu.2015.00087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/16/2015] [Indexed: 11/13/2022] Open
Abstract
Antigen-presenting cells (APCs) are equipped with multiple receptors to allow proper pathogen recognition and capture. C-type lectin receptors (CLRs) recognize glycan structures on pathogens and endogenous glycoproteins for internalization and antigen processing and presentation. Often, the glycan specificity of these receptors is overlapping and/or pathogens are decorated with ligands for multiple CLRs, posing the question whether interference or cooperativity within the CLR family exists. Here, we used imaging flow cytometry to investigate the internalization properties of four different CLRs [mannose receptor, DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), macrophage galactose-type lectin, and dendritic cell immunoreceptor (DCIR)] on different APCs, as well as their intracellular routing. Although the internalization score of the investigated CLRs was similar on monocytes, macrophages, and dendritic cells (DCs), DCIR internalization rates were lower compared to the other CLRs. Upon triggering, DCIR routed to intracellular compartments outside of the classical endo-lysosomal pathway, resulting in poor CD4(+) T-cell stimulation. Although DC maturation reduced CLR expression levels, it did not affect their internalization rates. Although CLR internalization appeared to be independently regulated, DC-SIGN routing was affected when DCIR was triggered simultaneously. In conclusion, our results provide new insights for the design of DC-based immunotherapeutic strategies and suggest that DCIR is an inferior target in this respect.
Collapse
Affiliation(s)
- Juan J García-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Karien Bloem
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands ; Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands
| | - Léon M J Knippels
- Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands ; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht , Netherlands
| | - Johan Garssen
- Danone Research, Centre for Specialized Nutrition , Wageningen , Netherlands ; Department of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University , Utrecht , Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
133
|
Ghoneum M, Agrawal S. Mgn-3/biobran enhances generation of cytotoxic CD8+ T cells via upregulation of dec-205 expression on dendritic cells. Int J Immunopathol Pharmacol 2015; 27:523-30. [PMID: 25572732 DOI: 10.1177/039463201402700408] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Arabinoxylan rice bran (MGN-3/Biobran) has been shown to be a potent biological response modifier (BRM) that activates different arms of the immune system, including dendritic cells (DCs), which prime CD4+ helper T-cell responses. The present study explores the ability of MGN-3-activated DCs to prime CD8+ T cells and examines the mechanisms underlying its effect. Human monocyte-derived DCs were treated with MGN-3 (20 and 40 μg/ml). Results indicate that treatment with MGN-3 caused DCs to prime higher granzyme B-expressing CD8+ T cells. Tumor lysate-pulsed MGN-3 DC also increased tumor cell killing compared to DC-stimulated CD8+ T cells. This was associated with: i) increased expression of DEC-205 in MGN-3-activated DCs in a dose-dependent manner; and ii) MGN-3 induced significant production of Type III interferon, IL29, but not Type I IFNs α and β. These results suggest that MGN-3 is a potent natural adjuvant that efficiently activates DCs and may therefore be useful for mounting an efficient immune response against infections and cancer.
Collapse
Affiliation(s)
- M Ghoneum
- Charles Drew University of Medicine and Science, Los Angeles, CA, U.S.A
| | - S Agrawal
- Division of Basic and Clinical Immunology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
134
|
Pizzurro GA, Barrio MM. Dendritic cell-based vaccine efficacy: aiming for hot spots. Front Immunol 2015; 6:91. [PMID: 25784913 PMCID: PMC4347494 DOI: 10.3389/fimmu.2015.00091] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/16/2015] [Indexed: 12/18/2022] Open
Abstract
Many approaches for cancer immunotherapy have targeted dendritic cells (DCs), directly or indirectly, for the induction of antitumor immune responses. DC-based vaccines have been developed using a wide variety of ex vivo DC culture conditions, antigen (Ag) source and loading strategies, maturation agents, and routes of vaccination. Adjuvants are used to activate innate immune cells at the vaccine injection site, to promote Ag transport to the draining lymph nodes (LNs) and to model adaptive immune responses. Despite years of effort, the effective induction of strong and durable antitumor T-cell responses in vaccinated patients remains a challenge. The study of vaccine interactions with other immune cells in the LNs and, more recently, in the injection site has opened new doors for understanding antitumor effector T-cell licensing and function. In this review, we will briefly discuss the relevant sites and up-to-date facts regarding possible targets for antitumor vaccine refinement. We will focus on the processes taking place at the injection site, adjuvant combinations and their role in DC-based vaccines, LN homing, and modeling vaccine-induced immune responses capable of controlling tumor growth and generating immune memory.
Collapse
Affiliation(s)
- Gabriela Andrea Pizzurro
- Centro de Investigaciones Oncológicas - Fundación Cáncer (CIO - FUCA) , Buenos Aires , Argentina
| | - María Marcela Barrio
- Centro de Investigaciones Oncológicas - Fundación Cáncer (CIO - FUCA) , Buenos Aires , Argentina
| |
Collapse
|
135
|
Antigen presenting cell-selective drug delivery by glycan-decorated nanocarriers. Eur J Pharm Biopharm 2015; 95:13-7. [PMID: 25701806 DOI: 10.1016/j.ejpb.2015.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/08/2023]
Abstract
Targeted drug delivery systems hold promise for selective provision of active compounds to distinct tissues or cell subsets. Thus, locally enhanced drug concentrations are obtained that would confer improved efficacy. As a consequence adverse effects should be diminished, as innocent bystander cells are less affected. Currently, several controlled drug delivery systems based on diverse materials are being developed. Some systems exhibit material-associated toxic effects and/or show low drug loading capacity. In contrast, liposomal nanocarriers are particularly favorable because they are well tolerated, poorly immunogenic, can be produced in defined sizes, and offer a reasonable payload capacity. Compared with other immune cells, professional antigen-presenting cells (APCs) demonstrate enhanced liposome uptake mediated by macropinocytosis, phagocytosis and presumably also by clathrin- and caveolae-mediated endocytosis. In order to further enhance the targeting efficacy toward APCs, receptor-mediated uptake appears advisable. Since APC subsets generally do not express single linage-specific receptors, members of the C-type lectin receptor (CLR) family are compelling targets. Examples of CLR expressed by APCs include DEC-205 (CD205) expressed by myeloid dendritic cells (DC) and monocytes, the mannose receptor C type 1 (MR, CD206) expressed by DC, monocytes and macrophages, DC-SIGN (CD209) expressed by DC, and several others. These receptors bind glycans, which are typically displayed by pathogens and thus support pathogen uptake and endocytosis. Further research will elucidate whether glycan-decorated liposomes will not only enhance APCs targeting but also enable preferential delivery of their payload to discrete subcellular compartments.
Collapse
|
136
|
Reuter A, Panozza SE, Macri C, Dumont C, Li J, Liu H, Segura E, Vega-Ramos J, Gupta N, Caminschi I, Villadangos JA, Johnston APR, Mintern JD. Criteria for dendritic cell receptor selection for efficient antibody-targeted vaccination. THE JOURNAL OF IMMUNOLOGY 2015; 194:2696-705. [PMID: 25653426 DOI: 10.4049/jimmunol.1402535] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ab-targeted vaccination involves targeting a receptor of choice expressed by dendritic cells (DCs) with Ag-coupled Abs. Currently, there is little consensus as to which criteria determine receptor selection to ensure superior Ag presentation and immunity. In this study, we investigated parameters of DC receptor internalization and determined how they impact Ag presentation outcomes. First, using mixed bone marrow chimeras, we established that Ag-targeted, but not nontargeted, DCs are responsible for Ag presentation in settings of Ab-targeted vaccination in vivo. Next, we analyzed parameters of DEC205 (CD205), Clec9A, CD11c, CD11b, and CD40 endocytosis and obtained quantitative measurements of internalization speed, surface turnover, and delivered Ag load. Exploiting these parameters in MHC class I (MHC I) and MHC class II (MHC II) Ag presentation assays, we showed that receptor expression level, proportion of surface turnover, or speed of receptor internalization did not impact MHC I or MHC II Ag presentation efficiency. Furthermore, the Ag load delivered to DCs did not correlate with the efficiency of MHC I or MHC II Ag presentation. In contrast, targeting Ag to CD8(+) or CD8(-) DCs enhanced MHC I or MHC II Ag presentation, respectively. Therefore, receptor expression levels, speed of internalization, and/or the amount of Ag delivered can be excluded as major determinants that dictate Ag presentation efficiency in setting of Ab-targeted vaccination.
Collapse
Affiliation(s)
- Anika Reuter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Max Planck Graduate Center, 55128 Mainz, Germany; Institute of Physical Chemistry, 55099 Mainz, Germany
| | - Scott E Panozza
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christophe Macri
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Claire Dumont
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jessica Li
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Haiyin Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Elodie Segura
- INSERM Unité 932, 75248 Paris Cedex 05, France; Institut Curie, Centre de Recherche, 75248 Paris Cedex 05, France
| | - Javier Vega-Ramos
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Nishma Gupta
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Irina Caminschi
- Centre for Immunology, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Jose A Villadangos
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010, Australia; and
| | - Angus P R Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Justine D Mintern
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia;
| |
Collapse
|
137
|
Modulation of antigen presentation by intracellular trafficking. Curr Opin Immunol 2015; 34:16-21. [PMID: 25578446 DOI: 10.1016/j.coi.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 12/24/2022]
Abstract
Processing and loading of antigen into major histocompatibility complex molecules (MHC) occurs in specific intracellular compartments. Accessing MHC loading compartments requires trafficking via specific pathways, some of which have yet to be fully characterized. For MHC I, cross-presentation involves antigen trafficking to a specialised compartment. We review the features of this compartment and how it is accessed by different mechanisms of antigen capture and internalization. We also summarize advances in understanding how antigen efficiently accesses the MHC II loading compartment, with particular focus on the role of autophagy. Understanding the mechanisms that control how antigen is trafficked to specific compartments for loading and presentation is crucial if these pathways are to be manipulated more effectively in settings of vaccination.
Collapse
|
138
|
Abstract
Synthetic mRNAs can become biopharmaceutics allowing vaccination against cancer, bacterial and virus infections. Clinical trials with direct administration of synthetic mRNAs encoding tumor antigens demonstrated safety and induction of tumor-specific immune responses. Although immune responses are generated by naked mRNAs, their formulations with chemical carriers are expected to provide more specificity and internalization in dendritic cells (DCs) for better immune responses and dose reduction. This review reports lipid-based formulations (LBFs) that have proved preclinical efficacy. The selective delivery of mRNA LBFs to favor intracellular accumulation in DCs and reduction of the effective doses is discussed, notably to decorate LBFs with carbohydrates or glycomimetics allowing endocytosis in DCs. We also report how smart intracellular delivery is achieved using pH-sensitive lipids or polymers for an efficient mRNA escape from endosomes and limitations regarding cytosolic mRNA location for translation.
Collapse
Affiliation(s)
- Patrick Midoux
- Centre de Biophysique Moléculaire, CNRS UPR4301, Inserm and Université d'Orléans, Orléans, 45071, cedex 02, France
| | | |
Collapse
|
139
|
An anti-DEC-205 monoclonal antibody stimulates binding of thymocytes to rat thymic dendritic cells and promotes apoptosis of thymocytes. Cent Eur J Immunol 2014; 39:411-8. [PMID: 26155156 PMCID: PMC4439949 DOI: 10.5114/ceji.2014.47722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/22/2014] [Indexed: 12/05/2022] Open
Abstract
DEC-205, a transmembrane receptor responsible for cross-presentation of apoptotic cell-derived antigens, is expressed by cortical thymic epithelial cells (TEC) and thymic dendritic cells (TDC) in humans and mice, but its function in T-cell development is still unclear. In this work we have studied for the first time the expression of DEC-205 in the rat thymus by HD83 monoclonal antibody (mAb) and immunohistochemistry, as well as the ability of this mAb to modulate thymocyte – TDC interactions in vitro. We showed the positivity of cortical TEC in situ, including thymic nurse cells (TNC) in suspension, and TDC, whereas subcapsular, perivascular and medullary TEC were negative. All examined DEC-205 positive and DEC-205 negative structures were MHC class II positive. HD83 mAb increased apoptosis of thymocytes in co-culture with TDC in vitro and the process was associated with increased binding of thymocytes to TDC in a rosette form. Since negative selection of thymocytes by clonal deletion (apoptosis) was mediated predominantly by TDC, our results suggest the possible indirect effect of the DEC-205 molecule in these mechanisms.
Collapse
|
140
|
Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J, Kluger H, Tejwani S, Green J, Ramakrishna V, Crocker A, Vitale L, Yellin M, Davis T, Keler T. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 2014; 6:232ra51. [PMID: 24739759 DOI: 10.1126/scitranslmed.3008068] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immune-based therapies for cancer are generating substantial interest because of the success of immune checkpoint inhibitors. This study aimed to enhance anticancer immunity by exploiting the capacity of dendritic cells (DCs) to initiate T cell immunity by efficient uptake and presentation of endocytosed material. Delivery of tumor-associated antigens to DCs using receptor-specific monoclonal antibodies (mAbs) in the presence of DC-activating agents elicits robust antigen-specific immune responses in preclinical models. DEC-205 (CD205), a molecule expressed on DCs, has been extensively studied for its role in antigen processing and presentation. CDX-1401 is a vaccine composed of a human mAb specific for DEC-205 fused to the full-length tumor antigen NY-ESO-1. This phase 1 trial assessed the safety, immunogenicity, and clinical activity of escalating doses of CDX-1401 with the Toll-like receptor (TLR) agonists resiquimod (TLR7/8) and Hiltonol (poly-ICLC, TLR3) in 45 patients with advanced malignancies refractory to available therapies. Treatment induced humoral and cellular immunity to NY-ESO-1 in patients with confirmed NY-ESO-1-expressing tumors across various dose levels and adjuvant combinations. No dose-limiting or grade 3 toxicities were reported. Thirteen patients experienced stabilization of disease, with a median duration of 6.7 months (range, 2.4+ to 13.4 months). Two patients had tumor regression (~20% shrinkage in target lesions). Six of eight patients who received immune-checkpoint inhibitors within 3 months after CDX-1401 administration had objective tumor regression. This first-in-human study of a protein vaccine targeting DCs demonstrates its feasibility, safety, and biological activity and provides rationale for combination immunotherapy strategies including immune checkpoint blockade.
Collapse
|
141
|
Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomedicine 2014; 9:5231-46. [PMID: 25419128 PMCID: PMC4235494 DOI: 10.2147/ijn.s66639] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeting antigen to dendritic cells (DCs) is a powerful and novel strategy for vaccination. Priming or loading DCs with antigen controls whether subsequent immunity will develop and hence whether effective vaccination can be achieved. The goal of our present work was to increase the potency of DC-based antitumor vaccines by overcoming inherent limitations associated with antigen stability and cross-presentation. Nanoparticles prepared from the biodegradable polymer poly(lactic-co-glycolic acid) have been extensively used in clinical settings for drug delivery and are currently the subject of intensive investigation as antigen delivery vehicles for vaccine applications. Here we describe a nanoparticulate delivery system with the ability to simultaneously carry a high density of protein-based antigen while displaying a DC targeting ligand on its surface. Utilizing a targeting motif specific for the DC-associated surface ligand DEC-205, we show that targeted nanoparticles encapsulating a MART-127–35 peptide are both internalized and cross-presented with significantly higher efficiency than isotype control-coated nanoparticles in human cells. In addition, the DEC-205-labeled nanoparticles rapidly escape from the DC endosomal compartment and do not colocalize with markers of early (EEA-1) or late endosome/lysosome (LAMP-1). This indicates that encapsulated antigens delivered by nanoparticles may have direct access to the class I cytoplasmic major histocompatibility complex loading machinery, overcoming the need for “classical” cross-presentation and facilitating heightened DC stimulation of anti-tumor CD8+ T-cells. These results indicate that this delivery system provides a flexible and versatile methodology to deliver melanoma-associated antigen to DCs, with both high efficiency and heightened potency.
Collapse
Affiliation(s)
- Sandeep S Saluja
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas J Hanlon
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Fiona A Sharp
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Enping Hong
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - David Khalil
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Eve Robinson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert Tigelaar
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| | - Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA ; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Richard L Edelson
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
142
|
Thompson IJT, Mann ER, Stokes MG, English NR, Knight SC, Williamson D. Specific activation of dendritic cells enhances clearance of Bacillus anthracis following infection. PLoS One 2014; 9:e109720. [PMID: 25380285 PMCID: PMC4224377 DOI: 10.1371/journal.pone.0109720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/02/2014] [Indexed: 11/22/2022] Open
Abstract
Dendritic cells are potent activators of the immune system and have a key role in linking innate and adaptive immune responses. In the current study we have used ex vivo pulsed bone marrow dendritic cells (BMDC) in a novel adoptive transfer strategy to protect against challenge with Bacillus anthracis, in a murine model. Pre-pulsing murine BMDC with either recombinant Protective Antigen (PA) or CpG significantly upregulated expression of the activation markers CD40, CD80, CD86 and MHC-II. Passive transfusion of mice with pulsed BMDC, concurrently with active immunisation with rPA in alum, significantly enhanced (p<0.001) PA-specific splenocyte responses seven days post-immunisation. Parallel studies using ex vivo DCs expanded from human peripheral blood and activated under the same conditions as the murine DC, demonstrated that human DCs had a PA dose-related significant increase in the markers CD40, CD80 and CCR7 and that the increases in CD40 and CD80 were maintained when the other activating components, CpG and HK B. anthracis were added to the rPA in culture. Mice vaccinated on a single occasion intra-muscularly with rPA and alum and concurrently transfused intra-dermally with pulsed BMDC, demonstrated 100% survival following lethal B. anthracis challenge and had significantly enhanced (p<0.05) bacterial clearance within 2 days, compared with mice vaccinated with rPA and alum alone.
Collapse
Affiliation(s)
- Iain J. T. Thompson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Elizabeth R. Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Margaret G. Stokes
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
| | - Nicholas R. English
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom
| | - Diane Williamson
- Biomedical Sciences Department, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire, SP4 0JQ, United Kingdom
- * E-mail:
| |
Collapse
|
143
|
Tseveleki V, Tselios T, Kanistras I, Koutsoni O, Karamita M, Vamvakas SS, Apostolopoulos V, Dotsika E, Matsoukas J, Lassmann H, Probert L. Mannan-conjugated myelin peptides prime non-pathogenic Th1 and Th17 cells and ameliorate experimental autoimmune encephalomyelitis. Exp Neurol 2014; 267:254-67. [PMID: 25447934 DOI: 10.1016/j.expneurol.2014.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022]
Abstract
Antigen presenting cells (APC) are critical for regulating immune responses. We tested mannan-peptide conjugates for targeting myelin peptides to APC to induce T cell tolerance and resistance to experimental autoimmune encephalomyelitis (EAE). Myelin peptides conjugated to mannan in oxidized (OM) or reduced (RM) forms protected mice against EAE in prophylactic and therapeutic protocols, with OM-conjugated peptides giving best results. Protection was peptide-specific and associated with reduced antigen-specific T cell proliferation, but not alterations in Th1, Th17 and Treg cell differentiation or T cell apoptosis compared to EAE controls. Bone marrow-derived dendritic cells (DC) loaded with OM-MOG showed up-regulated expression of co-stimulatory molecules, reduced PD-L1 expression and enhanced CD40-inducible IL-12 and IL-23 production compared to MOG DC, features consistent with immunogenic DC. OM-MOG induced active T cell tolerance because i.d. administration or passive transfer of OM-MOG DC suppressed ongoing EAE, while OM-MOG-vaccinated mice did not reduce the proliferation of transferred MOG-specific T cells. As in vivo, MOG-specific T cells cultured with OM-MOG DC showed reduced proliferation and equal Th1 and Th17 cell differentiation compared to those with MOG DC, but surprisingly cytokine production was unresponsive to CD40 engagement. Impaired effector T cell function was further evidenced in spinal cord sections from OM-MOG-vaccinated EAE mice, where markedly reduced numbers of CD3(+) T cells were present, restricted to leptomeninges and exceptional parenchymal lesions. Our results show that mannan-conjugated myelin peptides protect mice against EAE through the expansion of antigen-specific Th1 and Th17 cells with impaired proliferation responses and APC-induced co-stimulatory signals that are required for licensing them to become fully pathogenic T cells.
Collapse
Affiliation(s)
- Vivian Tseveleki
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rio Patras, Greece.
| | - Ioannis Kanistras
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - Olga Koutsoni
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - Maria Karamita
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | | | - Vasso Apostolopoulos
- Centre for Chronic Disease Prevention & Management, Victoria University, Melbourne, Australia
| | - Eleni Dotsika
- Laboratory of Cellular Immunology, Hellenic Pasteur Institute, Athens, Greece
| | - John Matsoukas
- Department of Chemistry, University of Patras, Rio Patras, Greece
| | - Hans Lassmann
- Division of Neuroimmunology, Centre for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Lesley Probert
- Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece.
| |
Collapse
|
144
|
Baker K, Rath T, Pyzik M, Blumberg RS. The Role of FcRn in Antigen Presentation. Front Immunol 2014; 5:408. [PMID: 25221553 PMCID: PMC4145246 DOI: 10.3389/fimmu.2014.00408] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulins are unique molecules capable of simultaneously recognizing a diverse array of antigens and themselves being recognized by a broad array of receptors. The abundance specifically of the IgG subclass and the variety of signaling receptors to which it binds render this an important immunomodulatory molecule. In addition to the classical Fcγ receptors that bind IgG at the cell surface, the neonatal Fc receptor (FcRn) is a lifelong resident of the endolysosomal system of most hematopoietic cells where it determines the intracellular fate of both IgG and IgG-containing immune complexes (IgG IC). Cross-linking of FcRn by multivalent IgG IC within antigen presenting cells such as dendritic cells initiates specific mechanisms that result in trafficking of the antigen-bearing IgG IC into compartments from which the antigen can successfully be processed into peptide epitopes compatible with loading onto both major histocompatibility complex class I and II molecules. In turn, this enables the synchronous activation of both CD4(+) and CD8(+) T cell responses against the cognate antigen, thereby bridging the gap between the humoral and cellular branches of the adaptive immune response. Critically, FcRn-driven T cell priming is efficient at very low doses of antigen due to the exquisite sensitivity of the IgG-mediated antigen delivery system through which it operates. FcRn-mediated antigen presentation has important consequences in tissue compartments replete with IgG and serves not only to determine homeostatic immune activation at a variety of sites but also to induce inflammatory responses upon exposure to antigens perceived as foreign. Therapeutically targeting the pathway by which FcRn enables T cell activation in response to IgG IC is thus a highly attractive prospect not only for the treatment of diseases that are driven by immune complexes but also for manipulating local immune responses against defined antigens such as those present during infections and cancer.
Collapse
Affiliation(s)
- Kristi Baker
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timo Rath
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Erlangen University Hospital, Friedrich Alexander University Erlangen-Nueremberg, Erlangen, Germany
| | - Michal Pyzik
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S. Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Digestive Diseases Center, Boston, MA, USA
| |
Collapse
|
145
|
Sehgal K, Dhodapkar KM, Dhodapkar MV. Targeting human dendritic cells in situ to improve vaccines. Immunol Lett 2014; 162:59-67. [PMID: 25072116 DOI: 10.1016/j.imlet.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) provide a critical link between innate and adaptive immunity. The potent antigen presenting properties of DCs makes them a valuable target for the delivery of immunogenic cargo. Recent clinical studies describing in situ DC targeting with antibody-mediated targeting of DC receptor through DEC-205 provide new opportunities for the clinical application of DC-targeted vaccines. Further advances with nanoparticle vectors which can encapsulate antigens and adjuvants within the same compartment and be targeted against diverse DC subsets also represent an attractive strategy for targeting DCs. This review provides a brief summary of the rationale behind targeting dendritic cells in situ, the existing pre-clinical and clinical data on these vaccines and challenges faced by the next generation DC-targeted vaccines.
Collapse
Affiliation(s)
- Kartik Sehgal
- Department of Medicine, Yale University, New Haven, CT, United States
| | | | | |
Collapse
|
146
|
Lundberg K, Rydnert F, Greiff L, Lindstedt M. Human blood dendritic cell subsets exhibit discriminative pattern recognition receptor profiles. Immunology 2014; 142:279-88. [PMID: 24444310 DOI: 10.1111/imm.12252] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) operate as the link between innate and adaptive immunity. Their expression of pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), enables antigen recognition and mediates appropriate immune responses. Distinct subsets of human DCs have been identified; however their expression of PRRs is not fully clarified. Expressions of CLRs by DC subpopulations, in particular, remain elusive. This study aimed to identify and compare PRR expressions on human blood DC subsets, including CD1c(+) , CD141(+) and CD16(+) myeloid DCs and CD123(+) plasmacytoid DCs, in order to understand their capacity to recognize different antigens as well as their responsiveness to PRR-directed targeting. Whole blood was obtained from 13 allergic and six non-allergic individuals. Mononuclear cells were purified and multi-colour flow cytometry was used to assess the expression of 10 CLRs and two TLRs on distinct DC subsets. PRR expression levels were shown to differ between DC subsets for each PRR assessed. Furthermore, principal component analysis and random forest test demonstrated that the PRR profiles were discriminative between DC subsets. Interestingly, CLEC9A was expressed at lower levels by CD141(+) DCs from allergic compared with non-allergic donors. The subset-specific PRR expression profiles suggests individual responsiveness to PRR-targeting and supports functional specialization.
Collapse
|
147
|
Tappertzhofen K, Bednarczyk M, Koynov K, Bros M, Grabbe S, Zentel R. Toward Anticancer Immunotherapeutics: Well-Defined Polymer-Antibody Conjugates for Selective Dendritic Cell Targeting. Macromol Biosci 2014; 14:1444-57. [DOI: 10.1002/mabi.201400190] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/22/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Monika Bednarczyk
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Stephan Grabbe
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
- Research Center Immunology (FZI); University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
148
|
Park CG. Vaccine strategies utilizing C-type lectin receptors on dendritic cells in vivo. Clin Exp Vaccine Res 2014; 3:149-54. [PMID: 25003088 PMCID: PMC4083067 DOI: 10.7774/cevr.2014.3.2.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/26/2014] [Accepted: 03/30/2014] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells capable of initiating and regulating innate and adaptive immunity. The development of effective ways to produce a large number of DCs in laboratories made the use of DCs available in various vaccine approaches. Compared to conventional vaccines, focused on protective antibody responses, DC vaccines emphasize protective T cell immunity but might elicit strong antibody responses as well. In addition, the recent discoveries of functionally distinct DC subsets in various organs and tissues are likely to increase the potential of exploiting DCs in vaccines and immunotherapy. Vaccines composed of DCs generated ex vivo, pulsed with antigens, and matured prior to being re-infused to the body have been widely tried clinically but resulted in limited success due to various obstacles. In this review, new approaches that protein vaccines are selectively targeted to the endocytic C-type lectin receptors on surface of DCs in vivo are discussed.
Collapse
Affiliation(s)
- Chae Gyu Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Brain 21 PLUS project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
149
|
Tullett KM, Lahoud MH, Radford KJ. Harnessing Human Cross-Presenting CLEC9A(+)XCR1(+) Dendritic Cells for Immunotherapy. Front Immunol 2014; 5:239. [PMID: 24904587 PMCID: PMC4033245 DOI: 10.3389/fimmu.2014.00239] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Kirsteen M Tullett
- Mater Research Institute, University of Queensland , Brisbane, QLD , Australia ; School of Medicine, University of Queensland , Brisbane, QLD , Australia ; Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia
| | - Mireille H Lahoud
- Centre for Biomedical Research, Burnet Institute , Melbourne, VIC , Australia ; Department of Immunology, Monash University , Melbourne, VIC , Australia
| | - Kristen J Radford
- Mater Research Institute, University of Queensland , Brisbane, QLD , Australia ; School of Biomedical Sciences, University of Queensland , Brisbane, QLD , Australia
| |
Collapse
|
150
|
Wengerter BC, Katakowski JA, Rosenberg JM, Park CG, Almo SC, Palliser D, Levy M. Aptamer-targeted antigen delivery. Mol Ther 2014; 22:1375-1387. [PMID: 24682172 PMCID: PMC4089008 DOI: 10.1038/mt.2014.51] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 03/19/2014] [Indexed: 01/08/2023] Open
Abstract
Effective therapeutic vaccines often require activation of T cell-mediated immunity. Robust T cell activation, including CD8 T cell responses, can be achieved using antibodies or antibody fragments to direct antigens of interest to professional antigen presenting cells. This approach represents an important advance in enhancing vaccine efficacy. Nucleic acid aptamers present a promising alternative to protein-based targeting approaches. We have selected aptamers that specifically bind the murine receptor, DEC205, a C-type lectin expressed predominantly on the surface of CD8α+ dendritic cells (DCs) that has been shown to be efficient at facilitating antigen crosspresentation and subsequent CD8+ T cell activation. Using a minimized aptamer conjugated to the model antigen ovalbumin (OVA), DEC205-targeted antigen crosspresentation was verified in vitro and in vivo by proliferation and cytokine production by primary murine CD8+ T cells expressing a T cell receptor specific for the major histocompatibility complex (MHC) I-restricted OVA257–264 peptide SIINFEKL. Compared with a nonspecific ribonucleic acid (RNA) of similar length, DEC205 aptamer-OVA-mediated antigen delivery stimulated strong proliferation and production of interferon (IFN)-γ and interleukin (IL)-2. The immune responses elicited by aptamer-OVA conjugates were sufficient to inhibit the growth of established OVA-expressing B16 tumor cells. Our results demonstrate a new application of aptamer technology for the development of effective T cell-mediated vaccines.
Collapse
Affiliation(s)
- Brian C Wengerter
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Joseph A Katakowski
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jacob M Rosenberg
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA; Current address: Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, California, USA
| | - Chae Gyu Park
- Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York, USA; Current address: Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Deborah Palliser
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|